TY - THES A1 - Ames, Christopher T1 - Molecular Beam Epitaxy of 2D and 3D HgTe, a Topological Insulator T1 - Molekularstrahlepitaxie von 2D und 3D HgTe, ein topologischer Isolator N2 - In the present thesis the MBE growth and sample characterization of HgTe structures is investigated and discussed. Due to the first experimental discovery of the quantum Spin Hall effect (QSHE) in HgTe quantum wells, this material system attains a huge interest in the spintronics society. Because of the long history of growing Hg-based heterostructures here at the Experimentelle Physik III in Würzburg, there are very good requirements to analyze this material system more precisely and in new directions. Since in former days only doped HgTe quantum wells were grown, this thesis deals with the MBE growth in the (001) direction of undoped HgTe quantum wells, surface located quantum wells and three dimensional bulk layers. All Hg-based layers were grown on CdTe substrates which generate strain in the layer stack and provide therefore new physical effects. In the same time, the (001) CdTe growth was investigated on n-doped (001) GaAs:Si because the Japanese supplier of CdTe substrates had a supply bottleneck due to the Tohoku earthquake and its aftermath in 2011. After a short introduction of the material system, the experimental techniques were demonstrated and explained explicitly. After that, the experimental part of this thesis is displayed. So, the investigation of the (001) CdTe growth on (001) GaAs:Si is discussed in chapter 4. Firstly, the surface preparation of GaAs:Si by oxide desorption is explored and analyzed. Here, rapid thermal desorption of the GaAs oxide with following cool down in Zn atmosphere provides the best results for the CdTe due to small holes at the surface, while e.g. an atomic flat GaAs buffer deteriorates the CdTe growth quality. The following ZnTe layer supplies the (001) growth direction of the CdTe and exhibits best end results of the CdTe for 30 seconds growth time at a flux ratio of Zn/Te ~ 1/1.2. Without this ZnTe layer, CdTe will grow in the (111) direction. However, the main investigation is here the optimization of the MBE growth of CdTe. The substrate temperature, Cd/Te flux ratio and the growth time has to be adjusted systematically. Therefore, a complex growth process is developed and established. This optimized CdTe growth process results in a RMS roughness of around 2.5 nm and a FWHM value of the HRXRD w-scan of 150 arcsec. Compared to the literature, there is no lower FWHM value traceable for this growth direction. Furthermore, etch pit density measurements show that the surface crystallinity is matchable with the commercial CdTe substrates (around 1x10^4 cm^(-2)). However, this whole process is not completely perfect and offers still room for improvements. The growth of undoped HgTe quantum wells was also a new direction in research in contrast to the previous n-doped grown HgTe quantum wells. Here in chapter 5, the goal of very low carrier densities was achieved and therefore it is now possible to do transport experiments in the n - and p - region by tuning the gate voltage. To achieve this high sample quality, very precise growth of symmetric HgTe QWs and their HRXRD characterization is examined. Here, the quantum well thickness can now determined accurate to under 0.3 nm. Furthermore, the transport analysis of different quantum well thicknesses shows that the carrier density and mobility increase with rising HgTe layer thickness. However, it is found out that the band gap of the HgTe QW closes indirectly at a thickness of 11.6 nm. This is caused by the tensile strained growth on CdTe substrates. Moreover, surface quantum wells are studied. These quantum wells exhibit no or a very thin HgCdTe cap. Though, oxidization and contamination of the surface reduces here the carrier mobility immensely and a HgCdTe layer of around 5 nm provides the pleasing results for transport experiments with superconductors connected to the topological insulator [119]. A completely new achievement is the realization of MBE growth of HgTe quantum wells on CdTe/GaAs:Si substrates. This is attended by the optimization of the CdTe growth on GaAs:Si. It exposes that HgTe quantum wells grown in-situ on optimized CdTe/GaAs:Si show very nice transport data with clear Hall plateaus, SdH oscillations, low carrier densities and carrier mobilities up to 500 000 cm^2/Vs. Furthermore, a new oxide etching process is developed and analyzed which should serve as an alternative to the standard HCl process which generates volcano defects at some time. However, during the testing time the result does not differ in Nomarski, HRXRD, AFM and transport measurements. Here, long-time tests or etching and mounting in nitrogen atmosphere may provide new elaborate results. The main focus of this thesis is on the MBE growth and standard characterization of HgTe bulk layers and is discussed in chapter 6. Due to the tensile strained growth on lattice mismatched CdTe, HgTe bulk opens up a band gap of around 22 meV at the G-point and exhibits therefore its topological surface states. The analysis of surface condition, roughness, crystalline quality, carrier density and mobility via Nomarski, AFM, XPS, HRXRD and transport measurements is therefore included in this work. Layer thickness dependence of carrier density and mobility is identified for bulk layer grown directly on CdTe substrates. So, there is no clear correlation visible between HgTe layer thickness and carrier density or mobility. So, the carrier density is almost constant around 1x10^11 cm^(-2) at 0 V gate voltage. The carrier mobility of these bulk samples however scatters between 5 000 and 60 000 cm^2/Vs almost randomly. Further experiments should be made for a clearer understanding and therefore the avoidance of unusable bad samples.But, other topological insulator materials show much higher carrier densities and lower mobility values. For example, Bi2Se3 exhibits just density values around 1019 cm^(-2) and mobility values clearly below 5000 cm2/Vs. The carrier density however depends much on lithography and surface treatment after growth. Furthermore, the relaxation behavior and critical thickness of HgTe grown on CdTe is determined and is in very good agreement with theoretical prediction (d_c = 155 nm). The embedding of the HgTe bulk layer between HgCdTe layers created a further huge improvement. Similar to the quantum well structures the carrier mobility increases immensely while the carrier density levels at around 1x10^11 cm^(-2) at 0 V gate voltage as well. Additionally, the relaxation behavior and critical thickness of these barrier layers has to be determined. HgCdTe grown on commercial CdTe shows a behavior as predicted except the critical thickness which is slightly higher than expected (d_c = 850 nm). Otherwise, the relaxation of HgCdTe grown on CdTe/GaAs:Si occurs in two parts. The layer is fully strained up to 250 nm. Between 250 nm and 725 nm the HgCdTe film starts to relax randomly up to 10 %. The relaxation behavior for thicknesses larger than 725 nm occurs than linearly to the inverse layer thickness. A explanation is given due to rough interface conditions and crystalline defects of the CdTe/GaAs:Si compared to the commercial CdTe substrate. HRXRD and AFM data support this statement. Another point is that the HgCdTe barriers protect the active HgTe layer and because of the high carrier mobilities the Hall measurements provide new transport data which have to be interpreted more in detail in the future. In addition, HgTe bulk samples show very interesting transport data by gating the sample from the top and the back. It is now possible to manipulate the carrier densities of the top and bottom surface states almost separately. The back gate consisting of the n-doped GaAs substrate and the thick insulating CdTe buffer can tune the carrier density for Delta(n) ~ 3x10^11 cm^(-2). This is sufficient to tune the Fermi energy from the p-type into the n-type region [138]. In this thesis it is shown that strained HgTe bulk layers exhibit superior transport data by embedding between HgCdTe barrier layers. The n-doped GaAs can here serve as a back gate. Furthermore, MBE growth of high crystalline, undoped HgTe quantum wells shows also new and extended transport output. Finally, it is notable that due to the investigated CdTe growth on GaAs the Hg-based heterostructure MBE growth is partially independent from commercial suppliers. N2 - In der vorliegenden Dissertation wurde das MBE-Wachstum von HgTe Strukturen erforscht und die anschließende Probencharakterisierung durchgeführt und diskutiert. Durch die erste experimentelle Entdeckung des Quanten-Spin-Hall-Effekts (QSHE) in HgTe Quantentrögen hat dieses Materialsystem großes Interesse im Gebiet der Spintronics erfahren. Aufgrund der langen Wachstumshistorie von quecksilberbasierenden Heterostrukturen am Lehrstuhl Experimentelle Physik III der Universität Würzburg sind die Voraussetzungen ausgesprochen gut, um dieses Materialsystem sehr ausführlich und auch in neue Richtungen hin zu untersuchen. Da vor dieser Doktorarbeit fast ausschließlich dotierte HgTe Quantentröge auf verschiedenen Substratorientierungen gewachsen wurden, beschäftigte sich diese Dissertation nun mit dem MBE-Wachstum von undotierten HgTe Quantentrögen, oberflächennahen Quantentrögen und dreidimensionalen Volumenkristallen. Alle quecksilberbasierenden Schichten wurden hierzu auf CdTe Substraten gewachsen, welche tensile Verspannung in den Schichten erzeugten und lieferten daher neue physikalische Effekte. In der selben Zeit wurde weiterhin das Wachstum von (001) CdTe auf n-dotiertem (001) GaAs:Si erforscht, da der japanische Zulieferer der CdTe Substrate eine Lieferengpass hatte aufgrund des Tohoku Erdbebens und seinen verheerenden Folgen im Jahr 2011. Die Erforschung des MBE-Wachstums von (001) CdTe auf (001) GaAs:Si wird im Kapitel 4 behandelt. Zuerst wurde hier die Oberflächenvorbereitung des GaAs:Si Substrates durch thermische Desorption untersucht und ausgewertet. Es stellte sich heraus, dass schnelle, thermische Desorption des GaAs - Oxides mit anschließendem Abkühlen in Zn Atmosphäre die besten Ergebnisse für das spätere CdTe durch kleine Löcher an der Oberfläche liefert, während zum Beispiel ein glatter GaAs Puffer das CdTe Wachstum verschlechtert. Der folgende ZnTe Film verschafft die gewünschte (001) Wachstumsrichtung für CdTe und weist bei 30 Sekunden Wachstumszeit bei einem Flussverhältnis von Zn/Te ~ 1/1.2 die besten Endergebnisse für CdTe auf. Jedoch war die Haupterneuerung hier die Optimierung des CdTe Wachstums. Dafür wurde ein komplexer Wachstumsprozess entwickelt und etabliert. Dieser optimierte CdTe Wachstumsprozess lieferte Ergebnisse von einer RMS Rauigkeit von ungefähr 2.5 nm und FWHMWerte der HRXRD w-Scans von 150 arcsec. Die Defektätzdichte-Messung zeigte weiterhin, dass die Oberflächenkristallinität vergleichbar mit kommerziell erwerbbaren CdTe Substraten ist (um 1x10^4 cm^(-2)). Des Weiteren ist kein niedrigerer Wert für die Halbwertsbreite des w-Scans in der Literatur für diese Wachstumsrichtung aufgeführt. Dies spiricht ebenfalls für die hohe Qualität der Schichten. Jedoch ist dieser Wachstumsprozess noch nicht endgültig ausgereift und bietet weiterhin noch Platz für Verbesserungen. Das Wachstum von undotierten HgTe Quantentrögen war ebenso eine neue Forschungsrichtung im Gegensatz zu den dotierten HgTe Quantentrögen, die in der Vergangenheit gewachsen wurden. Das Ziel hierbei, die Ladungsträgerdichte zu verringern, wurde erreicht und daher ist es nun möglich, Transportexperimente sowohl im n- als auch im p-Regime durchzuführen, indem eine Gatespannung angelegt wird. Des Weiteren experimentierten andere Arbeitsgruppen mit diesen Quantentrögen, bei denen die Fermi Energie in der Bandlücke liegt [143]. Außerdem wurde das sehr präzise MBE Wachstum anhand von symmetrischen HgTe Quantentrögen und ihren HRXRD Charakterisierungen behandelt. Daher kann nun die Quantentrogdicke präzise auf 0,3 nm angegeben werden. Die Transportergebnisse von verschieden dicken Quantentrögen zeigten, dass die Ladungsträgerdichte und Beweglichkeit mit steigender HgTe Schichtdicke zunimmt. Jedoch wurde auch herausgefunden, dass sich die Bandlücke von HgTe Quantentrögen indirekt bei einer Dicke von 11.6 nm schließt. Dies wird durch das verspannte Wachstum auf CdTe Substraten verursacht. Überdies wurden oberflächennahe Quantentröge untersucht. Diese Quantentröge besitzen keine oder nur eine sehr dünne HgCdTe Deckschicht. Allerdings verringerte Oxidation und Oberflächenverschmutzung hier die Ladungsträgerbeweglichkeit dramatisch und eine HgCdTe Schicht von ungefähr 5 nm lieferte ansprechende Transportergebnisse für Supraleiter, die den topologischen Isolator kontaktieren. Eine komplett neue Errungenschaft war die Realisierung, via MBE, HgTe Quantentröge auf CdTe/GaAs:Si Substrate zu wachsen. Dies ging einher mit der Optimierung des CdTe Wachstums auf GaAs:Si. Es zeigte sich, dass HgTe Quantentröge, die in-situ auf optimierten CdTe/GaAs:Si gewachsen wurden, sehr schöne Transportergebnisse mit deutlichen Hall Quantisierungen, SdH Oszillationen, niedrigen Ladungsträgerdichten und Beweglichkeiten bis zu 500 000 cm^2/Vs erreichen. Des Weiteren wurde ein neues Oxidätzverfahren entwickelt und untersucht, welches als Alternative zum Standard-HCl-Prozess dienen sollte, da dieses manchmal vulkan-artige Defekte hervorruft. Jedoch ergab sich kein Unterschied in den Nomarski, HRXRD, AFM und Transportexperimenten. Hier könnten vielleicht Langzeittests oder Ätzen und Befestigen in Stickstoffatmosphäre neue, gewinnbringende Ergbnisse aufzeigen. Der Hauptfokus dieser Doktorarbeit lag auf dem MBE Wachstum und der Standardcharakterisierung von HgTe Volumenkristallen und wurde in Kapitel 6 diskutiert. Durch das tensil verpannte Wachstum auf CdTe entsteht für HgTe als Volumenkristall eine Bandlücke von ungefähr 22 meV am G Punkt und zeigt somit seine topologischen Oberflächenzustände. Die Analyse der Oberfächenbeschaffenheit, der Rauigkeit, der kristallinen Qualität, der Ladungsdrägerdichte und Beweglichkeit mit Hilfe von Nomarski, AFM, XPS, HRXRD und Transportmessungen ist in dieser Arbeit anzutreffen. Außerdem wurde die Schichtdickenabhängigkeit von Ladungsträgerdichte und Beweglichkeit von HgTe Volumenkristallen, die direkt auf CdTe Substraten gewachsen wurden, ermittelt worden. So erhöhte sich durchschnittlich die Dichte und Beweglichkeit mit zunehmender HgTe Schichtdicke, aber die Beweglichkeit ging selten über μ ~ 40 000 cm^2/Vs hinaus. Die Ladungsträgerdichte n hing jedoch sehr von der Litographie und der Behandlung der Oberfläche nach dem Wachstum ab. Des Weiteren wurde das Relaxationsverhalten und die kritische Dicke bestimmt, welches sehr gut mit den theoretischen Vorhersagen übereinstimmt (dc = 155 nm). Das Einbetten des HgTe Volumenkristalls in HgCdTe Schichten brachte eine weitere große Verbesserung mit sich. Ähnlich wie bei den Quantentrögen erhörte sich die Beweglichkeit μ immens, während sich die Ladungsträgerdichte bei ungefähr 1x10^11 cm^(-2) einpendelte. Zusätzlich wurde auch hier das Relaxationsverhalten und die kritische Schichtdicke dieser Barrierenschichten ermittelt. HgCdTe, gewachsen auf kommerziellen CdTe Substraten, zeigte ein Verhalten ähnlich zu dem Erwarteten mit der Ausnahme, dass die kritische Schichtdicke leicht höher ist als die Vorhergesagte (dc = 850 nm). Auf der anderen Seite findet die Relaxation von HgCdTe auf CdTe/GaAs:Si zweigeteilt ab. Bis 250 nm ist die Schicht noch voll verspannt. Zwischen 250 nm und 725 nm beginnt die HgCdTe Schicht willkürlich bis zu 10 % zu relaxieren. Das Relaxationsverhalten für Dicken über 725 nm findet dann wieder linear zur invers aufgetragenen Schichtdicke statt. Eine Erklärung wurde durch das raue Interface der Schichten und der Defekte im Kristall von CdTe/GaAs:Si gegeben, im Vergleich zu den kommerziellen CdTe Substraten. HRXRD und AFM Ergebnisse belegten diese Aussage. Die HgCdTe Barrieren schützen die aktive HgTe Schicht und daher liegen nach Hall Messungen aufgrund der hohen Ladungsträgerbeweglichkeiten neue Transportergbnisse vor, welche in der Zukunft ausführlicher interpretiert werden müssen. Darüber hinaus zeigten HgTe Volumenkristalle neue, interessante Transportergebnisse durch das gleichzeitige Benutzen eines Top- und Backgates. Es ist nun möglich, die Ladungsträger der oberen und unteren Oberflächenzustände nahezu getrennt zu verändern und zu ermitteln. Das Backgate, bestehend aus dem n-dotierten GaAs:Si Substrate und dem dicken isolierenden CdTe Puffer, kann die Ladungsträgerdichte um ungefähr Delta(n) ~ 3x10^11 cm^(-2) varieren. Das ist ausreichend, um die Fermi Energie vom p- in den n-Bereich einzustellen [138]. In dieser Dissertation wurde also gezeigt, dass verspannte HgTe Volumenkristalle durch das Einbetten in HgCdTe Barrieren neue Transportergebnisse liefern. Das n-dotierte GaAs konnte hierbei als Backgate genutzt werden. Des Weiteren zeigte das MBE Wachstum von hochkristallinen , undotiereten HgTe Quantentrögen ebenso neue und erweiterte Transportergebnisse. Zuletzt ist es bemerkenswert, dass durch das erforschte CdTe Wachstum auf GaAs das MBE Wachstum von quecksilberbasierenden Heterostrukturen auf CdTe Substraten teilweise unabhänigig ist von kommerziellen Zulieferbetrieben. KW - Quecksilbertellurid KW - Topologischer Isolator KW - MBE KW - HgTe KW - topological insulator KW - Molekularstrahlepitaxie Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151136 ER - TY - THES A1 - Bayer, Florian T1 - Investigating electromagnetic properties of topological surface states in mercury telluride T1 - Untersuchung elektromagnetischer Eigenschaften topologischer Oberflächenzustände in Quecksilber-Tellurid N2 - This doctoral thesis investigates magneto-optical properties of mercury telluride layers grown tensile strained on cadmium telluride substrates. Here, layer thicknesses start above the usual quantum well thickness of about 20 nm and have a upper boundary around 100 nm due to lattice relaxation effects. This kind of layer system has been attributed to the material class of three-dimensional topological insulators in numerous publications. This class stands out due to intrinsic boundary states which cross the energetic band gap of the layer's bulk. In order to investigate the band structure properties in a narrow region around the Fermi edge, including possible boundary states, the method of highly precise time-domain Terahertz polarimetry is used. In the beginning, the state of the art of Teraherz technology at the start of this project is discussed, moving on to a detailed description and characterization of the self-built measurement setup. Typical standard deviation of a polarization rotation or ellipticity measurement are on the order of 10 to 100 millidegrees, according to the transmission strength through investigated samples. A range of polarization spectra, depending on external magnetic fields up to 10 Tesla, can be extracted from the time-domain signal via Fourier transformation. The identification of the actual band structure is done by modeling possible band structures by means of the envelope function approximation within the framework of the k·p method. First the bands are calculated based on well-established model parameters and from them the possible optical transitions and expected ellipticity spectra, all depending on external magnetic fields and the layer's charge carrier concentration. By comparing expected with measured spectra, the validity of k·p models with varying depths of detail is analyzed throughout this thesis. The rich information encoded in the ellipitcity spectra delivers key information for the attribution of single optical transitions, which are not part of pure absorption spectroscopy. For example, the sign of the ellipticity signals is linked to the mix of Landau levels which contribute to an optical transition, which shows direct evidence for bulk inversion asymmetry effects in the measured spectra. Throughout the thesis, the results are compared repeatedly with existing publications on the topic. It is shown that the models used there are often insufficient or, in worst case, plainly incorrect. Wherever meaningful and possible without greater detours, the differences to the conclusions that can be drawn from the k·p model are discussed. The analysis ends with a detailed look on remaining differences between model and measurement. It contains the quality of model parameters as well as different approaches to integrate electrostatic potentials that exist in the structures into the model. An outlook on possible future developments of the mercury cadmium telluride layer systems, as well as the application of the methods shown here onto further research questions concludes the thesis. N2 - Diese Doktorarbeit untersucht die magneto-optischen Eigenschaften zugverspannter Quecksilbertelluridschichten auf Cadmiumtelluridsubstraten. Die Schichtdicken sind hierbei dicker als die gewöhnlicher Quantentrogsysteme bis etwa 20 nm und nach oben hin beschränkt durch Gitterrelaxationeffekte ab ca. 100 nm. Dieses Schichtsystem wurde in zahlreichen Publikationen der Materialklasse dreidimensionaler Topologischer Isolatoren zugeordnet, welche sich durch intrinsische Grenzflächenzustände auszeichnet, die energetisch in der Bandlücke des Schichtinneren liegen. Um die Eigenschaften der Bandstruktur im direkten Umfeld der Fermi-Kante, inklusive etwaiger Grenzflächenzustände, untersuchen zu können, kommt die Methode der hochpräzisen Zeitdomänen-Terahertz-Polarimetrie zum Einsatz. Der Stand der dazu nötigen Technik wird zu Beginn der Doktorarbeit einleitend diskutiert und der daraus entstandene Messaufbau wird im Detail beschrieben, sowie dessen Charakterisierung erläutert. Die typischerweise erzielbare Standardabweichung einer Messung liegt, je nach Transmissionsgrad der untersuchten Probenstrukturen, im Bereich weniger 10 bis 100 Tausendstel Grad für die Polarisationgrößen Rotation und Elliptizität. In Abhängigkeit externer Magnetfelder bis hin zu 10 Telsa ergeben sich so mittels Fourier-Transformation des Zeitsignals verschiedene Polarisationspektren. Der Rückschluss auf die zugrunde liegende Bandstruktur gelingt durch die Modellierung möglicher Bandstrukturen mittels der Einhüllenden-Funktionen-Näherung der k·p-Methode. Hierzu wird zunächst die Bandstruktur nach den gewählten Modellparametern berechnet und aus dieser wiederum die zu erwartenden Elliptizitätsspektren in Abhängigkeit des externen Magnetfeldes und der Ladungsträgerkonzentration berechnet. Aus dem Vergleich berechneter und tatsächlich gemessener Spektren wird im Laufe der Arbeit die Validität verschieden detaillierter k·p-Modelle analysiert. Die reichhaltigen Informationen aus der Elliptizitätsmesung liefern bei der Zuordnung einzelner optischer Übergänge entscheidende Hinweise, die in reiner Absorptionsspektroskopie nicht enthalten sind. So ist das Vorzeichen der Elliptizität verknüpft mit der Zusammensetzung der am optischen Übergang beteiligten Landau-Level Zustände. Dies ermöglicht einen direkten Nachweis sogenannter Bulk-Inversions-Asymmetrie-Effekte aus den Spektren. Im Verlauf der Arbeit wird zudem wiederholt ein Vergleich der Ergebnisse mit existierenden Publikationen gezogen, wobei sich zeigt, dass dort verwendete Modelle häufig unzureichend oder inkorrekt sind. Wo immer dies sinnvoll und ohne größeren Aufwand möglich ist, werden die Unterschiede zu Aussagen, die aus dem k·p-Modell heraus getroffen werden können, diskutiert. Zum Ende der Analyse hin wird verstärkt auf die Grenzen der k·p-Methode eingegangen und verbleibende Abweichungen zwischen Modell und Messung diskutiert. Dies beinhaltet sowohl die Qualität der verwendeten Modellparameter, als auch verschiedene Versuche, die in den Strukturen vorhandenen elektrostatischen Potentiale mit in die Modellierung zu integrieren. Abschließend wird ein Ausblick auf mögliche zukünftige Entwicklungen des Quecksilbercadmiumtellurid Schichtsystems und die Anwendung der hier vorgestellten Methodiken auf weitere Fragestellungen gegeben. KW - Quecksilbertellurid KW - Topologie KW - Oberfläche KW - Mercury telluride KW - Topology KW - THz KW - Surface Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-352127 ER - TY - THES A1 - Bendias, Michel Kalle T1 - Quantum Spin Hall Effect - A new generation of microstructures T1 - Quantum Spin Hall Effekt - Eine neue Generation an Mikrostrukturen N2 - The presented thesis summarizes the results from four and a half years of intense lithography development on (Cd,Hg)Te/HgTe/(Cd,Hg)Te quantum well structures. The effort was motivated by the unique properties of this topological insulator. Previous work from Molenkamp at al.\ has proven that the transport through such a 2D TI is carried by electrons with opposite spin, counter-propagating in 1D channels along the sample edge. However, up to this thesis, the length of quantized spin Hall channels has never been reported to exceed 4 µm. Therefore, the main focus was put on a reproducible and easy-to-handle fabrication process that reveals the intrinsic material parameters. Every single lithography step in macro as well as microscopic sample fabrication has been re-evaluated. In the Development, the process changes have been presented along SEM pictures, microgaphs and, whenever possible, measurement responses. We have proven the conventional ion milling etch method to damage the remaining mesa and result in drastically lower electron mobilities in samples of microscopic size. The novel KI:I2:HBr wet etch method for macro and microstructure mesa fabrication has been shown to leave the crystalline structure intact and result in unprecedented mobilities, as high as in macroscopic characterization Hall bars. Difficulties, such as an irregular etch start and slower etching of the conductive QW have been overcome by concentration, design and etch flow adaptations. In consideration of the diffusive regime, a frame around the EBL write field electrically decouples the structure mesa from the outside wafer. As the smallest structure, the frame is etched first and guarantees a non-different etching of the conductive layer during the redox reaction. A tube-pump method assures reproducible etch results with mesa heights below 300 nm. The PMMA etch mask is easy to strip and leaves a clean mesa with no redeposition. From the very first attempts, to the final etch process, the reader has been provided with the characteristics and design requirements necessary to enable the fabrication of nearly any mesa shape within an EBL write field of 200 µm. Magneto resistance measurement of feed-back samples have been presented along the development chronology of wet etch method and subsequent lithography steps. With increasing feature quality, more and more physics has been revealed enabling detailed evaluation of smallest disturbances. The following lithography improvements have been implemented. They represent a tool-box for high quality macro and microstructure fabrication on (CdHg)Te/HgTe of almost any kind. The optical positive resist ECI 3027 can be used as wet and as dry etch mask for structure sizes larger than 1 µm. It serves to etch mesa structures larger than the EBL write field. The double layer PMMA is used for ohmic contact fabrication within the EBL write field. Its thickness allows to first dry etch the (Cd,Hg)Te cap layer and then evaporate the AuGe contact, in situ and self-aligned. Because of an undercut, up to 300 nm can be metalized without any sidewalls after the lift-off. An edge channel mismatch within the contact leads can be avoided, if the ohmic contacts are designed to reach close to the sample and beneath the later gate electrode. The MIBK cleaning step prior to the gate application removes PMMA residuals and thereby improves gate and potential homogeneity. The novel low HfO2-ALD process enables insulator growth into optical and EBL lift-off masks of any resolvable shape. Directly metalized after the insulator growth, the self-aligned method results in thin and homogeneous gate electrode reproducibly withholding gate voltages to +-10 V. The optical negative resist ARN 4340 exhibits an undercut when developed. Usable as dry etch mask and lift-off resist, it enables an in-situ application of ohmic contacts first etching close to the QW, then metalizing AuGe. Up to 500 nm thickness, the undercut guarantees an a clean lift-off with no sidewalls. The undertaken efforts have led to micro Hall bar measurements with Hall plateaus and SdH-oszillations in up to now unseen levels of detail. The gap resistance of several micro Hall bars with a clear QSH signal have been presented in Quantum Spin Hall. The first to exhibit longitudinal resistances close to the expected h/2e2 since years, they reveal unprecedented details in features and characteristics. It has been shown that their protection against backscattering through time reversal symmetry is not as rigid as previously claimed. Values below and above 12.9 kΩ been explained, introducing backscattering within the Landauer-Büttiker formalism of edge channel transport. Possible reasons have been discussed. Kondo, interaction and Rashba-backscattering arising from density inhomogeneities close to the edge are most plausible to explain features on and deviations from a quantized value. Interaction, tunneling and dephasing mechanisms as well as puddle size, density of states and Rashba Fields are gate voltage dependent. Therefore, features in the QSH signal are fingerprints of the characteristic potential landscape. Stable up to 11 K, two distinct but clear power laws have been found in the higher temperature dependence of the QSH in two samples. However, with ΔR = Tα, α = ¼ in one (QC0285) and α = 2 in the other (Q2745), none of the predicted dependencies could be confirmed. Whereas, the gap resistances of QC0285 remains QSH channel dominated up to 3.9 T and thereby confirmed the calculated lifting of the band inversion in magnetic field. The gate-dependent oscillating features in the QSH signal of Q2745 immediately increase in magnetic field. The distinct field dependencies allowed the assumption of two different dominant backscattering mechanisms. Resulting in undisturbed magneto transport and unprecedented QSH measurements The Novel Micro Hall Bar Process has proven to enable the fabrication of a new generation of microstructures. N2 - In der vorliegenden Dissertation wurden die Ergebnisse von viereinhalb Jahren lithographischer Prozessentwicklung an (Cd,Hg)Te/HgTe/(Cd,Hg)Te Quantum Well Strukturen präsentiert. Motiviert wurde der Aufwand mit den einzigartigen Eigenschaften des zweidimensionalen Topologischen Isolators. In früheren Arbeiten von Molenkamp et al. ist gezeigt worden, dass der Stromtransport im Quantum Spin Hall (QSH) Regime durch zwei Randkanäle mit Elektronen entgegengerichteter Spin- und Propagationsrichtung erfolgt. Trotz der Vorhersage geschützten Randkanaltransports durch Zeit-Umkehr Invarianz, gab es bis zu der hier vorgenommenen Prozessoptimierung keine ungestörten Quantum Spin Hall Messungen oberhalb einer Länge von 4 µm. Deswegen wurde das Hauptaugenmerk der Entwicklung auf einen möglichst einfachen, reproduzierbaren und ungestörten Herstellungsprozess für QSH Mikrostrukturen gelegt. Die Ergebnisse der vollständigen Überarbeitung jedes einzelnen Lithographie-Schrittes für marko- und mikroskopische Probenstrukturierung wurden in Development erläutert. Die Anpassungen wurden anhand von Elektronen-, Lichtmikroskop-Aufnahmen und wann immer möglich auch Messungen motiviert, überprüft und für besser befunden. Es wurde aufgezeigt, dass das bisher übliche Verfahren zum ätzen der Mesa mit beschleunigen Argon-Ionen das Material auch lateral beschädigt und mit drastisch reduzierten Elektronen-Beweglichkeiten in mikroskopischen Proben einhergeht. Ein neuartiger KI:I2:HBr nass-Ätzprozess hingegen, hat sich als nicht invasiv erwiesen. Ohne die Kristallstruktur zu zerstören lassen sich damit Mikrostrukturen herstellen, welche sich durch beispiellos hohe Beweglichkeiten und Signalgüte auszeichnen. Schwierigkeiten, wie der unregelmäßige Ätz-Start und das langsamere Ätzen der leitfähigen Schicht sind durch Konzentrations-, Design- und Flussanpassungen sukzessive gelöst worden. Unter Beachtung des diffusiven Ätz-Charakters, sorgt ein schmaler Rahmen um das Schreibfeld des Elektronen Mikroskops für eine elektrische Entkopplung der späteren Mesa innen, mit dem Elektronen-Reservoir außen. Damit wird sichergestellt, dass die Leitfähigkeit des Quantentroges in der Redoxreaktion des Ätzens eine untergeordnete Rolle spielt. Durch den regulierbaren Fluss einer Schlauchpumpe lassen sich so reproduzierbar saubere Mesas auch unterhalb 300 nm Höhe herstellen. Die PMMA Ätzmaske kann rückstandsfrei entfernen werden. Über die ersten Versuche, bis hin zum letztendlichen Prozess, wurde dem Leser dabei das notwendige Wissen und Verständnis zur Durchführung der Mikrostrukturierung an die Hand gegeben. Unter Beachtung der charakteristischen Eigenheiten des nasschemischen Prozesses, lassen sich so nahezu alle Mesa-Formen innerhalb eines 200x200 µm2 Schreibfeldes realisieren. Anhand von Hall-Messungen an Kontrollproben, wurde die sukzessive Erhöhung der Probenqualität durch den Ätzprozess und die vollständige Überarbeitung der darauf folgenden Lithographie-Prozesse bewiesen. Mit mehr und mehr Physik in den Messungen haben sich selbst kleine Auswirkungen des Lithographie-Prozesses auf die Probeneigenschaften testen lassen. Die folgenden Verbesserungen tragen maßgeblich zu diesem Ergebnis bei. Hier angewendet auf Mikro-Hall-Bars, lassen sich die Prozesse für die Herstellung fast jedweder Struktur auf (Cd,Hg)Te/HgTe anpassen. Der optische positiv Photo-Lack ECI 3027 kann sowohl als Nass- und auch Trockenätzmaske verwendet werden. Mit einer minimalen Auflösung größer 1 µ m wurde er hier eingesetzt, um Strukturen um das Elektronenmikroskop-Schreibfeld zu ätzen. Der PMMA Doppellagen Resist ist dick und weist nach dem Entwickeln ein unterhöhltes Lackprofil auf. Dies erlaubt ihn zuerst zum Heranätzen und dann zum Metallisieren der Ohmschen Kontakte zu nutzen. Bis zu 300 nm Metall können dabei ohne Überhöhungen in-situ und selbstjustierend aufgebracht werden. Es wurde gezeigt, dass Kontakte nahe der Hall-Bar bis unterhalb der späteren Gate-Elektrode, in höheren Magnetfeldern nicht zu Störungen der Messung führen. Der MIBK Reinigungs Schritt vor dem Aufbringen der Gate-Elektrode entfernt PMMA Rückstände vorheriger Prozesse. In Hall-Messungen wurde gezeigt, dass dies die Homogenität des Gate-Einflusses deutlich verbessert. Der neuartige Tieftemperatur HfO2 ALD Prozess ermöglicht Isolator Wachstum auf Photo-Resist und PMMA Lift-off Masken. Dies wiederum ermöglicht eine Gate-Metallisierung direkt im Anschluss. Dadurch lassen sich auch kleine Gate-Elektroden mit homogenem Potential-Einfluss herstellen, welche reproduzierbar Spannungen bis +-10 V aushalten. Der optische negativ Photo-Lack ARN 4340 ermöglicht das Heranätzen und Metallisieren von Ohmschen Kontakten in Strukturgrößen größer 1 µm. Das ebenfalls unterhöhlte Lackprofil erlaubt dabei die Aufbringung von bis zu 500 nm dicken Schichten und einen problemlosen Lift-off. Die unternommenen Anstrengungen haben dabei zu den bisher Besten und Detailsreichsten Messungen von Hall-Plateaus und Shubnikov-De Haas Oszillationen in (Cd,Hg)Te/ HgTe Mikrostrukturen geführt. Messungen mit einem klaren QSH Signal im Längswiderstand von mehreren Mikro-Hall-Bars wurden präsentiert. Nach jahrelangen Bemühungen weisen diese Proben erstmalig wieder einen Bandlücken-Widerstand nahe der erwarteten Quantisierung von zwei Randkanälen auf. Es wurde aufgezeigt, dass die vermeintliche geschützten Randzustände durchaus rück-streuen. Mit der Implementierung von Streuern im Landauer-Büttiker Formalismus für Randkanaltransport lassen sich Abweichungen unter- und oberhalb der erwarteten 12.9 kΩ begründen. Als mögliche Ursachen wurden Dichte-Inhomogenitäten ausgemacht, welche in Kondo-, Wechselwirkungs- und Rashba-Rückstreuprozessen resultieren. Im komplexen Zusammenspiel von Wechselwirkung, Tunnelprozessen und Spin-Dephasierung, der unbekannten Verteilung von Inhomogenitäten, ihrer Größe und Dichte sowie der Feldabhängig-keit aller Parameter, hat sich keiner der diskutierten Mechanismen als dominant bewiesen. In noch nie dagewesenen Details erwies sich die Gate- und Magnetfeldabhängigkeit des QSH Signals als ein Fingerabdruck der hintergründigen Potential-Landschaft. Die Signale von zwei unterschiedlichen Proben sind Temperatur- und Magnetfeldabhängig untersucht worden. Dabei haben mehrere Argumente zu der Schlussfolgerung geführt, dass unterschiedliche Rückstreumechanismen in den Proben dominieren: Mit einem flachen QSH Plateau in der einen (QC0285), und in Gate-Spannung oszillierender Merkmale auf dem QSH Signal der anderen Probe (Q2745), zeigen sich erste Unterschiede bereits in den Gate-Messungen. In Temperatur-abhängigen Messungen erweist sich deren QSH Signal zwar als stabil bis 11\,K, folgt dann aber ΔR = Tα mit α = 1/4 in QC0285 und α = 2 in Q2745. Im Magnetfeld bleibt die Bandlücke in QC0285 bis zum kritischen Feld der Invertierungsaufhebung Randkanal-Transport dominiert. Die Oszillierenden Merkmale auf dem QSH Signal in Q2745 dagegen, reagieren schon auf kleine Felder mit einer Erhöhung im Widerstand. Die unvergleichliche Qualität der hier präsentierten Hall-Messungen und QSH Signale und das bis ins letzte Detail optimierte Herstellungsverfahren, rechtfertigen es von einer neuen Generation an QSH Mikrostrukturen zu sprechen. KW - Topological insulators KW - Quecksilbertellurid KW - Quantum Spin Hall Effect KW - Lithography KW - Macroscopic transport KW - Quecksilbertellurid KW - Topologischer Isolator KW - Quanten-Hall-Effekt Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-168214 ER - TY - THES A1 - Brüne, Christoph T1 - HgTe based topological insulators T1 - HgTe basierte topologische Isolatoren N2 - Recently a new state of matter was discovered in which the bulk insulating state in a material is accompanied by conducting surface or edge states. This new state of matter can be distinguished from a conventional insulator phase by the topological properties of its band structure which led to the name "topological insulators". Experimentally, topological insulator states are mostly found in systems characterized by a band inversion compared to conventional systems. In most topological insulator systems, this is caused by a combination of energetically close bands and spin orbit coupling. Such properties are found in systems with heavy elements like Hg and Bi. And indeed, the first experimental discovery of a topological insulator succeeded in HgTe quantum wells and later also in BiSb bulk systems. Topological insulators are of large interest due to their unique properties: In 2-dimensional topological insulators one dimensional edge states form without the need of an external magnetic field (in contrast to the quantum Hall effect). These edge states feature a linear band dispersion, a so called Dirac dispersion. The quantum spin Hall states are helical edge states, which means they consist of counterpropagating oppositely spin polarized edge channels. They are therefore of great potential for spintronic applications as well as building blocks for new more exotic states like Majorana Fermions. 3-dimensional topological insulators feature 2-dimensional surface states with only one Dirac band (also called Dirac cone) on each surface and an interesting spin texture where spin and momentum are locked perpendicular to each other in the surface plane. This unique surface band structure is predicted to be able to host several exotic states like e.g. Majorana Fermions (in combination with superconductors) and magnetic monopole like excitations. This PhD thesis will summarize the discovery of topological insulators and highlights the developments on their experimental observations. The work focuses on HgTe which is up to now the only topological insulator material where the expected properties are unambiguously demonstrated in transport experiments. In HgTe, the topological insulator properties arise from the inversion of the Gamma_6 and Gamma_8 bands. The band inversion in HgTe is due to a combination of a high spin orbit splitting in Te and large energy corrections (due to the mass-velocity term) to the energy levels in Hg. Bulk HgTe, however, is a semimetal, which means for the conversion into a topological insulator a band gap has to be opened. In two dimensions (HgTe quantum well structures) this is achieved via quantum confinement, which opens a band gap between the quantum well subbands. In three dimensions, strain is used to lift the degeneracy of the semimetallic Gamma_8 bands opening up a band gap. The thesis is structured as follows: - The first chapter of this thesis will give a brief overview on discoveries in the field of topological insulators. It focuses on works relevant to experimental results presented in the following chapters. This includes a short outline of the early predictions and a summary of important results concerning 2-dimensional topological insulators while the final section discusses observations concerning 3-dimensional topological insulators. - The discovery of the quantum spin Hall effect in HgTe marked the first experimental observation of a topological insulator. Chapter 2 will focus on HgTe quantum wells and the quantum spin Hall effect. Above a critical thickness, HgTe quantum wells are predicted to host the quantum spin Hall state, the signature of a 2-dimensional topological insulator. HgTe quantum wells exhibiting low carrier concentrations and at the same time high carrier mobilities are required to be able to measure the quantum spin Hall effect. The growth of such high quality HgTe quantum wells was one of the major goals for this work. Continuous optimization of the substrate preparation and growth conditions resulted in controlled carrier densities down to a few 10^10 cm^-2. At the same time, carrier mobilities exceeding 1 x 10^6 cm^2/Vs have been achieved, which provides mean free paths of several micrometers in the material. Thus the first experimental evidence for the existence of the quantum spin Hall edge states succeeded in transport experiments on microstructures: When the Fermi energy was located in the bulk band gap a residual quantized resistance of 2e^2/h was found. Further experiments focused on investigating the nature of transport in this regime. By non-local measurements the edge state character could be established. The measured non-local resistances corresponded well with predictions from the Landauer-Büttiker theory applied to transport in helical edge channels. In a final set of experiments the spin polarization of the edge channels was investigated. Here, we could make use of the advantage that HgTe quantum well structures exhibit a large Rashba spin orbit splitting. In systems with a large Rashba spin orbit splitting a spin accumulation is expected to occur at the edge of the sample perpendicular to a current flow. This so-called spin Hall effect was then used as a spin injector and detector. Using split gate devices it was possible to bring spin Hall and quantum spin Hall state into direct contact, which enabled an all electrical detection of the spin polarization of the quantum spin Hall edge channels. - HgTe as a 3-dimensional topological insulator will be presented in chapter 3. Straining the HgTe layer enables the observation of topological insulator behavior. It was found that strain can be easily implemented during growth by using CdTe substrates. CdTe has a slightly larger lattice constant than HgTe and therefore leads to tensile strain in the HgTe layer as long as the growth is pseudomorphic. Magnetotransport studies showed the emergence of quantum Hall transport with characteristic signatures of a Dirac type bandstructure. Thus, this result marks the first observation of the quantum Hall effect in the surface states of a 3-dimensional topological insulator. Transport experiments on samples fitted with a top gate enabled the identification of contributions from individual surfaces. Furthermore, the surface state quantum Hall effect was found to be surprisingly stable, perturbations due to additional bulk transport could not be found, even at high carrier densities of the system. - Chapters 4 - 6 serve as in depth overviews of selected works: Chapter 4 presents a detailed overview on the all electrical detection of the spin Hall effect in HgTe quantum wells. The detection of the spin polarization of the quantum spin Hall effect is shown in chapter 5 and chapter 6 gives a detailed overview on the quantum Hall effect originating from the topological surface state in strained bulk HgTe. The investigations discussed in this thesis pioneered the experimental work on the transport properties of topological insulator systems. The understanding of the fundamental properties of topological insulators enables new experiments in which e.g. the inclusion of magnetic dopants or the interplay between topological insulator and superconductors can be investigated in detail. N2 - Vor kurzem wurde entdeckt, dass Festkörper einen bisher unbekannten Zustand einnehmen können in welchem das Innere des Körpers isolierend ist während Oberflächen bzw. Ränder leitend bleiben. Materialien, die diese Eigenschaften aufweisen, werden "topologische Isolatoren" genannt, da ihre besonderen Eigenschaften auf eine gegenüber von konventionellen Materialien veränderten Topologie zurückgeführt werden kann. Die große Mehrheit an Materialien, in denen topologische Isolatorzustände gefunden wurden, zeichnen sich durch eine veränderte Abfolge der Energiebänder, im Vergleich mit gewöhnlichen Isolatoren, aus. Diese veränderte Anordnung der Bänder resultiert in den meisten Fällen aus einem Zusammenwirken von energetisch nahe zusammenliegenden Bändern und Spin-Bahn Wechselwirkung. Aus diesem Grund wurden Topologische Isolatoren bisher vor allem in Materialien gefunden, die schwere Elementen wie Hg und Bi enthalten: Erstmals experimentell nachgewiesen wurde die Existenz von topologischen Isolatoren an HgTe Quantentrögen und später auch in BiSb Volumensystemen. Topologische Isolatoren sind aufgrund ihrer besonderen Eigenschaften von großem Interesse: 2-dimensionale topologische Isolatoren sind durch das Auftreten eindimensionaler Randzustände gekennzeichnet, ohne dass hierfür ein Magnetfeld nötig wäre (im Gegensatz zum Quanten-Hall-Effekt). Diese sogenannten helikalen Randzustände sind gegenläufige und entgegengesetzt spin-polarisierte Randzustände, wodurch sie besonders für spintronische Anwendungen interessant sind. Des Weiteren sind sie auch potenzielle Bausteine zur Verwirklichung weiterer exotischer Zustände wie zum Beispiel Majorana Fermionen. 3-dimensionale topologische Isolatoren zeichnen sich durch das Auftreten von 2-dimensionalen Oberflächenzuständen aus. Diese Oberflächenzustände haben eine Dirac-Bandstruktur mit einer besonderen Spin-Textur in der Spin und Impuls rechtwinklig zueinander stehen (beide in der Oberfächenebene). Diese besondere Bandstruktur sollte es ermöglichen in diesen Materialen exotische Zustände zu entdecken wie zum Beispiel Majorana Fermionen (im Zusammenspiel mit Supraleitern) oder Anregungen, die magnetischen Monopolen gleichen. Diese Doktorarbeit wird die Entdeckung topologischer Isolatoren sowie Entwicklungen die im Bereich der experimentellen Untersuchung stattfanden vorstellen. Im Besonderen wird sich diese Arbeit auf das Materialsystem HgTe konzentrieren, dem einzigen Materialsystem in dem es bisher gelungen ist topologische Isolatoreigenschaften eindeutig in Transportstudien nachzuweisen. Die topologischen Isolatoreigenschaften von HgTe entstehen durch die Inversion der Gamma_6 und Gamma_8 Bänder. Diese Inversion wird durch die starke Spin-Bahn-Wechselwirkung in Te und durch die großen relativistischen Korrekturen der Energiepositionen der Bänder in Hg erzeugt. Da HgTe im Volumenmaterial allerdings semimetallisch ist, muss zur Beobachtung von topologischen Isolatoreigenschaften eine Bandlücke geöffnet werden. Im 2-dimensionalen Zustand (HgTe Quantentröge) geschieht dies durch das quantenmechanische Confinement, wodurch eine Bandlücke zwischen den Subbändern des Quantentrogs geöffnet wird. In 3-dimensionalen topologischen Isolatoren kann eine Bandlücke durch das Verspannen der HgTe Schicht gebildet werden, da in diesem Fall die Entartung der Gamma_8 Bänder aufgehoben wird. Diese Doktorarbeit ist wie folgt gegliedert: - Im ersten Kapitel wird eine kurze Übersicht über Entdeckungen und Entwicklungen im Bereich topologischer Isolatoren gegeben mit besonderem Fokus auf Arbeiten mit Relevanz zu den in den weiteren Kapiteln vorgestellten Ergebnissen. Die Übersicht beginnt mit einem kurzen Überblick über die ersten Voraussagen, die zur Entdeckung von topologischen Isolatoren und zum Verständnis dieses neuen Zustandes geführt haben. Im Weiteren wird eine kurze Übersicht über wichtige Ergebnisse im Bereich der 2- und 3-dimensionalen topologischen Isolatoren gegeben. - Die Entdeckung des Quanten-Spin-Hall-Effekts in HgTe markiert auch gleichzeitig den ersten experimentellen Nachweis der Existenz topologischer Isolatoren. Kapitel 2 wird daher Eigenschaften von HgTe Quantentrögen und den Quanten-Spin-Hall-Effekt behandeln. Die Existenz des Quanten-Spin-Hall-Effekts, das charakteristische Merkmal 2-dimensionaler topologischer Isolatoren, wurde für HgTe Quantentröge oberhalb einer kritischen Dicke vorausgesagt. Der experimentelle Nachweis dieses Effekts setzt voraus, dass die zu vermessenden Quantentröge über eine möglichst geringe Ladungsträgerdichte und gleichzeitig hohe Ladungsträgerbeweglichkeit verfügen. Das Wachstum von Quantentrögen mit diesen Eigenschaften war eine der Hauptaufgaben, die im Rahmen dieser Arbeit durchgeführt wurden. Durch diese Anstrengungen ist es mittlerweile möglich Quantentröge mit intrinsischen Ladungsträgerdichten weit unterhalb von 1x 10^11 cm^-2 bis in den mittleren 10^12 cm^-2 Bereich herzustellen, während die Ladungsträgerbeweglichkeiten 1x 10^6 cm^2/Vs überschreiten können. Dies ermöglicht ballistischen Transport über mehrere Mikrometer in solchen Proben. Es wurden Transportexperimente an solch hoch qualitativen Quantentrögen durchgeführt um den Quanten-Spin-Hall-Effekt experimentell nachweisen zu können. Dies führte zur Entdeckung erster experimenteller Beweise für die Existenz des Effekts bei Transportuntersuchungen an Mikrostrukturen. Befand sich das Fermi-Level in diesen Strukturen innerhalb der Energielücke zwischen Leitungs- und Valenzband wurde eine endliche Leitfähigkeit von circa 2e^2/h gemessen. Dies entspricht dem erwarteten Wert für elektrischen Transport in einem System mit zwei Randkanälen. In einer nachfolgenden Serie von Experimenten wurde nachgewiesen, dass der elektrische Transport in der Tat durch Randkanäle stattfindet. Zu diesem Zweck wurden nicht-lokale Transportmessungen durchgeführt, in denen erfolgreich untersucht wurde, ob die Resultate für Transport in verschiedenen nicht-lokalen Probengeometrien mit den Ergebnissen übereinstimmen, die im Rahmen des Landauer-Büttiker Formalismus, angewandt auf helikale Randzustände, erwartet werden. Im Weiteren wurde auch die Spinpolarisierung der Randzustände untersucht. Ermöglicht wurde dies durch die Nutzung des Spin-Hall-Effekts, mit dessen Hilfe Spininjektion und Spindetektion in die Randkanäle möglich ist. Der Spin-Hall-Effekt beschreibt das Auftreten von Spinströmen in Systemen mit starker Spin-Bahn-Kopplung, die sich senkrecht zum elektrischen Strom ausbreiten. In HgTe Quantentrögen konnte dieser Effekt durch ein rein elektrisches Experiment für Transport im metallischen Bereich nachgewiesen werden. Im Weiteren wurde dieser Effekt dann in weiteren nicht-lokalen Experimenten genutzt um die Spinpolarisierung der Randkanäle nachzuweisen. - Kapitel 3 stellt die 3-dimensionalen topologischen Isolatoreigenschaften von HgTe vor. Wie bereits erwähnt ermöglicht die Nutzung von verspannten HgTe Schichten die Beobachtung von 3-dimensionalen topologischen Isolatorverhalten in HgTe Volumenmaterial. Wie sich im Rahmen dieser Arbeit herausstellte, kann Verspannung in diesen Schichten sehr einfach durch das pseudomorphe Wachstum auf gitter-fehlangepassten CdTe Substraten realisiert werden. CdTe hat eine größere Gitterkonstante als HgTe und erzeugt daher tensile Verspannung in den gewachsenen HgTe Schichten. In den so erhaltenen Schichten wurde bei Magnetotransportmessungen der Quanten-Hall-Effekt beobachtet. Des Weiteren zeigte sich, dass der Quanten-Hall-Effekt in diesen Schichten charakteristische Merkmale für Dirac-Bandstrukturen aufweist. Dies bedeutet, dass auf diese Weise zum ersten Mal der Quanten-Hall-Effekt in den Oberflächenzuständen eines 3-dimensionalen topologischen Isolators detektiert werden konnte. In weiteren Transportexperimenten wurde der Einfluss einer über der Struktur angebrachten Gateelektrode untersucht. Hierdurch wurde die Identifizierung von Beiträgen der einzelnen Oberflächen zum Transport möglich. Zudem stellte sich heraus, dass der Oberflächen-Quanten-Hall-Effekt sehr stabil ist und keine Anzeichen von einsetzendem Volumentransport sichtbar sind, selbst bei sehr hohen Gesamtladungsträgerdichten der Proben. - In den Kapiteln 4 - 6 werden einige ausgewählte Arbeiten detailiert dargestellt: Kapitel 4 behandelt die rein-elektronische Detektion des Spin-Hall-Effekts in HgTe Quantentrögen genauer, während Kapitel 5 die Messung der Spinpolarization der Quanten-Spin-Hall-Kanäle detailiert vorstellt. In Kapitel 6 wird der Quanten-Hall-Effekt in den topologischen Oberflächenzuständen von verspanntem bulk HgTe beleuchtet. Die in dieser Arbeit vorgestellten Untersuchungen waren Wegbereiter im Bereich der experimentellen Arbeiten, die sich mit den Transporteigenschaften topologischer Isolatoren beschäftigen. Das hierdurch gewonnene Verständnis für die fundamentalen Eigenschaften von topologischen Isolatoren ermöglicht viele weiterführende Experimente, zum Beispiel durch die Untersuchung des Einflusses von magnetischer Dotierung in topologischen Isolatoren oder deren Zusammenspiel mit Supraleitern. KW - Topologischer Isolator KW - topological insulator KW - quantum transport KW - HgTe KW - quantum spin Hall effect KW - molecular beam epitaxy KW - Quecksilbertellurid Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-105127 ER - TY - THES A1 - Büttner, Bastian T1 - Micromagnetic Sensors and Dirac Fermions in HgTe Heterostructures T1 - Mikromagnetische Sensoren und Dirac Fermionen in HgTe Heterostrukturen N2 - Within the scope of this thesis two main topics have been investigated: the examination of micromagnetic sensors and transport of massive and massless Dirac fermions in HgTe quantum wells. For the investigation of localized, inhomogeneous magnetic fields, the fabrication and characterization of two different non-invasive and ultra sensitive sensors has been established at the chair ”Experimentelle Physik” of the University of Würzburg. The first sensor is based on the young technique named micro-Hall magnetometry. The necessary semiconductor devices (Hall cross structures) were fabricated by high-resolution electron beam lithography based on two different two dimensional electron gases (2DEGs), namely InAs/(Al,Ga)Sb- and HgTe/(Hg,Cd)Te- heterostructures. The characteristics have been examined in two different ways. Measurements in homogeneous magnetic fields served for characterization of the sensors, whereas the investigation of artificially produced sub-µm magnets substantiates the suitability of the devices for the study of novel nanoscale magnetic materials (e.g. nanowires). Systematic experiments with various magnets are in accordance with the theory of single-domain particles and anisotropic behavior due to shapes with high aspect ratio. The highest sensitivity for strongly localized fields was obtained at T = 4.2 K for a (200x200) nm^2 Hall cross - made from shallow, high mobility HgTe 2DEG. Although the field resolution was merely δB ≈ 100 µT, the nanoscale sensor size yields an outstanding flux resolution of δΦ = 2 10^(−3) Φ0, where Φ0 = h/2e is the flux quantum. Translating this result in terms of magnetic moment, the sensitivity allows for the detection of magnetization changes of a particle centered on top of the sensor as low as δM ≈ 10^2 µB, with the magnetic moment of a single electron µB, the Bohr magneton. The further examination of a permalloy nanomagnet with a cross-section of (100x20) nm^2 confirms the expected resolution ability, extracted from the noise of the sensor. The observed high signal-to-noise ratio validates the detection limit of this sensor in terms of geometry. This would be reached for a magnet (same material) with quadratic cross-section for an edge length of 3.3 nm. Moreover, the feasibility of this sensor for operation in a wide temperature range (T = mK... > 200 K) and high magnetic fields has been confirmed. The second micromagnetic sensor is the micro-SQUID (micro-Superconducting-QUantum-Interference-Device) based on niobium. The typical sensor area of the devices built in this work was (1.0x1.0) µm^2, with constrictions of about 20 nm. The characterization of this device demonstrates an amazing field sensitivity (regarding its size) of δB < 1 µT. Even though the sensor was 25 times larger than the best micro-Hall sensor, it provided an excellent flux resolution in the order of δΦ ≈ 5 10^(−4) Φ0 and a similar magnetic moment resolution of δM ≈ 10^2 µB. Furthermore, the introduction of an ellipsoidal permalloy magnet (axes: 200 nm and 400 nm, thickness 30 nm) substantiates the suitability for the detection of minuscule, localized magnetic fields. The second part of the thesis deals with the peculiar transport properties of HgTe quantum wells. These rely on the linear contribution to the band structure inherent to the heterostructure. Therefore the system can be described by an effective Dirac Hamiltonian, whose Dirac mass is tunable by the variation of the quantum well thickness. By fabrication and characterization of a systematical series of substrates, a system with vanishing Dirac mass (zero energy gap) has been confirmed. This heterostructure therefore resembles graphene (a monolayer of graphite), with the difference of exhibiting only one valley in the energy dispersion of the Brillouin zone. Thus parasitical intervalley scattering cannot occur. The existence of this system has been proven by the agreement of theoretical predictions, based on widely accepted band structure calculations with the experiment (Landau level dispersion, conductivity). Furthermore, another particularity of the band structure - the transition from linear to parabolic character - has been illustrated by the widths of the plateaus in the quantum Hall effect. Finally, the transport of ”massive” Dirac fermions (with finite Dirac mass) is investigated. In particular the describing Dirac Hamiltonian induces weak localization effects depending on the Dirac mass. This mechanism has not been observed to date, and survives in higher temperatures compared to typical localization mechanisms. N2 - Im Rahmen dieser Arbeit wurden zwei Themenbereiche bearbeitet: die Untersuchung von mikromagnetischen Sensoren und der Transport von massiven und masselosen Dirac Fermionen in HgTe Quantenwällen. Für die Untersuchung von lokalisierten, inhomogenen Magnetfeldern wurde die Herstellung und Charakterisierung von zwei unterschiedlichen nicht-invasiven und hochempfindlichen Sensoren am Lehrstuhl für Experimentelle Physik III der Universität Würzburg etabliert. Der erste Sensor beruht auf der noch recht jungen Methode der Mikro-Hall-Magnetometrie. Die dafür notwendigen Halbleiterbauteile (Hallkreuzstrukturen) wurden mit höchstauflösender Elektronenstrahllithografie auf Basis von zwei verschiedenen zweidimensionalen Elektronengasen (2DEGs) hergestellt, genauer InAs/(Al,Ga)Sb- und HgTe/(Hg,Cd)Te- Halbleiterheterostrukturen. Nachfolgend wurden deren Charakteristika auf zwei verschiedene Arten untersucht. Messungen in homogenen Magnetfeldern dienten der Charakterisierung der Sensoren, während die Untersuchung von künstlich hergestellten sub-Mikrometermagneten die Eignung der Bauteile für die Detektion neuartiger magnetischer Materialien auf der Nanoskala (z.B. Nanodrähte) nachweist. Systematische Messungen an Magneten unterschiedlicher Ausdehnungen stimmen mit theoretischen Vorausbetrachtungen in Bezug auf Einzeldomänenteilchen und Formanisotropie überein. Die höchste Empfindlichkeit für stark lokalisierte Magnetfelder wurde mit einem (200x200)nm^2 großen Hallkreuz - hergestellt aus einem oberflächennahen, hochbeweglichen HgTe 2DEG - bei einer Temperatur von 4.2 K erreicht. Obwohl die Feldauflösung lediglich δB ≈ 100 µT betrug, konnte auf Grund der Miniaturisierung der Sensorfläche eine beeindruckende Flusssensitivität von δΦ ≈ 2 10^(−3) Φ0 erreicht werden, wobei Φ0 = h/2e das Flussquant darstellt. Wenn man diese Auflösung in Bezug auf die Magnetisierung betrachtet, ermöglicht der Sensor die Detektion von Magnetisierungsänderungen eines Teilchens auf der Mitte des Sensors in Höhe von δM ≈ 10^2 µB mit dem magnetischen Moment eines Elektrons, dem Bohrschen Magneton µB. Die weiteren Untersuchungen eines Permalloy-Nanomagneten mit einer Querschnittfläche von (100x20) nm^2 bestätigt die erwartete Auflösungsfähigkeit, die aus dem Rauschen des Sensors hervorgeht. Weiterhin konnte die Einsatzfähigkeit des Bauteils in einem breiten Temperaturbereich (T = mK... > 200 K) und bei hohen Magnetfeldern bestätigt werden. Bei dem zweiten mikromagnetischen Sensor handelt es sich um das Mikro-SQUID (Mikro-Superconducting-QUantum-Interference-Device) basierend auf Niob. Die Sensorfläche der in dieser Arbeit hergestellten Mikro-SQUIDs betrug typischerweise (1.0x1.0) µm^2 mit Einschnürungen im Bereich von 20 nm. Die Charakterisierung dieses Bauteils zeigt eine beeindruckende Magnetfeldauflösung von δB < 1 µT, besonders hinsichtlich der minimalen Ausdehnung des Bauteils. Obwohl die Sensorfläche 25 mal größer als die des Mikro-Hallsensors war, wurde so eine höhere Flusssensitivität von δΦ ≈ 5 10^(−4) Φ0 und eine ähnliche magnetische Momentauflösung von δM ≈ 10^2 µB erreicht. Des weiteren konnte mit der Einbringung eines ellipsoidalen Permalloy-Magneten (Achsen: 200 und 400 nm, Dicke: 30 nm) die Eignung zur Detektion winziger lokaler Magnetfelder konkretisiert werden. Im zweiten Teil der Arbeit sind die besonderen Transporteigenschaften von HgTe Quantenwällen, die auf dem linearen Anteil in der Bandstruktur beruhen, untersucht worden. Das System kann mit einem Dirac Hamiltonian beschrieben werden, dessen Diracmasse durch Variation der Quantenwalldicke beeinflusst werden kann. Im Verlauf der Arbeit konnte durch Herstellung und Charakterisierung einer systematischen Serie von Substraten ein System mit verschwindender Diracmasse (Energielücke gleich 0) bestätigt werden. Diese Halbleiterheterostruktur gleicht damit Graphen (eine Monolage von Graphit), mit dem Unterschied, dass es in der Brillouinzone nur eine Elektronensenke aufweist und demzufolge keine störende Intervalley-Streuung auftreten kann. Die Existenz dieses Systems konnte durch die Übereineinstimmung von Vorhersagen aus theoretischen Bandstrukturrechnungen mit dem Experiment (Verlauf der Landauniveaus, Leitfähigkeit) bestätigt werden. Außerdem konnte die Besonderheit der Bandstruktur - der Übergang von linearem zu quadratischem Charakter - anhand der Plateauweiten im Quanten-Hall-Effekt veranschaulicht werden. Im weiteren Verlauf wurde der Transport von ”massiven” Dirac Fermionen (mit endlicher Diracmasse) untersucht. Im Besonderen führt der beschreibende Dirac Hamiltonian in Abhängigkeit von der Diracmasse zu schwachen Lokalisierungeffekten, die bis dato noch nicht beobachtet wurden und im Vergleich zu typischen Mechanismen bis zu weit höheren Temperaturen überleben. KW - Magnetischer Sensor KW - Mikrohallmagnetometrie KW - Mikro-SQUID KW - HgTe KW - Micro-Hall Magnetometry KW - Micro-SQUID KW - HgTe KW - Quecksilbertellurid KW - Heterostruktur Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72556 ER - TY - THES A1 - Daumer, Volker T1 - Phase coherent transport phenomena in HgTe quantum well structures T1 - Phasenkohärente Transportphänomene in HgTe Quantentrogstrukturen N2 - Although spintronics has aroused increasing interest, much fundamental research has to be done. One important issue is the control over the electronic spin. Therefore, spin and phase coherent transport are very important phenomena. This thesis describes experiments with mercury based quantum well structures. This narrow gap material provides a very good template to study spin related effects. It exhibits large Zeeman spin splitting and Rashba spin-orbit splitting. The latter is at least four to five times larger than in III-V semiconductors. Initially a short review on the transport theory was presented. The main focus as on quantisation effects that are important to understand the related experiments. Thus, Shubnikov-de Haas and the quantum Hall effect have been analysed. Due to the first fabrication of nanostructures on Hg-based quantum well samples, the observation of ballistic transport effects could be expected. Hence, the Landauer-B¨uttiker theory has been introduced which gives the theoretical background to understand such effects. With respect to the main topic of this thesis, phase coherence has been introduced in detail. Experiments, where coherence effects could be observed, have been explained theoretically. Here, possible measurement setups have been discussed, e.g., a ring shaped structure to investigate the Aharonov-Bohm and related effects. Due to the fact, that all experiments, described in this thesis, were performed on Hg-based samples, the exceptional position of such samples among the “classical” semiconductors has been clarified. Hg1-xMnx Te quantum wells are type-III QWs in contrast to the type-I QWs formed by e.g., GaAs/AlGaAs heterostructures. With a well width of more than 6 nm and a manganese content of less than 7% they exhibit an inverted band alignment. Band structure calculations based on self consistent Hartree calculations have been presented. The common description of a diluted magnetic semiconductor with the Brillouin function has been introduced and the experiments to obtain the empiric parameters T0 and S0 have been presented. Rashba spin-orbit splitting and giant Zeeman splitting have been explained theoretically and the magnetic ordering of a spin glass as well as the relevant interactions therein have been discussed. The next chapter describes the first realisation of nanostructures on Hg-based heterostructures. Several material specific problems have been solved, but the unique features of this material system mentioned above justify the effort. Interesting new insight could be found and will be found with these structures. Onto a series of QW samples, cross-shaped structures with several lead widths have been patterned. With the non-local resistance measurement setup, evidence for quasiballistic transport was demonstrated in cross-shaped structures with lead widths down to 0.45 mm. The non-local bend resistance and a regime of rebound trajectories as well as the anomalous Hall effect could be identified. Monte-Carlo simulations of the classical electron trajectories have been performed. A good agreement with the experimental data has been achieved by taking a random scattering process into account. Encouraged by this success the technology has been improved and ring-shaped structures with radii down to 1 mm have been fabricated. Low temperature (below 100 mK), four terminal resistance measurements exhibit clear Aharonov-Bohm oscillations. The period of the oscillations agrees very well with a calculation that takes only the sample geometry into account. One goal using such a structure is the experimental prove of the spin-orbit Berry phase. Therefore an additional Shottky gate on top of the ring was needed. With this structure evidence for the Aharonov-Casher effect was observed. Here, a perpendicular applied electric field causes analogous oscillations as does the magnetic field in the AB effect. A subsequent change in the Rashba SO splitting due to several applied gate voltages while measuring the AB effect should reveal the SO Berry phase. Although initially evidence of a phase change was detected, a clear proof for the direct measurement of the SO Berry phase could not be found. In the future, with an advanced sample structure, e.g., with an additional Hall bar next to the ring, which permits a synchronous measurement of the Rashba splitting, it might be possible to measure the SO Berry phase directly. In manganese doped HgTe QWs two different effects simultaneously cause spin splitting: the giant Zeeman and the Rashba effect. By analysing the Shubnikovde Haas oscillations and the node positions of their beating pattern, it has been possible to separate these two effects. Whereas the Rashba effect can be identified by its dependence on the structure inversion asymmetry, varied by the applied gate voltage, the giant Zeeman splitting is extracted from its strong temperature dependence, because Rashba splitting is temperature independent. The analysis revealed, that the Rashba splitting is larger than or comparable to the giant Zeeman splitting even at moderately high magnetic fields. In an extraordinary HgMnTe QW sample, that exhibits the n= 1 quantum Hall plateau from less than 1 T up to 28 T, the anomalous Hall effect could be excluded. Intense studies on the temperature dependence of the QHE as well as band structure calculations have revealed this extraordinary behaviour to be an ordinary band structure effect of this system. In a series of mesoscopic structures on nonmagnetic and magnetic QWs, an investigation of the universal conductance uctuations have been carried out. In the N2 - Trotz des st¨andig steigenden Interesses an der Spintronik gibt es diesbez¨uglich noch viel an Grundlagenforschung zu leisten. Eine wichtige Aufgabe dabei ist es den Spin zu kontrollieren und gezielt zu beeinflussen. Aus diesem Grund ist es wichtig spin- und phasenkoh¨arente Transportph¨anomene zu untersuchen und zu verstehen. Die vorliegende Arbeit befasst sich mit Experimenten an Quantentrogstrukturen auf der Basis quecksilberhaltiger Materialien. Dieser schmall¨uckige Halbleiter ist ein ideales Versuchsobjekt zur Untersuchung von Effekten, die mit dem Spin zusammenh¨angen, denn er zeigt den riesigen Zeeman- Effekt sowie Rashba-Spin-Bahn-Aufspaltung. Letztere ist sogar vier- bis f¨unfmal so groß wie die in III-V Halbleitern. Zu Beginn dieser Arbeit wurde ein kurzer ¨ Uberblick ¨uber die Transportheorie gegeben. Dabei lag das zentrale Interesse auf Quantisierungseffekten, welche zum Verst¨andnis der nachfolgenden Experimente unabdingbar sind, insbesondere wurden der Shubnikov-de Haas und der Quanten-Hall-Effekt betrachtet. Da es im Rahmen dieser Arbeit erstmals gelungen ist, Nanostrukturen auf quecksilberhaltigen Quantentr¨ogen herzustellen, war es zu erwarten, dass ballistische Transporteffekte beobachtet werden k¨onnten. Daher wurde eine Einf¨uhrung in die Landauer- B¨uttiker-Theorie gegeben, mit welcher es m¨oglich ist solche ballistischen Effekte theoretisch zu beschreiben. Das Hauptaugenmerk der vorliegenden Arbeit liegt auf Untersuchungen zur Phasenkoh¨arenz. Deswegen wurde diese ausf¨uhrlicher eingef¨uhrt. Dabei wurde die Theorie der Experimente, bei denen man Phasenkoh¨arenz beobachten kann, dargestellt. Ebenso wurden m¨ogliche experimentelle Aufbauten diskutiert, wie zum Beispiel eine ringf¨ormige Struktur, an welcher man den Aharonov-Bohm, sowie damit verwandte Effekte untersuchen kann. Quecksilberhaltige Heterostrukturen nehmen neben den “klassischen” Halbleitern eine Sonderstellung ein. Diese wurde im dritten Kapitel gew¨urdigt. Im Gegensatz zu den Typ-I Quantentr¨ogen, z.B. gebildet aus einer GaAs/AlGaAs Heterostruktur, sind Quantentr¨oge aus Hg1-xMnxTe/Hg0:3Cd0:7Te vom Typ-III. Ist hierbei die Trogbreite gr¨oßer als 6 nm und der Mangangehalt geringer als 7%, so weisen diese Tr¨oge eine invertierte Bandstruktur auf. Hierzu wurden Bandstrukturberechnungen mittels selbstkonsistenter Hartree-Berechnungen dargestellt. Zur Beschreibung verd¨unnt magnetischer Halbleiter wurde die daf¨ur allgemein ¨ubliche Brillouin Funktion eingef¨uhrt. Die Experimente mit denen die dabei ben¨otigten empirischen Parameter T0 und S0 gewonnen wurden, wurden an dieser Stelle pr¨asentiert. Auch die Theorie der Rashba-Spin-Bahn-Aufspaltung sowie des riesigen Zeeman-Effekts wurden erkl¨art. Dar¨uberhinaus wurde der magnetische Ordnungszustand “Spinglas” eingef¨uhrt, sowie die wichtigsten Wechselwirkungen darin dargestellt. Im n¨achsten Kapitel wurde die erstmalige Realisierung von Nanostrukturen auf quecksilberhaltigen Heterostrukturen berichtet. Daf¨ur mussten materialspezifi- sche, technologische Probleme ¨uberwunden werden, aber die einzigartigen Eigenschaften dieses Materialsystems rechtfertigen den Aufwand. So konnten bereits und werden neue Einsichten gewonnen werden. Auf eine Serie von Quantentrogproben wurden Kreuzstrukturen mit unterschiedlichen Armdicken definiert. In diesen Strukturen konnte mit Hilfe der sogenannten Nichtlokalen Widerstandsmessung der Nachweis f¨ur quasiballistischen Transport erbracht werden. Der sogenannte Biegewiderstand, der Bereich der abprallenden Trajektorien sowie der anomale Hall-Effekt konnten identifiziert werden. Um diese Beobachtungen auch auf eine quantitative Beschreibung zur¨uckzuf¨uhren, wurden Monte- Carlo-Simulationen der klassischen Trajektorien der Elektronen durchgef¨uhrt. Durch die Einf¨uhrung eines zuf¨alligen Streuprozessess konnte eine hervorragende ¨ Ubereinstimmung mit den experimentellen Daten erzielt werden. Ermutigt durch diesen Erfolg, wurde die Technologie weiter verbessert. So konnten ringf¨ormige Strukturen mit Radii hinunter bis zu 1 mm hergestellt werden. Elektrische Vier-Punkt-Messungen bei niedrigsten Temperaturen (unter 100 mK) zeigen deutliche Aharonov-Bohm -Oszillationen. Die Periode dieser Oszillationen stimmt sehr gut mit der berechneten ¨uberein, die aus geometrischen ¨ Uberlegungen zur Probe gewonnen wurde. Ein Ziel f¨ur die Verwendung solcher ringf¨ormigen Strukturen ist der direkte experimentelle Nachweis der Spin-Bahn-Berry-Phase. Hierzu wird allerdings ein zus¨atzliches Shottky-Gatter auf der Oberseite des Rings ben¨otigt. Mit einer solchen Struktur konnte der Aharonov-Casher-Effekt nachgewiesen werden. Dabei verursacht ein senkrecht anliegendes elektrisches Feld analoge Oszillationen wie das Magnetfeld im Aharonov-Bohm-Effekt. Durch ein kontinuierliches ¨ Andern der Rashba Spin-Bahn-Aufspaltung, hervorgerufen durch die ¨ Anderung der anliegenden Gatter-Spannung, w¨ahrend man den Aharonov-Bohm-Effekt misst, sollte die Spin-Bahn-Berry-Phase offenbaren. Obwohl zun¨achst ein Hinweis auf einen Phasen¨ubergang gefunden werden konnte, war ein eindeutiger Nachweis f¨ur die direkte Messung der Berry-Phase nicht m¨oglich. Zuk¨unftige Messungen mit einer verbesserten Probenstruktur, z.B. einem zus¨atzlichen Hall-Streifen direkt neben dem Ring um gleichzeitig die Rashba- Aufspaltung messen zu k¨onnen, werdenm¨oglicherweise diesen direkten Nachweis erbringen. In mit Mangan dotierten HgTe Quantentr¨ogen gibt es zwei unterschiedliche Effekte, die eine Spin-Aufspaltung hervorrufen: Der riesige Zeeman-Effekt und der Rashba-Effekt. Durch die Analyse der Shubnikov-de Haas Oszillationen und der Knotenpositionen ihrer Schwebung, war es m¨oglich, diese zwei Effekte zu trennen. W¨ahrend der Rashba-Effekt durch seine Abh¨angigkeit von der Strukturinversionsasymmetrie, die durch Ver¨anderung der anliegenden Gatter-Spannung variiert werden kann, identifiziert werden kann, erkennt man die riesige Zeeman- Aufspaltung durch ihre Temperaturabh¨angigkeit, da der Rashba-Effekt temperaturunabh ¨angig ist. Diese Analyse konnte zeigen, dass die Rashba-Aufspaltung gr¨oßer als oder mindestens vergleichbar der riesigen Zeeman-Aufspaltung ist, und das sogar bei m¨aßig hohen Magnetfeldern. In einer außergew¨ohnlichen HgMnTe Quantentrogprobe, welche das n = 1 Quanten-Hall-Plateau von unter einem Tesla bis zu 28 Tesla aufweist, konnte der anomale Hall-Effekt als Ursache f¨ur dieses Verhalten ausgeschlossen werden. Intensive Untersuchungen der Temperaturabh¨angigkeit des Quanten-Hall-Effekts sowie Bandstrukturberechnungen konnten dieses außergew¨ohnliche Verhalten als einen gew¨ohnlichen Effekt der Bandstruktur in diesem System erkl¨aren. An einer Serie von mesoskopischen Strukturen auf nichtmagnetischen und magnetischen Quantentr¨ogen wurden universelle Leitwertfluktuationen untersucht. Im nichtmagnetischen Fall gehorchte die Temperaturabh¨angigkeit der Standardabweichung desWiderstands, die ein Maß f¨ur die Amplitude der Fluktuationen ist, einem Potenzgesetz (µ T KW - Quecksilbertellurid KW - Quantenwell KW - Elektronischer Transport KW - Schwingungsphase KW - Kohärenz KW - HgTe KW - Quantentrog KW - Ballistischer Transport KW - Phasenkohärenz KW - HgTe KW - quantum well KW - ballistic transport KW - phase coherence Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-15538 ER - TY - THES A1 - Hajer, Jan T1 - Mercury Telluride Nanowires for Topological Quantum Transport T1 - Quecksilbertellurid-Nanodrähte für Quantentransport-Untersuchungen N2 - Novel appraches to the molecular beam epitaxy of core-shell nanowires in the group II telluride material system were explored in this work. Significant advances in growth spurred the development of a flexible and reliable platform for a charge transport characterization of the topological insulator HgTe in a tubular nanowire geometry. The transport results presented provide an important basis for the design of future studies that strive for the experimental realization of topological charge transport in the quantum wire limit. N2 - Die vorliegende Arbeit befasst sich mit der Herstellung und Charakterisierung von Nanodraht-Heterostrukturen, die den Topologischen Isolator HgTe enthalten. Bedeutende Fortschritte bei der Probenherstellung ermöglichten die Entwicklung einer flexiblen und zuverlässigen Plattform für Ladungstransportuntersuchungen. Die Ergebnisse dieser Transportuntersuchung bieten eine wichtige Grundlage für die Planung zukünftiger Studien, die den experimentellen Nachweis von topologischem Ladungstransport in quasi-eindimensionalen HgTe-Nanostrukturen zum Ziel haben. KW - Quecksilbertellurid KW - Nanodraht KW - Halbleiter-Supraleiter-Kontakt KW - Topologischer Isolator KW - Core-shell KW - Nanowires KW - Vapor-liquid-solid KW - Molecular beam epitaxy KW - HgTe KW - CdTe KW - ZnTe KW - Aharonov-Bohm KW - Shapiro Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-293222 ER - TY - THES A1 - Kessel, Maximilian T1 - HgTe shells on CdTe nanowires: A low-dimensional topological insulator from crystal growth to quantum transport T1 - HgTe ummantelte CdTe Nanodrähte: Ein nieder-dimensionaler Topologischer Isolator vom Kristallwachstum zum Quantentransport N2 - A novel growth method has been developed, allowing for the growth of strained HgTe shells on CdTe nanowires (NWs). The growth of CdTe-HgTe core-shell NWs required high attention in controlling basic parameters like substrate temperature and the intensity of supplied material fluxes. The difficulties in finding optimized growth conditions have been successfully overcome in this work. We found the lateral redistribution of liquid growth seeds with a ZnTe growth start to be crucial to trigger vertical CdTe NW growth. Single crystalline zinc blende CdTe NWs grew, oriented along [111]B. The substrate temperature was the most critical parameter to achieve straight and long wires. In order to adjust it, the growth was monitored by reflection high-energy electron diffraction, which was used for fine tuning of the temperature over time in each growth run individually. For optimized growth conditions, a periodic diffraction pattern allowed for the detailed analysis of atomic arrangement on the surfaces and in the bulk. The ability to do so reflected the high crystal quality and ensemble uniformity of our CdTe NWs. The NW sides were formed by twelve stable, low-index crystalline facets. We observed two types stepped and polar sides, separated by in total six flat and non-polar facets. The high crystalline quality of the cores allowed to grow epitaxial HgTe shells around. We reported on two different heterostructure geometries. In the first one, the CdTe NWs exhibit a closed HgTe shell, while for the second one, the CdTe NWs are overgrown mainly on one side. Scanning electron microscopy and scanning transmission electron microscopy confirmed, that many of the core-shell NWs are single crystalline zinc blende and have a high uniformity. The symmetry of the zinc blende unit cell was reduced by residual lattice strain. We used high-resolution X-ray diffraction to reveal the strain level caused by the small lattice mismatch in the heterostructures. Shear strain has been induced by the stepped hetero-interface, thereby stretching the lattice of the HgTe shell by 0.06 % along a direction oriented with an angle of 35 ° to the interface. The different heterostructures obtained, were the base for further investigation of quasi-one-dimensional crystallites of HgTe. We therefore developed methods to reliably manipulate, align, localize and contact individual NWs, in order to characterize the charge transport in our samples. Bare CdTe cores were insulating, while the HgTe shells were conducting. At low temperature we found the mean free path of charge carriers to be smaller, but the phase coherence length to be larger than the sample size of several hundred nanometers. We observed universal conductance fluctuations and therefore drew the conclusion, that the trajectories of charge carriers are defined by elastic backscattering at randomly distributed scattering sites. When contacted with superconducting leads, we saw induced superconductivity, multiple Andreev reflections and the associated excess current. Thus, we achieved HgTe/superconductor interfaces with high interfacial transparency. In addition, we reported on the appearance of peaks in differential resistance at Delta/e for HgTe-NW/superconductor and 2*Delta/e for superconductor/HgTe-NW/superconductor junctions, which is possibly related to unconventional pairing at the HgTe/superconductor interface. We noticed that the great advantage of our self-organized growth is the possibility to employ the metallic droplet, formerly seeding the NW growth, as a superconducting contact. The insulating wire cores with a metallic droplet at the tip have been overgrown with HgTe in a fully in-situ process. A very high interface quality was achieved in this case. N2 - Topologische Isolatoren (TI) sind ein faszinierendes Forschungsfeld der Festkörperphysik. Im Inneren sind diese Materialien isolierend, am Rand zeigen sich jedoch topologisch geschützte, leitfähige Oberflächen-Zustände. Ihre lineare Energiedispersion und die Kopplung des Elektronenspins an die Bewegungsrichtung ermöglichen die Untersuchung von Teilchen, die sich als Dirac-Fermionen beschreiben lassen. Für Nanodrähte, als Vertreter mesoskopischer Strukturen, spielen die Eigenschaften der Oberfläche eine größere Rolle, als für Strukturen mit makroskopischem Volumen. Ihr geringer Umfang beschränkt durch zusätzliche periodische Randbedingungen die erlaubten elektronischen Zustände. Durch ein externes Magnetfeld lassen sich TI-Nanodrähte vom trivialen in den helikalen Zustand überführen. Bringt man einen solchen Draht in direkten Kontakt mit einem Supraleiter, so werden Quasiteilchen vorhergesagt, die sich wie Majorana-Fermionen verhalten sollen. Zur Untersuchung dieser Phänomene sind zunächst entscheidende technologische Hürden zu überwinden. Verschiedene TI sind derzeit bekannt. HgTe ist einer von ihnen und zeichnet sich bei tiefen Temperaturen durch eine hohe Beweglichkeit der Oberflächen-Elektronen und gleichzeitig einer geringen Leitfähigkeit im Volumen aus. Die bisherigen Untersuchungen in diesem Materialsystem beschränken sich auf zwei- und dreidimensionale Strukturen. In dieser Arbeit wurde ein Verfahren zur Herstellung von quasi eindimensionalen TI-Nanodrähten entwickelt. Mittels vapor-liquid-solid Methode gewachsene CdTe Nanokristallite werden epitaktisch mit HgTe umwachsen. Die hergestellten Heterostrukturen werden mit Beugungsexperimenten charakterisiert, um den Einfluss der Wachstumsparameter wie Temperatur und Teilchenstrom auf die Qualität der Proben zu bestimmen und diese zu verbessern. In dieser Arbeit wird zum ersten mal eine Rekonstruktion der Oberflächenatome von Nanodrähten beschrieben. Für den Rückschluss auf die atomare Konfiguration mittels Elektronenbeugung müssen die einzelnen Kristallite eine hohe Selbstähnlichkeit aufweisen. Wie Bilder in atomarer Auflösung und hochaufgelöste Röntgenbeugung zeigen, werden einkristalline und verspannte CdTe-HgTe Strukturen erzeugt. Diese sollten die typischen TI Eigenschaften haben. Zur weiteren Untersuchung wurden Verfahren für die Manipulation und exakte Ausrichtung der Nanodrähte, sowie für die Kontaktierung mit verschiedenen Metallen entwickelt. Die blanken CdTe Nanodraht-Kerne selbst sind wie erwartet isolierend, mit HgTe umwachsene Proben jedoch leiten einen elektrischen Strom. Die aktuelle Forschung beschäftigt sich nun intensiv mit dem Transport von Ladungs-trägern durch diese Nanodrähte. Dazu wird die Leitfähigkeit der Proben unter anderem bei tiefen Temperaturen und in Abhängigkeit äußerer elektrostatischer und magnetischer Felder bestimmt. Es werden verschiedene Effekte beobachtet. Universelle Fluktuationen des gemessenen Widerstandes, als ein Beispiel, resultieren aus einer Veränderung der geometrischen Phase der Ladungsträger. Dieser Effekt deutet auf elastische Rückstreuung der Ladungsträger in den HgTe Nanodrähten hin. Die Beobachtung kohärenter Transportphänomene erlaubt den Rückschluss, dass inelastische Streuprozesse bei tiefen Temperaturen kaum eine Rolle spielen. Für Drähte mit supraleitenden Kontakten können induzierte Supraleitung und multiple Andreev-Reflektionen beobachtet werden. Zusammen mit dem beschriebenen excess current ist dies ein klares Zeichen für einen guten elektrischen Kontakt zwischen TI und Supraleiter. Zusätzlich beobachten wir eine Signatur nahe der Kante der Energielücke des Supraleiters, die eventuell durch pairing an der Grenzfläche zu erklären ist. Für die Verbindung von Spin-Bahn-Kopplung des TI und der Cooper-Paare des konventionellen Supraleiters wird die Entstehung eines unkonventionellen Supraleiters vorhergesagt. Dies ist ein weiteres interessantes Feld der modernen Festkörperphysik und Gegenstand aktueller Forschung. Besonders bemerkenswert ist in diesem Zusammenhang, dass der metallische Tropfen, welcher ursprünglich das Nanodraht-Wachstum katalysiert hat, bei tiefen Temperaturen supraleitend wird. Der in dieser Arbeit vorgestellte selbst-organisierte Wachstumsprozess resultiert in einer sauberen Grenzfläche zwischen TI und Supraleiter. Zur Untersuchung der Effekte an dieser Grenzfläche muss nicht zwingend in einem separaten Schritt ein supraleitender Kontakt aufgebracht werden. Die in dieser Arbeit vorgestellten Methoden und Erkenntnisse sind die Grundlage für die Realisierung von Experimenten, die geeignet wären, die erwarteten Majorana-Zustände in TI-Nanodrähten nachzuweisen. KW - Quecksilbertellurid KW - Nanodraht KW - Halbleiter-Supraleiter-Kontakt KW - vapor-liquid-solid KW - RHEED KW - MBE KW - CdTe KW - HgTe KW - Cadmiumtellurid KW - Topologischer Isolator KW - Kern-Schale-Struktur Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149069 ER - TY - THES A1 - Latussek, Volker T1 - Elektronische Zustände in Typ-III-Halbleiterheterostrukturen T1 - Electron states in type III semiconductor heterostructures N2 - Seit 1988 werden mit dem Verfahren der Molekularstrahlepitaxie (MBE: Molecular Beam Epitaxy) am Physikalischen Institut der Universität Würzburg Halbleiterheterostrukturen aus dem Halbleitermaterialsystem Hg(1-x)Cd(x)Te hergestellt. Diese quecksilberhaltige Legierung ist ein II-VI-Verbindungshalbleiter und zeichnet sich durch eine legierungs- und temperaturabhängige fundamentale Energielücke aus. Die Bandstruktur ist je nach Temperatur und Legierungsfaktor x einerseits halbleitend, anderseits aber halbmetallisch. Die schmallückigen Hg(1-x)Cd(x)Te-Legierungen werden als Infrarotdetektoren eingesetzt. Mit dem Verfahren der Molekularstrahlepitaxie ist es möglich Bandstrukturen mit spezifischen Eigenschaften herzustellen (band structure engineering). Unter diesen neuen Materialien stellen die Typ-III-Übergitter eine besondere Klasse dar. Bei diesen zweidimensionalen Materialstrukturen wird eine nur wenige Atomlagen dicke Schicht von 30 °A bis 100 °A aus dem Halbmetall HgTe, dem Trogmaterial, in eine Legierung aus Hg(1-x)Cd(x)Te, dem Barrierenmaterial, eingebettet und zu einem Übergitter aufgebaut. Zweidimensionale Typ-III-Halbleiterheterostrukturen, wie die HgTe-Hg(1-x)Cd(x)Te-Quantentrogstrukturen und HgTe-Hg(1-x)Cd(x)Te-Übergitter, sind von fundamentalen Interesse zum Verständnis von elektronischen Zuständen komplexer Bandstrukturen und zweidimensionaler Ladungsträgersysteme. Darüber hinaus werden HgTe-Hg(1-x)Cd(x)Te-Übergitter in der Sensorik als Infrarotdektoren eingesetzt, deren cut-off-Wellenlänge prozessgesteuert in der Molekularstrahlepitaxie über die Trogbreite, der Schichtdicke des HgTe, eingestellt werden kann. Je nach verwendeten Barrierenmaterial Hg(1-x)Cd(x)Te und Temperatur besitzen die Übergitterstrukturen mit großen Barrierenschichtdicken, das sind die Quantentrogstrukturen, in Abhängigkeit von der Trogbreite, für niedrige Trogbreiten eine normal halbleitende Subbandstruktur, während sich für größere Trogbreiten eine invertiert halbleitende Subbandstruktur einstellt. In der invertiert halbleitenden Subbandstruktur ist ein indirekter Halbleiter realisierbar. Bei Strukturen mit dünnen Barrierenschichtdicken ist die Minibanddispersion stark ausgeprägt und es kann sich zusätzlich eine halbmetallische Subbandstruktur ausbilden. Diese speziellen Eigenschaften sind einzigartig und kennzeichnen die komplexe Bandstruktur von Typ-III-Heterostrukturen. Erst die genaue Kenntnis und ein vertieftes Verständnis der komplexen Bandstruktur erlaubt die Interpretation von Ergebnissen aus (magneto)-optischen Untersuchungen der elektronischen Eigenschaften von Typ-III-Halbleiterheterostrukturen. Die Berechnung der elektronischen Zustände in den HgTe-Hg(1-x)Cd(x)Te-Übergitter wurde in der vorliegenden Arbeit in der Envelopefunktionsnäherung durchgeführt. Seit drei Jahrzehnten wird die Envelopefunktionenn¨aherung (EFA: Envelope Function Approximation) sehr erfolgreich bei der Interpretation der experimentellen Ergebnisse von (magneto)- optischen Untersuchungen an Halbleiterheterostrukturen eingesetzt. Der Erfolg basiert auf der effektiven Beschreibung der quantisierten, elektronischen Zustände an Halbleitergrenzflächen, in Quantentrögen und Übergittern und der Einzigartigkeit, zur Berechnung der experimentellen Ergebnisse, die Abhängigkeit von äußeren Parametern, wie der Temperatur und des hydrostatischen Druckes, aber auch eines elektrischen und magnetischen Feldes, wie auch von freien Ladungsträgern, ein zu arbeiten. Die sehr gute quantitative Übereinstimmung der theoretischen Berechnungen in der Envelopefunktionennäherung und vieler experimenteller Messergebnisse an Halbleiterheterostrukturen baut auf der quantitativen Bestimmung der relevanten Bandstrukturparameter in der k·p-Störungstheorie zur Beschreibung der elektronischen Eigenschaften der beteiligten Volumenhalbleiter auf. In Kapitel 1 der vorliegenden Arbeit wird daher zunächst das Bandstrukturmodell des Volumenmaterials Hg(1-x)Cd(x)Te vorgestellt und daraus die Eigenwertgleichung des Hamilton-Operators in der Envelopefunktionenn¨aherung abgeleitet. Danach wird das L¨osungsverfahren, die Matrixmethode, zur Berechnung der Eigenwerte und Eigenfunktionen beschrieben und auf die Berechnung der elektronischen Subbandzustände der Typ-III-Hg(1-x)Cd(x)Te-Übergitter angewendet. Es folgt eine Diskussion der grundlegenden Eigenschaften der komplexen Bandstruktur in den verschiedenen Regimen der Typ-III-Halbleiterheterostrukturen und der charakteristischen Wellenfunktionen, den Grenzflächenzuständen. An Ende dieses Kapitels wird die Berechnung des Absorptionskoeffizienten hergeleitet und die grundlegenden Eigenschaften der Diplomatrixelemente zur Charakterisierung der optischen Eigenschaften von HgTe-Hg(1-x)Cd(x)Te-Übergitter exemplarisch vorgestellt. In Kapitel 2 sind die wesentlichen Ergebnisse aus dem Vergleich von Infrarotabsorptionsmessungen an HgTe-Hg(1-x)Cd(x)Te-Übergitter mit den berechneten Absorptionskoeffizienten zusammengestellt. N2 - For three decades the envelope function approximation (EFA) has been very successful in the interpretation of experimental results of magneto-transport and optical investigations of semiconducting heterostructures. Its success is based on the ability to describe the quantized electron states in semiconductor interfaces, quantum wells and superlattices combined with its unique ability to include the influence of external parameters such as temperature and hydrostatic pressure as well as electric and magnetic fields and the incorporation of free charge carriers. The excellent quantitative agreement between theoretical calculations using the envelope function approximation and numerous experimental results depends on the quantitative determination of the corresponding band structure parameters in the k · p perturbation theory required to correctly describe the electronic properties of the bulk semiconductors in the heterostructure in question. In order to understand numerous experiments on bulk semiconductors it is not necessary to know the band structure in the entire Brillouin zone. Knowledge is merely required near the corresponding band structure extrema. In the experiments considered here on the II-VI materials of HgTe and CdTe, which crystallize in the zinc blende structure, as well as III-V materials such as GaAs and GaAlAs, the center of the Brillouin zone is of primary importance. Since 1988 Molecular beam epitaxy (MBE) has been employed at the physics department (Physikalisches Institut) of the University of Würzburg to produce semiconducting heterostructures based on Hg(1-x)Cd(x)Te. With this method it is possible to produce materials with a particular band structure and specific properties (band structure engineering). Among these new heterostructures, type III superlattices represent an unique class. In these structures, thin layers (30 - 100)°A of only a few atomic layers of the semimetallic HgTe are alternated with layers of the Hg(1-x)Cd(x)Te alloy to form a superlattice. The resulting growth by the MBE method permits superlattices with the desired band structure to be produced and the corresponding optical absorption in the infrared spectral range. From a comparison of the band structure of these type III superlattices by means of the envelope function approximation and the resulting absorption spectrum with the experimental results from infrared spectroscopy it was possible for the first time to determine a precise value for the valence band offset a characteristic heterostructure parameter, as well as its temperature´dependence. Hereby HgTe thicknesses were determined by high resolution x-ray diffraction. Structure in the absorption spectra could be quantitatively assigned to dipole transitions between the involved subbands of the type III superlattice. The quantitative description of the optical properties of semiconducting heterostructures from the Ansatz that known bulk properties result in new and tailor made properties can also be stated conversely; from known heterostructure properties unknown properties of bulk materials can be determined. Using this corollary, first direct experimental determination of the difference of the hydrostatic deformation potentials, C-a, of HgTe with high precision, (-3.69 ± 0.10) eV, by means of hydrostatic pressure experiments on type III superlattices were carried out. Calculations of the electron states in heterostructures were carried out in this dissertation. Hereby the envelope function approximation was employed whereby the numerical eigenvalue problem was formulated in terms of the matrix method in which the individual components of the envelope functions were expanded from a complete set of functions. Because of the poor convergence in the calculations of interface states in type III quantum well structures, a new set of functions was constructed, which results in the required convergence for all heterostructures: from a p-type inversion channel in Ge bi-crystals, including GaAs-GaAlAs quantum well structures, to type III superlattices. The individual components of the envelope functions were very precisely approximated by only a very few, 10 - 20, basis functions. KW - Quecksilbertellurid KW - Cadmiumtellurid KW - Heterostruktur KW - Übergitter KW - Elektronenzustand KW - Halbleiterheterostrukturen KW - Envelopefunktionennäherung KW - Hg(1-x)Cd(x)Te KW - Semiconductor heterostrctures KW - envelope function approximation KW - Hg(1-x)Cd(x)Te Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-15055 ER - TY - THES A1 - Leubner, Philipp T1 - Strain-engineering of the Topological Insulator HgTe T1 - Kontrolle der Verspannung im topologischen Isolator HgTe N2 - The subject of this thesis is the control of strain in HgTe thin-film crystals. Such systems are members of the new class of topological insulator materials and therefore of special research interest. A major task was the experimental control of the strain in the HgTe films. This was achieved by a new epitaxial approach and confirmed by cristallographic analysis and magneto-transport measurements. In this work, strain was induced in thin films by means of coherent epitaxy on substrate crystals. This means that the film adopts the lattice constant of the substrate in the plane of the substrate-epilayer interface. The level of strain is determined by the difference between the strain-free lattice constants of the substrate and epilayer material (the so-called lattice mismatch). The film responds to an in-plane strain with a change of its lattice constant perpendicular to the interface. This relationship is crucial for both the correct interpretation of high resolution X-ray diffraction (HRXRD) measurements, and the precise determination of the band dispersion. The lattice constant of HgTe is smaller than the lattice constant of CdTe. Therefore, strain in HgTe is tensile if it is grown on a CdTe substrate. In principle, compressive strain can be achieved by using an appropriate \(\text{Cd}_{1-x}\text{Zn}_{x}\text{Te}\) substrate. This concept was modified and applied in this work. Epilayers have been fabricated by molecular-beam epitaxy (MBE). The growth of thick buffer layers of CdTe on GaAs:Si was established as an alternative to commercial CdTe and \(text{Cd}_{0.96}\text{Zn}_{0.04}\text{Te}\) substrates. The growth conditions have been optimized by an analysis of atomic force microscopy and HRXRD studies. HRXRD measurements reveal a power-law increase of the crystal quality with increasing thickness. Residual strain was found in the buffer layers, and was attributed to a combination of finite layer thickness and mismatch of the thermal expansion coefficients of CdTe and GaAs. In order to control the strain in HgTe epilayers, we have developed a new type of substrate with freely adjustable lattice constant. CdTe-\(\text{Cd}_{0.5}\text{Zn}_{0.5}\text{Te}\) strained-layer-superlattices have been grown by a combination of MBE and atomic-layer epitaxy (ALE), and have been analyzed by HRXRD. ALE of the \(\text{Cd}_{0.5}\text{Zn}_{0.5}\text{Te}\) layer is self-limiting to one monolayer, and the effective lattice constant can be controlled reproducibly and straightforward by adjusting the CdTe layer thickness. The crystal quality has been found to degrade with increasing Zn-fraction. However, the effect is less drastic compared to single layer \(\text{Cd}_{1-x}\text{Zn}_{x}\text{Te}\) solid solutions. HgTe quantum wells (QWs) sandwiched in between CdHgTe barriers have been fabricated in a similar fashion on superlattices and conventional CdTe and \(\text{Cd}_{0.96}\text{Zn}_{0.04}\text{Te}\) substrates. The lower critical thickness of the CdHgTe barrier material grown on superlattice substrates had to be considered regarding the sample design. The electronic properties of the QWs depend on the strain and thickness of the QW. We have determined the QW thickness with an accuracy of \(\pm\)0.5 nm by an analysis of the beating patterns in the thickness fringes of HRXRD measurements and X-ray reflectometry measurements. We have, for the first time, induced compressive strain in HgTe QWs by an epitaxial technique (i.e. the effective lattice constant of the superlattice is lower compared to the lattice constant of HgTe). The problem of the lattice mismatch between superlattice and barriers has been circumvented by using CdHgTe-ZnHgTe superlattices instead of CdHgTe as a barrier material. Furthermore, the growth of compressively strained HgTe bulk layers (with a thickness of at least 50 nm) was demonstrated as well. The control of the state of strain adds a new degree of freedom to the design of HgTe epilayers, which has a major influence on the band structure of QWs and bulk layers. Strain in bulk layers lifts the degeneracy of the \(\Gamma_8\) bands at \(\mathbf{k}=0\). Tensile strain opens an energy gap, compressive strain shifts the touching points of the valence- and conduction band to positions in the Brillouin zone with finite \(\mathbf{k}\). Such a situation has been realized for the first time in the course of this work. For QWs in the inverted regime, it is demonstrated that compressive strain can be used to significantly enhance the thermal energy gap of the two-dimensional electron gas (2DEG). In addition, semi-metallic and semiconducting behavior is expected in wide QWs, depending on the state of strain. An examination of the temperature dependence of the subband ordering in QWs revealed that the band gap is only temperature-stable for appropriate sample parameters and temperature regimes. The band inversion is always lifted for sufficiently high temperatures. A large number of models investigate the influence of the band gap on the stability of the quantum-spin-Hall (QSH) effect. An enhancement of the stability of QSH edge state conductance is expected for enlarged band gaps. Furthermore, experimental studies on the temperature dependence of the QSH conductance are in contradiction to theoretical predictions. Systematic studies of these aspects have become feasible based on the new flexibility of the sample design. Detailed low-temperature magnetotransport studies have been carried out on QWs and bulk layers. For this purpose, devices have been fabricated lithographically, which consist of two Hall-bar geometries with different dimensions. This allows to discriminate between conductance at the plane of the 2DEG and the edge of the sample. The Fermi energy in the 2DEG has been adjusted by means of a top gate electrode. The strain-induced transition from semi-metallic to semiconducting characteristics in wide QWs was shown. The magnitude of the semi-metallic overlap of valence- and conduction band was determined by an analysis of the two-carrier conductance and is in agreement with band structure calculations. The band gap of the semiconducting sample was determined by measurements of the temperature dependence of the conductance at the charge-neutrality point. Agreement with the value expected from theory has been achieved for the first time in this work. The influence of the band gap on the stability of QSH edge state conductance has been investigated on a set of six samples. The band gap of the set spans a range of 10 to 55 meV. The latter value has been achieved in a highly compressively strained QW, has been confirmed by temperature-dependent conductance measurements, and is the highest ever reported in the inverted regime. Studies of the carrier mobility reveal a degradation of the sample quality with increasing Zn-fraction in the superlattice, in agreement with HRXRD observations. The enhanced band gap does not suppress scattering mechanisms in QSH edge channels, but lowers the conductance in the plane of the 2DEG. Hence, edge state conductance is the dominant conducting process even at elevated temperatures. An increase in conductance with increasing temperature has been found, in agreement with reports from other groups. The increase follows a power-law dependency, the underlying physical mechanism remains open. A cause for the lack of an increase of the QSH edge state conductance with increasing energy gap has been discussed. Possibly, the sample remains insulating even at finite carrier densities, due to localization effects. The measurement does not probe the QSH edge state conductance at the situation where the Fermi energy is located in the center of the energy gap, but in the regime of maximized puddle-driven scattering. In a first set of measurements, it has been shown that the QSH edge state conductance can be influenced by hysteretic charging effects of trapped states in the insulating dielectric. A maximized conductance of \(1.6\ \text{e}^2/\text{h}\) was obtained in a \(58\ \mu\text{m}\) edge channel. Finally, measurements on three dimensional samples have been discussed. Recent theoretical works assign compressively strained HgTe bulk layers to the Weyl semi-metal class of materials. Such layers have been synthesized and studied in magnetotransport experiments for the first time. Pronounced quantum-Hall- and Shubnikov-de-Haas features in the Hall- and longitudinal resistance indicate two-dimensional conductance on the sample surface. However, this conductance cannot be assigned definitely to Weyl surface states, due to the inversion of \(\Gamma_6\) and \(\Gamma_8\) bands. If a magnetic field is aligned parallel to the current in the device, a decrease in the longitudinal resistance is observed with increasing magnetic field. This is a signature of the chiral anomaly, which is expected in Weyl semi-metals. N2 - Die vorliegende Dissertation befasst sich mit der Verspannung in kristallinen HgTe Dünnschichtsystemen. Solche Systeme sind aufgrund ihrer Zugehörigkeit zur Materialklasse der topologischen Isolatoren von besonderem Interesse. Eine wesentliche Aufgabe bestand in der experimentellen Kontrolle der Verspannung der HgTe Schichten. Dies wurde durch ein neues Epitaxieverfahren erreicht. Der Erfolg des Verfahrens konnte durch kristallografische Analysemethoden und Magnetotransportmessungen bestätigt werden. Im Rahmen dieser Arbeit wurde Verspannung in dünnen Schichten durch kohärentes Wachstum auf kristallinen Substraten induziert. Kohärentes Wachstum bedeutet hierbei, dass die Schicht unter Beibehaltung der Substratgitterkonstante in der Ebene parallel zu der Substrat-Epischicht-Grenzfläche auf ein Substrat aufgewachsen wird. Die Abweichung der Gitterkonstanten von Substrat und unverspannter Epischicht (sog. Gitterfehlpassung) bestimmt den Grad der Verspannung. Die Schicht antwortet auf die Verspannung in der Ebene mit einer Änderung der Gitterkonstante senkrecht zur Grenzfläche. Dieser Zusammenhang ist entscheidend sowohl für die korrekte Interpretation von Messungen durch hochauflösende Röntgendiffraktometrie (engl. high resolution X-ray diffraction, HRXRD), als auch für die exakte Bestimmung der Banddispersion. Die Gitterkonstante von HgTe ist kleiner als die von CdTe. Daher ist HgTe tensil verspannt wenn es auf ein CdTe Substrat aufgewachsen wird, es kann aber durch die Verwendung von geeigneten \(\text{Cd}_{1-x}\text{Zn}_{x}\text{Te}\) Substraten prinzipiell auch kompressiv verspannt gewachsen werden. Dieses Konzept wurde in dieser Arbeit modifiziert und angewandt. Epischichten wurden mittels Molekularstrahlepitaxie (engl. molecular-beam epitaxy, MBE) hergestellt. Als Alternative zu kommerziellen CdTe und \(\text{Cd}_{0.96}\text{Zn}_{0.04}\text{Te}\) Substraten wurde zunächst das epitaktische Wachstum dicker Schichten (sog. Buffer) CdTe auf GaAs:Si Substraten etabliert. Der Parameterraum für optimales Wachstum wurde anhand von Rasterkraftmikroskopie- und HRXRD Studien eingegrenzt. HRXRD Messungen zeigen eine Zunahme der Qualität mit zunehmender Dicke, die einem Potenzgesetz folgt. Im Vergleich zu reinen CdTe Substraten wurde eine Restverspannung im Buffer beobachtet, wobei eine Kombination aus endlicher Schichtdicke und unterschiedlichen thermischen Ausdehnungskoeffizienten von CdTe und GaAs als Ursache ausgemacht wurde. Um die Verspannung in HgTe Epischichten kontrollieren zu können, wurde ein neuer Substrattyp mit frei einstellbarer Gitterkonstante entwickelt. Durch eine Kombination aus MBE und Atomlagenepitaxie (ALE) wurden spezielle \(\text{CdTe}- \text{Cd}_{0.5}\text{Zn}_{0.5}\text{Te}\) Übergitter auf GaAs:Si gewachsen, und wiederum mittels HRXRD analysiert. Die ALE der \(\text{Cd}_{0.5}\text{Zn}_{0.5}\text{Te}\) Schicht ist selbstbegrenzend auf eine Monolage, und die effektive Gitterkonstante des Übergitters konnte durch die Variation der Dicke der CdTe Schicht einfach und reproduzierbar kontrolliert werden. Eine Abnahme der Schichtqualität wurde mit zunehmendem Zinkgehalt beobachtet, der Effekt ist allerdings weniger stark ausgeprägt als in vergleichbaren ternären \(\text{Cd}_{1-x}\text{Zn}_{x}\text{Te}\) Einfachschichten. HgTe Quantentröge (engl. quantum wells, QWs) zwischen CdHgTe Barrieren wurden auf vergleichbare Weise auf Übergittern und konventionellen CdTe bzw. \(\text{Cd}_{0.96}\text{Zn}_{0.04}\text{Te}\) Substraten hergestellt. Dabei ist eine geringere kritische Schichtdicke des CdHgTe Barrierenmaterials auf Übergittersubstraten zu beachten. Neben der Verspannung ist die Trogdicke der zweite entscheidende Parameter für die elektronischen Eigenschaften der Schicht. Sie wurde anhand von Schwebungen in den Schichtdickenoszillationen der HRXRD Messung oder durch Röntgenreflektometrie auf etwa \(\pm\) 0.5 nm genau bestimmt. Es konnte erstmalig mit epitaktischen Mitteln kompressive Verspannung in HgTe QWs induziert werden (d.h. die effektive Gitterkonstante des Übergitters ist kleiner als die des HgTe). Es wurde gezeigt, dass das Problem der Gitterfehlpassung von Übergitter und Barriere durch die Verwendung von CdHgTe-ZnHgTe Übergittern anstelle von CdHgTe als Barrierenmaterial umgangen werden kann, und dass das kompressiv verspannte Wachstum von dickeren Schichten HgTe (sog. Bulk Material, Dicke mindestens 50 nm) ebenfalls möglich ist. Mit dem Verspannungszustand steht ein neuer Freiheitsgrad in der Fertigung von HgTe Epischichten zur Verfügung. Dieser beeinflusst die elektronische Bandstruktur von QWs und Bulk Schichten entscheidend. Verspannung in Bulk-Material hebt die Energieentartung der \(\Gamma_8\) Bänder bei \(\mathbf{k}=0\) auf. Tensile Verspannung öffnet dabei eine Energielücke, kompressive Verspannung schiebt die Berührpunkte von Valenz- und Leitungsband an Stellen in der Brillouinzone mit \(\mathbf{k}\neq0\). Eine derartige Situation wurde im Rahmen dieser Arbeit erstmals experimentell realisiert. Es wurde weiterhin demonstriert, dass in QWs mit topologisch invertierter Bandreihenfolge die thermische Bandlücke des zweidimensionalen Elektronengases (2DEG) durch kompressive Verspannung signifikant erhöht werden kann. Außerdem wird, je nach Verspannungszustand, halbmetallisches bzw. halbleitendes Verhalten in QWs mit hoher Trogdicke erwartet. Anhand einer Betrachtung der Temperaturabhängigkeit der Subbänder in QWs wurde gezeigt, dass eine temperaturstabile Bandlücke nur bei geeignet gewählten Probenparametern und Temperaturintervallen gegeben ist, und dass die Bandinversion für ausreichend hohe Temperaturen immer aufgehoben wird. Es existieren zahlreiche Modelle die die Stabilität des Quanten-Spin-Hall (QSH) Randzustandes in Verbindung mit der Bandlücke betrachten. Es wird insbesondere eine Zunahme der Stabilität des QSH Zustandes mit zunehmender Bandlücke erwartet. Außerdem besteht eine Diskrepanz zwischen theoretischen Modellen und experimentellen Daten bezüglich der Temperaturabhängigkeit der QSH-Leitfähigkeit. Diese Zusammenhänge konnten mit der neuen Flexibilität im Probendesign gezielt untersucht werden. QWs und Bulk Schichten wurden in Tieftemperatur- Magnetotransportmessungen eingehend untersucht. Dazu wurden Proben lithographisch hergestellt, deren Layout aus zwei Hallbar-Strukturen mit verschiedenen Abmessungen besteht. Dies ermöglicht die Unterscheidung zwischen Ladungstransport in der Fläche des 2DEGs, und dem Probenrand. Das Ferminiveau im 2DEG ist über eine Topgate-Elektrode einstellbar. Es wurde der verspannungsinduzierte Übergang von halbmetallischer zu halbleitender Charakteristik in breiten Quantentrögen gezeigt. Eine Analyse des zwei-Ladungsträger-Verhaltens bestätigt die Größe des halbmetallischen Überlapps von Valenz- und Leitungsband aus Bandstrukturberechnungen. Die Bandlücke der halbleitenden Probe wurde anhand der Temperaturabhängigkeit des Leitwertes am ladungsneutralen Punkt bestimmt. Die Übereinstimmung mit dem theoretisch erwarteten Wert wurde in dieser Arbeit zum ersten Mal erzielt. Der Einfluss der Bandlücke auf die Stabilität des QSH Randkanaltransports wurde anhand einer Serie von sechs Proben untersucht. Die Bandlücke wurde dabei von 10 auf 55 meV erhöht. Der letztgenannte Wert wurde in einem hochkompressiv verspannten QW erreicht, in temperaturabhängigen Leitwertsmessungen bestätigt, und stellt den Bestwert im invertierten Regime dar. Untersuchungen der Beweglichkeit der Ladungsträger zeigen, in Übereinstimmung mit HRXRD Messungen, dass die Probenqualität mit zunehmendem Zinkgehalt im Übergitter abnimmt. Die erhöhte Bandlücke verursacht keine effektive Unterdrückung der Rückstreuung der QSH Randkänale, verringert allerdings die Flächenleitung im 2DEG, sodass der Randkanaltransport auch bei höheren Temperaturen den dominanten Transportmechanismus darstellt. In Übereinstimmung mit Arbeiten anderer Gruppen wurde ein Anstieg des Leitwertes mit der Temperatur gefunden. Dieser lässt sich mit einem Potenzgesetz modellieren, seine Ursache blieb aber ungeklärt. Als Ursache für den ausbleibenden Anstieg des QSH Leitwertes mit zunehmender Bandlücke wurde diskutiert, dass die Probe aufgrund von Lokalisationseffekten auch bei endlicher Ladungsträgerdichte noch isolierend ist. Die Messung des QSH Leitwertes erfolgt möglicherweise nicht bei in der Bandlücke zentrierter Fermienergie, sondern im Regime maximaler Inselrückstreuung. In einer ersten Messreihe wurde weiterhin gezeigt, dass der QSH Leitwert durch hysteretische Umladungseffekte von Störstellen im Isolatormaterial beeinflusst werden kann. Dadurch wurde ein maximaler Leitwert von \(1.6\ \text{e}^2/\text{h}\) in einem \(58\mu\text{m}\) Randkanal erreicht. Abschließend wurden noch Messungen an dreidimensionalen Systemen diskutiert. Neue theoretische Studien ordnen kompressiv verspannte Bulk HgTe Schichten der Materialklasse der Weyl-Halbmetalle zu. Im Rahmen dieser Arbeit wurden zum ersten Mal derartige Schichten gewachsen und in Magnetotransportmessungen studiert. Ausgeprägte Quanten-Hall- und Shubnikov-de-Haas Signaturen im Hall- und Längswiderstand sind ein klares Indiz für zweidimensionalen Transport an der Probenoberfläche. Dieser lässt sich aufgrund der \(\Gamma_6\)-\(\Gamma_8\) Bandinversion in HgTe allerdings nicht eindeutig den Weyl-Oberflächenzuständen zuordnen. Orientiert man ein Magnetfeld parallel zum Probenstrom, so wird eine Abnahme des Längswiderstandes mit zunehmendem Magnetfeld beobachtet. Dies ist eine Signatur der chiralen Anomalie, die in Weyl Halbmetallen erwartet wird. KW - Quecksilbertellurid KW - Dünnschichttechnik KW - Deformation KW - Topologischer Isolator KW - HRXRD KW - low-temperature magnetotransport KW - band structure KW - Molekularstrahlepitaxie KW - Halbleiterphysik Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-152446 ER - TY - THES A1 - Mahler, David T1 - Surface states in the topological material HgTe T1 - Oberflächenzustände im topologischen Material HgTe N2 - The motivation for this work has been contributing a step to the advancement of technology. A next leap in technology would be the realization of a scalable quantum computer. One potential route is via topological quantum computing. A profound understanding of topological materials is thus essential. My work contributes by the investigation of the exemplary topological material HgTe. The focus lies on the understanding of the topological surface states (TSS) and new possibilities to manipulate them appropriately. Traditionally top gate electrodes are used to adjust the carrier density in such semi-conductor materials. We found that the electric field of the top gate can further alter the properties of the HgTe layer. The formation of additional massive Volkov-Pankratov states limits the accessibility of the TSS. The understanding of these states and their interplay with the TSS is necessary to appropriately design devices and to ensure their desired properties. Similarly, I observed the existence and stability of TSSs even without a bandgap in the bulk band structure in the inversion induced Dirac semi-metal phase of compressively strained HgTe. The finding of topological surface states in inversion-induced Dirac semi-metals provides a consistent and simple explanation for the observation reported for \(\text{Cd}_3\text{As}_2\). These observations have only been possible due to the high quality of the MBE grown HgTe layers and the access of different phases of HgTe via strain engineering. As a starting point I performed Magneto-transport measurements on 67 nm thick tensilely strained HgTe layers grown on a CdTe substrate. We observed multiple transport channels in this three-dimensional topological insulator and successfully identified them. Not only do the expected topological surface states exist, but also additional massive surface states have been observed. These additional massive surface states are formed due to the electrical field applied at the top gate, which is routinely used to vary the carrier density in the HgTe layer. The additional massive surface states are called Volkov-Pankratov states after B. A. Volkov and O. A. Pankratov. They predicted the existence of similar massive surface states at the interface of materials with mutually inverted bands. We first found indications for such massive Volkov-Pankratov states in high-frequency compressibility measurements for very high electron densities in a fruitful collaboration with LPA in Paris. Magneto-transport measurements and \(k \cdot p\) calculations revealed that such Volkov-Pankratov states are also responsible for the observed whole transport. We also found indications for similar massive VPS in the electron regime, which coexist with the topological surface states. The topological surface states exist over the full investigated gate range including a regime of pure topological insulator transport. To increase the variability of the topological surface states we introduced a modulation doping layer in the buffer layer. This modulation doping layer also enabled us to separate and identify the top and bottom topological surface states. We used the variability of the bulk band structure of HgTe with strain to engineer the band structure of choice using virtual substrates. The virtual substrates enable us to grow compressively strained HgTe layers that do not possess a bandgap, but instead linear crossing points. These layers are predicted to beDirac semi-metals. Indeed I observed also topological surface states and massive Volkov-Pankratov states in the compressively strained Dirac semi-metal phase. The observation of topological surfaces states also in the Dirac semi-metal phase has two consequences: First, it highlights that no bulk bandgap is necessary to observe topological surface states. Second, the observation of TSS also in the Dirac semi-metal phase emphasizes the importance of the underlying band inversion in this phase. I could not find any clear signatures of the predicted disjoint topological surface states, which are typically called Fermi-arcs. The presence of topological surface states and massive Volkov-Pankratov states offer a simple explanation for the observed quantum Hall effect and other two-dimensional transport phenomena in the class of inversion induced Dirac semi-metals, as \(\text{Cd}_3\text{As}_2\). This emphasizes the importance of the inherent bulk band inversion of different topological materials and provides a consistent and elegant explanation for the observed phenomena in these materials. Additionally, it offers a route to design further experiments, devices, and thus the foundation for the induction of superconductivity and thus topological quantum computing. Another possible path towards quantum computing has been proposed based on the chiral anomaly. The chiral anomaly is an apparent transport anomaly that manifests itself as an additional magnetic field-driven current in three-dimensional topological semimetals with a linear crossing point in their bulk band structure. I observed the chiral anomaly in compressively strained HgTe samples and performed multiple control experiments to identify the observed reduction of the magnetoresistance with the chiral anomaly. First, the dependence of the so-called negative magnetoresistance on the angle and strength of the magnetic field has been shown to fit the expectation for the chiral anomaly. Second, extrinsic effects as scattering could be excluded as a source for the observed negative MR using samples with different mobilities and thus impurity concentrations. Third, the necessity of the linear crossing point has been shown by shifting the electrochemical potential away from the linear crossing points, which diminished the negative magnetoresistance. Fourth, I could not observe a negative magnetoresistance in the three-dimensional topological insulator phase of HgTe. These observations together prove the existence of the chiral anomaly and verify compressively strained HgTe as Dirac semi-metal. Surprisingly, the chiral anomaly is also present in unstrained HgTe samples, which constitute a semi-metal with a quadratic band touching point. This observation reveals the relevance of the Zeeman effect for the chiral anomaly due to the lifting of the spin-degeneracy in these samples. Additionally to the chiral anomaly, the Dirac semi-metal phase of compressively strained HgTe showed other interesting effects. For low magnetic fields, a strong weak-antilocalization has been observed. Such a strong weak-anti-localization correction in a three-dimensional layer is surprising and interesting. Additionally, non-trivial magnetic field strength and direction dependencies have been observed. These include a strong positive magnetoresistance for high magnetic fields, which could indicate a metal-insulator transition. On a more device-oriented note, the semi-metal phase of unstrained HgTe constitutes the lower limit of the by strain engineering adjustable minimal carrier density of the topological surface states and thus of very high mobility. To sum up, topological surface states have been observed in the three-dimensional topological insulator phase and the Dirac semi-metal phase of HgTe. The existence and accessibility of topological surface states are thus independent of the existence of a bandgap in the bulk band structure. The topological surface states can be accompanied by massive Volkov-Pankratov states. These VPS are created by electric fields, which are routinely applied to adjust the carrier density in semiconductor devices. The theoretical predicted chiral anomaly has been observed in the Dirac semi-metal phase of HgTe. In contrast to theoretical predictions, no indications for the Fermi-arc called disjoint surface states have been observed, but instead the topological and massive Volkov-Pankratov surface states have been found. These states are thus expected for all inversion-induced topological materials. N2 - Der technologische Fortschritt schreitet immer schneller voran. Um diese Entwicklung zu ermöglichen, werden die Strukturen immer kleiner. Das Erreichen atomarer Größen könnte bald die Abkehr von der üblichen Miniaturisierung erfordern und den Sprung zu einer neuen Technologie erzwingen. Die Motivation dieser Arbeit ist es das Verständnis topologischer Materialien zu erweitern und so einen Beitrag zu der Realisierung eines solchen potenziellen Technologiesprungs zu leisten. Eine vielversprechende Möglichkeit zur Aufrechterhaltung der aktuellen Entwicklungsgeschwindigkeit ist die Realisierung eines skalierbaren Quantencomputers. Eine mögliche Umsetzung ist das topologische Quantum-Computing, das zum Beispiel durch induzierte Supraleitung in topologische Oberflächenzustände realisiert werden könnte. Das tiefgehende Verständnis der topologischen Oberflächenzustände und deren Manipulation ist ein Schwerpunkt dieser Arbeit. Der zweite Schwerpunkt wurde kürzlich auch als ein potenzieller Pfad zur Realisierung eines Quantencomputers basierend auf „chiralen Qubits“ vorgeschlagen, nämlich dem Nachweis und die Untersuchung des Transportphänomens der sogenannten chiralen Anomalie in Dirac- und Weyl-Halbmetallen. Die Untersuchungen in dieser Arbeit wurden am MBE gewachsenen topologischen Material HgTe durchgeführt. HgTe zeichnet sich dadurch aus, dass verschiedene topologische Phasen realisierbar sind. Dazu wird die HgTe-Schicht durch die Wahl entsprechender Substrate verspannt. Als Startpunkt für die Analyse der topologischen Oberflächenzustände habe ich die topologische Isolator-Phase gewählt. Diese wird durch ein gedehntes MBE-Wachstum der HgTe-Schicht auf einem CdTe-Substrat realisiert. Eine hohe Qualität der HgTe-Schicht und Oberfläche wurde dabei mit Hilfe von schützenden \(\text{Cd}_0.7\text{Hg}_0.3\text{Te}\)-Schichten gewährleistet. Wir haben zusätzlich eine Modulationsdoping Schicht in der unteren \(\text{Cd}_0.7\text{Hg}_0.3\text{Te}\)-Schicht eingeführt, die für eine kleine endliche Elektronendichte in der HgTe-Schicht sorgt. Diese Dotierung gewährleistet eine zuverlässige elektrische Kontaktierung. Aus diesen Waferstücken haben wir mit Hilfe optischer Lithografie und trocknen Ätzens so genannte Hall-Bars strukturiert, die aus einem Strompfad mit vier längs und quer angeordneten Spannungsabgriffen besteht. Eine Möglichkeit zur Kontrolle der Ladungsträgerdichte in der HgTe-Schicht wird über eine aufgedampfte Gate-Elektrode geschaffen. Diese Hall-Bars habe ich mit Hilfe von niedrig frequenten Wechselspannungsmessungen unter hohen Magnetfeldern bis zu 30 T bei tiefen Temperaturen von 2 K in Helium-Kryostaten bzw. 0.1 K in \(\text{He}_3\text{/He}\_4\)-Misch-Kryostaten untersucht. Die hohe Qualität der HgTe-Schicht spiegelt sich in den zuverlässig erreichten hohen Beweglichkeiten in der Größenordnung von \(0.5 \times 10^{6}\,\text{cm}^{2}/\text{Vs}\) im Elektronenregime und \(0.03 \times 10^6\,\text{cm}^2/\text{Vs}\) im Lochregime wider. Eine Quantisierung des Magneto-Transport ist dadurch schon für kleine Magnetfelder von \(B \gtrsim 0.5\,\text{T}\) beobachtbar. Dies ermöglichte mir die Analyse der Dispersion der Landau Levels und damit der Nachweis der Existenz von sechs zweidimensionalen Transportkanälen. Zwei dieser Kanäle konnten wir mit den topologischen Oberflächenzuständen identifizieren. Den Einfluss der Spannungen, die an der Gate-Elektrode angelegt wurden, haben wir in hoch frequenten Compressibilitätsmessungen festgestellt. In diesen Messungen haben wir für sehr hohe Elektrodenspannungen Hinweise auf zusätzliche massive Volkov-Pankratov Zustände gefunden. Der Name ist dabei gewählt worden, um die Vorhersage derartiger Zustände durch B. A. Volkov und O. A. Pankratov zu würdigen. Den Ursprung der vier weiteren Transportkanäle konnten wir mit Hilfe von Bandstrukturberechnungen auf zusätzliche Oberflächenzustände zurückführen. Die Berechnung haben wir mit Hilfe des Kane Models in der \(k \cdot p\) Näherung unter Beachtung der Hatree Potentiale, welche die angelegte Spannung an der Gate-Elektrode repräsentieren, durchgeführt. Die elektronenartigen topologischen Oberflächenzustände konnten für den ganzen untersuchten Elektrodenspannungsbereich nachgewiesen werden. Wir haben aber auch ein signifikantes und manipulierbares Elektrodenspannungsfenster gefunden, in welchem nur topologische Oberflächenzustände besetzt sind. Eine Möglichkeit zur Manipulation der Eigenschaften der topologischen Oberflächenzustände ist die Variation der Verspannung mit Hilfe des MBE-Wachstums auf virtuellen Substraten aus alternierenden \(\text{Cd}_{0.5}\text{Zn}_{0.5}\text{Te}\)- und CdTe-Schichten mit einstellbarer Gitterkonstante. Die HgTe-Schicht haben wir durch das Wachstum auf ein entsprechendes virtuelles Substrates druck- anstatt zugverspannt. Die HgTe-Schicht befindet sich dadurch in der Dirac-Halbmetall anstatt der dreidimensionalen topologischen Isolator-Phase. Dirac- Halbmetalle zeichnen sich durch einen linearen Kreuzungspunkt der Volumenmaterialbänder aus. Ich konnte topologische Oberflächenzustände und massive Volkov-Pankratov Zustände auch in der Dirac-Halbmetall-Phase nachweisen. Dieser Umstand weist die Existenz und Stabilität der topologischen Oberflächenzustände auch ohne Bandlücke in der Bandstruktur des Volumenmaterials nach. Des Weiteren betont die Anwesenheit der topologischen Oberflächenzustände die Relevanz der inhärenten Bandinversion für die Klasse der inversionsinduzierten Dirac-Halbmetalle. In druckverspanntem HgTe habe ich Quanten-Hall-Effekt beobachtet, der nur in zweidimensionalen Systemen auftritt. Ähnliche Beobachtungen wurden auch für andere Dirac-Halbmetalle, wie \(\text{Cd}_3\text{As}_2\), berichtet. Die topologischen Oberflächenzustände schlage ich als einfache und einheitliche Erklärung für diesen zweidimensionalen Transport vor. Die Anwesenheit linearer Kreuzungspunkte in der Volumenmaterialbandstruktur druckverspannten HgTes konnte ich durch die Beobachtung der chiralen Anomalie nachweisen. Damit konnte ich nicht nur druckverspanntes HgTe als Dirac-Halbmetall nachweisen, sondern auch einen Beitrag zum besseren Verständnis der chiralen Anomalie leisten. Des Weiteren habe elektrodenspannungsabhängige Messungen gezeigt, dass parallel anwesende Oberflächenzustände das Signal der chiralen Anomalie zwar überlagern, dieses aber nicht verhindern. Außerdem habe ich Untersuchungen an unterspannten HgTe Schichten durchgeführt, welche Halbmetalle mit einem Berührungspunkt zweier Bänder mit quadratischer Dispersion darstellen. Auch in diesen Schichten wurde die chirale Anomalie beobachtet. Dies verdeutlicht die Relevanz des Zeeman-Effektes für die Ausbildung der chiralen Anomalie in HgTe. Die chirale Anomalie zeigte eine unerwartet Magnetfeldrichtungsabhängigkeit des Wiederstandes im Bezug zur Stromrichtung. Diese Magnetfeldrichtungsabhängigkeit betont die Notwendigkeit der Beschreibung des Widerstandes als Tensor, damit die dreidimensionale Ausdehnung der experimentellen Proben und der daraus folgenden Effekte, wie dem Planar-Halleffekt, korrekt beschrieben werden. Des Weiteren habe ich eine für dreidimensionale Proben außergewöhnlich stark ausgeprägte Weak-Antilokalisierung beobachtet. Diese könnte spezifisch für topologische Halbmetalle sein, da ähnliche Beobachtungen auch für das Weyl Halbmetall TaA berichtet wurden. Das Ziel dieser Arbeit war es einen Beitrag zum technologischen Fortschritt durch das bessere Verständnis topologischer Materialen zu leisten. Dieses Ziel konnte somit erreicht werden. Wir können alle Zustände, die wir in dem dreidimensionalen topologischen Isolator zugverspanntes HgTe beobachtet haben, ihrem Ursprung zuordnen. Dies ermöglicht uns die Präparation und Manipulation der gewünschten Zustände für komplexe Bauteile, wie topologische und supraleitende Hybridstrukturen, zu optimieren. Ich konnte auch zum besseren Verständnis der Materialklasse der inversionsinduzierten Dirac-Halbmetalle beigetragen, indem ich die an druckverspannten HgTe gewonnen Erkenntnisse auf die gesamte Materialklasse der inversionsinduzierten Dirac-Halbmetalle verallgemeinern konnte. Dies ist zum Beispiel anhand des Nachweises der Anwesenheit von topologischen Oberflächenzuständen geschehen. Außerdem konnte ich neue Einblicke in die chirale Anomalie gewinnen. Die Existenz linearer Kreuzungspunkte in der Volumenmaterialbandstruktur wurde dabei als notwendige Bedingung bestätigt. Damit konnte ich einen Beitrag zum Verständnis der Grundbausteine für zweimögliche Pfade zu einem potenziellen Quantencomputer in der Form von zug- und druckverspanntem HgTe leisten. KW - Quecksilbertellurid KW - Topologischer Isolator KW - Elektronischer Transport KW - Oberflächenzustand KW - Dirac semimetal KW - topological insulator KW - HgTe KW - topological surface states KW - Volkov-Pankratov states Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-253982 ER - TY - THES A1 - Maier, Luis T1 - Induced superconductivity in the topological insulator mercury telluride T1 - Induzierte Supraleitung im topologischen Isolator Quecksilbertellurid N2 - The combination of a topological insulator (TI) and a superconductor (S), which together form a TI/S interface, is expected to influence the possible surface states in the TI. It is of special interest, if the theoretical prediction of zero energy Majorana states in this system is verifiable. This thesis presents the experimental realization of such an interface between the TI strained bulk HgTe and the S Nb and studies if the afore mentioned expectations are met. As these types of interfaces were produced for the first time the initial step was to develop a new lithographic process. Optimization of the S deposition technique as well as the application of cleaning processes allowed for reproducible fabrication of structures. In parallel the measurement setup was upgraded to be able to execute the sensitive measurements at low energy. Furthermore several filters have been implemented into the system to reduce high frequency noise and the magnetic field control unit was additionally replaced to achieve the needed resolution in the μT range. Two kinds of basic geometries have been studied: Josephson junctions (JJs) and superconducting quantum interference devices (SQUIDs). A JJ consists of two Nb contacts with a small separation on a HgTe layer. These S/TI/S junctions are one of the most basic structures possible and are studied via transport measurements. The transport through this geometry is strongly influenced by the behavior at the two S/TI interfaces. In voltage dependent differential resistance measurements it was possible to detect multiple Andreev reflections in the JJ, indicating that electrons and holes are able to traverse the HgTe gap between both interfaces multiple times while keeping phase coherence. Additionally using BTK theory it was possible to extract the interface transparency of several junctions. This allowed iterative optimization for the highest transparency via lithographic improvements at these interfaces. The increased transparency and thus the increased coupling of the Nb’s superconductivity to the HgTe results in a deeper penetration of the induced superconductivity into the HgTe. Due to this strong coupling it was possible to enter the regime, where a supercurrent is carried through the complete HgTe layer. For the first time the passing of an induced supercurrent through strained bulk HgTe was achieved and thus opened the area for detailed studies. The magnetic dependence of the supercurrent in the JJ was recorded, which is also known as a Fraunhofer pattern. The periodicity of this pattern in magnetic field compared to the JJ geometry allowed to conclude how the junction depends on the phase difference between both superconducting contacts. Theoretical calculations predicted a phase periodicity of 4p instead of 2p, if a TI is used as weak link material between the contacts, due to the presence of Majorana modes. It could clearly be shown that despite the usage of a TI the phase still was 2p periodic. By varying further influencing factors, like number of modes and phase coherence length in the junction, it might still be possible to reach the 4p regime with bound Majorana states in the future. A good candidate for further experiments was found in capped HgTe samples, but here the fabrication process still has to be developed to the same quality as for the uncapped HgTe samples. The second type of geometry studied in this thesis was a DC-SQUID, which consists of two parallel JJs and can also be described as an interference device between two JJs. The DC-SQUID devices were produced in two configurations: The symmetric SQUID, where both JJs were identical, and the asymmetric SQUID, where one JJ was not linear, but instead has a 90° bent. These configurations allow to test, if the predicted uniformity of the superconducting band gap for induced superconductivity in a TI is valid. While the phase of the symmetric SQUID is not influenced by the shape of the band gap, the asymmetric SQUID would be in phase with the symmetric SQUID in case of an uniform band gap and out of phase if p- or d-wave superconductivity is dominating the transport, due to the 90° junction. As both devices are measured one after another, the problem of drift in the coil used to create the magnetic field has to be overcome in order to decide if the oscillations of both types of SQUIDs are in phase. With an oscillation period of 0.5 mT and a drift rate in the range of 5.5 μT/h the measurements on both configurations have to be conducted in a few hours. Only then the total shift is small enough to compare them with each other. For this to be possible a novel measurement system based on a real time micro controller was programmed, which allows a much faster extraction of the critical current of a device. The measurement times were reduced from days to hours, circumventing the drift problems and enabling the wanted comparison. After the final system optimizations it has been shown that the comparison should now be possible. Initial measurements with the old system hinted that both types of SQUIDs are in phase and thus the expected uniform band gap is more likely. With all needed optimizations in place it is now up to the successors of this project to conclusively prove this last point. This thesis has proven that it is possible to induce superconductivity in strained bulk HgTe. It has thus realized the most basic sample geometry proposed by Fu and Kane in 2008 for the appearance of Majorana bound states. Based on this work it is now possible to further explore induced superconductivity in strained bulk HgTe to finally reach a regime, where the Majorana states are both stable and detectable. N2 - Aus theoretischen Betrachtungen geht hervor, dass die Kombination eines topologischen Isolators (TI) und eines Supraleiters (S) zu einer TI/S Grenzfläche die möglichen Oberflächenzustände im TI beeinflussen kann. Von besonderem Interesse ist dabei die Vorhersage der Ausbildung von Majorana Zuständen bei Null-Energie. Diese Arbeit beschäftigt sich mit der experimentellen Realisierung einer solchen Grenzfläche zwischen dem TI verspanntes HgTe und dem S Nb und analysiert, ob die oben genannten Effekte tatsächlich in diesem System auftreten. Da diese Grenzflächen zum ersten Mal produziert wurden, musste zunächst ein neuer lithographischer Prozess dafür entwickelt werden. Nach der Optimierung der Depositionstechnik des S sowie der Anwendung von Reinigungsschritten, war eine reproduzierbare Fertigung von Probenstrukturen möglich. Parallel dazu wurde das Messsystem ausgebaut, damit die sensitiven Messungen bei geringer Energie durchgeführt werden konnten. So wurden mehrere Frequenzfilter eingebaut, um Hochfrequenzrauschen zu reduzieren und die Magnetfeldsteuerung ersetzt, damit die benötigte Auflösung im μT Bereich ereicht werden konnte. Es wurden zwei grundlegende Geometrien untersucht: Josephson Kontakte (engl. Josephson junctions, JJ) und supraleitende Quanteninterferenzeinheiten (engl. superconducting quantum interference devices, SQUIDs). Eine JJ besteht aus zwei Nb Kontakten mit einem kleinen Abstand zueinander, die auf einer HgTe Schicht aufgebracht werden. Diese S/TI/S Kontakte bilden eine der grundlegendsten Strukturen, die möglich sind und wurden mit Hilfe von Transportmessungen untersucht. Der Ladungstransport in dieser Geometrie wird stark durch die beiden S/TI Grenzflächen beeinflusst. In spannungsabhängigen Messungen des differenziellen Widerstandes konnten mehrfache Andreev Reflexionen in den JJ nachgewiesen werden, was zeigt, dass Elektronen und Löcher die HgTe Lücke zwischen beiden Nb Kontakten wiederholt phasenkoherent überwinden können. Zusätzlich konnte mit Hilfe der BTK Theorie die Transparenz der Grenzflächen bestimmt werden. Dies erlaubte eine iterative Optimierung zum Erreichen der höchst möglichen Transparenz durch lithographische Verbesserungen an den Grenzflächen. Eine verbesserte Transparenz erlaubt eine stärkere Kopplung der Supraleitung des Nb an das HgTe und somit ein tieferes Eindringen der induzierten Supraleitung in die HgTe Schicht. Aufgrund der verbesserten Ankopplung war es möglich, das Regime zu erreichen, in dem ein Suprastrom durch die HgTe Schicht zwischen den Nb Kontakten getragen werden kann. Erstmals konnte ein induzierter Suprastrom durch verspanntes HgTe geleitet werden und ermöglichte es, in diesem Forschungsbereich mit detaillierten Analysen zu beginnen. Es wurde die magnetische Abhängigkeit des Suprastroms in der JJ aufgenommen, auch bekannt als Fraunhofer Muster. Die Periodizität dieses Musters im Magnetfeld im Vergleich zur geometrischen Ausdehnung der JJ erlaubt Rückschlüsse darüber, wie der Suprastrom der JJ von der Phasendifferenz zwischen beiden supraleitenden Kontakten abhängt. Theoretische Berechnungen haben vorhergesagt, dass die Periodizität dieser Phasenbeziehung von ursprünglich 2p auf 4p wechselt, falls ein TI als Material zwischen den beiden Nb Kontakten verwendet wird, da Majorana Moden auftreten. Es konnte jedoch klar gezeigt werden, dass trotz Verwendung eines TI die Phasendifferenz immer noch 2p periodisch war. Durch die Variation weiterer Einflussfaktoren, wie die Anzahl der möglichen Moden oder die Phasenkohärenzlänge in der JJ könnte es in Zukunft trotz allem immer noch möglich sein, einen Bereich zu erreichen, in dem eine 4p Periodizität mit Majorana Zuständen vorliegt. Ein erfolgversprechender Kandidat für diese Experimente konnte in verspanntem HgTe mit CdHgTe Deckschicht gefunden werden, jedoch muss der Fabrikationsprozess für diese Material erst noch entwickelt werden, um in der Lage zu sein, Strukturen zu produzieren, die qualitativ vergleichbar mit denen ohne Deckschicht sind. Der zweite Geometrie-Typ, der untersucht wurde, ist ein DC-SQUID, das aus zwei parallelen JJs besteht und analog auch als Interferometer zweier JJs gesehen werden kann. Es wurden zwei Arten von DC-SQUIDs produziert: Das symmetrische SQUID, bestehend aus zwei identischen JJs und das asymmetrische SQUID, bei dem eine JJ nicht linear aufgebaut ist, sondern beide Nb Kontakte statt dessen einen Winkel von 90° zueinander aufweisen. Diese beiden Arten erlauben es die fehlende Winkelabhängigkeit der supraleitenden Bandlücke zu überprüfen, die für induzierte Supraleitung in einem TI prognostiziert wurde. Die Phase des symmetrischen SQUIDs wird nicht durch die Form der supraleitenden Bandlücke beeinflusst. Daher kann es als Referenz verwendet werden, um eine eventuelle Phasenverschiebung des asymmetrischen SQUIDs zu erkennen. Ist keine Phasenverschiebung vorhanden, ist dies eine Bestätigung der Uniformität der Bandlücke. Falls jedoch eine Phasenverschiebung aufgrund des 90° Kontaktes auftritt, würde der Transport hauptsächlich durch p- oder d-artige Supraleitung getragen werden. Da beide SQUIDs nacheinander vermessen werden, muss sichergestellt werden, dass Drifteffekte in der magnetfelderzeugenden Spule keinen Einfluss auf den Vergleich haben. Die typische Oszillationsfrequenz der SQUIDs beträgt 0.5 mT und die Driftrate der Spule liegt im Bereich von 5.5 μT/h. Um einen aussagekräftigen Vergleich durchführen zu können, müssen die Messungen an beiden SQUIDs in wenigen Stunden durchgeführt werden, damit der Gesamtdrift klein genug bleibt. Um diese Messgeschwindigkeit zu erreichen, wurde ein neues Messsystem zur Aufnahme des kritischen Stroms, basierend auf einem Echtzeit Microcontroller, entwickelt. Dies reduziert die Zeitskala der benötigten Messungen von Tagen auf Stunden und erlaubt es so, den gewünschten Vergleich durchzuführen. Nachdem alle Optimierungen im Messsystem realisiert wurden, konnte gezeigt werden, dass der Vergleich nun tatsächlich möglich ist. Erste Testmessungen mit dem alten Messsystem legen nahe, dass das asymmetrische SQUID ein Maximum bei B = 0 T zeigt und somit die homogene Bandlücke das wahrscheinlichere Resultat ist. Da nun alle messspezifischen Optimierungen abgeschlossen sind, sollte es den Nachfolgern dieses Projektes zukünftig möglich sein, die finale Messung durchzuführen. Diese Arbeit hat gezeigt, dass es möglich ist, Supraleitung in verspanntem HgTe zu induzieren. Es wurde somit die grundlegendste Probengeometrie realisiert, die von Fu und Kane in 2008 für das Auftreten von Majorana Zuständen vorgeschlagen wurde. Ausgehend von dieser Vorarbeit kann nun das Regime der induzierten Supraleitung in verspanntem HgTe weiter erforscht werden, um schlussendlich in einen Bereich vorzustoßen, in dem Majorana Zustände zugleich stabil und messbar sind. KW - superconductivity KW - induced KW - mercury KW - telluride KW - topological KW - insulator KW - TI KW - proximity effect KW - josephson junction KW - SQUID KW - topological insulator KW - Quecksilbertellurid KW - Topologischer Isolator KW - Supraleitung Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119405 ER - TY - THES A1 - Mühlbauer, Mathias Josef T1 - Nanolithography on Mercury Telluride T1 - Nanolithographie auf Quecksilber Tellurid N2 - Topological insulators belong to a new quantum state of matter that is currently one of the most recognized research fields in condensed matter physics. Strained bulk HgTe and HgTe/HgCdTe quantum well structures are currently one of few topological insulator material systems suitable to be studied in transport experiments. In addition HgTe quantum wells provide excellent requirements for the conduction of spintronic experiments. A fundamental requirement for most experiments, however, is to reliably pattern these heterostructures into advanced nano-devices. Nano-lithography on this material system proves to be challenging because of inherent temperature limitations, its high reactivity with various metals and due to its properties as a topological insulator. The current work gives an insight into why many established semiconductor lithography processes cannot be easily transferred to HgTe while providing alternative solutions. The presented developments include novel ohmic contacts, the prevention of metal sidewalls and redeposition fences in combination with low temperature (80 °C) lithography and an adapted hardmask lithography process utilizing a sacrificial layer. In addition we demonstrate high resolution low energy (2.5 kV) electron beam lithography and present an alternative airbridge gating technique. The feasibility of nano-structures on HgTe quantum wells is exemplarily verified in two separate transport experiments. We are first to realize physically etched quantum point contacts in HgTe/HgCdTe high mobility 2DEGs and to prove their controllability via external top-gate electrodes. So far quantum point contacts have not been reported in TI materials. However, these constrictions are part of many proposals to probe the nature of the helical quantum spin Hall edge channels and are suggested as injector and detector devices for spin polarized currents. To confirm their functionality we performed four-terminal measurements of the point contact conductance as a function of external gate voltage. Our measurements clearly exhibit quantized conductance steps in 2e2/h, which is a fundamental characteristic of quantum point contacts. Furthermore we conducted measurements on the formation and control of collimated electron beams, a key feature to realize an all electrical spin-optic device. In a second study several of the newly developed lithography techniques were implemented to produce arrays of nano-wires on inverted and non-inverted HgTe quantum well samples. These devices were used in order to probe and compare the weak antilocalization (WAL) in these structures as a function of magnetic field and temperature. Our measurements reveal that the WAL is almost an order of magnitude larger in inverted samples. This observation is attributed to the Dirac-like dispersion of the energy bands in HgTe quantum wells. The described lithography has already been successfully implemented and adapted in several published studies. All processes have been optimized to guarantee a minimum effect on the heterostructure’s properties and the sample surface, which is especially important for probing the topological surface states of strained HgTe bulk layers. Our developments therefore serve as a base for continuous progress to further establish HgTe as a topological insulator and give access to new experiments. N2 - Topologische Isolatoren (TIs) beschreiben einen neuartigen Quanten-Aggregatszustand, der derzeit eines der meist beachteten Forschungsfelder in der Festkörperphysik darstellt. Verspannt gewachsene HgTe Schichten, sowie HgTe/HgCdTe Quantentrogstrukturen sind als eines der wenigen TI-Materialsysteme geeignet, um in Transportexperimenten untersucht zu werden. Darüber hinaus bieten HgTe Quantentröge hervorragende Voraussetzungen zur Durchführung von Spintronik-Experimenten. Eine grundlegende Voraussetzung für die meisten Versuche ist die zuverlässige Herstellung komplexer Nanostrukturen in diesen Schichtsystemen. Aufgrund der intrinsischen Temperaturgrenzen, der hohen Reaktivität mit verschiedensten Metallen und nicht zuletzt seiner Eigenschaften als topologischer Isolator, stellt Nanolithographie auf HgTe eine Herausforderung dar. Die vorliegende Arbeit zeigt auf, weshalb viele der in der Halbleitertechnik etablierten Lithographieprozesse nicht einfach auf HgTe übertragbar sind und bietet stattdessen alternative Lösungen. Die vorgestellten Entwicklungen befassen sich unter anderem mit der Herstellung ohmscher Kontakte, der Vermeidung metallischer Seitenwände und Ätzresiduen in Kombination mit Niedertemperatur-Lithographie (≤80 °C) und einem angepassten Hartmasken-Lithographieprozess. Zusätzlich demonstrieren wir hochauflösende Niederenergie-Elektronenstrahllithographie (2.5 kV) und die Strukturierung freitragender Gate-Elektroden. Die Realisierbarkeit von Nanostrukturen in HgTe Quantentrögen wurde anhand zweier unabhängiger Transportexperimente verifiziert. Wir präsentieren die erste Umsetzung physikalisch geätzter Quantenpunktkontakte in hochbeweglichen HgTe/HgCdTe 2DEGs und weisen deren Kontrollierbarkeit mittels externer Topgate-Elektroden nach. Bisher wurden experimentell noch keine Quantenpunktkontakte in TI-Materialien realisiert. Um deren Funktionalität zu bestätigen, wurden Messungen des Punktkontaktleitwerts als Funktion der externen Gate-Spannung durchgeführt. Die Messungen zeigen deutlich quantisierte Leitwertstufen in Abständen von 2e2/h, ein Charakteristikum von QPCs. Darüber hinaus wurden Untersuchungen zur Erzeugung und Kontrolle kollimierter Elektronenstrahlen durchgeführt, einer Schlüsselvoraussetzung zur Umsetzung spinoptischer Bauteile. Für die zweite Studie wurden mehrere der beschriebenen Lithographie- Techniken angewandt, um präzise Anordnungen aus Nanodrähten aus invertierten sowie nicht invertierten Quantentrögen zu erstellen. Mit diesen Proben wurde der Effekt der schwachen Antilokalisierung in Abhängigkeit von Magnetfeld und Temperatur untersucht. Unsere Messungen zeigen, dass die schwache Antilokalisierung in invertierten Proben um fast eine Größenordnung höher ist. Diese Beobachtung kann wiederum der Dirac-artigen Dispersion der Energiebänder in HgTe Quantentrögen zugeschrieben werden. Alle Lithographieprozesse wurden optimiert, um Einflüsse auf die Materialeigenschaften sowie die Probenoberfläche zu minimieren. Dies ist besonders für die Untersuchung der topologischen Oberflächenzustände verspannt gewachsener HgTe-Schichten relevant. Die vorgestellten Entwicklungen dienen dabei als Grundlage, um HgTe weiter als topologischen Isolator zu etablieren und gewähren Zugang zu neuen Experimenten. Die in dieser Arbeit beschriebene Lithographie fand bereits mehrfach Anwendung in verschiedenen veröffentlichten Studien. KW - Topologischer Isolator KW - Nanolithografie KW - Quecksilbertellurid KW - nanolithography KW - HgTe KW - Mercury Telluride KW - quantum point contact KW - Topological insulator Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137152 ER - TY - THES A1 - Müller, Valentin Leander T1 - Transport signatures of topological and trivial states in the three-dimensional topological insulator HgTe T1 - Transporteigenschaften von topologischen und trivialen Zuständen im dreidimensionalen topologischen Isolator HgTe N2 - The thesis at hand is concerned with improving our understanding of and our control over transport properties of the three-dimensional topological insulator HgTe. Topological insulators are characterized by an insulating bulk and symmetry-protected metallic surface states. These topological surface states hold great promise for research and technology; at the same time, many properties of experimentally accessible topological insulator materials still need to be explored thoroughly. The overall aim of this thesis was to experimentally investigate micrometer-sized HgTe transport devices to observe the ballistic transport regime as well as intercarrier scattering and possibly identify special properties of the topological surface states. Part I of the thesis presents lithographic developments concerned with etching small HgTe devices. The aim was to replace existing processes which relied on dry etching with high-energy \(\text{Ar}^+\) ions and an organic etch mask. This etching method is known to degrade the HgTe crystal quality. In addition, the etch mask turned out to be not durable for long etching processes and difficult to remove completely after etching. First, \(\text{BaF}_2\) was introduced as a new etch mask for dry etching to replace the organic etch mask. With common surface characterization techniques like SEM and XPS it was shown that \(\text{BaF}_2\) etch masks are easy to deposit, highly durable in common dry etching processes for \(\text{Hg}_{1-x}\text{Cd}_x\text{Te}\), and easy to remove in deionized water. Transport results of HgTe devices fabricated with the new etch mask are comparable to results obtained with the old process. At the same time, the new etch mask can withstand longer etching times and does not cause problems due to incomplete removal. Second, a new inductively coupled plasma dry etching process based on \(\text{CH}_4\) and Ar was introduced. This etching process is compatible with \(\text{BaF}_2\) etch masks and yields highly reproducible results. Transport results indicate that the new etching process does not degrade the crystal quality and is suitable to produce high-quality transport devices even in the micrometer range. A comparison with wet-etched samples shows that inductively coupled plasma etching introduces a pronounced edge roughness. This - usually undesirable - property is actually beneficial for some of the experiments in this study and mostly irrelevant for others. Therefore, most samples appearing in this thesis were fabricated with the new process. Part II of the thesis details the advancements made in identifying topological and trivial states which contribute to transport in HgTe three-dimensional topological insulators. To this end, macroscopic Hall bar samples were fabricated from high-quality tensilely strained HgTe layers by means of the improved lithographic processes. All samples were equipped with a top gate electrode, and some also with a modulation doping layer or a back gate electrode to modify the carrier density of the surface states on both sides of the HgTe layer. Due to the high sample quality, Landau levels could be well-resolved in standard transport measurements down to magnetic fields of less than 0.5T. High-resolution measurements of the Landau level dispersion with gate voltage and magnetic field allowed disentangling different transport channels. The main result here is that the upper (electron) branches of the two topological surface states contribute to transport in all experimentally relevant density regimes, while the hole branch is not accessible. Far in n-regime bulk conduction band states give a minor contribution to transport. More importantly, trivial bulk valence band holes come into play close to the charge neutrality point. Further in p-regime, the strong applied gate voltage leads to the formation of two-dimensional, massive hole states at the HgTe surface. The interplay of different states gives rise to rich physics: Top gate-back gate maps revealed that an anticrossing of Landau levels from the two topological surface states occurs at equal filling. A possible explanation for this effect is a weak hybridization of the surface states; however, future studies need to further clarify this point. Furthermore, the superposition of n-type topological and p-type trivial surface states leads to an intriguing Landau level dispersion. The good quantization of the Hall conductance in this situation indicates that the counterpropagating edge states interact with each other. The nature of this interaction will be the topic of further research. Part III of the thesis is focused on HgTe microstructures. These "channel samples" have a typical width of 0.5 to 4µm and a typical length of 5 to 80µm. The quality of these devices benefits particularly from the improved lithographic processes. As a result, the impurity mean free path of the topological surface state electrons is on the order of the device width and transport becomes semiballistic. This was verified by measuring the channel resistance in small magnetic fields in n-regime. The deflection of carriers towards the dissipative channel walls results in a pronounced peak in the magnetoresistance, which scales in a predictable manner with the channel width. To investigate transport effects due to mutual scattering of charge carriers, the differential resistance of channel samples was measured as a function of carrier temperature. Selective heating of the charge carriers - but not the lattice - was achieved by passing a heating current through the channel. Increasing the carrier temperature has two pronounced effects when the Fermi level is situated in proximity to the bulk valence band maximum where the density of states is large. First, when both topological surface state electrons and bulk holes are present, electron-hole scattering leads to a pronounced increase in resistance with increasing carrier temperature. Second, a thermally induced increase of the electron and hole carrier densities reduces the resistance again at higher temperatures. A model considering these two effects was developed, which can well reproduce the experimental results. Current heating experiments in zero-gap HgTe quantum wells and compressively strained HgTe layers are consistent with this model. These observations raise the question as to how electron-hole scattering may affect other transport properties of HgTe-based three-dimensional topological insulators, which is briefly discussed in the outlook. N2 - Die vorliegende Arbeit beschäftigt sich mit dem dreidimensionalen topologischen Isolator HgTe. Als topologische Isolatoren bezeichnet man Materialien, die in ihrem Inneren elektrisch isolierend sind, auf ihrer Oberfläche jedoch symmetriegeschützte metallische Zustände aufweisen. Diese topologischen Oberflächenzustände sind aufgrund ihrer speziellen Eigenschaften für die Grundlagenforschung und praktische Anwendungen von großem Interesse. Die Erforschung topologischer Isolatoren ist ein relativ junges Forschungsgebiet, sodass viele Eigenschaften dieser Materialien noch besser verstanden werden müssen. Das übergeordnete Anliegen dieser Arbeit war die experimentelle Untersuchung von HgTe Mikrostrukturen mithilfe von Transportexperimenten. Das Ziel war hier, sowohl das ballistische Transportregime als auch die Streuung von Ladungsträgern untereinander zu beobachten und möglicherweise Besonderheiten der topologischen Oberflächenzustände zu finden. Teil I der Arbeit stellt die Weiterentwicklung lithographischer Prozesse zur Herstellung von HgTe-Mikrostrukturen vor. Der zu Beginn dieser Arbeit genutzte Prozess basierte auf einem Trockenätzprozess mit hochenergetischen \(\text{Ar}^+\) Ionen. Dieses Ionenstrahlätzen beschädigt jedoch die HgTe-Kristallstruktur. Zudem war die verwendete organische Ätzmaske nicht sehr widerstandsfähig gegen Ionenbeschuss und nach dem Ätzvorgang nur schwer zu entfernen. Um diese Probleme zu umgehen, wurde zunächst \(\text{BaF}_2\) als mögliche Alternative zur bestehenden Ätzmaske untersucht. Mithilfe verschiedener Techniken zur Oberflächencharakterisierung wie SEM und XPS konnte gezeigt werden, dass \(\text{BaF}_2\) Ätzmasken einfach herzustellen, sehr widerstandsfähig gegenüber gängigen Trockenätzprozessen für \(\text{Hg}_{1-x}\text{Cd}_x\text{Te}\), und leicht in deionisiertem Wasser zu entfernen sind. Probenpaare, die entweder mit der alten oder der neuen Ätzmaske hergestellt wurden, haben vergleichbare Transporteigenschaften. Allerdings ist die neue \(\text{BaF}_2\) Ätzmaske deutlich robuster gegenüber Trockenätzprozessen und einfacher zu entfernen, was für die weitere Prozessierung eine entscheidende Verbesserung darstellt. Zusätzlich zur neuen Ätzmaske wurde auch induktiv gekoppeltes Plasmaätzen mit \(\text{CH}_4\) und Ar als Prozessgasen eingeführt. Dieses Trockenätzverfahren zeichnet sich durch sehr reproduzierbare Ergebnisse aus. Die Transporteigenschaften der so hergestellten Proben deuten darauf hin, dass induktiv gekoppeltes Plasmaätzen die Kristallqualität nicht merklich beeinträchtigt und dementsprechend auch zur Herstellung kleiner Proben geeignet ist. Der direkte Vergleich mit nasschemisch geätzten Proben zeigt, dass die Kanten der trockengeätzten Proben eine ausgeprägtere Rauigkeit aufweisen. Tatsächlich ist diese - meist unerwünschte - Eigenschaft für einige Experimente in dieser Arbeit von Vorteil oder zumindest nicht problematisch. Die meisten Proben wurden daher mit dem neuen Verfahren hergestellt. Teil II der Arbeit zeigt detailliert, welche topologischen und trivialen Zustände im dreidimensionalen topologischen Isolator HgTe für den Ladungstransport relevant sind. Die zugrundeliegenden Transportexperimente wurden an qualitativ hochwertigen, makroskopischen "Hall bar" Proben aus zugverspannten HgTe-Schichten durchgeführt. Auf alle diese Proben wurde eine "Top Gate"-Elektrode aufgebracht. Zusätzlich waren einige Proben mit einer Modulationsdotierung oder einer weiteren "Back Gate"-Elektrode unter der HgTe Schicht ausgestattet, sodass die Ladungsträgerdichte beider topologischer Oberflächenzustände beeinflusst werden konnte. Aufgrund der hohen Probenqualität konnten bereits bei kleinen Magnetfeldern von weniger als 0.5T Landau-Niveaus aufgelöst werden. Detaillierte Messungen der Landau-Niveaus mit veränderlichen Gatespannungen und Magnetfeldern ermöglichten es, die relevanten Transportkanäle einzeln zu identifizieren. Die wichtigste Erkenntnis ist hierbei, dass die elektronenartigen topologischen Oberflächenzustände in allen experimentell relevanten Dichtebereichen die Transporteigenschaften dominieren, der lochartige Teil dieser Bänder jedoch nicht erreicht werden kann. Weit im n-Bereich werden auch die volumenartigen Zustände des Leitungsbandes besetzt, die jedoch nur einen kleinen Einfluss auf die Transporteigenschaften haben. Die volumenartigen Zustände des Valenzbandes haben hingegen einen großen Einfluss auf Transporteigenschaften, wenn die Gesamtladungsträgerdichte des Systems klein wird. Das Anlegen einer hohen Gatespannung führt weiter im p-Bereich zur Bildung von zweidimensionalen, lochartigen Zuständen an der dem Gate zugewandten HgTe Oberfläche. Aus dem Zusammenspiel dieser Zustände ergeben sich mehrere interessante Effekte: Top- und Back-Gate-abhängige Messungen zeigen deutlich, dass bei gleicher Besetzungszahl die Landau-Niveaus der beiden topologischen Oberflächenzustände nicht direkt kreuzen. Eine mögliche Erklärung für dieses Phänomen ist eine schwache Hybridisierung der Oberflächenzustände, die in weiterführenden Studien genauer untersucht werden sollte. Darüber hinaus führt die Überlagerung von elektronenartigen und lochartigen Zuständen zu einem komplexen Verlauf der Landau-Niveaus im Magnetfeld. Die Hall-Leitfähigkeit ist in dieser Situation exakt quantisiert, was auf eine Wechselwirkung zwischen den gegenläufigen Randzuständen schließen lässt. Eine weiterführende Studie wird sich detaillierter mit dieser Wechselwirkung auseinandersetzen. Teil III der Arbeit konzentriert sich auf HgTe Mikrostrukturen. Diese "Kanalproben" haben üblicherweise eine Breite von 0.5 bis 4µm und eine Länge von 5 bis 80µm. Die weiterentwickelten lithographischen Prozesse erlauben die Herstellung solcher Strukturen mit ausreichend hoher Qualität, um im n-Bereich das quasi-ballistische Transportregime zu erreichen. Hier liegt die mittlere freie Weglänge von Elektronen in den topologischen Oberflächenzuständen in derselben Größenordnung wie die Kanalbreite. Dies konnte durch Messung des Kanalwiderstands in kleinen Magnetfeldern nachgewiesen werden. Die Ladungsträger werden hierbei zu den Kanalwänden hin abgelenkt und streuen dort vermehrt. Der Magnetowiderstand zeigt dann ein ausgeprägtes Maximum, was vorhersagbar mit der Kanalbreite skaliert. Die Ladungsträger können auch untereinander streuen. Um diesen Effekt zu untersuchen, wurde der differentielle Kanalwiderstand als Funktion der Ladungsträgertemperatur gemessen. Für diese Messungen wurde ein Heizstrom direkt durch den Kanal geschickt, um die Ladungsträgertemperatur - nicht jedoch die Gittertemperatur - zu erhöhen. Wenn das Fermi-Niveau nah am Valenzbandmaximum mit seiner sehr großen Zustandsdichte liegt, hat die Erhöhung der Ladungsträgertemperatur zwei sehr ausgeprägte Konsequenzen: Zum einen kommt es zu einem starken Anstieg des Widerstands mit steigender Temperatur, verursacht durch die Streuung von Elektronen aus den topologischen Oberflächenzuständen mit Löchern aus dem Valenzband. Zum anderen führt die thermische Umverteilung von Ladungsträgen bei höheren Temperaturen zu einem Abfall des Widerstands. Basierend auf diesen beiden Effekten wurde ein Modell entwickelt, was die experimentellen Beobachtungen zufriedenstellend reproduziert. Dieses Modell fand weitere Bestätigung durch ähnliche Messungen an HgTe Quantentrögen und druckverspannten HgTe Schichten. Diese Ergebnisse führen zu der Frage, inwiefern die Elektronen-Loch Streuung andere Transporteigenschaften des dreidimensionalen topologischen Isolators HgTe beeinflusst. Ein kurzer Ausblick erörtert, wie diese Frage in weiterführenden Studien untersucht werden kann. KW - Topologischer Isolator KW - Quecksilbertellurid KW - Elektronentransport KW - topological insulator KW - HgTe KW - surface states KW - electron-hole scattering Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259521 ER - TY - THES A1 - Schmitt, Fabian Bernhard T1 - Transport properties of the three-dimensional topological insulator mercury telluride T1 - Transporteigenschaften des dreidimensionalen topologischen Isolators Quecksilbertellurid N2 - The subject of this thesis is the investigation of the transport properties of topological and massive surface states in the three-dimensional topological insulator Hg(Mn)Te. These surface states give rise to a variety of extraordinary transport phenomena, making this material system of great interest for research and technological applications. In this connection, many physical properties of the topological insulator Hg(Mn)Te still require in-depth exploration. The overall aim of this thesis is to analyze the quantum transport of HgTe-based devices ranging from hundreds of micrometers (macroscopic) down to a few micrometers in size (microscopic) in order to extend the overall understanding of surface states and the possibilities of their manipulation. In order to exploit the full potential of our high-quality heterostructures, it was necessary to revise and improve the existing lithographic fabrication process of macroscopic three-dimensional Hg(Mn)Te samples. A novel lithographic standard recipe for the fabrication of the HgTe-based macrostructures was developed. This recipe includes the use of an optimized Hall bar design and wet etching instead of etching with high-energy \(\mathrm{{Ar^{+}}}\)-ions, which can damage the samples. Further, a hafnium oxide insulator is applied replacing the SiO\(_{2}\)/Si\(_{3}\)N\(_{4}\) dielectric in order to reduce thermal load. Moreover, the devices are metallized under an alternating angle to avoid discontinuities of the metal layers over the mesa edges. It was revealed that the application of gate-dielectric and top-gate metals results in n-type doping of the devices. This phenomenon could be attributed to quasi-free electrons tunneling from the trap states, which form at the interface cap layer/insulator, through the cap into the active layer. This finding led to the development of a new procedure to characterize wafer materials. It was found that the optimized lithographic processing steps do not unintentionally react chemically with our heterostructures, thus avoiding a degradation of the quality of the Hg(Mn)Te layer. The implementation of new contact structures Ti/Au, In/Ti/Au, and Al/Ti/Au did not result in any improvement compared to the standard structure AuGe/Au. However, a novel sample recipe could be developed, resulting in an intermixing of the contact metals (AuGe and Au) and fingering of metal into the mesa. The extent of the quality of the ohmic contacts obtained through this process has yet to be fully established. This thesis further deals with the lithographic realization of three-dimensional HgTe-based microstructures measuring only a few micrometer in size. Thus, these structures are in the order of the mean free path and the spin relaxation length of topological surface state electrons. A lithographic process was developed enabling the fabrication of nearly any desired microscopic device structure. In this context, two techniques suitable for etching microscopic samples were realized, namely wet etching and the newly established inductively coupled plasma etching. While wet etching was found to preserve the crystal quality of the active layer best, inductively coupled plasma etching is characterized by high reproducibility and excellent structural fidelity. Hence, the etching technique employed depends on the envisaged type of experiment. Magneto-transport measurements were carried out on the macroscopic HgTe-based devices fabricated by means of improved lithographic processing with respect to the transport properties of topological and massive surface states. It was revealed that due to the low charge carrier density present in the leads to the ohmic contacts, these regions can exhibit an insulating behavior at high magnetic fields and extremely low temperatures. As soon as the filling factor of the lowest Landau levels dropped below a critical value (\(\nu_{\mathrm{{c}}}\approx0.8\)), the conductance of the leads decreased significantly. It was demonstrated that the carrier density in the leads can be increased by the growth of modulation doping layers, a back-gate-electrode, light-emitting diode illumination, and by the application of an overlapping top-gate layout. This overlapping top-gate and a back-gate made it possible to manipulate the carrier density of the surface states on both sides of the Hg(Mn)Te layer independently. With this setup, it was identified that topological and massive surface states contribute to transport simultaneously in 3D Hg(Mn)Te. A model could be developed allowing the charge carrier systems populated in the sample to be determined unambiguously. Based on this model, the process of the re-entrant quantum Hall effect observed for the first time in three-dimensional topological insulators could be explained by an interplay of n-type topological and p-type massive surface states. A well-pronounced \(\nu=-1\rightarrow\nu=-2\rightarrow\nu=-1\) sequence of quantum Hall plateaus was found in manganese-doped HgTe-based samples. It is postulated that this is the condensed-matter realization of the parity anomaly in three-dimensional topological insulators. The actual nature of this phenomenon can be the subject of further research. In addition, the measurements have shown that inter-scattering occurs between counter-propagating quantum Hall edge states. The good quantization of the Hall conductance despite this inter-scattering indicates that only the unpaired edge states determine the transport properties of the system as a whole. The underlying inter-scattering mechanism is the topic of a publication in preparation. Furthermore, three-dimensional HgTe-based microstructures shaped like the capital letter "H" were investigated regarding spin transport phenomena. The non-local voltage signals occurring in the measurements could be attributed to a current-induced spin polarization of the topological surface states due to electrons obeying spin-momentum locking. It was shown that the strength of this non-local signal is directly connected to the magnitude of the spin polarization and can be manipulated by the applied top-gate voltage. It was found that in these microstructures, the massive surface and bulk states, unlike the topological surface states, cannot contribute to this spin-associated phenomenon. On the contrary, it was demonstrated that the population of massive states results in a reduction of the spin polarization, either due to the possible inter-scattering of massive and topological surface states or due to the addition of an unpolarized electron background. The evidence of spin transport controllable by a top-gate-electrode makes the three-dimensional material system mercury telluride a promising candidate for further research in the field of spintronics. N2 - Die vorliegende Dissertation beschäftigt sich mit der Untersuchung der Transporteigenschaften von topologischen und massiven Oberflächenzuständen in dem dreidimensionalen topologischen Isolator Hg(Mn)Te. Da diese Oberflächenzustände zu einer Vielzahl von außergewöhnlichen Transportphänomenen führen, ist dieses Materialsystem für die Grundlagenforschung und technologische Anwendungen von großem Interesse. Der Bereich der dreidimensionalen topologischen Isolatoren stellt ein relativ junges Forschungsgebiet dar. Daher bedürfen noch viele physikalische Eigenschaften des topologischen Isolators Hg(Mn)Te ein tiefergehendes Verständnis. Das übergeordnete Ziel dieser Arbeit ist die Analyse des Quantentransports von HgTe-basierten Proben, deren Abmessungen von mehreren hundert Mikrometern (makroskopisch) bis hin zu wenigen Mikrometern (mikroskopisch) reichen. Auf diese Weise soll das allgemeine Verständnis der Oberflächenzustände und die Möglichkeiten ihrer Manipulation erweitert werden. Um das volle Potential unserer hochqualitativen Heterostrukturen, welche durch Molekularstrahlepitaxie gewachsen werden, ausschöpfen zu können, musste das bestehende lithographische Herstellungsverfahren für makroskopische dreidimensionale Hg(Mn)Te-Proben überarbeitet und verbessert werden. Es konnte ein neuartiges lithographisches Standardrezept für die Herstellung von HgTe-basierten Makrostrukturen entwickelt werden. Dieses Rezept beinhaltet die Verwendung eines optimierten Probendesigns und verwendet nasschemisches Ätzen anstelle von Ätzen mit hochenergetischen \(\mathrm{{Ar^{+}}}\)-Ionen, welches die Proben beschädigen kann. Außerdem wird ein Isolator aus Hafniumoxid verwendet, der das SiO\(_{2}\)/Si\(_{3}\)N\(_{4}\)-Dielektrikum ersetzt, um die thermische Belastung der Proben zu verringern. Darüber hinaus werden die Proben unter einem veränderlichen Winkel metallisiert, um Diskontinuitäten der Metallschichten entlang der Ränder der Mesa zu vermeiden. Es zeigte sich, dass das Aufbringen des Isolators und der Feldeffektelektrode zu einer Erhöhung der Elektronendichte in der Hg(Mn)Te-Schicht führt. Dieses Phänomen konnte darauf zurückgeführt werden, dass quasifreie Elektronen aus sogenannten Fallenzuständen, welche sich an der Grenzfläche zwischen der Cd\(_{0.7}\)Hg\(_{0.3}\)Te Deckschicht und dem Dielektrikum bilden, durch die Deckschicht in die aktive Schicht tunneln können. Dieser neue Einblick führte zu der Entwicklung einer neuen Prozedur zur Charakterisierung von Wafermaterialien. Es stellte sich heraus, dass die optimierten lithographischen Prozessschritte nicht unbeabsichtigt mit unseren Heterostrukturen chemisch reagieren, was eine Verringerung der Qualität der Hg(Mn)Te-Schicht verhindert. Die Implementierung der neuen Kontaktstrukturen Ti/Au, In/Ti/Au und Al/Ti/Au führte zu keiner Verbesserung im Vergleich zur Standardstruktur AuGe/Au. Es konnte jedoch ein neuartiges Probenrezept entwickelt werden, dessen Anwendung zu einer Vermischung der Kontaktmetalle (AuGe und Au) und zu einem Eindiffundieren von Metall in die Mesa führt. Das Ausmaß der Qualität der ohmschen Kontakte, welche durch dieses Verfahren erhalten werden, muss noch vollständig ermittelt werden. Zudem befasst sich diese Dissertation mit der lithographischen Realisierung dreidimensionaler HgTe-basierter Mikrostrukturen, die nur wenige Mikrometer groß sind. Somit liegen diese Strukturen in der Größenordnung der mittleren freien Weglänge und der Spinrelaxationslänge von Elektronen, welche sich in den topologischen Oberflächenzuständen befinden. Es wurde ein lithographischer Prozess entwickelt, der die Herstellung nahezu jeder gewünschten mikroskopischen Struktur ermöglicht. In diesem Zusammenhang wurden zwei für das Ätzen mikroskopischer Proben geeignete Techniken vorgestellt, nämlich nasschemisches Ätzen mit einer flüssigen KI:I\(_{2}\):HBr Lösung und das Ätzen unter Verwendung eines induktiv gekoppelten Methan-Plasmas. Während nasschemisches Ätzen die Kristallqualität der Hg(Mn)Te-Schicht am besten erhält, zeichnet sich das Plasmaätzen durch eine hohe Reproduzierbarkeit und ausgezeichnete Strukturtreue aus. Die Wahl der zu bevorzugenden Ätztechnik hängt daher von der Art des geplanten Experiments ab. An den makroskopischen Bauelementen auf HgTe-Basis, welche durch Anwendung der verbesserten lithographischen Prozessierung hergestellt wurden, wurden magnetfeldabhängige Transportmessungen hinsichtlich der Transporteigenschaften von topologischen und massiven Oberflächenzuständen durchgeführt. Es zeigte sich, dass die Zuleitungen zu den ohmschen Kontakten bei hohen Magnetfeldern (\(B>4\,\mathrm{{T}}\)) und extrem tiefen Temperaturen (\(T\ll1\,\mathrm{K}\)) ein isolierendes Verhalten aufweisen können. Eine geringe Ladungsträgerdichte in diesen Bereichen wurde als Ursache identifiziert. Sobald der Füllfaktor der untersten Landau-Niveaus unter einen kritischen Wert fiel, nahm die Leitfähigkeit der Zuleitungen deutlich ab. Es wurde festgestellt, dass der Betrag dieses kritischen Füllfaktors für alle untersuchten Proben ungefähr 0,8 beträgt und unabhängig davon ist, ob die untersten Landau-Niveaus elektronen- oder lochartig sind. Darüber hinaus konnte gezeigt werden, dass die Ladungsträgerdichte in den Zuleitungen durch das Wachstum von Modulationsdotierschichten, eine unterhalb des Bauelements angeordnete Feldeffektelektrode, die Bestrahlung mit einer Leuchtdiode und das Aufbringen einer mit den ohmschen Kontakten überlappenden Feldeffektelektrode erhöht werden kann. Diese beiden Feldeffektelektroden, welche sich unter- und oberhalb der Heterostruktur befinden, ermöglichten es die Ladungsträgerdichte der Oberflächenzustände auf beiden Seiten der Hg(Mn)Te-Schicht unabhängig voneinander zu manipulieren. Mit diesem Aufbau wurde festgestellt, dass topologische und massive Oberflächenzustände gleichzeitig zum Transport in 3D Hg(Mn)Te beitragen. Es konnte ein Modell entwickelt werden, welches die eindeutige Bestimmung der in der Probe besetzten Ladungsträgersysteme ermöglicht. Auf der Grundlage dieses Modells konnte ein magnetfeldabhängiger Prozess, welcher sich durch wiedereinkehrende Plateaus im Rahmen des Quanten-Hall-Effekts auszeichnet, erklärt werden. Dieser erstmals in dreidimensionalen topologischen Isolatoren beobachtete Prozess ist das Resultat des Zusammenspiels von zwei elektronenartigen topologischen Oberflächenzuständen und einem lochartigen massiven Oberflächenzustand. Eine besonders deutlich ausgeprägte \(\nu=-1\rightarrow\nu=-2\rightarrow\nu=-1\) Abfolge von Plateaus konnte in mit Mangan dotierten dreidimensionalen HgTe-basierten topologischen Isolatoren gefunden werden. Es wird postuliert, dass es sich dabei um die Realisierung der Paritätsanomalie in kondensierter Materie handelt. Die tatsächliche Natur dieses Phänomens kann Gegenstand weiterer Forschung sein. Darüber hinaus haben die Messungen gezeigt, dass entgegengesetzt verlaufende elektronen- und lochartige Randzustände miteinander streuen. Die gute Quantisierung der Hall-Leitfähigkeit, welche ungeachtet dieser Streuung beobachtet werden kann, deutet darauf hin, dass nur die ungepaarten Randzustände die Transporteigenschaften des Gesamtsystems bestimmen. Der zugrundeliegende Streumechanismus ist das Thema einer Publikation, welche sich in der Vorbereitung befindet. Des Weiteren wurden dreidimensionale HgTe-basierte Mikrostrukturen, die wie der Großbuchstabe “H” geformt sind, hinsichtlich Spintransportphänomene untersucht. Die bei den Messungen auftretenden nichtlokalen Spannungssignale konnten auf eine strominduzierte Spinpolarisation der topologischen Oberflächenzustände zurückgeführt werden. Ursache für diese strominduzierte Spinpolarisation ist die starke Kopplung des Elektronenspins an den Elektronenimpuls. Es wurde gezeigt, dass die Intensität dieses nichtlokalen Signals direkt mit der Stärke der Spinpolarisation zusammenhängt und durch eine Feldeffektelektrode manipuliert werden kann. Es wurde festgestellt, dass in diesen Mikrostrukturen die massiven Oberflächen- und Bulkzustände, im Gegensatz zu den topologischen Oberflächenzuständen, nicht zu diesem mit dem Spin assoziierten Phänomen beitragen können. Es wurde im Gegenteil gezeigt, dass eine Besetzung der massiven Zustände zu einer Verringerung der Spinpolarisation führt. Die verantwortlichen Mechanismen sind das Streuen von massiven und topologischen Oberflächenzuständen und das Hinzufügung eines großen Hintergrunds an unpolarisierten Elektronen. Der Nachweis des durch eine Feldeffektelektrode kontrollierbaren Spintransports macht das dreidimensionale Materialsystem Quecksilbertellurid zu einem vielversprechenden Kandidaten für weitere Forschungen auf dem Gebiet der Spintronik. KW - Topologischer Isolator KW - Quecksilbertellurid KW - Elektronentransport KW - HgTe KW - interplay of surface states KW - spin transport KW - topological insulator Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-291731 ER - TY - THES A1 - Strunz, Jonas T1 - Quantum point contacts in HgTe quantum wells T1 - Quantenpunktkontakte in HgTe-Quantentrögen N2 - Quantenpunktkontakte (englisch: quantum point contacts, QPCs) sind eindimensionale Engstellen in einem ansonsten zweidimensionalen Elektronen- oder Lochsystem. Seit der erstmaligen Realisierung in GaAs-basierten zweidimensionalen Elektronengasen sind QPCs sukzessive zu einem Grundbestandteil mesoskopischer Physik geworden und erfahren in einer Vielzahl von Experimenten Anwendung. Jedoch ist es bis zur Anfertigung der vorliegenden Arbeit nicht gelungen, QPCs in der neuen Materialklasse der zweidimensionalen topologischen Isolatoren zu realisieren. In diesen Materialien tritt der sogenannte Quanten-Spin-Hall-Effekt (QSH-Effekt) auf, welcher sich durch die Ausbildung von leitfähigen, eindimensionalen sowie gleichermaßen spinpolarisierten Zuständen an der Bauteilkante auszeichnet, während die restlichen Bereiche der Probe isolierend sind. Ein in einem zweidimensionalen topologischen Isolator realisierter QPC kann demgemäß dafür benutzt werden, die sich stets an der Bauteilkante befindlichen QSH-Randkanäle einander räumlich anzunähern, was beispielsweise die Untersuchung potentieller Wechselwirkungseffekte zwischen ebenjenen Randkanälen ermöglicht. Die vorliegende Arbeit beschreibt die erstmalig erfolgreich durchgeführte Implementierung einer QPC-Technologie in einem QSH-System. Überdies werden die neuartigen Bauteile experimentell charakterisiert sowie analysiert. Nach einer in Kapitel 1 erfolgten Einleitung der Arbeit beschäftigt sich das nachfolgende Kapitel 2 zunächst mit der besonderen Bandstruktur von HgTe. In diesem Kontext wird die Ausbildung der QSH-Phase für HgTe-Quantentröge mit einer invertierten Bandstruktur erläutert, welche für deren Auftreten eine Mindesttrogdicke von d_QW > d_c = 6.3 nm aufweisen müssen. Im Anschluss wird das Konzept eines QPCs allgemein eingeführt sowie das zugehörige Transportverhalten analytisch beschrieben. Überdies werden die Einschränkungen und Randbedingungen diskutiert, welche bei der Realisierung eines QPCs in einem QSH-System Berücksichtigung finden müssen. Darauf folgt die Präsentation des eigens zur QPC-Herstellung entwickelten Lithographieprozesses, welcher auf einer mehrstufigen Anwendung eines für HgTe-Quantentrogstrukturen geeigneten nasschemischen Ätzverfahrens beruht. Die im Nachgang diskutierten Transportmessungen exemplarischer Proben zeigen die erwartete Leitwertquantisierung in Schritten von ΔG ≈ 2e^2/h im Bereich des Leitungsbandes -- sowohl für eine topologische als auch für eine triviale (d_QW < d_c) QPC-Probe. Mit dem Erreichen der Bandlücke saturiert der Leitwert für den topologischen QPC um G_QSH ≈ 2e^2/h, wohingegen ebenjener für den Fall des trivialen Bauteils auf G ≈ 0 abfällt. Darüber hinaus belegen durchgeführte Messungen des differentiellen Leitwertes einer invertierten QPC-Probe in Abhängigkeit einer Biasspannung die stabile Koexistenz von topologischen und trivialen Transportmoden. Gegenstand von Kapitel 3 ist die Beschreibung der Ausbildung eines QSH-Interferometers in QPCs mit geringer Weite, welche unter Verwendung von Quantentrögen mit einer Trogdicke von d_QW = 7 nm hergestellt werden. Die Diskussion von Bandstrukturrechnungen legt dar, dass die räumliche Ausdehnung der Randkanäle von der jeweiligen Position der Fermi-Energie im Bereich der Bandlücke abhängt. Hieraus resultiert eine Transportsituation, in welcher -- unter bestimmten Voraussetzungen -- Reservoir-Elektronen mit randomisiertem Spin an beide QSH-Randkanäle mit gleicher Wahrscheinlichkeit koppeln, was in der Ausbildung eines QSH-Rings resultiert. Diese Ringbildung wird im Rahmen eines durch Plausibilitätsüberprüfung getesteten Modells erklärt und spezifiziert. Danach erfolgt eine theoretische Einführung von drei relevanten Quantenphasen, deren Akkumulation in der Folge für mehrere geeignete QPC-Proben nachgewiesen wird. Es handelt sich hierbei um die Aharonov-Bohm-Phase, um die dynamische Aharonov-Casher-Phase sowie um eine Spin-Bahn-Berry-Phase mit einem Wert von π. Diese experimentellen Ergebnisse stehen darüber hinaus im Einklang mit analytischen Modellbetrachtungen. Das anschließende Kapitel 4 stellt den letzten Teil der Arbeit dar und beschäftigt sich mit der Beobachtung einer anomalen Leitwertsignatur, welche für QPC-Proben basierend auf einer Quantentrogdicke von d_QW = 10.5 nm auftritt. Diese Proben zeigen neben der durch die QSH-Phase bedingten Leitwertquantisierung von G_QSH ≈ 2e^2/h ein weiteres Leitwertplateau mit einem Wert von G ≈ e^2/h = 0.5 x G_QSH. Diese sogenannte 0.5-Anomalie ist nur für ein kleines Intervall von QPC-Weiten beobachtbar und wird mit zunehmender Bauteilweite abgeschwächt. Weiterführende Untersuchungen in Abhängigkeit der Temperatur sowie einer angelegten Biasspannung deuten darüber hinaus darauf hin, dass das Auftreten der 0.5-Anomalie mit einem modifizierten topologischen Zustand einhergeht. Überdies wird eine zusätzliche sowie vervollständigende Charakterisierung dieses Transportregimes durch die Realisierung eines neuartigen Bauteilkonzeptes möglich, welches einen QPC in eine standardisierte Hall-Bar-Geometrie integriert. Das Ergebnis der experimentellen Analyse einer solchen Probe verknüpft das Auftreten der 0.5-Anomalie mit der Rückstreuung eines QSH-Randkanals. Demgemäß wird aus Sicht des Einteilchenbildes geschlussfolgert, dass im Kontext der 0.5-Anomalie lediglich ein Randkanal transmittiert wird. Zudem werden zwei theoretische Modelle basierend auf Elektron-Elektron-Wechselwirkungen diskutiert, welche beide jeweils als ursächlicher Mechanismus für das Auftreten der 0.5-Anomalie in Frage kommen. Abschließend ist zu deduzieren, dass die Implementierung einer QPC-Technologie in einem QSH-System eine bedeutende Entwicklung im Bereich der Erforschung von zweidimensionalen topologischen Isolatoren darstellt, welche eine Vielzahl zukünftiger Experimente ermöglicht. So existieren beispielsweise theoretische Vorhersagen, dass QPCs in einem QSH-System die Detektion von Majorana- sowie Para-Fermionen ermöglichen. Überdies ist die nachgewiesene Ausbildung eines QSH-Interferometers in geeigneten QPC-Proben eine Beobachtung von großer Folgewirkung. So ermöglicht die beobachtete dynamische Aharonov-Casher-Phase im QSH-Regime die kontrollierbare Modulation des topologischen Leitwertes, was die konzeptionelle Grundlage eines topologischen Transistors darstellt. Eine weitere Anwendungsmöglichkeit wird durch die Widerstandsfähigkeit geometrischer Phasen gegenüber Dephasierung eröffnet, wodurch die nachgewiesene Spin-Bahn-Berry-Phase mit einem Wert von π im Kontext potentieller Quantencomputerkonzepte von Interesse ist. Darüber hinaus ist die Transmission von nur einem QSH-Randkanal im Zuge des Auftretens der 0.5-Anomalie äquivalent zu 100 % Spinpolarisierung, was einen Faktor essentieller Relevanz für die Realisierung spintronischer Anwendungen darstellt. Demgemäß beinhaltet die vorliegende Arbeit den experimentellen Nachweis von drei unterschiedlichen Effekten, von welchen jedem einzelnen eine fundamentale Rolle im Rahmen der Entwicklung neuer Generationen logischer Bauelemente zukommen kann -- ermöglicht durch die Realisierung von QPCs in topologischen HgTe-Quantentrögen. N2 - Quantum point contacts (QPCs) are one-dimensional constrictions in an otherwise extended two-dimensional electron or hole system. Since their first realization in GaAs based two-dimensional electron gases, QPCs have become basic building blocks of mesoscopic physics and are used in manifold experimental contexts. A so far unrealized goal however is the implementation of QPCs in the new material class of two-dimensional topological insulators, which host the emergence of the so-called quantum spin Hall (QSH) effect. The latter is characterized by the formation of conducting one-dimensional spin-polarized states at the device edges, while the bulk is insulating. Consequently, an implemented QPC technology can be utilized to bring the QSH edge channels in close spatial proximity, thus for example enabling the study of interaction effects between the edge states. The thesis at hand describes the technological realization as well as the subsequent experimental characterization and analysis of QPCs in a QSH system for the first time. After an introduction is given in Chapter 1, the subsequent Chapter 2 starts with discussing the peculiar band structure of HgTe. The emergence of the QSH phase for HgTe quantum wells with an inverted band structure is explained. For the band inversion to occur, the quantum wells have to exhibit a well thickness d_QW above a critical value (d_QW > d_c = 6.3 nm). Subsequently, the concept of QPCs is explicated and the corresponding transport behaviour is analytically described. Following the discussion of relevant constraints when realizing a QPC technology in a QSH system, a newly developed lithography process utilizing a multi-step wet etching technique for fabricating QPC devices based on HgTe quantum wells is presented. Transport measurements of exemplary devices show the expected conductance quantization in steps of ΔG ≈ 2e^2/h within the conduction band for a topological as well as for a trivial (d_QW < d_c) QPC. For the topological case, the residual conductance within the bulk band gap saturates at G_QSH ≈ 2e^2/h due to presence of the QSH state, while it drops to G ≈ 0 for the trivial device. Moreover, bias voltage dependent measurements of the differential conductance of an inverted sample provide explicit proof of the unperturbed coexistence of topological and trivial transport modes. In a next step, Chapter 3 describes the emergence of a QSH interferometer state in narrow QPC devices with a quantum well thickness of d_QW = 7 nm. Presented band structure calculations reveal that the spatial extension of the QSH edge states depends on the position of the Fermi energy within the bulk band gap. As a consequence, reservoir electrons with randomized spin couple to both edge channels with the same probability under certain conditions, thus causing the formation of a QSH ring. A straightforward model capturing and specifying the occurrence of such a QSH interferometer is provided as well as substantiated by two experimental plausibility checks. After relevant quantum phases are theoretically introduced, the discussion of the obtained data reveals the accumulation of an Aharonov-Bohm phase, of a dynamical Aharonov-Casher phase as well as of a spin-orbit Berry phase of π in appropriate QPC devices. These results are consistent with analytic model considerations. The last part of this thesis, Chapter 4, covers the observation of an unexpected conductance pattern for QPC samples fabricated from quantum wells with d_QW = 10.5 nm. In these devices, an anomalous plateau at G ≈ e^2/h = 0.5 x G_QSH emerges in addition to the QSH phase entailed residual conductance of G_QSH ≈ 2e^2/h. This so-called 0.5 anomaly occurs only for a specific interval of QPC width values, while it starts to get lost for too large sample widths. Furthermore, presented temperature and bias voltage dependent measurements insinuate that the emergence of the 0.5 anomaly is related to a gapped topological state. Additional characterization of this peculiar transport regime is provided by the realization of a novel device concept, which integrates a QPC within a standard Hall bar geometry. The results of the experimental analysis of such a sample link the occurrence of the 0.5 anomaly to a backscattered QSH channel. Thus, following a single particle perspective argumentation, it is reasoned that only one edge channel is transmitted in the context of the 0.5 anomaly. Two theoretic models possibly explaining the emergence of the 0.5 anomaly -- based on electron-electron interactions -- are discussed. To conclude, the implementation of a working QPC technology in a QSH system represents a paramount development in the context of researching two-dimensional topological insulators and enables a multitude of future experiments. QPC devices realized in a QSH system are for example envisaged to allow for the detection of Majorana fermions and parafermions. Furthermore, the reported formation of a QSH interferometer state in appropriate QPC devices is of high interest. The observed dynamical Aharonov-Casher phase in the QSH regime enables a controllable modulation of the topological conductance, thus providing the conceptual basis for a topological transistor. Moreover, due to the resilience of geometric phases against dephasing, the presence of a spin-orbit Berry phase of π represents a promising perspective with regard to possible quantum computation concepts. Besides that, the transmission of only one QSH edge channel due to the emergence of the 0.5 anomaly is equivalent to 100 % spin polarization, which is an essential ingredient for realizing spintronic applications. Hence, the thesis at hand covers the experimental detection of three effects of fundamental importance in the context of developing new generations of logic devices -- based on QPCs fabricated from topological HgTe quantum wells. KW - Topologischer Isolator KW - Quecksilbertellurid KW - Elektronentransport KW - HgTe KW - topological insulator KW - quantum point contact KW - quantum interference Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-274594 ER - TY - THES A1 - Thienel, Cornelius T1 - Exploring the transport properties of the three-dimensional topological insulator material HgTe T1 - Erkundung der Transporteigenschaften des dreidimensionalen Topologischen Isolators HgTe N2 - In der vorliegenden Dissertation werden die Transporteigenschaften von verspannten HgTe-Volumenkristallen untersucht. Verspanntes HgTe stellt einen dreidimensionalen topologischen Isolator dar und ist zur Erkundung von topologischen Oberflächenzuständen von speziellem Interesse, da es mit Hilfe von Molekularstrahlepitaxie in hoher Kristallqualität gewachsen werden kann. Die niedrige Defektdichte führt zu beachtlichen Ladungsträgerbeweglichkeiten, die deutlich über denen anderer topologischer Isolatoren liegen. Verspanntes HgTe hat jedoch eine kleine Energielücke von ca. 20 meV. Deshalb ist es für eine mögliche Verwendung des Materials ein wichtiger Aspekt, in welchem Parameterbereich Oberflächentransport stattfindet. Um dieser Frage nachzugehen, werden die HgTe-Proben bei tiefen Temperaturen (T < 100 mK) und unter dem Einfluss hoher Magnetfelder in verschiedenen Orientierungen untersucht. Der Einfluss von Gate-Elektroden ober- und unterhalb der Struktur sowie von Deckschichten, die die Oberflächen schützen, wird diskutiert. Basierend auf einer Analyse des Quanten-Hall-Effekts wird gezeigt, dass der Transport in diesem Material von topologischen Oberflächenzuständen dominiert ist. Die Abhängigkeit der topologischen Oberflächenzustände von der Gate-Spannung wird dargestellt. Durch diese Abhängigkeit ist es zum ersten Mal möglich, eine ungerade ganzzahlige Quanten-Hall-Plateau Sequenz nachzuweisen, die von den Oberflächen senkrecht zum Magnetfeld stammt. Des Weiteren wird im Rahmen dieser Arbeit in Proben hoher Oberflächenqualität zum ersten Mal für einen 3D TI der p-Typ QHE der Oberflächenzustände beobachtet. Aus der Gate-Abhängigkeit der Messungen wird geschlossen, dass das Abschirmverhalten in 3D TIs nicht trivial ist. Die Transportdaten werden mit Hilfe von intuitiven theoretischen Modellen auf qualitative Weise analysiert. N2 - In the present thesis the transport properties of strained bulk HgTe devices are investigated. Strained HgTe forms a 3D TI and is of special interest for studying topological surface states, since it can be grown by MBE in high crystal quality. The low defect density leads to considerable mobility values, well above the mobilities of other TI materials. However, strained HgTe has a small band gap of ca. 20 meV. With respect to possible applications the question is important, under which conditions the surface transport occurs. To answer this question, the HgTe devices are investigated at dilution refrigerator temperatures (T<100 mK) in high magnetic fields of different orientation. The influence of top and back gate electrodes as well as surface protecting layers is discussed. On the basis of an analysis of the quantum Hall behaviour it is shown that transport is dominated by the topological surface states in a surprisingly large parameter range. A dependence on the applied top gate voltage is presented for the topological surface states. It enables the first demonstration of an odd integer QHE sequence from the surfaces perpendicular to the magnetic field. Furthermore, the p-type QHE from the surface states is observed for the first time in any 3D TI. This is achieved in samples of high surface quality. It is concluded from the gate response that the screening behaviour in 3D TI devices is non-trivial. The transport data are qualitatively analysed by means of intuitive theoretical models. KW - Topologischer Isolator KW - Quecksilbertellurid KW - Elektronischer Transport KW - 3D topological insulator KW - Festkörperphysik KW - Hochmagnetfeld KW - Tieftemperatur KW - Quanten-Hall-Effekt Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122031 ER - TY - THES A1 - Wiedenmann, Jonas T1 - Induced topological superconductivity in HgTe based nanostructures T1 - Induzierte topologische Supraleitung in HgTe basierten Nanostrukturen N2 - This thesis describes the studies of topological superconductivity, which is predicted to emerge when pair correlations are induced into the surface states of 2D and 3D topolog- ical insulators (TIs). In this regard, experiments have been designed to investigate the theoretical ideas first pioneered by Fu and Kane that in such system Majorana bound states occur at vortices or edges of the system [Phys. Rev. Lett. 100, 096407 (2008), Phys. Rev. B 79, 161408 (2009)]. These states are of great interest as they constitute a new quasiparticle which is its own antiparticle and can be used as building blocks for fault tolerant topological quantum computing. After an introduction in chapter 1, chapter 2 of the thesis lays the foundation for the understanding of the field of topology in the context of condensed matter physics with a focus on topological band insulators and topological superconductors. Starting from a Chern insulator, the concepts of topological band theory and the bulk boundary corre- spondence are explained. It is then shown that the low energy Hamiltonian of mercury telluride (HgTe) quantum wells of an appropriate thickness can be written as two time reversal symmetric copies of a Chern insulator. This leads to the quantum spin Hall effect. In such a system, spin-polarized one dimensional conducting states form at the edges of the material, while the bulk is insulating. This concept is extended to 3D topological insulators with conducting 2D surface states. As a preliminary step to treating topological superconductivity, a short review of the microscopic theory of superconductivity, i.e. the theory of Bardeen, Cooper, and Shrieffer (BCS theory) is presented. The presence of Majorana end modes in a one dimensional superconducting chain is explained using the Kitaev model. Finally, topological band insulators and conventional superconductivity are combined to effectively engineer p-wave superconductivity. One way to investigate these states is by measuring the periodicity of the phase of the Josephson supercurrent in a topological Josephson junction. The signature is a 4π-periodicity compared to the 2π-periodicity in conventional Josephson junctions. The proof of the presence of this effect in HgTe based Josephson junction is the main goal of this thesis and is discussed in chapters 3 to 6. Chapter 3 describes in detail the transport of a 3D topological insulator based weak link under radio-frequency radiation. The chapter starts with a review of the state of research of (i) strained HgTe as 3D topological insulator and (ii) the progress of induc- ing superconducting correlations into the topological surface states and the theoretical predictions of 3D TI based Josephson junctions. Josephson junctions based on strained HgTe are successfully fabricated. Before studying the ac driven Josephson junctions, the dc transport of the devices is analysed. The critical current as a function of temperature is measured and it is possible to determine the induced superconducting gap. Under rf illumination Shapiro steps form in the current voltage characteristic. A missing first step at low frequencies and low powers is found in our devices. This is a signature of a 4π-periodic supercurrent. By studying the device in a wide parameter range - as a 147148 SUMMARY function of frequency, power, device geometry and magnetic field - it is shown that the results are in agreement with the presence of a single gapless Andreev doublet and several conventional modes. Chapter 4 gives results of the numerical modelling of the I −V dynamics in a Josephson junction where both a 2π- and a 4π-periodic supercurrents are present. This is done in the framework of an equivalent circuit representation, namely the resistively shunted Josephson junction model (RSJ-model). The numerical modelling is in agreement with the experimental results in chapter 3. First, the missing of odd Shapiro steps can be understood by a small 4π-periodic supercurrent contribution and a large number of modes which have a conventional 2π-periodicity. Second, the missing of odd Shapiro steps occurs at low frequency and low rf power. Third, it is shown that stochastic processes like Landau Zener tunnelling are most probably not responsible for the 4π contribution. In a next step the periodicity of Josephson junctions based on quantum spin Hall insulators using are investigated in chapter 5. A fabrication process of Josephson junctions based on inverted HgTe quantum wells was successfully developed. In order to achieve a good proximity effect the barrier material was removed and the superconductor deposited without exposing the structure to air. In a next step a gate electrode was fabricated which allows the chemical potential of the quantum well to be tuned. The measurement of the diffraction pattern of the critical current Ic due to a magnetic field applied perpendicular to the sample plane was conducted. In the vicinity to the expected quantum spin Hall phase, the pattern resembles that of a superconducting quantum interference device (SQUID). This shows that the current flows predominantly on the edges of the mesa. This observation is taken as a proof of the presence of edge currents. By irradiating the sample with rf, missing odd Shapiro steps up to step index n = 9 have been observed. This evidences the presence of a 4π-periodic contribution to the supercurrent. The experiment is repeated using a weak link based on a non-inverted HgTe quantum well. This material is expected to be a normal band insulator without helical edge channels. In this device, all the expected Shapiro steps are observed even at low frequencies and over the whole gate voltage range. This shows that the observed phenomena are directly connected to the topological band structure. Both features, namely the missing of odd Shapiro steps and the SQUID like diffraction pattern, appear strongest towards the quantum spin Hall regime, and thus provide evidence for induced topological superconductivity in the helical edge states. A more direct way to probe the periodicity of the Josephson supercurrent than using Shapiro steps is the measurement of the emitted radiation of a weak link. This experiment is presented in chapter 6. A conventional Josephson junction converts a dc bias V to an ac current with a characteristic Josephson frequency fJ = eV /h. In a topological Josephson junction a frequency at half the Josephson frequency fJ /2 is expected. A new measurement setup was developed in order to measure the emitted spectrum of a single Josephson junction. With this setup the spectrum of a HgTe quantum well based Josephson junction was measured and the emission at half the Josephson frequency fJ /2 was detected. In addition, fJ emission is also detected depending on the gate voltage and detection frequency. The spectrum is again dominated by half the Josephson emission at low voltages while the conventional emission is determines the spectrum at high voltages. A non-inverted quantum well shows only conventional emission over the whole gateSUMMARY 149 voltage and frequency range. The linewidth of the detected frequencies gives a measure on the lifetime of the bound states: From there, a coherence time of 0.3–4ns for the fJ /2 line has been deduced. This is generally shorter than for the fJ line (3–4ns). The last part of the thesis, chapter 7, reports on the induced superconducting state in a strained HgTe layer investigated by point-contact Andreev reflection spectroscopy. For the experiment, a HgTe mesa was fabricated with a small constriction. The diameter of the orifice was chosen to be smaller than the mean free path estimated from magne- totransport measurements. Thus one gets a ballistic point-contact which allows energy resolved spectroscopy. One part of the mesa is covered with a superconductor which induces superconducting correlations into the surface states of the topological insulator. This experiment therefore probes a single superconductor normal interface. In contrast to the Josephson junctions studied previously, the geometry allows the acquisition of energy resolved information of the induced superconducting state through the measurement of the differential conductance dI/dV as a function of applied dc bias for various gate voltages, temperatures and magnetic fields. An induced superconducting order parame- ter of about 70µeV was extracted but also signatures of the niobium gap at the expected value around Δ Nb ≈ 1.1meV have been found. Simulations using the theory developed by Blonder, Tinkham and Klapwijk and an extended model taking the topological surface states into account were used to fit the data. The simulations are in agreement with a small barrier at the topological insulator-induced topological superconductor interface and a high barrier at the Nb to topological insulator interface. To understand the full con- ductance curve as a function of applied voltage, a non-equilibrium driven transformation is suggested. The induced superconductivity is suppressed at a certain bias value due to local electron population. In accordance with this suppression, the relevant scattering regions change spatially as a function of applied bias. To conclude, it is emphasized that the experiments conducted in this thesis found clear signatures of induced topological superconductivity in HgTe based quantum well and bulk devices and opens up the avenue to many experiments. It would be interesting to apply the developed concepts to other topological matter-superconductor hybrid systems. The direct spectroscopy and manipulation of the Andreev bound states using circuit quantum electrodynamic techniques should be the next steps for HgTe based samples. This was already achieved in superconducting atomic break junctions by the group in Saclay [Science 2015, 349, 1199-1202 (2015)]. Another possible development would be the on-chip detection of the emitted spectrum as a function of the phase φ through the junction. In this connection, the topological junction needs to be shunted by a parallel ancillary junction. Such a setup would allow the current phase relation I(φ) directly and the lifetime of the bound states to be measured directly. By coupling this system to a spectrometer, which can be another Josephson junction, the energy dependence of the Andreev bound states E(φ) could be obtained. The experiments on the Andreev reflection spectroscopy described in this thesis could easily be extended to two dimensional topological insulators and to more complex geometries, like a phase bias loop or a tunable barrier at the point-contact. This work might also be useful for answering the question how and why Majorana bound states can be localized in quantum spin Hall systems. N2 - Die vorliegende Dissertation befasst sich mit der experimentellen Untersuchung von topologischer Supraleitung, die durch die Kombination von konventionellen Supraleitern mit 2D- und 3D- topologischen Isolatoren (TI) entsteht. Diesbezüglich wurden Experi- mente durchgeführt, die auf zwei bahnbrechenden Arbeiten von Fu und Kane [Phys. Rev. Lett. 100, 096407 (2008), Phys. Rev. B 79, 161408 (2009)] aufbauen. Diesen zufolge wird in supraleitenden topologischen Isolatoren ein neuartiges Quasiteilchen, ein sogenanntes Majorana-Fermion, vorhergesagt. Das große Interesse an diesem Teilchen beruht auf des- sen besonderen Eigenschaften. Es sind Fermionen mit halbzahligen Spin, jedoch besitzen sie keine Ladung und es ist gleichzeitig sein eigenes Antiteilchen. Darüber hinaus besitzt das Teilchen im Vergleich zu konventionellen Fermionen eine andere Austauschstatistik und zählt daher zu den sogenannten nicht-abelschen Anyonen. Aufgrund dieser Eigen- schaften wurde vorhergesagt, dass sie für weniger fehleranfällige Quantenbits als Bauteile für einen Quantencomputer verwendet werden können. Nach einer Einleitung in Kapitel 1 folgt in Kapitel 2 eine Einführung in das Konzept von Topologie in der Festkörperphysik. Der Schwerpunkt liegt dabei auf zwei Materialklassen, topologischen Isolatoren und topologische Supraleiter. Zunächst wird ein Zweibandmo- dell, der Chern-Isolator, beschrieben, um das Konzept von topologischen Isolatoren und die Entstehung von Oberflächenzuständen darzulegen. Es ist möglich die Bandstruktur von Quecksilbertellurid- (HgTe-) Quantentrögen als zwei zeitumkehrinvariante Kopien des Chern-Isolators zu interpretieren, was zu einem 2D topologischen Isolator führt. Das Konzept von 2D-TIs wird auf drei Dimensionen erweitert. Eine Einführung in konventio- nelle Supraleitung und insbesondere die mikroskopische Theorie von Bardeen, Cooper und Schrieffer dient einem pädagogischen Zugang zur topologischen Supraleitung. Eine eindimensionale supraleitenden Kette, entwickelt von Alexei Kitaev, dient der Erklärung für die Entstehung von Majorana-Fermionen in p-Wellen Supraleitern. Es ist möglich diesen Zustand durch die Kombination von konventionellen Supraleitern und topologi- schen Isolatoren zu verwirklichen. In dieser Dissertation wird die erwartet topologische Supraleitung in einem sogenannten Josephson-Kontakt untersucht. Dabei wurde vorher- gesagt, dass in einem “topologischen Josephson-Kontakt”die Phase des Suprastromes eine 4π-Periodizität besitzt, während ein normaler Josephson-Kontakt 2π-periodisch ist. Ziel dieser Arbeit ist der experimentelle Nachweis der 4π-Periodizität des Suprastroms in Josephson-Kontakten, die auf HgTe-Bauelementen beruhen. Als Methodik eignet sich die Messung der Shapiro-Plateaus und der Emission des Josephson-Kontaktes an, die ausführlich in den Kapiteln 3 bis 6 werden. In Kapitel 3 wird der Transport in Josephson-Kontakten, die auf dem dreidimensio- nalen topologischen Isolator HgTe beruhen unter Einfluss von Mikrowellenstrahlung detailliert ausgeführt. Dieser Teil beginnt mit einem Überblick über die Eigenschaften von HgTe als dreidimensionaler topologischer Isolator und zeigt insbesondere den Nachweis der Oberfächenleitung von relativistischen Elektronen auf. Des Weiteren wird der Stand der Forschung von Josephson-Kontakten auf diesem Materialsystem dargelegt. In solchen Strukturen werden nämlich aufgrund von Majorana-Fermionen gebundene Andreev- Zustände erwartet, welche sich in der Mitte der supraleitenden Bandlücke (bei null Energie) kreuzen. Sie werden als “gapless Andreev Bound States”bezeichnet. Die Existenz dieser Zustände kann durch den Nachweis einer 4π-Periodizität der Phase des Supra- stroms bewiesen werden. Da die endliche Lebensdauer dieser Zustände “langsamen”dc- Messungen den Nachweis der Periodizität nicht erlauben, wird Strahlung im Gigahertz Frequenzbereich verwendet. Josephson-Kontakte aus 3D-HgTe-Heterostrukturen werden erfolgreich lithografiert. Zunächst werden die Strukturen mit dc-Messungen charakte- risiert und es wird gezeigt, dass der Suprastrom einen Josephson-Effekt aufweist. Die Temperaturabhängigkeit des kritischen Stroms wird simuliert, wodurch die Bestimmung der Größe der induzierten supraleitenden Bandlücke ermöglicht wird. Durch Mikrowel- lenstrahlung entstehen Shapiro-Plateaus in der Strom-Spannungskennlinie I −V -Kurve. Der Spannungsabstand von zwei aufeinander folgenden Plateaus spiegelt die Periodizität des Josephsonstroms wider. Zu erwarten wäre, dass der Abstand in einem topologischen Josephson-Kontakt im Vergleich zu einem konventionellen Josephson-Kontakt doppelt so groß ist (oder anders formuliert: die ungeradzahligen Plateau-Indizes fehlen). In den Strom-Spannungskennlinien wird jedoch beobachtet, dass der erste erwartete Schritt ausbleibt. Alle höheren ungeradzahligen Schritte sind sichtbar. Durch die Untersuchung des Phänomens als Funktion von Mikrowellenfrequenz, Mikrowellenamplitude, Magnet- feldstärke und Probengeometrie wird argumentiert, dass die Ergebnisse der Experimente mit einem topologischen Andreev-Zustand und einer großen Zahl konventioneller Moden vereinbar sind. Um die experimentellen Ergebnisse aus Kapitel 3 nachzuvollziehen, werden in Kapitel 4 die I −V -Kennlinie eines Josephson-Kontaktes mit einer linearen Kombination eines 2π- und eines 4π-periodischen Suprastroms unter Mikrowellenstrahlung numerisch simuliert. Dies erfolgt durch ein Netzwerkmodell, welches aus einem Josephson-Kontakt in Parallelschaltung zu einem ohmschen Widerstand besteht (RSJ-Modell). Die Ergebnisse aus Kapitel 3 können nur durch das Vorhandensein eines 4π-periodischem Suprastroms I4π eindeutig numerisch simuliert werden. Darüber hinaus wird herausgestellt, dass eine Kopplung des Systems an die 4π-periodische Komponente möglich ist, obwohl der Beitrag zum Gesamtstrom Ic sehr klein ist (I4π « Ic ). Die Grundlage für die Experimente in Kapitel 5 bildet ein Josephson-Kontakt, der auf einem invertierten HgTe-Quantentrog basiert. Dieser besitzt helikale Randkanäle, welche mit Supraleitern topologisch geschützte Andreev-Zustände formen. Hierfür ist zuerst ein neuer Lithographieprozess zur Herstellung der Proben entwickelt worden. Da sich der HgTe-Quantentrog unter einer Hg0.3Cd0.7Te-Barriere befindet, muss diese für eine gute induzierte Supraleitung lokal entfernt und der Supraleiter aufgetragen werden, ohne das Vakuum zu brechen. Zur Variation der Ladungsträgerdichte im Josephson-Kontakt wird eine Feldeffektelektrode auf der Struktur platziert. Die Messung des Beugungsmusters des kritischen Stroms als Funktion des Magnetfeldes erlaubt es, die Stromverteilung in der Probe zu untersuchen. Das Beugungsmuster ähnelt dem eines supraleitenden Quanteninterferenzbauelement [engl. Superconducting Quantum Interference Device: (SQUID)] und zeigt, dass der Strom vorwiegend am Rand der Probe fließt. Durch die Bestrahlung mit Mikrowellen werden fehlende ungeradzahlige Shapiro-Plateaus bis zum Stufenindex n = 9 beobachtet. Dies verdeutlicht, dass der Strom eine 4π-periodischen Beitrag aufweist. Das Experiment wird mit einem nicht-invertierten HgTe-Quantentrog wiederholt. Dieser ist nicht in der Quanten-Spin-Hall-Phase und zeigt über den gesamten Parameterbereich alle erwarteten Shapiro-Plateaus, was beweist, dass die Topologie der Probe eine wichtige Eigenschaft ist, um die 4π-Periodizität zu beobachten. Beide Effekte, das SQUID-Beugungsmuster und die verschwindenden ungeradzahligen Shapiro- Plateaus, sind in der Nähe der Quanten-Spin-Phase am sichtbarsten und können daher als Beweis für induzierte topologische Supraleitung in spinpolarisierten Randkanälen interpretiert werden. Eine Messmethode zur direkten Bestimmung der Periodizität des Suprastromes, an- ders als die Verwendung von Shapiro-Plateaus, ist die Messung der Josephson-Emission, was in Kapitel 6 beschrieben wird. Ein topologischer Josephson-Kontakt emittiert Strah- lung bei der halben Josephsonfrequenz f J /2 aufgrund der 4π-Periodizität des Joseph- sonstromes. Hierfür wird ein neuer experimenteller Aufbau entwickelt, um das kleine Emissionssignal eines einzelnen Josephson-Kontaktes zu verstärken. Dieser neue Aufbau erlaubt es, das Spektrum eines invertierten HgTe-Quantentrog zu messen und eine Emis- sion bei f J /2 zu detektieren. Je nach Ladungsträgerdichte und Detektionfrequenz wird auch gewöhnliche Emission bei f J im Spektrum beobachtet. Generell dominiert aber bei niedriger Spannung die f J /2-Emission und bei höheren Spannungen die f J . Da Spannung und ac-Frequenz durch die zweite Josephson-Gleichung proportional zueinander lässt sich das Verhalten mit den Ergebnissen der Shapiro-Plateau-Messungen vereinbaren. Darüber hinaus ist aus der Linienbreite der Emissionssignale eine Lebensdauer für die ABS in der Größenordnung von 0.3 − 4 ns für die f J /2-Emission und 3 − 4 ns für die f J - Emission abgeschätzt worden. Ein nicht-invertierter Quantentrog zeigt im Vergleich zum invertierten nur gewöhnliche Emission bei f J über den gesamten zugänglichen Frequenz- und Ladungsträgerbereich. Im letzten Teil der Arbeit, in Kapitel 7, wird die in den 3D-topologischen Isolator HgTe induzierte Supraleitung mit Hilfe von Andreev-Punktkontaktspektroskopie unter- sucht. Hierfür wird eine HgTe-Struktur mit einer Verengung fabriziert, deren Durchmesser kleiner als die mittlere freie Weglänge der topologischen Oberflächenzustände ist und somit eine energieabhängige Spektroskopie des Zustandes erlaubt. Auf einer Seite der Verengung werden supraleitende Paarkorrelationen durch einen gewöhnlichen Supralei- ter Niob induziert. Diese Struktur ermöglicht daher die Untersuchung der Grenzfläche zwischen einem Supraleiter und einem Normalleiter (topologischer Isolator). Durch die Messung der differentiellen Leitfähigkeit d I /dV als Funktion der dc-Spannung ist es möglich die Energieabhängigkeit der Supraleitung zu untersuchen. Eine induzierte supraleitenden Bandlücke von 70 µeV wird gefunden. Die Leitfähigkeit zeigt Signatu- ren einer weiteren supraleitende Bandlücke des konventionellen Supraleiters Niob von ∆Nb ≈ 1.1 meV. Die Leitfähigkeit wird zum einen mit der Theorie von Blonder, Tinkham und Klapwijk modelliert und zum anderen mit einem erweiterten Modell, welches die 2D Oberflächenzustände des topologischen Isolators berücksichtigt simuliert. Für die Grenzfläche topologischer Isolator mit topologischem Supraleiter wird eine hohe Trans- missionswahrscheinlichkeit (niedrige Barriere) festgestellt, während an der Grenzfläche zwischen dem konventionellen Supraleiter und dem topologischen Isolator eine hohe Barriere in Übereinstimmung mit dem Modell war. Der Transportmechanismus wird durch eine Unterdrückung der induzierten Supraleitung durch eine Nichtgleichgewichts- verteilung der Zustände als Funktion der Spannung erklärt. Die vorliegende Dissertation konnte klare Signaturen von induzierter topologischer Supraleitung in Josephson-Kontakten auf Basis von HgTe-Quantentrögen und Volumen- material aufzeigen. Sie kann auch als Ausgangspunkt für eine große Anzahl von weiter- führenden Experimenten dienen. Die hier entwickelte Technik und auch Theorie kann auf andere topologische Zustände in Verbindung mit Supraleitern angewandt werden. Ein weiteres Experiment für HgTe-Strukturen ließe sich beispielsweise mit Hilfe von su- praleitenden Resonatoren die Spektroskopie und Manipulation der mikroskopischen topologischen Andreev-Zustände durchführen. Diese Technik wurde schon erfolgreich von Janvier et al . auf mechanisch kontrollierten supraleitenden Bruchkontakten ange- wandt [Science 2015, 349, 1199-1202 (2015)]. Eine alternative Technik zur Spektroskopie der Andreev Zustände benötigt konventionelle Josephson-Kontakte in Kombination mit topologischen Kontakten. Die konventionellen Kontakte erlauben die Kontrolle der supra- leitenden Phase und dienen als Spektrometer. Die Andreev-Punktkontaktspektroskopie kann auf zweidimensionale topologische Isolatoren erweitert werden. Auch kann ei- ne supraleitende Schleife, welche die Kontrolle über die Phase und eine veränderbare Barriere ermöglicht, neue Einblicke in die Transportmechanismen geben. Solche Un- tersuchungen bieten Ansatzpunkte für die Lokalisierung von Majorana-Zuständen in Quanten-Spin-Hall-Systemen. KW - Quecksilbertellurid KW - Supraleitung KW - Topologischer Isolator KW - topological insulators KW - Majorana bound state KW - topological superconductor KW - HgTe KW - Josephson junction Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162782 ER -