TY - THES A1 - Brandt, Sönke T1 - Metamorphic evolution of ultrahigh-temperature granulite facies and upper amphibolite facies rocks of the Epupa Complex, NW Namibia T1 - Metamorphe Entwicklung von ultrahochtemperatur-granulitfaziellen und amphibolitfaziellen Gesteinen des Epupa-Komplexes, NW Namibia N2 - The high-grade metamorphic Epupa Complex (EC) of north-western Namibia constitutes the south-western margin of the Archean to Proterozoic Congo Craton. The north-eastern portion of the EC has been geochemically and petrologically investigated in order to reconstruct its tectono-metamorphic evolution. Two distinct metamorphic units have been recognized, which are separated by ductile shear zones: (1) Upper amphibolite facies rocks (Orue Unit) and (2) ultrahigh-temperature (UHT) granulite facies rocks (Epembe Unit). The rocks of the EC are transsected by a large anorthosite massif, the Kunene Intrusive Complex (KIC). The Orue Unit and the Epembe Unit were affected by two distinct Mesoproterozoic metamorphic events, as is evident from differences in their metamorphic grade, in the P-T paths and in the age of peak-metamorphism: (1) The Orue Unit consists of a Palaeoproterozoic volcano-sedimentary sequence, which was intruded by large masses of I-type granitoids and by rare mafic dykes. During the Mesoproterozoic (1390-1318 Ma) the Orue Unit rocks underwent upper amphibolite facies metamorphism. The volcano-sedimentary sequence is constituted by interlayered basaltic amphibolites and rhyolitic felsic gneisses, with intercalations of migmatitic metagreywackes, migmatitic metapelites, metaarkoses and calc-silicate rocks. The Orue Unit was subdivided into three parts, which record similar heating-cooling paths but represent individual crustal levels: Heating led to the partial replacement of amphibole, biotite and muscovite through dehydration melting reactions. The peak-metamorphic P-T conditions of c. 700°C, 6.5 +/- 1.0 kbar (south-eastern part), c. 820°C, 8 +/- 0.5 kbar (south-western part) and c. 800°C, 6.0 +/- 1.0 kbar (northern part) correlate well with the mineral assemblage in the metapelites, i.e. Grt-Bt-Sil gneisses and schist in the south-eastern and south-western region and (Grt-)Crd-Bt gneisses in the northern part. Peak-metamorphism was followed by retrograde cooling to middle amphibolite facies conditions. Contact metamorphism, related with the intrusion of the anorthosites, is restricted to the direct contact to the KIC and recorded by massive metapelitic Grt-Sil-Crd felses, formed under upper amphibolite facies conditions (c. 750°C, c. 6.5 kbar). (2) The Epembe Unit consists of a Palaeoproterozoic volcano-sedimentary succession, which was intruded by small bodies of S-type granitoids and by andesitic dykes. All these rocks underwent UHT granulite facies metamorphism during the early Mesoproterozoic (1520-1447 Ma). The volcano-sedimentary succession is dominated by interlayered basaltic two-pyroxene granulites and rhyolitic felsic granulites. Migmatitic metapelites and metagreywackes are intercalated in the metavolcanites. Sapphirine-bearing MgAl-rich gneisses occur as restitic schlieren in the migmatitic metagreywackes. Reconstructed anti-clockwise P-T paths are subdivided into several distinct stages: During prograde near-isobaric heating to UHT conditions at c. 7 kbar biotite- or hornblende-bearing mineral assemblages were almost completely replaced by anhydrous mineral assemblages through various dehydration melting reactions. A subsequent pressure increase of 2-3 kbar led to the formation of the peak-metamorphic mineral assemblages Grt-Opx and (Grt-)Opx-Cpx in the orthogneisses and Grt-Opx, Grt-Sil and (Grt-)(Spr-)Opx-Sil-Qtz in the paragneisses. UHT-Metamorphism is proved by conventional geothermobarometry (970 +/- 70°C; 9.5 +/- 2.5 kbar), by the very high Al content of peak-metamorphic orthopyroxene (up to 11.9 wt.% Al2O3) in many paragneisses and by Opx-Sil-Qtz assemblages in the MgAl-rich gneisses. Post-peak decompression is recorded by several corona and symplectite textures, formed at the expense of the peak-metamorphic phases: Initial UHT decompression of about ca. 2 kbar to 940 +/- 60°C at 8 +/- 2 kbar is mainly evident from the formation of sapphirine-bearing symplectites in the Opx-Sil gneisses. Subsequent high-temperature decompression to 6 +/- 2 kbar at 800 +/- 60°C resulted in the formation of Crd-Opx-Spl, Crd-Opx and Spl-Crd symplectites. Subsequent near-isobaric cooling to upper amphibolite conditions of 660 +/- 30°C at 5 +/- 1.5 kbar led to the re-growth of biotite, hornblende, sillimanite and garnet. During continued decompression orthopyroxene and cordierite were formed at the expense of biotite in several paragneisses. In a geodynamic model UHT metamorphism of the Epembe Unit is correlated with the formation of a large magma chamber at the mantle-crust boundary, which forms the source for the anorthosites of the KIC. In contrast, amphibolite facies metamorphism of the Orue Unit is ascribed to a regional contact metamorphic event, caused by the emplacement of the anorthositic crystal mushes in the middle crust. N2 - Epupa-Komplex (EK) Nordwest-Namibias bildet den südwestlichen Rand des archaischen bis proterozoischen Kongo-Kratons. Der nordöstliche Teil des EK wurde geochemisch und petrologisch untersucht, um seine tektono-metamorphe Entwicklung zu rekonstruieren. Hierbei wurden zwei unterschiedliche metamorphe Einheiten erkannt, die durch duktile Scherzonen getrennt sind: (1) Gesteine der oberen Amphibolitfazies (Orue-Einheit) und (2) Ultrahochtemperatur (UHT)-granulitfazielle Gesteine (Epembe-Einheit). Die Gesteine des EK werden von einem gewaltigen Anorthosit-Massiv, dem Kunene-Intrusiv-Komplex (KIK), durchschlagen. Unterschiede im Metamorphosegrad, in den P-T Pfaden und den Metamorphose-Altern belegen, dass die Orue-Einheit und die Epembe-Einheit von zwei unterschiedlichen mesoproterozoischen Metamorphosen erfasst wurden: (1) Die Orue-Einheit setzt sich aus einer paläoproterozoischen vulkano-sedimentären Abfolge zusammen, die von I-Typ Granitoiden und Basaltgängen intrudiert wurde. Während des Mesoproterozoikums (1390-1318 Ma) wurde die Orue-Einheit unter Bedingungen der oberen Amphibolitfazies metamorph überprägt. Die vulkano-sedimentäre Abfolge wird von einer Wechsellagerung von basaltischen Amphiboliten und rhyolitischen felsischen Gneisen aufgebaut, in die migmatitische Metagrauwacken, migmatitische Metapelite, Metaarkosen und Kalksilikate eingeschaltet sind. Die Orue-Einheit wurde in drei Regionen untergliedert, die ähnliche Aufheizungs-Abkühlungs-Pfade aufweisen, aber unterschiedliche Krustenbereiche repräsentieren: Aufheizung führte zur partiellen Verdrängung von Amphibol, Biotit und Muskovit durch Dehydratations-Schmelz-Reaktionen. Die höchstgradigen P-T Bedingungen von ca. 700°C, 6.5 +/- 1.0 kbar (südöstlicher Teil), ca. 820°C, 8 +/- 0.5 kbar (südwestlicher Teil) und ca. 800°C, 6.0 +/- 1.0 kbar (nördlicher Teil) stimmen mit den jeweiligen Mineralparagenesen der Metapelite überein (Grt-Bt-Sil-Gneise und –Schiefer im südöstlichen und –westlichen Teil und (Grt-)Crd-Bt-Gneise im nördlichen Teil). Abkühlung erfolgte unter Bedingungen der mittleren Amphibolitfazies. Kontaktmetamorphose, verbunden mit der Intrusion der Anorthosite, ist auf den direkten Kontaktbereich zum KIK beschränkt und durch undeformierte metapelitische Grt-Sil-Crd Felse überliefert, die unter Bedingungen der oberen Amphibolitfazies (ca. 750°C, ca. 6.5 kbar) gebildet wurden. (2) Die Epembe-Einheit besteht aus einer paläoproterozoischen vulkano-sedimentären Abfolge, die von kleinvolumigen S-Typ Granitoiden und Andesitgängen intrudiert wurde. Die Gesteine wurden im frühen Mesoproterozoikum (1520-1447 Ma) von einer UHT-granulitfaziellen Metamorphose erfasst. Die vulkano-sedimentäre Abfolge wird durch wechsellagernde basaltische Zwei-Pyroxen Granulite und rhyolitische felsische Granulite dominiert. Migmatitische Metapelite und Metagrauwacken sind in die Metavulkanite eingeschaltet. Sapphirin-führende MgAl-reiche Gneise treten als restititische Schlieren in den migmatitischen Metagrauwacken auf. Die rekonstruierten P-T Pfade verlaufen entgegen des Uhrzeigersinnes und sind in mehrere Stufen gegliedert: Während annähernd isobarer Aufheizung zu UHT-Bedingungen bei ca. 7 kbar wurden Biotit- und Hornblende-führende Mineralparagenesen weitgehend oder vollständig im Zuge von Dehydratations-Schmelzreaktionen verdrängt. Ein anschließender Druck-Anstieg um 2-3 kbar führte zur Bildung der höchstgradigen Mineralparagenesen Grt-Opx und (Grt-)Opx-Cpx in den Orthogneisen und Grt-Opx, Grt-Sil und (Grt-)(Spr-)Opx-Sil-Qtz in den Paragneisen. UHT-Metamorphose ist durch konventionelle Geothermobarometrie (970 +/- 70°C; 9.5 +/- 2.5 kbar), den sehr hohen Al-Gehalt von höchstgradigem Orthopyroxen (bis zu 11.9 Gew.% Al2O3) in zahlreichen Paragneisen und die Paragenese Opx-Sil-Qtz in den MgAl-reichen Gneisen belegt. Anschließende Dekompression ist durch zahlreiche Korona- und Symplektit-Gefüge um die höchstgradigen Minerale überliefert. Initiale UHT-Dekompression um ca. 2 kbar (940 +/- 60°C; 8 +/- 2 kbar) ist hauptsächlich durch Sapphirin-führende Symplektite in den MgAl-reichen Gneisen belegt. Anhaltende Dekompression unter granulitfaziellen Bedingungen (800 +/- 60°C; 6 +/- 2 kbar) führte zur Bildung von Crd-Opx-Spl, Crd-Opx und Spl-Crd Symplektiten. Anschließende annähernd isobare Abkühlung zu Bedingungen der oberen Amphibolitfazies (660 +/- 30°C; 5 +/- 1.5 kbar) führte zum Wiederwachstum von Biotit, Hornblende, Sillimanit und Granat. Während anhaltender Dekompression wurde in den Paragneisen Orthopyroxen und Cordierit auf Kosten von Biotit gebildet. In einem geodynamischen Model wird die UHT-Metamorphose wird mit der Bildung einer Magmenkammer an der Kruste-Mantel-Grenze in Zusammenhang gebracht, welche zugleich die Magmenquelle für die Anorthosite des KIK darstellt. Die amphibolitfazielle Metamorphose der Orue-Einheit wird dagegen mit einer regionalen Kontaktmetamorphose während der Platznahme der anorthositischen Magmen in Verbindung gebracht. KW - Namibia KW - Granulit KW - Metamorphose KW - Namibia KW - Petrologie KW - Metamorphose KW - Granulite KW - Epupa-Komplex KW - Namibia KW - Petrology KW - Metamorphism KW - Granulite KW - Epupa Complex Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-10930 ER - TY - THES A1 - Gruner, Birgit T1 - Metamorphoseentwicklung im Kaokogürtel, NW-Namibia T1 - Metamorphic evolution of the Kaoko belt, NW-Namibia N2 - Der Kaokogürtel in NW-Namibia gehört zu den panafrikanischen Orogensystemen Westgondwanas. Er besteht aus präpanafrikanischen Grundgebirgseinheiten und panafrikanischen vulkano-sedimentären Deckgebirgseinheiten, die einer grünschiefer- bis granulitfaziellen Metamorphose unterlagen. Für Metapelite lassen sich Metamorphosezonen mit aufsteigender Metamorphose von Ost nach West aushalten: Granat-Zone, Staurolith-Zone, Disthen-Zone, ky-sill-mu-Zone, sill-mu-Zone, sill-ksp-Zone, g-cd-sill-ksp-Zone. Mit Hilfe geothermobarometrischer und moderner phasenpetrologischer Methoden (z.B. P-T- Pseudoschnitte) wurden die P-T-Bedingungen ermittelt, die die Metapelite während ihrer tektono-metamorphen Entwicklung durchlaufen haben. Es zeigt sich eine MT-HT/MP Barrow-type Metamorphoseentwicklung im östlichen und zentralen Kaokogürtel sowie eine HT/LP Buchan-type Entwicklung im westlichen Kaokogürtel. Die geodynamische Relevanz dieser Entwicklungen wird diskutiert. N2 - The Kaoko belt in NW-Namibia is part of the Pan-African mobile belt system of western Gondwana. It consists of pre-Pan-African basement rocks as well as Pan-African volcano-sedimentary sequences, wich were subjected to greenschist facies to granulite facies metamorphism. It was possible to distinguish different metamorphic zones for metapelites increasing in grade from east to west: garnet zone, staurolite zone, kyanite zone, ky-sill-mu zone, sill-mu zone, sill-ksp zone, g-cd-sill-ksp zone. To reconstruct the P-T conditions experienced by the metapelites during their tectono-metamorphic evolution conventional geothermobarometry as well as phase petrological methods (e.g. P-T pseudosections) were used. Consequently, two different types of metamorphic evolution can be distinguished: a MT-HT/MP Barrovian-type evolution in the eastern and central Kaoko belt and a HT/LP Buchan-type evolution in the western Kaoko belt. The geodynamic significance of this results is discussed. KW - Kaoko-Gürtel KW - Metapelit KW - Metamorphose KW - panafrikanische Metamorphoseentwicklung KW - Metapelite KW - Barrow-Zonen KW - Buchen-type Metamorphose KW - Geothermobarometrie KW - P-T-Pseudoschnitte KW - Pan-African metamorphic evolution KW - metapelitic rocks KW - Barrovian sequence KW - Buchan-type metamorphic evolution KW - geothermobarometry KW - P-T pseudosections Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-2486 ER - TY - THES A1 - Marx, Isabella T1 - Metamorphose-Entwicklung des Spessart-Kristallins, mitteleuropäische Varisziden : Phasenpetrologische, mineralchemische und geochemische Untersuchungen an Metapeliten T1 - Metamorphic Evolution of the Spessart Crystalline Complex, Central European Variscides: phase-petrology, mineral-chemistry, and geochemistry of metapelitic rocks N2 - Im Rahmen der vorliegenden Arbeit wurden die Druck-Temperatur-Bildungsbedingungen metapelitischer Gesteine aus verschiedenen lithostratigraphischen Formationen des Spessart-Kristallins untersucht. Geologisch stellt das Spessart-Kristallin einen Teil der Mitteldeutschen Kristallinzone dar, die sich innerhalb des Orogens der mitteleuropäischen Varisziden am nördlichen Rand des Saxothuringikums erstreckt. Das wesentliche Ziel der Untersuchungen bestand darin, mittels phasenpetrologischer und geothermobarometrischer Methoden die Metamorphose-Entwicklung des Spessart-Kristallins zu rekonstruieren und in Beziehung zur geodynamischen Geschichte der Varisziden zu setzen. Der Schwerpunkt der Arbeiten lag auf den Staurolith-Glimmerschiefern der Mömbris-Formation. Darüber hinaus wurden Gesteine der Geiselbach-, Alzenau- und Elterhof-Formation einbezogen. Als Grundlage für die Phasenpetrologie wurden petrographische, mineralchemische und geochemische Untersuchungen durchgeführt. Prograde Metamophose-Zonen können im Spessart-Kristallin nicht kartiert werden. Die Protolithe der untersuchten Metasedimente stellten vermutlich häufig saure bis intermediäre Magmatite dar, für die Geiselbach- und Elterhof-Formation wohl auch quarzreiche Sedimente. Die geo¬chemischen Daten lassen für die Mömbris-, Alzenau- und Elterhof-Formation Grauwacken bis Pelite als sedimentäre Edukte der Metamorphite annehmen, die Gesteine der Geiselbach-Formation könnten auf Arkosen zurückgehen. Eine Ablagerung der sedimentären Edukte im Bereich eines Kontinen¬talen Inselbogens bis Aktiven Kontinentalrandes ist für die Mömbris- und Alzenau-Formation wahrscheinlich, für die Geiselbach- und Elterhof-Formation liegt kein eindeutiges Bild vor. Zur Abschätzung der Metamorphosebedingungen wurden verschiedene Phasendiagramme verwendet, die auf den metapelitischen Modellsystemen KMnFMASH (K2O-MnO-FeO-MgO-Al2O3-SiO2-H2O) und KFMASH (K2O-FeO-MgO-Al2O3-SiO2-H2O) basieren, insbesondere P-T-Pseudoschnitte und T-X-Schnitte. Weiterhin wurden konventionelle Geothermobarometer berechnet und Abschätzungen mittels intern-konsistenter thermodynamischer Datensätze vorgenommen. Die theoretischen Grundlagen dieses phasenpetrologischen Ansatzes werden kurz erläutert. Für den Metamorphose-Höhepunkt der Gesteine ergaben sich Temperaturen im Bereich von ca. 600 - 615 °C und Drucke um 6.5 - 8 kbar. Diese Daten weisen eine recht gute Übereinstimmung zu den bisher in der Literatur bekannten Werten für das Spessart-Kristallin auf. Im Anschluß an die amphibolitfazielle Metamorphose wurden die Gesteine mehr oder minder stark retrograd überprägt. Anzeichen für eine polymetamorphe Entwicklung dieses Teils der Mitteldeutschen Kristallinzone liegen nicht vor. Die rekonstruierten P-T-Pfade bzw. P-T-Pfad-Segmente dokumentieren eine recht einheitliche metamorphe Entwicklung im Uhrzeigersinn („clockwise“) und weisen auf eine Barrow-type Metamorphose hin. Die P-T-Pfade der meisten Proben zeigen einen charakteristischen Verlauf mit einer Phase nahezu isothermaler Dekompression. Demgegenüber konnte für einige Disthen-führende Proben ein etwas flacherer P-T-Pfad mit einer offenbar geringfügig stärker Temperatur-betonten Entwicklung differenziert werden. Das Metamorphose-Maximum ist für diese Gesteine durch Temperaturen von ca. 620 - 630 °C und Drucke von etwa 6 - 8 kbar gekennzeichnet. Damit wird eine leichte Zunahme des Metamorphosegrades nach Süden innerhalb der Mömbris-Formation, die verschiedentlich vermutet worden war, nachgewiesen. Die neu erarbeiteten Pfade sind aufgrund des methodischen Ansatzes, der die Zusammensetzung und Mineralparagenese der jeweiligen Probe berücksichtigt, im Vergleich zu früheren Arbeiten deutlich besser abgesichert. Sie dokumentieren erstmals in dieser Form die Druck-Temperatur-Geschichte des Spessart-Kristallins. Die P-T-Pfade lassen auf eine relativ schnelle Versenkung der Gesteine bei einem recht niedrigen geothermischen Gradienten und eine anschließende rasche Heraushebung aus einer Tiefe von etwa 25 - 28 km auf etwa 15 - 18 km bei einer eher geringen Temperaturabnahme schließen. Die damit für das Spessart-Kristallin dokumentierte Entwicklung fügt sich gut in das aktuelle geotektonische Modell einer Kollision eines passiven Kontinentalrandes mit einem kontinentalen Bogen ein und steht in Analogie zur derzeit gängigen Vorstellung, die Mitteldeutsche Kristallinschwelle repräsentiere einen variszischen aktiven Plattenrand. N2 - Metamorphic Evolution of the Spessart Crystalline Complex, Central European Variscides: studies in phase-petrology, mineral-chemistry, and geochemistry of metapelitic rocks. – 211 pp. + appendix, Würzburg, 2008. Within the Central European Variscides the Spessart Crystalline Complex (SCC) is part of the Mid German Crystalline Rise which nowadays is interpreted as an active Variscan margin. This thesis aimed at the metamorphic evolution of the SCC and looked for possible contributions to the geodynamic evolution of the area in question. Studies, therefore, concentrated on metapelitic rocks from different lithostratigraphic formations of the SCC, especially on the staurolite-micaschists of the Mömbris-formation, but samples from the (very badly exposed) Geiselbach-, Alzenau-, and Elterhof-formations were analyzed as well. Emphasis was mainly given to phase-petrology and to geothermobarometry, preceded by studies in petrology, mineral chemistry and geochemistry the results of which are documented in the appendices. The evaluation of the metamorphic conditions used different phase-diagrams, i.e. P-T-pseudosections and T-X-sections, based on the metapelitic model-systems KMnFMASH (K2O-MnO-FeO-MgO-Al2O3-SiO2-H2O) and KFMASH (K2O-FeO-MgO-Al2O3-SiO2-H2O). Further estimations base on geothermobarometers and internally-consistent thermodynamic datasets. The theoretical background of these methods is shortly explained. The metamorphic maximum is given at temperatures of about 600 - 615 °C and pressures at some 6.5 - 8 kbar. These data are in good accordance with published evidence for the Spessart Crystalline Complex. Metamorphism under conditions of amphibolite facies was followed by a retrograde overprint. There is no indication of polymetamorphic development in this part of the Mid German Crystalline Rise. The P-T-paths reconstructed in this thesis document a more or less uniform clockwise metamorphic development and, thus, indicate a Barrow-type metamorphism. The P-T-paths of most of the samples show a characteristic course with a phase of nearly isothermal decompression. Some kyanite-bearing samples with a metamorphic peak at temperatures of 620 - 630 °C and pressures of some 6 - 8 kbar are characterized by a somewhat less steep P-T-path. In summary, these new P-T-paths document for the first time the pressure-temperature-history of the Spessart Crystalline Complex this way. The pressure-temperature-paths indicate a relatively quick burial of the rocks at a comparatively low geothermal gradient and a following rapid exhumation from a depth of some 25 - 28 km to 15 - 18 km with a rather low decrease of temperature. This development of the Spessart-Crystalline-Complex fits well into the actual geodynamic model of a collision of a passive margin with a continental arc and agrees with the current conception of the Mid German Crystalline Rise. KW - Metamorphose KW - Spessart KW - Variskisches Gebirge KW - Gesteinskunde KW - Spessart-Kristallin KW - Phasenpetrologie KW - Pseudoschnitt KW - Mid German Crystalline Rise KW - Spessart KW - Variscan Orogeny KW - petrology KW - pseudosection Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-35290 ER - TY - THES A1 - Millonig, Leo Jakob T1 - The Neoarchean and Palaeoproterozoic metamorphic evolution of the Limpopo Belt’s Central Zone in southern Africa. New insights from petrological investigations on amphibolite to granulitefacies rocks T1 - Die neoarchaische und paläoproterozoische metamorphe Entwicklung der Central Zone des Limpopo Belts im südlichen Afrika. Neue Einblicke anhand petrologischer Untersuchungen von amphibolit- bis granulitfaziellen Gesteinen N2 - Die vorliegende Doktorarbeit präsentiert neue petrologische Untersuchungen an hochgradig metamorphen Gesteinen des Beit Bridge, Mahalapye und Phikwe Komplexes, welche gemeinsam die Central Zone des Limpopo Belt im südlichen Afrika bilden. Die Ergebnisse liefern detaillierte Informationen über die pro- und retrograde Druck-Temperatur-(P-T)-Entwicklung der drei Komplexe und bilden, in Einklang mit geochronologischen Daten, die Grundlage für die Erstellung eines einheitlichen geodynamischen Modells der Bildung der Central Zone des Limpopo Belt. Die abgeleiteten P-T Pfade wurden anhand detaillierter Untersuchungen an quartzgesättigten und - untersättigten Metapeliten bis Metabasiten erstellt, wobei sechs Sillimanit-Granat-Cordierit Gneisse, vier (Granat)- Biotit-Plagioklas Gneisse, zwei Granat-Orthopyroxen-Biotit- Kalifeldspat-Plagioklas Gneisse, ein Granat-Cordierit-Orthoamphibol Fels, ein Granat-Biotit Amphibolit und ein Granat-Klinopyroxen Amphibolit untersucht wurden. PT Punkte und P-T Entwicklungen wurden mit Hilfe von konventionellen Geothermobarometern und quantitativen Phasendiagrammen in den Systemen Na2O - CaO - K2O - FeO - MgO - Al2O3 - SiO2 - H2O - TiO2 - O(NCKFMASHTiO) und MnO - TiO2 - Na2O - CaO - K2O - FeO - MgO - Al2O3 - SiO2 - H2O (MnTiNCKFMASH) berechnet und abgeleitet. Die Phasendiagramme wurden mit den Programmen THERMOCALC und THERIAK-DOMINO berechnet. Petrologische Informationen, speziell solche, die durch den Vergleich von beobeachteten/gemessenen mit thermodynamisch berechneten Mineralparagenesen, -zonierungen, -zusammensetzungen und Modalgehalten erhalten wurden zeigen, in Kombination mit neuen und bereits existierenden geochronologischen Daten, dass Gesteine der drei untersuchten Komplexe geringfügig unterschiedliche P-T Entwicklungen zu verschiedenen Zeiten durchliefen. Proben aus der Gegend des Bulai Plutons (Beit Bridge Komplex) belegen ein hochgradig metamorphes Ereignis im Neoarchaikum um ~2.64 Ga (M2), mit peak-metamorphen Bedingungen von ~850°C/8-9 kbar und einer retrograden Dekompression mit gleichzeitiger Abkühlung zu ~750°C/5-6 kbar. Diese metamorphe Entwicklung erfolgte vermutlich im geodynamischen Umfeld eines Magmatischen Bogens. Im Gegensatz hierzu dokumentieren Proben des Mahalapye und Phikwe Komplexes metamorphe Entwicklungen im Paläoproterozoikum um ~2.03-2.05 Ga (M3), die sich zudem im prograden Verlauf der Metamorphose voneinander unterscheiden. Metamorphe Gesteine des Mahalapye Komplexes kennzeichnet eine Hochtemperatur- Niedrigdruck-(HT-LP)- Metamorphose mit schwacher prograder Dekompression von ~650°C/7 kbar nach ~800°C/5.5 kbar, die mit der Platznahme von ausgedehnten granitischen Intrusionen um ~2.06-2.02 Ga einherging. Metamorphe Gesteine des Phikwe Komplexes hingegen zeigen eine gleichzeitige Druck- und Temperaturzunahme von ~600°C/6 kbar nach ~750°C/8 kbar, die nicht mit Magmatismus im Paläoproterozoikum assoziiert war. Es wird gefolgert, dass die HT-LP metamorphe Entwicklung des Mahalapye Komplexes ihre Ursache in dem magmatischen „Underplating“ heisser mafischer Schmelzen, als Ergebnis südost- erichteter Subduktion während der Kheis-Magondy Orogenese, und/oder der zeitgleichen Aktivität von Mantel Plumes, in Zusammenhang mit der Bildung des Bushveld Komplexes, hat. Im Gegensatz hierzu belegen die Gesteine des Phikwe Komplexes eine prograde Druck- und Temperaturzunahme, hervorgerufen durch eine fortschreitende Krustenstapelung um ~2.03 Ga. Diese Stapelung ist bereits für zahlreiche andere geologischen Einheiten des Limpopo Belt belegt. Sie wird als eine Folge der endenden Annäherung/Kollision zwischen dem Kaapvaal und Zimbabwe Kraton interpretiert, welche durch südost-gerichtete Kompression im Zuge der Kheis-Magondy Orogenese zw. ~2.06 und 1.90 Ga hervorgerufen wurde. N2 - This study presents new petrological results obtained from high-grade metamorphic rocks of the Beit Bridge, Mahalapye and Phikwe Complexes, which constitute the Central Zone of the Limpopo Belt in southern Africa. These results provide detailed information about the prograde and retrograde pressure-temperature (P-T) evolution of the three investigated complexes and, in concert with geochronological data, form the basis for the development of a coherent geodynamic model for the evolution of the Limpopo’s Central Zone. The P-T paths were inferred by the thorough investigation of silica-saturated and silica- undersaturated metapelitic and metabasic rocks, comprising six sillimanite-garnet-cordierite gneisses, four (garnet)-biotite-plagioclase gneisses, two garnet-orthopyroxene-biotite-Kfeldspar-plagioclase gneisses, one garnet- cordierite-orthoamphibole fels, one garnet-biotite amphibolite, and one garnet-clinopyroxene amphibolite. P-T points and P-T evolutions were derived by the application of conventional geothermobarometers, and quantitative phase diagrams in the systems Na2O - CaO - K2O - FeO - MgO - Al2O3 - SiO2 - H2O - TiO2 - O (NCKFMASHTiO), and MnO - TiO2 - Na2O - CaO - K2O - FeO - MgO - Al2O3 - SiO2 - H2O (MnTiNCKFMASH) - using the computer software THERMOCALC and THERIAK-DOMINO. The petrological information, in particular those obtained by comparison between observed and thermodynamically calculated mineral assemblages, zonations and modes, in combination with new and existing geochronological data provide evidence that rocks from the three investigated complexes underwent slightly different P-T evolutions at different times. The samples from the Bulai Pluton area (Beit Bridge Complex) provide evidence for a Neoarchean high-grade metamorphic event at ~2.64 Ga (M2), with peak P-T conditions of ~850°C at 8-9 kbar, and a decompression-cooling path to ~750°C at 5-6 kbar. This metamorphic evolution perhaps took place in a magmatic arc setting. In contrast, samples from the Mahalapye and Phikwe Complex document a Palaeoproterozoic event at ~2.03-2.05 Ga (M3), and were subject to different styles of prograde metamorphism. Metamorphic rocks from the Mahalapye Complex experienced a high-temperature low-pressure (HT-LP) metamorphic overprint, accompanied by the emplacement of voluminous granite bodies between 2.06 and 2.02 Ga, and provide evidence for a slightly prograde decompression from ~650°C/7 kbar to ~800°C/5.5 kbar. In contrast, the metamorphic rocks from the Phikwe Complex provide evidence for a simultaneous pressure and temperature increase from ~600°C/6 kbar to ~750°C/8 kbar, in the absence of significant Palaeoproterozoic magmatism. The HT-LP metamorphic evolution of the Mahalapye Complex is interpreted to be initiated by the underplating of hot mafic melts, either formed in response to SE-subduction during the Kheis-Magondi orogeny, and/or by contemporaneous mantle plume activities related to the formation of the Bushveld Complex. In contrast, the prograde pressure and temperature increase reflected by the rocks from the Phikwe Complex rather reflects successive crustal stacking at ~2.03 Ga. This stacking, which is also reported from many other units throughout the Limpopo Belt, is interpreted to result from the final convergence between the Kaapvaal and Zimbabwe Cratons, perhaps caused by SE-directed compression in response to the Kheis-Magondi orogeny between ~2.06 and 1.90 Ga. KW - Limpopo-Gürtel KW - Phasendiagramme KW - Metamorphose KW - Amphibolit KW - Granulit KW - P-T Entwicklung KW - Granulitfazies KW - Bushveld Komplex KW - Limpopo Belt KW - P-T pseudosections KW - granulite facies KW - metamorphism KW - Bushveld Complex Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-36516 ER -