TY - THES A1 - Guhling, Ortwin T1 - Biosynthese kutikulärer Triterpenoide : Klonierung und Charakterisierung von Epoxysqualenzyklasen aus Ricinus communis und Lycopersicon esculentum T1 - Biosynthesis of cuticular triterpenoids: cloning and characterization of epoxysqualene cyclases from Ricinus communis and Lycopersicon esculentum N2 - Triterpene finden sich in großer struktureller Vielfalt als Sekundärmetabolite in Form von glycosylierten Verbindungen, aber auch als Aglykone, in zahlreichen Pflanzen. In einigen Arten akkumulieren Triterpene in großen Mengen als kutikuläre Wachsbestandteile im primären Abschlussgewebe und beeinflussen auf diese Weise die Grenzflächeneigenschaften der oberirdischen Pflanzenorgane. In der vorliegenden Arbeit wurde die kutikulaspezifische Biosynthese von Triterpenen durch die Kombination molekulargenetischer und analytischer Methoden exemplarisch an Ricinus communis eingehend untersucht. Die Rizinus-Pflanze tritt in zwei Sprossachsenphänotypen in Erscheinung: Der Glossy-Phänotyp ist frei von epikutikulären Wachskristallen, wohingegen die Sprossachsen von Individuen des Glaucous-Phänotyps von fadenförmigen epikutikulären Wachskristallen bedeckt sind. Eine vergleichende chemische Analyse zeigte, dass 67 Tage alte Hypokotyle der Individuen des Glossy-Phänotyps mit etwa 12,5 µg/cm^2 kutikulärem Wachs bedeckt sind, die Zusammensetzung des kutikulären Wachsgemisches wird von VLC-aliphatischen Verbindungen dominiert. Hypokotyle der Individuen vom Glaucous-Phänotyp weisen mit 51,9 µg/cm^2 dagegen eine weit höhere Wachsbelegung auf, wobei das Wachsgemisch von Triterpen-Verbindungen, vor allem durch die Hauptkomponente Lupeol mit 56% der Gesamtwachsmenge dominiert wird. Um die Akkumulation von Lupeol im Laufe der frühen Sprossachsenentwicklung des Glaucous-Phänotyps zu dokumentieren, wurden entsprechende wachsanalytische Beprobungen an Hypokotylen durchgeführt. Es zeigte sich, dass Lupeol bereits in einer frühen Entwicklungsphase mit hohen Raten in die Kutikula eingelagert wird: zwischen Tag 6 und Tag 25 nach der Keimung der Pflanzen nimmt die Lupeolwachsbelegung mit einer Rate von 1,2 µg cm^2 und Tag zu; dies entspricht einer täglichen Lupeol-Zunahme von 0,013 ng/Zelle zwischen Tag 11 und Tag 18. Rasterelektronenmikroskopische Untersuchungen belegten, dass die Lupeolakkumulation von einer starken Zunahme der fadenförmigen Wachskristalle in der frühen Hypokotylentwicklung begleitet wird. Vor dem Hintergrund der wachsanalytischen und mikromorphologischen Daten war es von zentraler Bedeutung, die für die Biosynthese des kutikulären Lupeols verantwortliche Triterpensynthase zu klonieren. Mit Hilfe des entwickelten Primerdesigns zur homologiebasierten Klonierung pflanzlicher 2,3-Oxidosqualenzyklasen wurden zwei Epoxysqualenzyklasen aus Ricinus communis kloniert und durch heterologe Expression in der Lanosterolsynthase-defizienten Hefemutante GIL 77 jeweils als Cycloartenolsynthase (RcCAS1) und monofunktionale Lupeolsynthase (RcLUS1) charakterisiert. Die auf den Glaucous-Phänotyp beschränkte sprossachsenspezifische Expression und die hohe Expressionsrate von RcLUS1 in der frühen Entwicklungsphase mit einem Peak an Tag 12 nach der Keimung stimmte exakt mit der zeitlichen Akkumulation von Lupeol in der Sprossachsenkutikula bei Individuen des Glaucous-Phänotyps überein. Damit handelt es sich bei RcLUS1 um die erste charakterisierte Triterpensynthase, die für die Bildung kutikulärer Triterpene verantwortlich gemacht werden kann. Die Untersuchungen an R. communis zeigen, dass die Biosynthese von kutikulären Triterpenen über die enzymatisch gesteuerte Zyklisierung von 2,3-Oxidosqualen bewerkstelligt wird. Offensichtlich spielt eine Transkriptionsregulation auf der Ebene der jeweiligen Triterpensynthase dabei eine zentrale Rolle. Phylogenetische Vergleiche zeigten, dass RcLUS1 nur relativ geringe Sequenzähnlichkeiten zu den bisher charakterisierten Lupeolsynthasen aufzeigt und somit als Vertreter einer bisher nicht beschriebenen Klasse pflanzlicher Triterpensynthasen angesprochen werden muss. Durch gerichtete Mutagenisierung wurde die RcLUS1-Mutante F257W hergestellt und funktionell charakterisiert. Das Produktspektrum der mutagenisierten Lupeolsynthase verschob sich von Lupeol nach β-Amyrin und bestätigte damit die Bedeutung des dem Phenylalanin in Amyrinsynthasen korrespondierenden Tryptophans für die katalytische Funktionalität dieser Enzyme. Mit der Klonierung der Triterpensynthasen LeTTS1 und LeTTS2 aus Lycopersicon esculentum wurde der erste wichtige Schritt für ein tieferes Verständnis der Biosynthese kutikulärer Triterpene in dieser Pflanze getan. LeTTS1 konnte als β-Amyrinsynthase charakterisiert werden. Im Gegensatz zur Stammkutikula des Glaucous-Phänotyps von Ricinus communis werden in die Fruchtkutikula von Tomate nicht nur ein, sondern mit α-, β- und δ-Amyrin gleich drei Triterpene in größeren Mengen eingelagert. Der Nachweis einer tatsächlichen Relevanz der klonierten OSCs für die Biosynthese dieser kutikulären Triterpene muss durch Untersuchungen zur Expression dieser Gene erbracht werden. N2 - Triterpenoids are a large group of secondary metabolites found in different plant species, either as glycoside conjugates or as aglycones. The latter in many cases accumulate to high amounts in the cuticular wax and hence the primary surface of above-ground plant organs, influencing their surface properties. In the present work, the cuticle-specific formation of triterpenoids was investigated in Ricinus communis stems, combining analytical and molecular genetic methods. Two phenotypes of castor bean could be distinguished based on the appearance of the surface of all stem portions including the hypocotyls: The stems of the glossy phenotype are devoid of wax crystals. In contrast, the stems of the glaucous phenotype are covered by a layer of thread-like epicuticular wax crystals. Comparative studies by GC-FID analysis revealed that the cuticles of 67-day old hypocotyls of the glossy and the glaucous phenotypes contained 12.5 and 51.9 µg/cm^2, respectively. The wax mixture of the glossy phenotype was dominated by VLC aliphatic compounds. In the cuticular wax of the glaucous phenotype, VLC aliphatics were found in similar absolute amounts as in the glossy phenotype, whereas the triterpene loads were significantly higher. Here, the wax mixture was dominated by lupeol, making it the single most abundant component (56% of the total wax). To monitor the accumulation of cuticular lupeol during ontogenesis, the chemical composition of the wax mixture was studied at different stages of hypocotyl growth. In these investigations, lupeol was found to accumulate rapidly during early development at the surface of glaucous hypocotyls: between day 6 and day 25 the lupeol load increased by a daily rate of 1.2 µg/cm^2. During the period of highest lupeol increase from day 11 to day 18, a daily rate of 0.013 ng/cell could be calculated. Within that early time period a sharp increase in the number of epicuticular wax crystals on the surface of glaucous hypocotyls was observed by SEM. Based on the cuticular wax analyses of both stem phenotypes, it was hypothesized that a triterpene synthase should exist in castor bean responsible for the biosynthesis of cuticular lupeol in the glaucous phenotype. In a homology-based cloning approach two epoxysqualene cyclases were cloned from R. communis, functionally expressed in the yeast strain GIL 77 and characterized as a cycloartenol synthase (RcCAS1) and a lupeol synthase (RcLUS1). Both the organ-specific expression of RcLUS1 (with an expression exclusively in stems of the glaucous phenotype) and the expression pattern during hypocotyl development (with a peak at day 12) exactly matched the accumulation of cuticular lupeol in the plant. From the strong correlation of the organ specific and time dependent accumulation of lupeol in the cuticle of glaucous hypocotyls on the one hand, and the expression patterns of the RcLUS1 gene on the other, it can be concluded that the lupeol synthase RcLUS1 from castor bean is the central enzyme responsible for the biosynthesis of cuticular lupeol. This is the first report on a cuticle-relevant triterpene synthase. Based on the studies on castor bean, it can be concluded that the biosynthesis of cuticular triterpenoids is accomplished by enzymatic cyclisation of the substrate 2,3-oxidosqualene and obviously controlled by a transcription regulation of the corresponding epoxysqualene cyclase. Phylogenetic analyses revealed that RcLUS1 exhibits only weak sequence similarities to the two clades of so far known lupeol synthases and was thus interpreted as a first member of a new class of lupeol synthases in higher plants. The RcLUS1 mutant F257W was created by a site-directed mutagenesis approach and the mutated enzyme was functionally characterized in yeast. The mutation resulted in an altered product pattern, switching from lupeol to β-amyrin, thus confirming the importance of the corresponding Trp in amyrin synthases for the catalytical function of these enzymes. Besides Ricinus communis, Lycopersicon esculentum was chosen as a model plant to study the biosynthesis of cuticular triterpenes. The implementation of the homology-based primer design and cloning strategy developed for castor bean led to the successful cloning of two triterpene synthases from L. esculentum. One of these enzymes, LeTTS1, was characterized as a monofunctional β-amyrin synthase. In contrast to the glaucous stems of R. communis, with α-, β- and δ-amyrin, more then one single triterpene compound accumulates to high amounts in the tomato fruit cuticle. The evidence of the cuticle-relevance of the cloned epoxysqualene cyclases LeTTS1 and LeTTS2 has to be proven in accompanying experiments by determination of the expression patterns of these genes. KW - Rizinus KW - Kutikularwachs KW - Synthasen KW - Genexpression KW - Rizinus KW - pflanzliche Kutikula KW - epikutikuläre Wachskristalle KW - Oxidosqualenzyklase KW - Lupeolsynthase KW - Castor bean KW - plant cuticle KW - epicuticular wax crystals KW - Oxidosqualene cyclase KW - Lupeol synthase Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-21796 ER - TY - THES A1 - Brüning, Tanja T1 - Biomechanik des Wachslaufens bei Crematogaster (Decacrema)-Partnerameisen von Macaranga-Bäumen T1 - Biomechanics of waxrunning in Crematogaster (Decacrema) ant-partners of Macaranga-trees N2 - Durch die vorliegende Arbeit konnte die große Bedeutung biomechanischer Faktoren für die Ökologie und Evolution von Insekten-Pflanzen-Interaktionen, am Beispiel des Ameisenpflanzen-Mutualismus’ Crematogaster (Decacrema)-Macaranga aufgezeigt werden. Viele Macaranga-Ameisenpflanzen besitzen Sproßachsen mit einem Überzug epikutikulärer Wachskristalle. Nur die Ameisenpartner wachsbereifter Pflanzen können sich problemlos auf den Oberflächen ihrer Wirtspflanzen fortbewegen. Durch die rutschigen, wachsbereiften Sproßachsen werden generalistische Ameisenarten ferngehalten und damit die wachslaufenden Ameisenpartner vor Fraßfeinden und Konkurrenz geschützt. Die Wachsbarrieren fördern zudem die Wirtsspezifität innerhalb dieser Ameisen-Pflanzen-Symbiose und funktionieren so als ökologischer Isolationsmechanismus. Die mechanische Barrierefunktion der Wachsbereifung birgt eine Vielzahl ökologischer Konsequenzen für beide Mutualismuspartner. Ziel dieser Arbeit war es, die proximaten Einzelmechanismen dieser ökologisch wichtigen Barriere aufzuklären, d. h. die Ursache der Rutschigkeit wachsbereifter Macaranga-Oberflächen und den Mechanismus der Wachslauffähigkeit der spezialangepaßten Crematogaster (Decacrema)-Ameisen. Im Rahmen dieser Arbeit konnten mehrere Mechanismen der Rutschigkeit wachsbereifter Macaranga-Sproßoberflächen für Insekten aufgezeigt werden. Durch die Fortbewegung von Insekten auf epikutikulären Wachskristallen werden Kristalle aus ihrem Verbund herausgebrochen und kontaminieren die Insektentarsen. Auf der Oberfläche der Haftorgane (Arolien) werden die Wachskristalle durch die Haftflüssigkeit partiell angelöst. Hierdurch entsteht ein amorpher Schmierfilm, der wahrscheinlich zu einer Verschlechterung der Haftleistung führt. In dieser Arbeit wurde gezeigt, daß unabhängig vom Abbrechen der Kristalle und der Kontamination der Tarsen auch die Mikrorauhigkeit der Macaranga-Oberflächen zu einer Rutschigkeit der Sproßachse führen kann. Sie besitzt einen entscheidenden Einfluß auf die Haft- und Lokomotionsfähigkeit von Insekten. Die Rauhigkeit von Oberflächen führt zu einer Reduzierung der effektiven Kontaktfläche des Aroliums und verringert dadurch die Haftkräfte von Insekten. Die genannten Mechanismen der Rutschigkeit schließen sich nicht gegenseitig aus, sondern können einen synergistischen, bzw. additiven Effekt haben. Bei der Untersuchung der Wachslauffähigkeit der spezialisierten Macaranga-Partnerameisen zeigte sich, daß der unterschiedliche Lauferfolg verschiedener Crematogaster (Decacrema)-Morphospezies nicht auf einer größeren Haftung beruht, sondern vor allem auf einer günstigeren Laufkinematik der Wachsläufer. Durch morphometrische Untersuchungen an acht Crematogaster (Decacrema)-Arten konnte im Rahmen dieser Arbeit gezeigt werden, daß Wachsläufer längere Beine haben als Nichtwachsläufer. Diese längeren Beine können zu einem mechanischen Vorteil beim Klettern auf senkrechten Oberflächen führen, da sie zum einen ein weiteres Herumgreifen um den Ast ermöglichen und zum anderen aufgrund des längeren Hebelarms die auf die Vorderbeine wirkenden Zugkräfte reduzieren. Amputationsexperimente zeigten eindeutig, daß die prätarsalen Krallen entscheidend für das Laufen auf wachsbereiften Macaranga-Oberflächen sind, die prätarsalen Haftorgane (Arolien) hingegen nicht. Es ist zu vermuten, daß die Krallen durch das Eintauchen der Krallenspitzen in die Wachskristallschicht Halt finden, wodurch sie theoretisch auf senkrechten Oberflächen jeden Durchmessers Halt finden können. Obwohl quantitative Unterschiede in der Krallenmorphologie (Höhe, Länge und Krümmungsdurchmesser) zwischen Crematogaster (Decacrema)-Wachsläufern und -Nichtwachsläufern nachgewiesen werden konnten, bleibt unklar, ob diese überhaupt eine Rolle für die unterschiedliche Wachslauffähigkeit spielen oder ob eher das Bewegungsmuster während des Einsatzes der Krallen entscheidend ist. Auch bei Crematogaster (Decacrema)-Wachsläufern kommt es zu einem Abbrechen von Wachskristallen und einer Kontamination der Tarsen. Crematogaster (Decacrema)-Wachsläufer zeigen im Vergleich zu -Nichtwachsläufern ein bisher nicht in der Literatur beschriebenes, Putzverhalten der Vorderbeine. Dieses Putzverhalten ist zeitsparend und effektiv in die Lokomotion der Tiere eingebunden und schließt selektiv nur die Reinigung der laufoberflächenkontaktierenden Tarsussegmente ein. Die hier beschriebenen Unterschiede in Morphologie, Kinematik und Verhalten zwischen Crematogaster (Decacrema)-Wachsläufern und -Nichtwachsläufern bringen funktionelle Vorteile der Wachsläufer auf den von ihnen besiedelten, wachsbereiften Macaranga-Pflanzenoberflächen mit sich. Die epikutikuläre Wachsbereifung kann als biomechanischer Schlüsselmechanismus angesehen werden, der im Rahmen der Evolution zu diesen vielschichtigen Veränderungen geführt hat. Die vorliegende Arbeit konnte zugrundeliegende biomechanische Faktoren, die auf beiden Seiten des Mutualismus’ eine Rolle spielen, aufklären. N2 - The present study illustrates the significance of biomechanical factors in the ecology and evolution of insect-plant interactions on the example of the ant-plant mutualism between Crematogaster (Decacrema) ants and -Macaranga trees. Many Macaranga ant-plants possess stems which are covered by epicuticular wax crystals. Only ant partners of waxy plants can move without any difficulty on the surfaces of their host plants. The slippery stems keep away generalist ant species and protect the waxrunning ants from predators and competitors and functions as an ecological isolation mechanism. The mechanical barrier function of the epicuticular wax crystal layer has several ecological consequences for both mutualistic partners. The goal of this study was to clarify the proximate mechanisms underlying this ecologically important barrier. In particular, I investigated why waxy Macaranga surfaces are slippery and how specially adapted Crematogaster (Decacrema) ants are capable of climbing the slippery waxy stems. In this study, several mechanisms underlying the slipperiness of waxy Macaranga stem surfaces were discovered. When moving on waxy stems, insects detach crystals from the compound structure and contaminate their tarsi. The adhesive secretion leads to a partial dissolution of the crystals on the surface of the adhesive pad (arolium). The resulting amorphous substance presumably results in reduced attachment. I showed that independent of detaching wax crystals and tarsal contamination, the slipperiness of the stem surface can also be caused by the microscopic surface roughness of waxy Macaranga surfaces. Microroughness has a major influence on adhesive and locomotive abilities of insects, because it reduces the adhesive pads’ effective contact area and their attachment forces. These mechanisms of slipperiness listed above do not exclude each other, but may have a synergistic or additive effect. The investigation of the waxrunning behaviour suggests that the difference in waxrunning capacity between Crematogaster (Decacrema) morphospecies does not rely on superior adhesion but on morphological and kinematic adaptations. Morphometric analysis of eight Crematogaster (Decacrema) species showed that waxrunners have longer legs than non-waxrunners. Longer legs may be a mechanically advantageous for vertical climbing, because on the one hand a branch can be encompassed further as well as the detachment forces acting on front legs can be reduced by having a larger lever arm. Kinematic analysis of climbing ants demonstrated that this effect is enhanced by the fact that waxrunners spread their legs more out during climbing. Furthermore, during vertical climbing of waxy surfaces the experimentally proved increased distance between front and hind legs of waxrunners can enhance the ant’s stability on these surfaces. Amputation experiments clearly showed that the pretarsal claws are crucial for running on waxy Macaranga surfaces. In contrast, adhesive pads were seldom in contact with the surface, and if so, with only little contact area. In addition, no effect of attachment enhancement could be demonstrated for adhesive pads. It can be assumed that claws attach by inserting their tips into the wax crystal layer, so that the ants are theoretically capable of attaching to any vertical surface, no matter which diameter the object has. Although I found quantitative differences in claw morphology (height, length and radius of curvature) between Crematogaster (Decacrema) waxrunners and non-waxrunners, it is still unclear if these parameters play a role for waxrunning ability or whether the movement pattern during claw usage is the decisive factor. Even Crematogaster (Decacrema) waxrunners break off wax crystals and have contaminated tarsi. I found that only the Crematogaster (Decacrema) waxrunners show a yet undocumented front leg grooming behaviour. This grooming behaviour is time saving and integrated effectively into the running pattern. The described differences in morphology, kinematics and behaviour between waxrunning und non-waxrunning Crematogaster (Decacrema) ants result in a functional advantage of waxrunners on their waxy host plants. The epicuticular wax layer represents a biomechanical key mechanism which has lead to complex changes during evolution. The presented study was able to clarify underlying biomechanical factors on both sides of this ant-plant mutualism. KW - Crematogaster KW - Macaranga KW - Mutualismus KW - Kutikularwachs KW - Crematogaster KW - Macaranga KW - Wachslaufen KW - Mutualismus KW - Crematogaster KW - Macaranga KW - waxrunning KW - mutualism Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-21772 ER -