TY - THES A1 - Kolb, Verena T1 - Einfluss metallischer Nanostrukturen auf die optoelektronischen Eigenschaften organischer Halbleiter T1 - Impact of metal nanostructures on the optoelectronic properties of organic semiconductors N2 - Opto-elektronische Bauelemente auf Basis organischer Moleküle haben in den letzten Jahren nicht nur in Nischenbereichen, wie der Kombination organischer Photovoltaik mit gebäudeintegrierten Konzepten, sondern vor allem auch in der Entwicklung von kommerziell verfügbaren OLED (organische lichtemittierende Dioden) Bauteilen, wie 4K TV-Geräten und Handy Displays, an Bedeutung gewonnen. Im Vergleich zu anorganischen Bauteilen weisen jedoch vor allem organische Solarzellen noch weitaus geringere Effizienzen auf, weswegen die Erforschung ihrer Funktionsweise und der Einflüsse der einzelnen Bestandteile auf mikroskopischer Ebene für die Weiterentwicklung und Verbesserung des Leistungspotentials dieser Technologie unabdingbar ist. \\ Um dies zu erreichen, wurde in dieser Arbeit die Wechselwirkung zwischen der lokalisierten Oberflächenplasmonenresonanz (LSPR) metallischer Nanopartikel mit den optischen Anregungen organischer Dünnschichten in dafür eigens präparierten opto-elektronischen Hybrid-Bauteilen aus kleinen Molekülen untersucht. Durch die Implementierung und Kopplung an solche plasmonischen Nanostrukturen kann die Absorption bzw. Emission durch das lokal um die Strukturen erhöhte elektrische Feld gezielt beeinflusst werden. Hierbei ist der spektrale Überlapp zwischen LSPR und den Absorptions- bzw. E\-missions\-spek\-tren der organischen Emitter entscheidend. In dieser Arbeit wurden durch Ausnutzen dieses Mechanismus sowohl die Absorption in organischen photovoltaischen Zellen erhöht, als auch eine verstärkte Emission in nanostrukturierten OLEDs erzeugt. \\ Besonderer Fokus wurde bei diesen Untersuchungen auf mikroskopische Effekte durch neu entstehende Grenzflächen und die sich verändernden Morphologien der aktiven organischen Schichten gelegt, da deren Einflüsse bei optischen Untersuchungen oftmals nur unzureichend berücksichtigt werden. In der Arbeit wurden daher die nicht zu vernachlässigenden Folgen der Einbringung von metallischen Nanostrukturen auf die Morphologie und Grenzflächen zusammen mit den spektralen Veränderungen der Absorptions- und Emissionscharakteristik organischer Moleküle analysiert und in Zusammenhang gebracht, wodurch eine Verbesserung der Effizienzen opto-elektronischer Bauteile erreicht werden soll. N2 - In recent years, opto-electronic devices based on organic molecules have drawn increasing attention, not only in niche markets like building-integrated photovoltaics, but also in the development of organic light emitting diodes (OLEDs) for 4K TV and smartphone displays. Compared to devices based on inorganic semiconductors, especially, organic solar cells lack in efficiency. Therefore, the investigation and understanding of microscopic effects influencing the overall performance are crucial for further efficiency improvements of these technologies.\\ These circumstancs have motivated the topic of this thesis namely the investigation of the electromagnetic interaction between metallic nanostructures and molecular semiconductors, the latter constituting the key unit in organic opto-electronics thin film devices. The unique properties of metal nanostructures and nanoparticles, in particular, their localized surface plasmon resonances (LSPR) and the accompanying enhancement of the local electrical field and the scattering of incoming light are able to enhance both, the absorption and the emission of organic molecules in close proximity. \\ In this thesis, both phenomena were used to enhance the absorption of small molecule organic solar cells, as well as the emission in nanostructured OLEDs. Especially, the effect of artificially generated interfaces and the induced change in morphology due to nanoparticles are investigated with respect to the optical properties of the organic emitters and absorbers. \\ KW - Nanostruktur KW - Organischer Halbleiter KW - Oberflächenplasmonen KW - organische Halbleiter KW - localized surface plasmon KW - organic semiconductor KW - Silber KW - Optoelektronik Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170279 ER - TY - THES A1 - Suraru, Sabin-Lucian T1 - Elektronenarme und kernerweiterte Naphthalindiimide und Diketopyrrolopyrrole für organische Dünnschichttransistoren T1 - Electron-deficient and core-extended naphthalene diimides and diketopyrrolopyrroles for organic thin film transistors N2 - Im Rahmen dieser Arbeit wurde gezeigt, dass die elektronischen Eigenschaften und das Packungsverhalten von Naphthalindiimid (NDI)- und Diketopyrrolopyrrol (DPP)- Derivaten durch Einführen geeigneter Substituenten sowie durch Erweiterung des konjugierten Pi-Systems zur Optimierung der Eigenschaften als organische Halbleitermaterialien eingestellt werden können. Während DPP-Halbleiter zwar in Polymeren, nicht jedoch als niedermolekulare Halbleiter, für die organische Elektronik von Bedeutung sind, stellen vor allem die hier vorgestellten cyanierten DPP-Derivate eine synthetisch leicht zugängliche Klasse an niedermolekularen p-Halbleitern mit exzellenten Lochtransporteigenschaften dar. Die Expansion des NDI- und DPP-Kerns eröffnet zudem den synthetischen Zugang zu neuen Verbindungsklassen mit veränderten elektronischen Eigenschaften. Gerade das für die Carbazolocarbazoldiimide postulierte Konzept einer elektronenreichen p-Transportachse konnte durch Wahl geeigneter Imidsubstituenten zur Entwicklung zweidimensionaler p-Halbleiter mit sehr guten Mobilitäten führen. Schließlich stellen 2,6-kernhalogenierte NDI-Derivate mit fluorierten Imidgruppen aufgrund der herausragenden Elektronenmobilitäten und der sehr hohen Luftstabilität außergewöhnliche Kandidaten für den Einsatz als n-Halbleiter in organischen Dünnschichttransistoren dar. N2 - The present thesis shows that the electronic and packing properties of naphthalene diimide (NDI) and diketopyrrolopyrrole (DPP) derivatives can be tuned by introduction of suitable substituents and by the extension of the conjugated pi-core, in order to optimize the properties of the respective organic semiconductor materials. Although DPP derivatives have attracted much attention as structural units in polymers, they have hardly been investigated as small molecule semiconductors in the field of organic electronics. Thus, especially the cyanated DPP derivatives represent a significant step towards easily accessible, high performance p-type molecular material based on DPP. Furthermore, the extension of the aromatic NDI and DPP cores opens up synthetic access to new classes of compounds with modified electronic properties. Especially interesting is the postulated and demonstrated concept for designing carbazolocarbazole diimides with an electron-rich p-axis for charge transport resulting in the development of efficient two-dimensional p-type semiconductors with high mobilities by proper choice of imide substituents. Finally, due their outstanding electron mobilities and very high air stability, the 2,6-core-halogenated NDIs with fluorinated imide substituents are exceptionally promising candidates as n-type semiconductors in organic TFTs. KW - Dünnschichttransistor KW - Organischer Halbleiter KW - Anellierung KW - Naphthalindiimid KW - Diketopyrrolopyrrol KW - thin film transistor KW - organic semiconductor KW - annulation KW - naphthalene diimide KW - diketopyrrolopyrrole Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-87880 ER -