TY - THES A1 - Heindel, Ulla T1 - G-Protein gekoppelte Rezeptoren für Parathormon : molekulare Determinanten der intrazellulären Signalwegankopplung T1 - G-protein coupled receptors for parathyroid hormone: molecular insights into intracellular signalling N2 - In der vorliegenden Dissertation gelang es, die strukturellen und molekularen Determinanten der PTH-Rezeptoren für die Ankopplung an intrazelluläre Signalwege näher zu charakterisieren. Die Regulation des Kalzium-, Phosphat- und Knochenstoffwechsels wird zum erheblichen Teil über den PTH1-Rezeptor (P1R) vermittelt. Parathormon (PTH) aktiviert am P1R mindestens zwei Signalwege: den durch zyklisches Adenosinmonophosphat (cAMP) vermittelten Weg und den Phospholipase C-Signalweg (PLC). Der nahe verwandte PTH2-Rezeptor (P2R) kann außer durch PTH auch über das tuberoinfundibiläre Peptid (TIP39) aktiviert werden. Jedoch besitzt dieser Rezeptor keine Ankopplung an den PLC-Signalweg. Zur Aufklärung der strukturellen und molekularen Determinaten der intrazellulären Signalwegankopplung wurden verschiedene Versuchsansätze ausgewählt, die eine Untergliederung dieser Arbeit in drei Teilprojekte ermöglicht: 1) Die PTH-Rezeptoren sind wichtige Vertreter der Klasse II der G-Protein gekoppelten Rezeptoren. Ein Vergleich der Aminosäuresequenzen der siebten Transmembrandomäne dieser Klasse zeigt ein hoch konserviertes, cytosolnahes „YCFXN“-Motiv in diesem Bereich. Im ersten Teil dieser Arbeit konnte durch Punktmutationen der einzelnen Aminosäuren dieses Motivs gezeigt werden, dass dieser Abschnitt eine entscheidende Determinierungsregion dieser Rezeptorfamilie sowohl für die Ankopplung an den cAMP-Weg, als auch an den PLC-Signalweg darstellt. Die Untersuchungen legen die Vermutung nahe, dass dieser Bereich für die Stabilisierung der Konformation dieser Rezeptoren von großer Bedeutung ist. 2) In einem zweiten Abschnitt dieser Arbeit wurde durch stufenweise Angleichung des P2R an den P1R eine Reihe von funktionell exprimierten P2R/P1R Hybridrezeptoren hergestellt, die eine Übereinstimmung des intrazellulären Bereichs des P1R von bis zu 95 % erreichen. Der Nachweis des PLC-Signalwegs durch die Bestimmung der akkumulierten Gesamtinositolphosphate und des intrazellulären Kalziums zeigte eindrucksvoll, dass trotz einer weitgehenden intrazellulären Übereinstimmung der Aminosäuresequenz des P2R mit dem P1R die Eigenschaft des P1R an den PLC-Signalweg zu koppeln nicht auf den P2R übertragen werden kann. Dies legt nahe, dass auch extrazelluläre Bereiche und Transmembranabschnitte die Ankopplung an intrazelluläre Signalwege steuern. Im Weiteren konnte für den cAMP-Signalweg durch diese Hybridrezeptoren gezeigt werden, dass im Kontext des P2R eingefügte Teilabschnitte des P1R (C-Terminus, zweite und dritte intrazelluläre Schleife ) zusammenwirken und eine effizientere Ankopplung an den cAMP-Weg ermöglichen. Weiterführende Untersuchungen der Membrantranslokation von beta Arrestin2 mit einer anschließenden Internalisierung des Rezeptors zeigten, dass sowohl der P2R als auch die hiervon abgeleiteten Hybridrezeptoren selektiv durch Stimulation mit TIP39, nicht jedoch nach einer Stimulation mit PTH, eine Translokation bewirken. Dieses Ereignis ist von den untersuchten Signalwegen (cAMP-, PLC- und Mitogen-aktivierte Proteinkinase (MAPK)-Signalweg) unabhängig. Erstmals wurde hier gezeigt, dass der P2R eine Phosphorilierung von MAPK bewirkt, wobei hierfür einer beta-Arrestin2 Translokation nicht notwendig ist. Diese Ergebnisse lassen den Schluss zu, dass der PTH-Rezeptor in unterschiedlichen Rezeptorkonformationen existiert, so dass einzelne Rezeptorabschnitte unabhängig voneinander verschiedene Signale aktivieren können. 3) Der letzte Teil dieser Arbeit beschäftigte sich mit der Identifikation von intrazellulären Interaktionspartnern des humanen P1R. Neue Protein–Interaktionen mit dem humanen P1R wurden mit einem „Yeast-two-Hybrid“ System identifiziert. Mit Hilfe dieser Methode konnte, als ein potentiell bedeutender intrazellulärer Interaktionspartner des humanen P1R, das PDZ-Protein PDZK1 identifiziert werden. Es gelang mit Hilfe von Koimmunpräzipitations-Experimenten und von GST-pull-down-Assays die Interaktion von PDZK1 mit dem P1R zu verifizieren. PDZK1 bindet an eine Liganden-Bindungsdomäne innerhalb des C-terminalen Abschnitts des P1R, vermutlich an die letzten vier Aminosäuren. Durch einen Hefe-Interaktionstest konnte von den vier in diesem Protein vorkommenden PDZ-Domänen die PDZ1-Domäne als einzige selektiv mit dem P1R interagierende Domäne identifiziert werden. In der Niere interagiert PDZK1 über die PDZ3-Domäne mit dem Na/Pi-Transporter IIa. Eine attraktive Hypothese ist daher die Funktion von PDZK1 als einem Bindeglied zwischem dem Rezeptor und dem Transporter und die damit einhergehende PTH- vermittelte Regulation des Phosphattransports in der Niere. Diese Hypothese bedarf aber nochweiterer funktioneller Analysen (z.B. durch Untersuchungen an PDZK1 Knock-Out Mäusen). N2 - In this project we identified structural and molecular determinants of the PTH receptor familiy with importance for coupling to intracellular signaling pathways. The PTH1-receptor (P1R) is involved in the systemic regulation of calcium and phosphate metabolism, and plays a decisive role in bone metabolism. PTH achieves this by activation of at least two intracellular signalling pathways: the adenylyl cylase (AC) and the phospholipase C (PLC) pathway. The closely related PTH2-receptor (P2R) is, in addition to PTH, also activated by tuberoinfundibular peptide of 39 residues (TIP 39), but unlike the P1R, does not couple to the PLC signaling pathway. This project achieved the identification of structural and molecular deteminatnts by three different approaches: 1) The PTH receptors belong to the class II of G-protein coupled receptors. A comparison of the amino acid sequences of the seventh transmembrane domain shows a highly conserved “YCFXN”-motif near the cytosolic interface of this domain. To examine the role of this conserved motif individual point mutations of these amino acids were generated and evaluated. Studies of the receptor mutants obtained showed that this region plays an important role in coupling to the adenylyl cylase pathway as well as to the PLC signaling pathway. The data obtained in this work suggests that the “YCFXN”-motif is of significant importance for the stabilisation of the receptor conformation. 2) To identify the structural features responsible for activating the PLC pathway, we engineered a series of hybrid P1R/P2R receptor chimeras by gradually adapting the P2R’s cytosolic interface to a P1R-like sequence. These modifications of key differing regions in the second and third loop, and the C-terminal tail allowed for > 95 % of P1R sequence in the cytosolic interface of the P2R. Despite these changes it was not possible to transfer the property of P1R to couple to the PLC signaling pathway to the P2R as shown impressively by the lack of activation of the PLC signaling pathway using measurements of inositol and intracellular calcium. Apparently, extracellular regions as well as transmembrane domains are required for selective coupling to intracellular signaling pathways. By contrast we could show for the cAMP signaling pathway, that when > 95 % of the P2R´s cytosolic interface had a P1R-like sequence, P1R epitopes apparently interacted with each other to result in a more efficient coupling to the cAMP signaling pathway. Stimulation of the receptor by its ligands leads to translocation of -arrestin2 to the cell surface thus initiating internalisation of the receptor. The P2R, as well as the hybrid P1R/P2R receptor chimeras, showed beta arrestin2 translocation selectively after stimulation with TIP39 but not after stimulation with PTH. Ligand-induced translocation of beta-arrestin2 was completely independent from cAMP-, PLC- and mitogen activated proteinkinases (MAPK) signaling pathways in the P2R and its derived chimeric mutants. Furthermore, we could show here for the first time, that the P2R can activate MAPK and that this is independent from a beta-arrestin2 translocation. In conclusion, the PTH-receptors can exist in different receptor conformations which apparently allow the receptors to activate different signals independently. 3) Another goal of this work was the identification of intracellular proteins interacting with the human P1R. A yeast-two-hybrid system was used to identify new protein-protein interactions of the human P1R. Using this method a possible important interacting protein could be identified. This protein was a PDZ-protein, named PDZK1. To verify this interaction co-immunoprecipitation experiments as well as GST-pull-down experiments were done. Binding of PDZK1 occurred within the C terminal region of the P1R and there probably within the last four amino acids. PDZK1 has four PDZ-domains of which the first one was the exclusively interacting domain with the P1R, as determined by a additional yeast-two-hybrid interaction experiment. In kidney the interaction of PDZK1 with the Na/Pi-transporter type IIa occurs via the third PDZ-domain. A hypothesis is that PDZK1 acts as a connecting link between the receptor and the transporter together with a PTH-mediated regulation of the phosphate-transport in kidney. However, this hypothesis will require further studies (e.g. experiments with PDZK1 knock-out mice). KW - Parathormon KW - Rezeptor KW - Intrazellulärraum KW - Signaltransduktion KW - G-Protein gekoppelte Rezeptoren KW - PTH KW - cAMP KW - Inositol KW - PDZ KW - G-protein coupled receptors KW - PTH KW - cAMP KW - PLC KW - PDZ Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-17213 ER - TY - THES A1 - Endress, Eva-Maria T1 - Mögliche Rolle von Cystein-Resten in der dritten extrazellulären Schleife des humanen PTH-2 Rezeptors für dessen Ligandenspezifität T1 - Possible role of cysteine residues in the third extracellular loop of the human PTH-2 receptor for its ligand specificity N2 - Der Mechanismus, welcher den GPCR eine Unterscheidung verschiedener Liganden ermöglicht, ist immer noch ungeklärt. Der GPCR für PTH und PTHrP (=PTH1-R) bindet PTH und das strukturell recht unterschiedliche PTHrP. Beide Liganden aktivieren mit etwa vergleichbarer Potenz eben diesen PTH1-R, indem sie sowohl an die intrazelluläre AC als auch an die PLC ankoppeln. Ein vor einigen Jahren überraschend kloniertes neues Mitglied der Sekretin/PTH/Calcitonin-Familie (= Familie B) der GPCR, der PTH2-R, antwortet jedoch nur nach Bindung von PTH bzw. TIP 39, nicht aber nach PTHrP, mit einem intrazellulären cAMP-Signal. Allerdings sind weder hPTH noch TIP39 in der Lage, eine intrazelluläre IP3-Antwort auszulösen. Welche strukturellen Gegebenheiten des PTH2-Rezeptors ermöglichen diese effiziente Ligandendiskriminierung? Analysen der Rezeptor-Liganden-Interaktion und die Aufklärung dieses Komplexes sind ein Schlüsselelement im Design spezifischer Rezeptoragonisten und –antagonisten mit bedeutendem therapeutischen Potential. Eine hochkonservierte Eigenschaft aller Rezeptoren der Familie B der GPCR ist die Lokalisation von sechs extrazellulären Cysteinen, die sowohl zur Expression intakter Rezeptoren von Nöten sind als auch durch mögliche Disulfidbrückenbildung untereinander einen entscheidenden Einfluss auf das Bindungsverhalten ausüben. Die Hypothese der vorliegenden Arbeit ist, dass zwei Cysteine, präsent in der 3. Extrazellulärschleife des PTH2-R, nicht aber in der des PTH1-R, dessen Ligandenspezifität bedingen. Tatsächlich führte das Ausschalten eines entsprechenden Cysteins im Opossum-PTH2-R zu einem exprimierten Rezeptor, der PTHrP zu einem gewissen Grad binden und daraufhin auch den AC/cAMP-Signalweg aktivieren konnte. (184) Es liegt daher die Vermutung nahe, dass diese beiden Cysteine des PTH2-R entweder durch Disulfidbrückenbildung untereinander oder zu den restlichen Cysteinen in der extrazellulären Region die sterische Konfiguration der Rezeptoren und somit auch deren Bindungs- und Signalverhalten ändern können. Auf diesen Ergebnissen und Annahmen basierend, war daher Gegenstand diesen Projekts zunächst das Einfügen verschiedener Punktmutationen in die cDNA des humanen PTH1-R. Es wurden Konstrukte konzipiert zur Einfügung beider Cysteine einzeln (Ala426Cys und Tyr443Cys) oder kombiniert (Ala426Cys/Tyr443Cys). Nach Expression der drei mutierten Rezeptoren und beider Wildtyp-Rezeptoren war Ziel, das Ligandenbindungsverhalten und somit die Expression intakter Rezeptoren an der Zelloberfläche zu untersuchen. Studien des Signalverhaltens bezüglich des AC/cAMP- und des PLC/IP3- Signalwegs, ebenso wie Internalisierungsassays strebten dann die vollständige Charakterisierung der mutierten Rezeptoren an. N2 - Cysteine residues are structurally important for the function of the PTH-1 receptor (PTH1R), probably by forming disulfide bridges. The more recently discovered PTH-2 receptor (PTH2R) differs from the PTH1R by not recognizing PTH-related protein (PTHrP). We hypothesized, that two cystein residues present in the thrid loop of the PTH2R, but not in the PTH1R, might cause this ligand specificity. In fact, eliminating one of the corresponding cysteine residues in the opossum PTH2R resulted in recognition of PTHrP, in contrast to wildtype PTH2R (P Turner et al (1998) J Biol Chem 273: 3830-3837) KW - Parathormon KW - Parathyroid hormone-like peptide KW - Cystein KW - Disulfidbrücken KW - PTH-Rezeptoren KW - G-Protein gekoppelte Rezeptoren KW - TIP 39 KW - PTH KW - PTH-related protein KW - TIP 39 KW - PTH-receptors KW - cysteine residues KW - disulfid bridges Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-25488 ER - TY - THES A1 - Nuber, Susanne T1 - ß-Arrestin/Rezeptor-Interaktionen - Ein endogenes "Werkzeug" ligandenspezifischer Signaltransduktion T1 - ß-Arrestin/receptor-interactions - An endogenous "tool" of ligand-specific signal transduction N2 - Die Bedeutung der β-Arrestine als multifunktionelle Adapterproteine GPCR-vermittelter Signaltransduktion hat in den letzten Jahren immer mehr zugenommen. In der vorliegenden Arbeit lag der Schwerpunkt auf der Untersuchung der molekularen Basis und der Ligandenabhängigkeit sowohl der β-Arrestin/Rezeptor-Interaktion als auch β-Arrestin- (un-)abhängiger Signaltransduktionsmechanismen. Im ersten Teil wurde der Einfluß potentieller Phosphorylierungsstellen im C-Terminus des β2AR bzw. im C-Terminus und der TM3 des P2Y1R auf die agonisteninduzierte β-Arrestin/Rezeptor-Interaktion, Internalisierung und Desensibilisierung untersucht. Durch Mutationsanalysen konnten Ser 352/Thr 358 im distalen C-Terminus des P2Y1R als Schlüsselstellen der β-Arrestin-Translokation und Internalisierung identifiziert werden, während ein oder mehrere Phosphorylierungsstellen im proximalen P2Y1R C-Terminus die molekulare Grundlage der Rezeptordesensibilisierung darstellen. Darüber hinaus machte die Anwendung verschiedener PKC- oder CaMK-Inhibitoren sowie der Einsatz des PKC-Aktivators PMA deutlich, dass die P2Y1R-Desensibilisierung und β-Arrestin-Translokation durch unterschiedliche Kinasen kontrolliert werden. Zudem konnte mit Hilfe der FRET-Technik gezeigt werden, dass die Phosphorylierungsstellen zwischen den Positionen 355 und 364 im proximalen β2AR C-Terminus essentielle Bereiche der β-Arrestin-Translokation darstellen. Im zweiten Teil der vorliegenden Arbeit wurden Agonisten am β2-adrenergen Rezeptor bzw. dem P2Y2R auf ihre Fähigkeit hin untersucht verschiedene mit dem jeweiligen Rezeptor verknüpfte G-Protein- bzw. β-Arrestin-Funktionen in unterschiedlichem Ausmaß zu aktivieren („biased agonism“). Da eine solche ligandenselektive Aktivierung rezeptorvermittelter Signalwege bis dato nur mit synthetischen Liganden detailliert untersucht wurde, galt das besondere Interesse der Analyse der durch die endogenen Substanzen induzierten Signalmuster. Die Betrachtung der Noradrenalin- bzw. Adrenalin-induzierten β-Arrestin/Rezeptor-Interaktion, β-Arrestin2-Translokation, Rezeptorinternalisierung, G-Protein-Aktivierung sowie cAMP-Produktion am β2AR machte deutlich, dass es sich beim Phänomen des „biased agonism“ um einen endogenen Mechanismus handelt. Darüber hinaus konnte gezeigt werden, dass auch zur Tokolyse eingesetzte β2AR-Agonisten spezifische Signalmuster induzieren. Die Beobachtung, dass UTP und ATP sowohl unterschiedliche β-Arrestin1/2-Translokationsals auch ERK-Aktivierungsmuster am P2Y2R induzieren bestärkte das Konzept des „biased agonism“ als endogenes Phänomen. Das ligandenabhängige β-Arrestin-Translokationsverhalten des P2Y2R ließ zudem die agonistenbedingte Zuteilung des Rezeptors zu den „Klasse A“ oder „Klasse B“ Rezeptoren zu. Die detaillierte Untersuchung agonisteninduzierter Rezeptor/Effektor-Interaktionen und Signalmuster dürfte helfen die Anwendung klinisch relevanter Substanzen zu optimieren. N2 - In recent years, the significance of β-arrestins as multifunctional adapter proteins of GPCR mediated signal transduction has steadily been increasing. In this thesis the main focus is to research the molecular basis and the ligand dependence of the β-arrestin recruitment as well as β-arrestin-(in-)dependent signal transduction mechanisms. In the first part, the influence of potential phosphorylation sites in the C-terminus of the β2AR or the C-terminus and the TM3 of the P2Y1R, respectively, on the agonist-induced β-arrestin2/receptor-interaction, receptor internalization and desensitization was examined. Using mutation analysis, Ser 352 and Thr 358 were identified as key points of the β-arrestin2 translocation and receptor internalization in the distal C-terminus of the P2Y1R. In contrast, one or more phosphorylation sites in the proximal P2Y1R C-terminus represent the molecular basis of receptor desensitization. In addition, the use of different PKC- or CaMK inhibitors and the application of the PKC activator PMA made it clear that the P2Y1R desensitization and β-arrestin translocation are controlled by different kinases. Using the FRET technique we were able to show that the phosphorylation sites between position 355 and 364 in the proximal C-terminus of the β2AR represent essential areas of the β-arrestin2 translocation. In the second part of the study at hand, agonists of the β2AR or the P2Y2R were examined with respect to their ability to activate distinct receptor associated G-protein or β-arrestin functions to varying degrees (“biased agonism”). Since this kind of ligandselective activation of receptor-mediated signaling pathways has only been studied in detail with synthetic ligands to this day, special interest in the analysis of the signaling pattern induced by the endogenous substances was taken. The analysis of norepinephrine- or epinephrine-induced β-arrestin/receptor interaction, β-arrestin translocation, receptor internalization, G-protein activation and cAMP production at the β2AR made clear that “biased agonism” is an endogenous phenomenon. Moreover, it has also been shown that β2AR agonists used for tocolysis induced a specific signaling pattern. The observation that UTP and ATP both induce different β-arrestin translocation as well as ERK activation patterns at the P2Y2R confirmed the concept of “biased agonism” as an endogenous phenomenon. The ligand dependent β-arrestin behavior of the P2Y2R also allowed the allocation of the receptor to the “class A” or “class B” receptors depending on the agonist used for stimulation. The detailed testing of agonist induced receptor/effector interactions and signaling pattern could help to optimize the application of clinically relevant substances. KW - G-Protein gekoppelte Rezeptoren KW - Adaptorproteine KW - Beta-Rezeptor KW - Noradrenalin KW - Adrenalin KW - Purinozeptor KW - ADP KW - Fluoreszenz-Resonanz-Energie-Transfer KW - Konfokale Mikroskopie KW - biased agonism KW - functional selectivity Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-53188 ER - TY - THES A1 - Hommers, Leif T1 - Über die Interaktion aktivierter G-Proteine mit G-Protein gekoppelten Rezeptoren T1 - Interaction of activated G Protein with activated G Protein coupled receptors N2 - Aktivierte G-Protein gekoppelte Rezeptoren aktivieren heterotrimere GProteine, in dem sie den Austausch von GDP zu GTP am G-Protein katalysieren. Theoretische Untersuchungen mittels eines vereinfachten kinetischen Modells des Gi/o-Protein Zyklus legen nahe, dass nicht nur GDP-,sondern auch GTP-gebundene Gi/o-Proteine mit aktivierten α2A-adrenergen Rezeptoren (α2A-AR) interagieren können. Demgemäß sollten aktivierte Gi/o-Proteine mit aktivierten α2A-AR vermehrt interagieren, wenn mehr α2A-AR aktiviert werden als für eine maximale G-Protein Aktivierung nötig sind. Dies sollte zu einer paradoxen Deaktivierung von Gi/o-Proteinen und deren Effektorproteinen, z.B. dem G-Protein gekoppelten, einwärtsgleichrichtenden Kaliumkanal (GIRK-Kanal) führen. Mittels FRET lässt sich in lebenden und in permeabilisierten Zellen unter Kontrolle der intrazellulären Nukleotide die Aktivierung von α2A-AR, die Interaktion von Gi/o-Proteinen mit α2A-AR und die Aktivierung von Gi/o-Proteinen bestimmen. Die Arbeit zeigt auf mehreren Ebenen, dass Go-Proteine mit aktivierten α2A-AR interagieren und im nukleotidfreiem Zustand sequestriert werden können: (I) Go-Proteine,irreversibel durch GTPγS aktiviert werden abhängig von der Rezeptor Aktivierung in Abwesenheit von Nukleotiden deaktiviert, (II) Go-Proteine interagieren in Gegenwart niedriger Nukleotidkonzentrationen in wesentlich größer Fraktion mit aktivierten α2A-AR als in Gegenwart hoher Nukleotidkonzentrationen, (III) Go Proteine können in Gegenwart niedriger GTP und GTPγS-Konzentrationen bei Aktivierung des α2A-AR inaktiviert werden. Die Arbeit zeigt exemplarisch an der Signalkaskade des α2A-AR und Go, dass der G-Protein Zyklus in lebenden Zellen reversibel ist, woraus eine Deaktivierung aktivierter G-Proteine und aktivierter G-Protein Effektoren resultieren kann. Dies erklärt paradoxe Befunde zur Deaktivierung von GIRK-Kanälen in Myozyten durch A1-Rezeptoren. N2 - G protein coupled receptors activate heterotrimeric G proteins by catalyzing the exchange of GDP with GTP at the Gα subunit. Kinetic modelling of the Gi/o protein cycle suggests, that both GDP- and GTP-bound Gi/o proteins interact with activated α2A-adrenergic receptors (α2A-AR). Consequently, upon activating more α2A-AR then required for maximal Gi/o protein activation, the interaction of activated Gi/o proteins with activated α2A-AR will become incresingly prominent and ultimately lead to a paradoxic deactivation of Gi/o proteins and their effectors such as G protein coupled inwardly rectifying potassium channels. Using means of FRET allows the detection of the receptor activation, receptor/G protein interaction and G protein activation in single living cells and in single permeabilized cells while controlling the intracellular nucleotide composition.Data suggest, that activated Go proteins may be sequestrated at activated α2A-AR in their nucleotide-free state: (I) Go proteins irreversibly activated by GTPγS become inactivated upon receptor stimulation in the absence of nucleotides, (II) Go proteins interact with activated α2A-AR to a large extent in the presence of low concentrations of nucleotide, (III) Go proteins may be inactivated upon activation of α2A-AR in the presence of low concentrations of GTP or GTPγS. Taken together, the data demonstrate the reversibility of the G protein cycle in living cells for the paradigm α2A-AR/Go pathway. The data thereby explain the paradoxic inactivation of G protein coupled inwardly rectifying potassium channels in myocytes upon activation of adenosine A1 receptors. KW - G-Protein gekoppelte Rezeptoren KW - G protein coupled receptor Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-56576 ER - TY - THES A1 - Markl, Christian T1 - Neue mono- und dimere Melatonin-Analoga als subtypselektive Liganden der Melatoninrezeptoren T1 - Novel mono- and dimeric melatonin analogues as subtype selective melatonin receptor ligands N2 - Die vorliegende Arbeit befasst sich mit der Synthese von Liganden der Melatonin-Rezeptoren (MR). Die zwei humanen MR-Subtypen, MT1 und MT2, gehören zur Familie der G-Protein-gekoppelten Rezeptoren. Als „Schlafhormon“ wirkt es schlafinduzierend und vermittelt den circadianen Rhythmus. Zum genauen Verständnis der physiologischen Funktionen der MT1- und MT2-Rezeptoren ist die Verfügbarkeit von subtypselektiven MR-Liganden unentbehrlich. Zum Design von MT2-selektiven MR-Liganden modifizierte man die Melatonin-Grundstruktur durch formale Substitution in 2-Stellung, z.B. mit dem 2-Methylen-N-methyl-anilin- oder 2-Methylen-1´-indol-Rest. Weiterhin wurden trizyklische Derivate mit 1,2,3,4-Tetrahydro-pyrazino[1,2-a]indol- oder 2,3,4,5-Tetrahydro-1H-[1,4]diazepino[1,2-a]indol-Grundgerüst hergestellt. Das Synthesekonzept für dieses Teilprojekt basierte auf dem Synthesebaustein 3-Cyanomethyl-5-methoxy-1H-indol-2-carbonsäure. Da bislang nur wenige MT1-selektive MR-Liganden bekannt sind, wurde zur Untersuchung der Voraussetzung für MT1-Selektivität, die 5-Methoxygruppe von Melatonin formal durch Phenylalkyloxy-Reste verschiedener Kettenlängen substituiert. Die Synthese der Derivate erfolgte ausgehend von N-Acetylserotonin. Als Referenzverbindung wurde der bis heute MT1-selektivste MR-Antagonist (Descamps-Francois et al. 2003) hergestellt. Zu dessen Synthese benötigte man Agomelatin als Ausgangsverbindung. Eine neuartige vierstufige Route zu Agomelatin wurde daher entwickelt. Die Testung der Referenzverbindung ergab eine drastische Abweichung vom Literaturwert, da diese als nahezu unselektiv getestet wurde. Unter den O-Phenylalkyl-N-Acetylserotonin-Derivaten wurden zwei Verbindungen mit einer 11-fachen MT1-Selektivität getestet. Zur Absicherung der Reinheit wurden die Verbindungen mit RP-HPLC untersucht. Schließlich wurden noch melatoninerge Dimere mit einem 1-1´, 1-2´ und 5-5´ Verknüpfungsmuster hergestellt. N2 - The present work is focused on the synthesis of ligands of melatonin receptors (MR). The two human MR subtypes, MT1 and MT2, belong to the family of G-protein-coupled receptors. As a “sleep hormone”, it induces sleep and also moderates the circadian rhythm. An accurate characterization of melatonin receptor-mediated functions requires MT1 and MT2 selective ligands. In order to design MT2-selective MR-ligands the melatonin scaffold was formally substituted in 2-position, for example with methylen-N-methyl-aniline- or methylen-1´-indole. Furthermore, tricyclic derivatives with the 1,2,3,4-tetrahydro-pyrazino[1,2-a]indole- or 2,3,4,5-tetrahydro-1H-[1,4]diazepino[1,2-a]indole-scaffold were synthesized. The synthetic concept based on the useful building block 3-cyanomethyl-5-methoxy-1H-indole-2-carboxylic acid. While many series of MT2-selective agents are known, the design of MT1-selective agents still is a challenge. A common structural feature of MT1-selective ligands is the presence of a bulky hydrophobic substituent linked to an alkyl chain in a position topologically equivalent to the MeO-group of melatonin. In order to probe the melatonin receptors for MT1-selectivity, a series of melatonin analogues obtained by the replacement of the ether methyl group with phenylalkyl substituents was prepared. The derivates were synthesized from N-acetylserotonine as a starting compound. The most MT1-selective MR-antagonist (Descamps-Francois et al. 2003) was synthesized additionally as a reference compound. Therefore we need agomelatine as starting material, which could be received from our newly developed four-step route. Surprisingly, the reference compound displayed a much lower affinity for the MT1 receptor than reported earlier. In the homologous series of melatonin analogs, the compound with Ph(CH2)3- and PhO(CH2)3-groups were the most MT1-selective agents, revealing that a C3-spacer is optimal to generate MT1-selectivity. Finally, three series of dimeric melatonin analogues, with a 1-1´-, 1-2´- and 5-5´-junction patter were prepared. KW - G-Protein gekoppelte Rezeptoren KW - Melatonin KW - Analoga KW - Indolderivate KW - Melatonin-Analoga KW - Melatoninrezeptorliganden KW - Agomelatin KW - dimere Liganden KW - Synthese KW - Indolderivate KW - Synthese KW - Selektivität KW - melatonin analogues KW - melatonin receptor ligands KW - agomelatine KW - dimeric ligands KW - synthesis Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-54618 N1 - Die in der Dissertation beschriebene neue Synthese von Agomelatin wurde unter:
https://www.thieme-connect.com/ejournals/abstract/synthesis/doi/10.1055/s-0030-1258968
veröffentlicht ER - TY - THES A1 - Bätz, Julia T1 - FRET-basierte Untersuchungen zur ligandenselektiven Beeinflussung der Rezeptorkonformation durch orthosterische und allosterische Liganden am Beispiel des muskarinischen M2 Acetylcholinrezeptors T1 - FRET-based analysis of the ligandselective influence of orthosteric and allosteric ligands on the change of receptor conformation of the muscarinic m2 acetylcholine receptor N2 - Zahlreiche experimentelle Befunde lassen vermuten, dass G-Protein gekoppelte Rezeptoren (GPCR) nach ihrer Aktivierung einer ligandenselektiven Änderung der Rezeptorkonformation unterliegen. Ziel der vorliegenden Arbeit war es dieses Phänomen am Subtyp 2 der muskarinischen Acetylcholinrezeptoren (M2 AChR) zu untersuchen. Muskarinische Acetylcholinrezeptoren (mAChR) können in fünf Subtypen (M1-M5) unterschieden werden. Durch die Beteiligung der mAChR an zahlreichen physiologischen Prozessen stellen sie wichtige Zielstrukturen pharmakologischer Therapien dar. Da die orthosterische Ligandenbindestelle (= Bindestelle des endogenen Liganden) in allen fünf Subtypen hoch konserviert ist, wird ihr pharmakologischer Nutzen derzeit allerdings durch die unselektive Rezeptormodulation und dem damit verbundenen Auftreten unerwünschter Arzneimittelwirkungen stark limitiert. Ein Ansatz zur Erzielung subtypselektiver Effekte besteht in der Verwendung allosterischer Modulatoren. Da die allosterische Bindestelle der mAChR eine geringere Sequenzhomologie aufweist, können so gezielt einzelne Subtypen der mAChR reguliert werden. Der M2 AChR stellt hinsichtlich allosterischer Modulation ein gut charakterisiertes Modellsystem dar. Für ihn wurde bereits eine Vielzahl allosterischer Liganden entwickelt. Auch bitopische Liganden, die sowohl einen allosterischen als auch einen orthosterischen Anteil enthalten, wurden für den M2 AChR bereits beschrieben. Im ersten Teil der vorliegenden Arbeit wurden verschiedene FRET-Sensoren des M2 AChR generiert und charakterisiert. Als FRET-Paar wurden das cyan fluoreszierende Protein (CFP) und der niedermolekulare fluorescein-basierte Fluorophor FlAsH (fluorescein arsenical hairpin binder) gewählt. CFP wurde in den Sensoren am Ende des C-Terminus angefügt. Die zur Markierung mit FlAsH nötige Tetracysteinsequenz wurde in verschiedenen Bereichen der dritten intrazellulären Rezeptorschleife (IL) eingebracht. Die auf diese Weise erstellten Re-zeptorsensoren trugen das Tetracysteinmotiv in der N terminalen (M2i3-N) bzw. in der C terminalen Region (M2i3-C) von IL 3. Die Charakterisierung der Rezeptorsensoren bezüglich Ligandenbindung, Gi-Protein Aktivierung und β-Arrestin2 Translokation ergab keine signifikanten Unterschiede zwischen M2i3-N, M2i3 C und M2CFP oder Wildtyp M2 AChR. Zunächst wurden sowohl unterschiedliche orthosterische, als auch allosterische Liganden hinsichtlich ihrer mittleren effektiven Konzentration und ihrer maximalen Wirkstärke an den Rezeptorsensoren untersucht. Mit Hilfe von FRET-Messungen konnte ein superago-nistisches Verhalten des orthosterischen Testliganden Iperoxo gezeigt werden. Die Eigenschaften der allosterischen Substanzen wurden durch Messung der Rezeptordeakti-vierungskinetik und des maximalen Hemmeffekts auf einen vorstimulierten Rezeptor charakterisiert. Alle allosterischen Liganden deaktivierten den vorstimulierten M2 AChR mit einer schnelleren Kinetik als Atropin. Die EC50-Werte der unterschiedlichen Substanzen waren unabhängig von der Markierungsposition im verwendeten Rezeptorsensor vergleich-bar. Ausnahmen bildeten die allosterischen Liganden JK 289, JK 338, ½ W84 und EHW 477, die liganden- und sensorabhängig unterschiedliche mittlere effektive Konzentrationen aufwie-sen. Bei der Untersuchung der Konformationsänderung des M2 AChR konnte kein liganden-selektiver Unterschied zwischen den FRET-Signalen für 19 getestete orthosterische Liganden beobachtet werden. Dies deutet darauf hin, dass alle orthosterischen Testliganden eine dem Acetylcholin (ACh) vergleichbare Änderung der M2 AChR Konformation induzier-ten. Um zu untersuchen, ob für die orthosterischen Testliganden eine Korrelation zwischen ihrer maximalen Wirkstärke hinsichtlich Rezeptoraktivierung in FRET-Experimenten und der Aktivierung nachgeschalteter Signalwege besteht, wurde die orthosterisch-vermittelte Translokation von β-Arrestin2 mit Hilfe der Konfokalmikroskopie bestimmt. Bis auf 5-Methyl-furmethiodid translozierten alle orthosterischen Liganden β-Arrestin2 in einem Ausmaß, das mit der maximalen Rezeptoraktivierung vergleichbar war. Dagegen rief 5 Methylfurmethiodid verglichen mit dem endogenen Liganden ACh zwar eine ca. halbmaximale Rezeptorakti-vierung, aber nur eine äußerst geringe β-Arrestin2 Translokation hervor. Im zweiten Teil der Arbeit wurde der Einfluss verschiedener Allostere auf eine ligandenselektive Konformationsänderung des M2 AChR untersucht. Die allosterischen Liganden JK 337 und Seminaph beeinflussten den M2i3-C Sensor signifikant stärker, als das M2i3-N Konstrukt. Dagegen zeigte EHW 477 eine stärkere Beeinflussung der Rezeptorkon-formation des M2i3-N-, als des M2i3-C Sensors. Dies erlaubt die Vermutung, dass JK 337 und Seminaph eine stärkere Bewegung unterhalb von Transmembrandomäne (TM) 6, als unterhalb von TM 5 hervorriefen. Die Ergebnisse für EHW 477 legen nahe, dass TM 5 eine größere Bewegung eingeht, als TM 6. FRET-basierte Untersuchungen der Einflüsse der allosterischen Testliganden auf nachgeschaltete Signalwege ergaben, dass sowohl die Akti-vierung des Gi Proteins, als auch die β-Arrestin2 Translokation selektiv durch einzelne allosterische Liganden beeinflusst werden. Auch ein Zusammenhang zwischen Rezeptor-aktivierung und der Regulation nachgeschalteter Signalwege war erkennbar. Allerdings waren auf Grund der Versuchsbedingungen keine quantitativen Aussagen möglich. Im Folgenden wurden die bitopischen Liganden Hybrid 1 und 2 (H 1, H 2) hinsichtlich ihres Effekts auf die Konformationsänderung des M2 AChR untersucht. Während eine Stimulation mit H 1 vergleichbare FRET-Signale an beiden Sensoren ergab, konnte mit H 2 weder am M2i3-N-, noch an M2i3-C Sensor eine FRET-Änderung detektiert werden. Um den mangeln-den Effekt der Hybridsubstanzen in FRET-mikroskopischen Untersuchungen aufzuklären, wurden verschiedene Ansätze gewählt: Mit kettenverlängerten Derivaten der Hybridsubstanzen konnte in FRET-Messungen eine Änderung des FRET-Signals detektiert werden. Die Entfernung des allosterischen Bausteins führte in FRET-Experimenten zu einer verglichen mit dem endogenen Liganden ACh etwa halbmaximalen Aktivierung beider Sensoren. Dagegen resultierte die Mutation der alloste-rischen Bindestelle in nachfolgenden FRET-Untersuchungen mit H 1 und H 2 in keiner Signaländerung des FRET-Ratio. Diese Beobachtungen führten zu der Annahme, dass die Linkerkette, die orthosterischen und allosterischen Baustein der Hybride miteinander verbindet, zu kurz war um eine gleichzeitige Bindung an die allosterische und orthosterische Bindestelle zu ermöglichen. Ein anderer Erklärungsansatz besteht darin, dass nach Bindung des Orthosters der Kanal zwischen orthosterischer und allosterischer Bindestelle durch die Konformationsänderung des Rezeptors verschlossen wird, weshalb keine dauerhafte, dualsterische Bindung der Hybridsubstanzen an den M2 AChR möglich ist. Im Rahmen der vorliegenden Arbeit ist es gelungen mittels FRET-Experimenten die Existenz einer ligandenselektiven Rezeptorkonformation des M2 AChR mit allosterischen Liganden nachzuweisen. Darüber hinaus konnte auch ein Bezug zum Auftreten einer funktionellen Selektivität mit allosterischen Liganden hergestellt werden. Die Untersuchung von 19 orthosterischen Liganden hinsichtlich ihres Einflusses auf die Rezeptorkonformation des M2 AChR ergab keinen Hinweis auf eine ligandenselektive Konformationsänderung. Die Betrachtung der orthosterisch-vermittelten Translokation von β-Arrestin2 zeigte, dass zwischen der Effizienz der orthosterischen Testliganden, den M2 AChR zu aktivieren und dem Ausmaß, in dem sie eine β Arrestin2 Translokation induzierten eine direkte Korrelation besteht. Lediglich 5-Methylfurmethiodid rief eine ungleich geringere β-Arrestin2 Translokation hervor, verglichen mit dem Ausmaß an Rezeptoraktivierung. Diese Beobachtung deutet auf die Existenz eines signaling-bias für diesen Liganden hin. Die Untersuchung der dualsterischen Liganden H 1 und 2 bezüglich ihrer Fähigkeit zur Rezeptoraktivierung ergab, dass erst durch eine Verlängerung der Linkerkette, durch die orthosterischer und alloste-rischer Baustein miteinander verbunden sind eine Konformationsänderung des M2 AChR hin zu einer aktiven Konformation erreicht werden kann. Es kann somit angenommen werden, dass in den ursprünglichen Hybridsubstanzen H 1 und H 2 eine zu kurze Linkerkette, durch die keine dualsterische Bindung der Hybride an die allosterische und orthosterische Bindestelle möglich ist, ursächlich für die mangelnde Rezeptoraktivierung des M2 AChR war. N2 - A large body of experimental evidence suggests that upon receptor activation G-protein coupled receptors are subject to ligandspecific changes of receptor conformation. The aim of this study was to investigate this phenomenon using the muscarinic M2 acetylcholine receptor (M2 AChR). Muscarinic acetylcholine receptors (mAChR) can be subdivided into five different subtypes (M1-M5). Their involvement in various physiological processes makes them an important target of pharma-cological therapies. With the orthosteric binding site (= binding site of the endogenous ligand) being highly conserved across all five mAChR subtypes, the unselective receptor modulation can lead to severe side effects. Thus the clinical use of drugs modulating muscarinic receptors is currently limited. Allosteric modulation is one attempt to achieve subtype-selective receptor regulation. Since the allosteric binding site of mAChR is less well conserved, it is possible to selectively target one mAChR subtype. As far as allosteric modulation is concerned, the M2 AChR represents a well characterized model with a large number of allosteric modulators being available. For the M2 AChR bitopic ligands which contain an allosteric as well as an orthosteric binding block have been developed as well. In the first part of this study several FRET-sensors of the M2 AChR were designed and characterized. The cyan fluorescent protein (CFP) was fused to the C-terminus of both sensors while the FlAsH (fluorescein arsenical hairpin binder) binding site was inserted into the N-terminal (M2i3-N) or the C terminal (M2i3-C) region of the third interacellular loop (IL). The receptor sensors were characterized concerning ligand affinity, activation of the Gi protein and -arrestin2 translocation and did not display any significant differences compared to the wildtype M2 or the M2 CFP receptor. Various orthosteric as well as allosteric ligands were investigated regarding their affinity and efficacy at both sensors. Using FRET-measurements iperoxo was proven to behave as a superagonist. The characteristics of the allosteric ligands were investigated by measuring the receptor deactivation kinetics and their maximum inhibitory effect on a pre-stimulated receptor. All allosteric test substances displayed faster deactivation kinetics compared to the antagonist atropine and similar EC50 values at both receptor sensors. When investigating the change of receptor conformation of the M2 AChR upon ligand binding there were no ligand selective differences in the FRET-signal detected for either of the 19 orthosteric ligands at both M2 sensors. This data suggest that all orthosteric ligands induced a change in receptor conformation comparable to acetylcholine (ACh). In order to correlate the efficacy of various orthosteric ligands to activate the M2 AChR in FRET-experiments with their effect on downstream signaling pathways, the translocation of  arrestin2 upon receptor activation with orthosteric ligands was investigated using confocal microscopy. Except for 5 methylfurmethiodide all orthosteric ligands induced -arrestin2 translocation to an extent which was comparable to the maximal receptor activation observed with each other ligand, respectively. In contrast 5-methylfurmethiodide evoked a half maximal receptor activation compared to the endogenous ligand ACh while only a minimal translocation of -arrestin2 was observed. The second aim of this study was to investigate the effects of allosteric ligands on the change of receptor conformation of the M2 AChR. The allosteric ligands JK 337 and seminaph more strongly influenced the M2i3-C than the M2i3-N, whilst EHW 477 behaved just the opposite way. This data suggest that the orthosteric ligands induce a conformation of the M2 AChR comparable to ACh. JK 337 and seminaph seem to evoke a greater movement underneath TM 6 compared to TM 5 whereas EHW 477 probably induces a larger movement beneath TM 5. The allosteric ligands were tested via FRET-measurements concerning their ability to activate the Gi protein and to translocate  arrestin2. The activation of the Gi protein as well as the -arrestin2 translocation were selectively influenced by all allosteric ligands. However, due to the experimental setup, a quantification of the effects was not possible. Furthermore the bitopic ligands hybrid 1 and 2 (H 1, H 2) were tested regarding their effect on the receptor conformation of the M2 AChR. While stimulation with H 1 induced FRET signals that were comparable for both receptor sensors, it wasn’t possible to detect any change in the FRET ratio neither of the M2i3-N nor of the M2i3-C with H 2. The lack of effect of H 1 and H 2 in the FRET-experiments was explored using two different approaches: Derivatives of H 1 and H 2, in which the carbon linker between the allosteric and the orthosteric building block had been elongated, were able to induce changes in the FRET ratio. Upon the removal of the allosteric building block a half-maximal activation of both receptor sensors could be detected. However, the mutation of the allosteric binding site did not result in any change of the FRET-signals upon stimulation of the receptor mutants with H 1 or H 2. These data suggest that the carbon linker, which connects the allosteric and the orthosteric building block, is not long enough to enable a simultaneous binding to the allosteric and the orthosteric binding site. Another explanation would be that upon binding of an orthoster the channel between the orthosteric and the allosteric binding site of the M2 AChR is closed because of the change in receptor conformation, hence a stable, dual-steric binding of the hybrid substances to the M2 AChR would not be possible. In the course of this study it was possible to prove the existence of a ligand selective receptor conformation of the M2 AChR with allosteric ligands using FRET-experiments. In addition a connection was found to the occurrence of a functional selctivity with allosteric ligands. The investigation of 19 orthosteric ligands regarding their influence on the receptor conformation of the M2 AChR did not reveal any evidence of the existence of a ligand selective change of the receptor conformation. Regarding the translocation of β arrestin2 induced by orthosteric ligands there was a direct correlation between the efficency of the orthosteric ligands to activate the receptor and the extend of β-arrestin2 translocation observed. With the only exception being 5-methylfurmethiodide which induced far less β arrestin2 translocation compared to the magnitude of the conformational change of the receptor. This data suggest the existence of a signaling bias for this ligand. The analysis of the dualsteric ligands H 1 and H 2 concerning their ability to activate the M2 AChR revealed that an activation of the M2 AChR could just be observed upon elongation of the linker which connects the orthosteric with the allosteric building block. This suggests that the short linker chain of the original hybrid substances inhibited a dualsteric binding to the orthosteric and the allosteric binding site and thus caused the difficency of H 1 and H 2 to activate the M2 AChR. KW - Muscarinrezeptor KW - Allosterie KW - G-Protein gekoppelte Rezeptoren KW - Fluoreszenz-Resonanz-Energie-Transfer KW - allosteric modulation KW - muscarinic aceylcholine receptor KW - GPCR Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72836 ER - TY - THES A1 - Deiß, Katharina T1 - Die Regulation des Kinasemodulators Raf Kinase Inhibitor Protein (RKIP): Einfluss von Phosphorylierung und Dimerisierung auf die Interaktion mit Raf1 und G Protein-gekoppelter Rezeptorkinase 2 (GRK2) T1 - Regulation of the kinase modulator Raf kinase inhibitor protein (RKIP): Influence of phosphorylation and dimerization on its interaction with Raf1 and G protein coupled receptor kinase 2 (GRK2) N2 - RKIP reguliert Proteinkinasen der Signaltransduktionskaskaden von G Protein-gekoppelten Rezeptoren, der Raf/MEK/ERK-MAPK, des Transkriptionsfaktors NFκB und von GSK3β. Unklar war bisher, wie die spezifische Interaktion von RKIP mit seinen mannigfaltigen Interaktionspartnern ermöglicht und reguliert wird. Raf1 und GRK2 sind die einzigen bekannten direkten Interaktionspartner von RKIP und wurden deshalb gewählt, um die zugrundeliegenden molekularen Mechanismen dieser Interaktion genauer zu untersuchen. In dieser Arbeit wurde gezeigt, dass RKIP nach PKC-vermittelter Phosphorylierung von Serin153 dimerisiert und dass diese Dimerisierung für die RKIP/Raf1-Dissoziation und die RKIP/GRK2-Interaktion essentiell ist. Co-Immunpräzipitationsexperimente mit einer phosphorylierungsdefizienten Mutante zeigten, dass für diese Dimerisierung die Phosphorylierung von beiden RKIP-Molekülen notwendig ist. Als Dimerinteraktionsfläche wurden die Aminosäuren 127-146 von RKIP identifiziert, da das Peptid RKIP127-146 die Dimerisierung von RKIP spezifisch und effizient hemmte. Um die Bedeutung dieser phosphorylierungsinduzierten Dimerisierung von RKIP für seine Interaktion mit Raf1 und GRK2 zu untersuchen, wurden eine phosphomimetische Mutante (RKIPSK153/7EE) und eine Mutante von RKIP generiert, welche bereits unphosphoryliert dimerisiert (RKIP∆143-6). Folgende Ergebnisse legen nahe, dass die Dimerisierung von RKIP für die spezifische Interaktion mit Raf1 bzw. GRK2 entscheidend ist: (i) Die Dimerisierung von phosphoryliertem RKIP ging mit der Dissoziation von RKIP und Raf1 und der Assoziation von RKIP und GRK2 einher; (ii) die Mutanten RKIPSK153/7EE und RKIP∆143-6, die bereits in unstimulierten Zellen eine starke Dimerisierung zeigten, hatten eine höhere Affinität zu GRK2 als zu Raf1; (iii) die Hemmung der RKIP-Dimerisierung interferierte nur mit der RKIP/GKR2- aber nicht mit der RKIP/Raf1-Interaktion; (iv) in vitro und in Mausherzen konnte ein RKIP- und GRK2-immunreaktiver Komplex nachgewiesen werden; (v) Untersuchungen zur RKIP-vermittelten Hemmung der Kinaseaktivität von GRK2 und Raf implizierten, dass dimerisiertes RKIP nur die Aktivität von GRK2, nicht aber von Raf hemmt. Diese Arbeit zeigt, dass die phosphorylierungsinduzierte Dimerisierung von RKIP die spezifische Interaktion von RKIP mit Raf1 und GRK2 koordiniert. Die Aufklärung dieses Mechanismus erweitert unser Verständnis der spezifischen Interaktion von Kinasen mit ihren Regulatorproteinen. N2 - RKIP is a regulator of several distinct kinases and modulates diverse signal transduction cascades such as the signaling of G protein coupled receptors, of the Raf/MEK/ERK-cascade, of the transcription factor NFκB, and of GSK3β. Until now, it was not well understood how the specific interaction of RKIP with its diverse targets is achieved and regulated. Raf1 and GRK2 are the only known direct interaction partners of RKIP and were thus chosen to untangle the molecular mechanisms regulating the specific interaction of RKIP with these kinases. In this dissertation it is shown that RKIP dimerizes upon PKC-mediated phosphorylation of serine153 and that this dimerization is essential for RKIP/Raf1-dissociation and RKIP/GRK2-association. Co-immunoprecipitation experiments with a phosphorylation-deficient mutant revealed that the dimerization of RKIP requires the phosphorylation of two RKIP molecules. The amino acids 127-146 of RKIP were identified as dimer-interface, since RKIP-dimerization was efficiently and specifically inhibited by the peptide RKIP127-146. To elucidate the implication of this phosphorylation-induced dimerization on the target specificity of RKIP, a phosphomimetic RKIP mutant (RKIPSK153/7EE) and a dimeric RKIP mutant (RKIP∆143-6) were generated. The following results indicated that dimerization of RKIP controls its specific interaction with Raf1 or GRK2, respectively: (i) dimerization of phosphorylated RKIP occurred concomitantly with the release of RKIP from Raf1 and its association with GRK2; (ii) the RKIP mutants RKIPSK153/7EE and RKIP∆143-6, which had a higher propensity for RKIP-dimerization already under basal conditions, had a higher affinity to GRK2 than to Raf1; (iii) inhibition of RKIP-dimerization prevented only RKIP/GRK2-binding but did not interfere with RKIP/Raf1-binding; (iv) an RKIP- and GRK2-immunoreactive complex was detected in vitro as well as in mouse hearts; (v) analyses of RKIP-mediated inhibition of GRK2 and Raf showed that a higher propensity for RKIP-dimerization translates into efficient GRK2-inhibition but not into Raf-inhibition. The results of this thesis show that phosphorylation-induced dimerization of RKIP regulates its specific interaction with Raf1 and GRK2. The elucidation of this mechanism improves our understanding how specificity in the interaction of kinases and their regulatory proteins can be achieved. KW - Signaltransduktion KW - Dimerisierung KW - G-Protein gekoppelte Rezeptoren KW - Proteinkinase C KW - Raf Kinase Inhibitor Protein (RKIP) KW - G protein-gekoppelte Rezeptor Kinase 2 (GRK2) KW - Raf1 KW - Raf Kinase Inhibitor Protein (RKIP) KW - G protein-coupled receptor kinase 2 (GRK2) KW - Raf1 Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73884 ER - TY - THES A1 - Frölich, Nadine T1 - Analyse der µ-Opiatrezeptoraktivierung und Signaltransduktion in lebenden Zellen mittels FRET-Mikroskopie T1 - Analysis of µ-opioid receptor activation and signal transduction in living cells using FRET microscopy N2 - Der Fluoreszenz-Resonanz-Energie-Transfer ist ein Phänomen, welches erstmals 1948 von Theodor Förster beschrieben wurde. Mit der Entwicklung von Fluoreszenzproteinen konnten in Kombination mit Mikroskopietechniken Einblicke in zellbiologische Vorgänge gewonnen werden, die durch biochemische oder physiologische Experimente nicht möglich sind. Dabei spielt die hohe zeitliche und räumliche Auflösung eine wichtige Rolle. Auf dem Forschungsgebiet der GPCR, welche die größte Gruppe von Membranproteinen bei den Säugetieren darstellen, wurden insbesondere Erkenntnisse über Konformationsänderungen der Rezeptoren, die Kinetik der Rezeptoraktivierung und die Interaktion mit intrazellulären Signalproteinen gewonnen. Der µ-Opioidrezeptor gehört zur Familie der GPCR und stellt aufgrund seiner analgetischen Wirkungen eine wichtige pharmakologische Zielstruktur dar. Das Ziel dieser Arbeit war sowohl den Rezeptor als auch seine Signalwege mittels FRET-Mikroskopie zu untersuchen. Zunächst sollte ein intramolekularer FRET-Sensor des µ-Opioidrezeptors entwickelt werden, dazu wurden basierend auf den Kenntnissen über die Tertiärstruktur und dem Aufbau bereits bekannter GPCR-Sensoren verschiedene Rezeptorkonstrukte kloniert. Bei den Konstrukten wurden entweder zwei Fluoreszenzproteine oder ein Fluoreszenzprotein und ein Fluorophor-bindendes Tetracysteinmotiv kombiniert. Auch die Positionen der eingefügten Sequenzen wurden in den intrazellulären Domänen variiert, da der Rezeptor auf die Modifikationen mit beeinträchtigter Membranlokalisation reagierte. Durch die Optimierung wurden Rezeptoren konstruiert, die an der Zellmembran lokalisiert waren. Jedoch zeigte keines der Rezeptorkonstrukte Funktionalität im Hinblick auf die Rezeptoraktivierung. Im zweiten Teil wurden die pharmakologischen Effekte der Metabolite von Morphin am humanen µ-Opioidrezeptor systematisch analysiert. Dazu wurde die Fähigkeit der Metabolite, Gi-Proteine zu aktivieren und β-Arrestin2 zu rekrutieren, mittels FRET-basierter Messungen an lebenden Zellen untersucht. Außerdem wurde die Affinität der Metabolite zum humanen µ Opioidrezeptor anhand der Verdrängung eines radioaktiven Liganden analysiert. Meine Experimente identifizierten eine Gruppe mit stark agonistischen und eine mit schwach agonistischen Eigenschaften. Die starken Partialagonisten aktivieren den Rezeptor bereits bei nanomolaren Konzentrationen, während die schwachen Metabolite den Rezeptor erst bei Konzentrationen im mikromolaren Bereich aktivieren. Die Metabolite Normorphin, Morphin-6-Glucuronid und 6-Acetylmorphin zeigen geringere Potenz als Morphin bei der Gi-Aktivierung aber überraschenderweise höhere Potenz und Effizienz für die β-Arrestin-Rekrutierung. Dies deutet auf eine bevorzugte Aktivierung von β-Arrestin2 hin. Die aus diesen Studien gewonnenen Ergebnisse liefern Hinweise darauf, welche Metabolite bei der Signalverarbeitung am µ Opioidrezeptor in vivo beteiligt sind. N2 - Fluorescence resonance energy transfer was first described by Theodor Förster in 1948. The discovery and development of intrinsic fluorescent proteins revolutionized cell and molecular biology. The FRET-technique allows the analysis of protein-protein interactions and intramolecular conformational changes. In this method, its high temporal and spatial resolution plays a crucial role. Especially in the research field of GPCR, which are the largest family of membrane proteins in mammals, insights into receptor conformational changes, kinetics of receptor activation and the interaction with intracellular proteins were obtained. The µ-opioid receptor belongs to the GPCR family and is involved in analgesia. Therefore, the receptor is an important pharmacological target. Its pharmacological properties were extensively analyzed in the current thesis by FRET. Engineering of an intramolecular MOR-biosensor was initially planned. Based on the knowledge about the tertiary receptor structure and earlier GPCR-sensors, different receptor constructs were cloned. For each receptor construct either two fluorescent proteins or one fluorescent protein and one fluorophore binding tetracysteine motif were combined. The insertion of the additional amino acid sequences prevented the membrane localization for some constructs. Hence, the insertion site of the amioacid sequences was varied in the intracellular loops. Ultimately, the optimization resulted in some membrane localized receptor constructs with the tetracysteine motif in the third intracellular loop. Nevertheless, none of the receptor constructs was functional in terms of measurable conformational change upon receptor activation. In the second part of this thesis, the pharmacological effects of morphine and its metabolites were studied. The analgesic effects of morphine are mainly mediated via the activation of the µ opioid receptor. This receptor activates inhibitory G-proteins and induces the recruitment of β-arrestin2. Therefore I analyzed activation of these two pathways induced by morphine metabolites using FRET-microscopy in living cells. Furthermore, radioligand binding studies were used to determine the affinity of each compound to the human µ-opioid receptor. This approach identified two groups of metabolites, which were classified into strong and weak ligands. Strong partial agonists showed efficacies in the nanomalar range. In contrast, weak metabolites activated µ opioid receptor pathways in the micromolar range. Normorphine, morphine-6-glucuronide and 6 acetylmorphine had lower potencies regarding Gi-protein activation but higher potencies and efficacies for β-arrestin2 recruitment than morphine. These findings indicate that these metabolites are biased towards β-arrestin2 pathways. KW - Opiatrezeptor KW - G-Protein gekoppelte Rezeptoren KW - Morphin KW - Stoffwechsel KW - Fluoreszenz-Resonanz-Energie-Transfer KW - Mikroskopie KW - Metabolite von Morphin KW - Metabolismus KW - Metabolites of morphine Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71009 ER - TY - THES A1 - Mayer, Stefanie T1 - Differenzierte β-Arrestin2 Rekrutierung am μ-Opioid Rezeptor durch klinisch eingesetzte Opioide T1 - Differential Opioid-induced β-Arrestin2 Recruitment at the μ-Opioid Receptor Using Clinically Relevant Opioids N2 - Opioide gehören zu den potentesten Analgetika für die Behandlung akuter und chronischer Schmerzen, werden jedoch in ihrer Anwendung durch analgetische Toleranz aber auch Nebenwirkungen wie Abhängigkeit, Atemdepression und Obstipation limitiert. Opioid-Analgetika vermitteln dabei nahezu alle klinisch relevanten Wirkungen durch Stimulation des μ-Opioidrezeptors, einem G- Protein-gekoppelten Rezeptor. Die „klassische“ Signaltransduktion durch Aktivierung inhibitorischer Gi/0-Proteine kann durch G-Protein gekoppelte Rezeptorkinasen (GRKs) und β-Arrestine negativ reguliert werden. Zusätzlich können durch β-Arrestin-Bindung an den Rezeptor G-Protein-unabhängige Signalwege aktiviert werden. Die genauen Mechanismen wie β-Arrestin- assoziierte Rezeptordesensibilisierung, -internalisierung und G-Protein- unabhängige Signalwege an der physiologischen Antwort und insbesondere an Toleranzentwicklung und Abhängigkeit von Opioid-Analgetika beteiligt sind, können bislang nicht ausreichend erklärt werden. In dieser Arbeit konnte in HEK293-Zellen mit Lebendzell-Konfokalmikroskopie und Luciferase-Komplementierung für 17 Opioide eine differenzierte β-Arrestin2- Rekrutierung zum μ-Opioidrezeptor gezeigt werden. Von den untersuchten Opioiden sind 13 häufig eingesetzte Opioid-Analgetika. Durch die Erstellung detaillierter pharmakologischer Profile ließen sich die Opioide bezüglich ihres β- Arrestin2-Rekrutierungsvermögens in Voll-, Partial und Antagonisten eingruppieren. Bemerkenswert war die fehlende β-Arrestin2-Rekrutierung für Buprenorphin, Tramadol und Tilidin, sodass diese interessante Substanzen für weitere Untersuchungen in physiologischerem Kontext sind. Durch Überexpression von GRK2 konnte die β-Arrestin2-Rekrutierung insbesondere für Partialagonisten gesteigert werden, was die Abhängigkeit der β-Arrestin- Rekrutierung vom GRK-Expressionslevel, das in verschiedenen Assays und Gewebetypen variieren kann, zeigt. Außerdem konnte ein heterogenes Bild der Rezeptorregulierung demonstriert werden, welches indirekt durch Endozytosehemmung unter Verwendung von Dynamin-Inhibitoren erfasst wurde. Die erhobenen Daten dienen als Anknüpfungspunkt für weiteren Arbeiten auf dem Gebiet der μ-Opioidrezeptorregulation. Ein besseres Verständnis der molekularen Mechanismen ist nötig, um sichere und nebenwirkungsärmere Opioid-Analgetika entwickeln zu können. N2 - Opioids remain among the most effective analgesics for the treatment of acute and chronic pain, but their clinical use is limited by analgesic tolerance and other side effects including dependence, respiratory depression and obstipation. Opioid analgesics exert nearly all their clinically relevant actions through stimulation of µ-opioid receptors, which belong to the family of G Protein-coupled receptors. “Classical” signaling through activation of inhibitory Gi/o Proteins can be negatively regulated via G Protein-coupled receptor kinases and β-Arrestins. Additionally, recruitment of β-Arrestins to the µ-opioid receptor can transduce G Protein independent signals. The detailed mechanisms how β-Arrestin-induced receptor desensitization, internalization and G Protein independent signaling mediate physiological effects including tolerance and dependence remains unclear. In this study using confocal live-cell imaging and split luciferase complementation in HEK293 cells 17 opioids showed differential β-Arrestin2 recruitment to the µ-opioid receptor. Of the opioids under investigation, 13 are frequently administered opioid analgesics. Detailed pharmacologic profiles of these opioids allowed for grouping into full agonists, partial agonist and antagonists in regards to β-Arrestin2 recruitment. Surprisingly, β-Arrestin2 recruitment was not detected for Buprenorphin, Tramadol and Tilidin, making these substances interesting candidates for further investigations in a more physiological setting. Overexpression of GRK2 led to increased β-Arrestin2 recruitment especially for partial agonists. This demonstrates the dependence on GRK expression level for β-Arrestin recruitment, which can vary between assays or cell types. Furthermore different opioids showed a heterogenous receptor regulation, assessed by inhibition of receptor endocytosis using dynamin inhibitors. The collected data serve as basis for further research on µ-receptor regulation. Better understanding of the molecular mechanisms is necessary for the development of safer opioid analgesics with fewer side effects. KW - Opiatrezeptor KW - µ-Opioid Rezeptor KW - Opioide KW - G-Protein gekoppelte Rezeptoren KW - Arrestine KW - beta-Arrestin2 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-240949 ER -