TY - THES A1 - Blättner, Sebastian T1 - The role of the non-ribosomal peptide synthetase AusAB and its product phevalin in intracellular virulence of Staphylococcus aureus T1 - Die Rolle der nicht-ribosomalen Peptidsynthetase AusAB und ihres Produktes Phevalin in der intrazellulären Virulenz von Staphylococcus aureus N2 - Staphylococcus aureus is a prevalent commensal bacterium which represents one of the leading causes in health care-associated bacterial infections worldwide and can cause a variety of different diseases ranging from simple abscesses to severe and life threatening infections including pneumonia, osteomyelitis and sepsis. In recent times multi-resistant strains have emerged, causing severe problems in nosocomial as well as community-acquired (CA) infection settings, especially in the United States (USA). Therefore S. aureus has been termed as a superbug by the WHO, underlining the severe health risk originating from it. Today, infections in the USA are dominated by S. aureus genotypes which are classified as USA300 and USA400, respectively. Strains of genotype USA300 are responsible for about 70% of the CA infections. The molecular mechanisms which render S. aureus such an effective pathogen are still not understood in its entirety. For decades S. aureus was thought to be a strictly extracellular pathogen relying on pore-forming toxins like α-hemolysin to damage human cells and tissue. Only recently it has been shown that S. aureus can enter non-professional phagocytes, using adhesins like the fibronectin-binding proteins which mediate an endocytotic uptake into the host cells. The bacteria are consequently localized to endosomes, where the degradation of enclosed bacterial cells through phagosome maturation would eventually occur. S. aureus can avoid degradation, and translocate to the cellular cytoplasm, where it can replicate. The ability to cause this so-called phagosomal escape has mainly been attributed to a family of amphiphilic peptides called phenol soluble modulins (PSMs), but as studies have shown, they are not sufficient. In this work I used a transposon mutant library in combination with automated fluorescence microscopy to screen for genes involved in the phagosomal escape process and intracellular survival of S. aureus. I thereby identified a number of genes, including a non-ribosomal peptide synthetase (NRPS). The NRPS, encoded by the genes ausA and ausB, produces two types of small peptides, phevalin and tyrvalin. Mutations in the ausAB genes lead to a drastic decrease in phagosomal escape rates in epithelial cells, which were readily restored by genetic complementation in trans as well as by supplementation of synthetic phevalin. In leukocytes, phevalin interferes with calcium fluxes and activation of neutrophils and promotes cytotoxicity of intracellular bacteria in both, macrophages and neutrophils. Further ausAB is involved in survival and virulence of the bacterium during mouse lung pneumoniae. The here presented data demonstrates the contribution of the bacterial cyclic dipeptide phevalin to S. aureus virulence and suggests, that phevalin directly acts on a host cell target to promote cytotoxicity of intracellular bacteria. N2 - Staphylococcus aureus ist ein weit verbreitetes kommensales Bakterium, welches zugleich einer der häufigsten Verursacher von Krankenhausinfektionen ist, und eine Reihe verschiedener Krankheiten, angefangen bei simplen Abszessen, bis hin zu schweren Erkrankungen wie Lungenentzündung, Osteomylitis und Sepsis verursachen kann. Das Risiko durch nosokomiale sowie epidemische S. aureus Infektionen ist in den vergangenen Jahren weiter gestiegen. Dazu beigetragen hat das Auftreten multiresistenter und hoch cytotoxischer Stämme, vor allem in den USA. Als Konsequenz hat die WHO S. aureus inzwischen als „Superbug“ tituliert und als globales Gesundheitsrisiko eingestuft. Bei CA-Infektionen dominieren die Isolate der Klassifizierung USA300 und USA400, wobei den Erstgenannten bis zu 70% aller in den USA registrierten CA-MRSA Infektionen der letzten Jahre zugesprochen werden. Lange Zeit wurde angenommen, dass S. aureus strikt extrazellulär im Infektionsbereich vorliegt und die cytotoxische Wirkung von z.B. α-Toxin für Wirtszelltod und Gewebeschädigungen verantwortlich ist. Erst vor kurzem wurde festgestellt, dass S. aureus auch durch fakultativ phagozytotische Zellen, wie Epithel- oder Endothelzellen, mittels zahlreicher Adhäsine aufgenommen wird. Die Aufnahme in die Zelle erfolgt zunächst in ein Phagoendosom, in dem die Pathogene durch antimikrobielle Mechanismen abgebaut würden. Um dies zu verhindern, verfügt S. aureus über Virulenzfaktoren, welche die endosomale Membran schädigen. Die Bakterien gelangen so in das Zellzytoplasma, wo sie sich vervielfältigen können, bevor die Wirtszelle schließlich getötet wird. Eine wichtige Funktion in diesem Vorgang konnte bereits in mehreren Studien den Phenol löslichen Modulinen (PSM) zugesprochen werden, Arbeiten unserer Gruppe deuten jedoch darauf hin, dass diese nicht alleine für den phagosomalen Ausbruch von S. aureus verantwortlich sind. In dieser Arbeit verwendete ich eine Transposon Mutantenbibliothek des S. aureus Stammes JE2 (USA300) in Verbindung mit automatisierter Fluoreszenzmikroskopie, um Gene zu identifizieren, die den phagosomalen Ausbruch von S. aureus beeinflussen. Unter den Mutanten, welche eine Minderung der Ausbruchsraten zeigten, fanden sich auch Mutanten in beiden Genen eines Operons, welches für die nicht-ribosomale Peptidsynthetase AusA/B codiert, die die beiden Dipeptide Phevalin und Tyrvalin produziert. Verminderte Ausbruchsraten konnten sowohl durch genetische Komplementation als auch mittels des Zusatzes synthetischen Phevalins wiederhergestellt werden. In Leukozyten verhindert Phevalin effizienten Calcium-Flux und die Aktivierung von Neutrophilen. Zudem fördert Phevalin die Cytotoxizität intrazellulärer Bakterien sowohl in Makrophagen, als auch Neutrophilen. Darüber hinaus konnten wir zeigen, dass die NRPS AusAB und ihre Produkte eine Rolle beim Überleben der Bakterien während einer Infektion im Tiermodell einnehmen. Die hier präsentierten Daten hinsichtlich des Einflusses von Phevalin auf Virulenz und der Interaktion zwischen Wirt und Pathogen lassen den Schluss zu, dass Phevalin direkt auf einen Wirtszellfaktor wirkt, um die Cytotoxicität intrazellulärer Bakterien zu stärken. KW - Staphylococcus aureus KW - MRSA KW - Virulenz KW - Intracellular virulence KW - Non-ribosomal peptide synthetase KW - USA300 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146662 ER - TY - THES A1 - Das, Sudip T1 - Genome-wide identification of virulence-associated genes in Staphylococcus aureus using Transposon insertion-site deep sequencing T1 - Genomweite Identifizierung Virulenz-assoziierter Gene in Staphylococcus aureus mittels Transposon-Sequenzierung N2 - Staphylococcus aureus asymptomatically colonises one third of the healthy human population, finding its niche in the nose and on skin. Apart from being a commensal, it is also an important opportunistic human pathogen capable of destructing tissue, invading host cells and killing them from within. This eventually contributes to severe hospital- and community-acquired infections. Methicillin-resistant Staphylococcus aureus (MRSA), resistant to commonly used antibiotics are protected when residing within the host cell. This doctoral thesis is focused on the investigation of staphylococcal factors governing intracellular virulence and subsequent host cell death. To initiate an unbiased approach to conduct this study, complex S. aureus mutant pools were generated using transposon insertional mutagenesis. Genome-wide infection screens were performed using these S. aureus transposon mutant pools in vitro and in vivo, followed by analysis using Transposon insertion site deep sequencing (Tn-seq) technology. Amongst several other factors, this study identified a novel regulatory system in S. aureus that controls pathogen-induced host cytotoxicity and intra-host survival. The primary components of this system are an AraC-family transcription regulator called Repressor of surface proteins (Rsp) and a virulence associated non-coding RNA, SSR42. Mutants within rsp exhibit enhanced intra-host survival in human epithelial cells and delayed host cytotoxicity. Global gene-expression profiling by RNA-seq demonstrated that Rsp controls the expression of SSR42, several cytotoxins and other bacterial factors directed against the host immune system. Rsp enhances S. aureus toxin response when triggered by hydrogen peroxide, an antimicrobial substance employed by neutrophils to destroy pathogens. Absence of rsp reduces S. aureus-induced neutrophil damage and early lethality during mouse pneumonia, but still permits blood stream infection. Intriguingly, S. aureus lacking rsp exhibited enhanced survival in human macrophages, which hints towards a Trojan horse-like phenomenon and could facilitate dissemination within the host. Hence, Rsp emerged as a global regulator of bacterial virulence, which has an impact on disease progression with prolonged intra-cellular survival, delayed-lethality but allows disseminated manifestation of disease. Moreover, this study exemplifies the use of genome-wide approaches as useful resources for identifying bacterial factors and deduction of its pathogenesis. N2 - Staphylococcus aureus ist ein fakultativ pathogener Kommensale des Menschen und besiedelt bei etwa einem Drittel der Bevölkerung überwiegend den Nasen-Rachenraum sowie die Haut ohne klinische Symptome auszulösen. Darüber hinaus zählen diese Bakterien zu den wichtigsten Vertretern der Kranken- hauskeime, die schwerwiegende Infektionen besonders im Bereich der Intensivstationen in Kranken- häusern hervorrufen können. Methicillin-resistente Staphylococcus aureus (MRSA) sind dabei resistent gegen übliche Antibiotika und daher schlecht therapierbar. Neuere Forschungsarbeiten zeigten, dass S. aureus von Zellen des Wirts aufgenommen wird und diese von innen heraus abzutöten vermag. Über die zugrunde liegenden molekularen Mechanismen dieser Zelltoxizität ist jedoch nicht viel bekannt. In der vorliegenden Arbeit sollten daher Faktoren von S. aureus identifiziert und charakterisiert wer- den, die die intrazelluläre Virulenz des Bakteriums und das darauf folgende Absterben der Wirtszelle beeinflussen. Dafür wurden mittels Transposon-Insertionsmutagenese S. aureus Mutanten-Bibliotheken erstellt, welche für genomweite Infektionsscreens in vitro und in vivo genutzt wurden. Die Auswertung dieser Analysen erfolgte dabei durch Hochdurchsatz-Sequenzierung der Transposon-Insertionsstellen (Tn-seq). In diesen Studien wurde neben zahlreichen bakteriellen Faktoren ein neuartiges Virulenzreg- ulator - System identifiziert. Dieses System besteht aus dem Transkriptionsregulator der AraC-Familie Repressor of surface proteins (Rsp) und einer nicht-kodierenden RNA, SSR42. rsp-Mutanten zeigten eine erhöhte intrazelluläre Überlebensrate in menschlichen Epithelzellen sowie eine verzögerte Cytotoxizität im Wirt. Durch RNA-Sequenzierung (RNA-seq) wurde der Einfluss von Rsp auf die globale Genexpres- sion ermittelt. Dabei zeigte sich, dass Rsp die Expression von SSR42, sowie Cytotoxinen und anderen immunmodulatorischen Faktoren von S. aureus kontrolliert. Wasserstoffperoxid, ein Molekül, welches durch Neutrophile zur Bekämpfung von Pathogenen gebildet wird, führt dabei Rsp-abhängig zu einer Erhöhung der bakteriellen Toxinproduktion. Die Abwesenheit von Rsp in bakteriellen Mutanten res- ultiert in einer Reduktion S. aureus-induzierter Zerstörung von Neutrophilen sowie zum Überleben von Versuchstieren im Lungeninfektionsmodell. Eine systemische Infektion ist dabei jedoch weiterhin mög- lich. Interessanterweise führt ein Fehlen des rsp zu einer erhöhten Überlebensrate von Makrophagen, welches auf eine Verbreitung der Bakterien im Organismus in diesem Zelltyp hindeuten könnte. Rsp ist demnach ein neuartiger globaler Regulator bakterieller Virulenz, der zwar die infektions- bedingte Letalität verzögert, jedoch damit eine Disseminierung der Infektion mit S. aureus begünstigt. KW - Staphylococcus aureus KW - Transposon KW - insertion-site deep sequencing Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143362 ER - TY - THES A1 - Garcia Betancur, Juan Carlos T1 - Divergence of cell-fates in multicellular aggregates of \(Staphylococcus\) \(aureus\) defines acute and chronic infection cell types T1 - Divergenz von Zelldifferenzierung in multizellulären Aggregaten von \(Staphylococcus\) \(aureus\) grenzt Zelllinien für akute und chronische Infektionen voneinander ab N2 - Staphylococcus aureus is a versatile human pathogen that normally develops acute or chronic infections. The broad range of diseases caused by this bacterium facilitates the escape from the host's immune response as well as from target-specific antimicrobial therapies. Nevertheless, the underlying cellular and molecular mechanisms that enable S. aureus to cause these disparate types of infections are largely unknown. In this work, we depicted a novel genetic program involved in the development of cell-fate decision, which promotes the differentiation of the staphylococcal cells into two genetically identical but differently heritable cell lines capable of defining the course of an infection, by simultaneously progressing to (i) a biofilm-associated chronic infection or (ii) a disperse acute bacteremia. Here, S. aureus growing in architecturally complex multicellular communities harbored different cell types that followed an exclusive developmental plan, resulting in a clonal heterogeneous population. We found that these cell types are physiologically specialized and that, this specialization impacts the collective behavior within the multicellular aggregates. Whereas one cell line that we named BRcells, promotes biofilm formation that engenders chronic infections, the second cell line, which we termed DRcells is planktonic and synthetizes virulence factors, such as toxins that can drive acute bacteremia. We identified that the positive feedback loop present in Agr quorum sensing system of S. aureus acts a bimodal switch able to antagonistically control the divergence of these two physiologically distinct, heritable cell lines. Also, we found that this bimodal switch was triggered in response to environmental signals particularly extracellular Mg2+, affecting the size of the subpopulations in specific colonization environments. Specifically, Mg2+-enriched environments enhanced the binding of this cation to the staphylococcal teichoic acids, increasing the rigidity of the cell wall and triggering a genetic program involving the alternative sigma factor σB that downregulated the Agr bimodal switch, favoring the enrichment of the BRcells type. Therefore, colonization environments with different Mg2+ content favored different outcomes in the bimodal system, defining distinct ratio in the BRcells/DRcells subpopulations and the S. aureus outcome in our in vitro model of development of multicellular aggregates and, the infection outcome in an in vivo mice infection model. In this prime human pathogen cell-fate decision-making generates a conserved pattern of heritable, physiological heterogeneity that actively contributes to determine the course of an infection through the emergence and spatio-temporal dynamics of distinct and specialized cell types. In conclusion, this work demonstrates that cell differentiation in pathogenic bacteria is a fundamental phenomenon and its understanding, is central to understand nosocomial infections and to designing new anti-infective strategies N2 - Staphylococcus aureus ist ein wandlungsfähiges humanes Pathogen, das im Allgemeinen akute oder chronische Infektionen entwickelt. Das breite Spektrum von Krankheiten, die von diesem Bakterium verursacht werden, erleichtert es, sowohl der Immunantwort des Wirts als auch gezielten antimikrobiellen Therapien zu entgehen. Dennoch sind die zellulären und molekularen Mechanismen, die S. aureus die Entwicklung dieser verschiedenartigen Infektionsarten ermöglichen, weitgehend unbekannt. In dieser Arbeit beschreiben wir ein neues genetisches Programm, das bei der Entwicklung der Zelldifferenzierung beteiligt ist und die Differenzierung der Staphylokokken-Zellen in zwei genetisch identische, aber unterschiedliche, erbliche Zelllinien fördert. Diese können den Verlauf einer Infektion bestimmen, indem sie sich gleichzeitig entwickeln zu (i) einer Biofilm-assoziierten chronischen Infektion oder (ii) einer sich ausbreitenden akuten Bakteriämie. Hier verbirgt S. aureus, der in architektonisch komplexen multizellulären Bakteriengemeinschaften wächst, verschiedene Zelltypen, die einem einzigartigen Entwicklungsplan folgen, resultierend in einer klonal heterogenen Population. Wir haben festgestellt, dass diese Zellzypen physiologisch spezialisiert sind, und dass diese Spezialisierung das kollektive Verhalten innerhalb der multizellulären Aggregate beeinflusst. Während eine Zelllinie, die wir als BRcells benennen, Biofilm-Bildung fördert, was chronische Infektionen erzeugt, ist die zweite Zelllinie, als DRcells bezeichnet, planktonisch und synthetisiert Virulenzfaktoren wie Toxine, die eine akute Bakteriämie verursachen können. Wir haben identifiziert, dass die im Agr Quorum sensing System von S. aureus vorhandene positive Rückkopplung als bimodaler Schalter agiert, der antagonistisch die Divergenz dieser beiden physiologisch unterschiedlichen, vererbbaren Zelllinien kontrolliert. Wir haben auch gefunden, dass dieser bimodale Schalter durch Signale aus der Umgebung ausgelöst wird, insbesondere durch extrazelluläres Mg2+, wodurch die Größe der Subpopulationen in spezifischen Kolonisierungsumgebungen beeinflusst wird. Besonders Mg2+-angereicherte Umgebungen fördern die Bindung dieses Kations mit den Teichonsäuren von Staphylokokken, welche die Steifigkeit der Zellwand erhöhen und ein genetisches Programm initialisieren, welches den alternativen Sigmafaktor σB beinhaltet. Dieser regelt den bimodalen Agr Schalter herunter und begünstigt die Anreicherung des Brcells Zelltyps. Daher begünstigen verschiedene Kolonisierungsumgebungen mit verschiedenem Mg2+ Gehalt unterschiedliche Ergebnisse im bimodalen System, welche sich in individuellen Verhältnissen der Brcells/Drcells Subpopulationen und dem Ergebnis für S. aureus – sowohl in unserem in vitro Modell der Entwicklung multizellulärer Aggregate als auch der Entzündungsentwicklung in einem in vivo Maus-Infektionsmodell. In diesem primären Humanpathogen generiert die Zelldifferenzierung ein bleibendes Muster von vererbbarer, physiologischer Heterogenität, die aktiv dazu beiträgt, den Infektionsverlauf durch das Auftreten und die räumlich-zeitliche Dynamik verschiedener spezialisierter Zelltypen zu bestimmen. Zusammenfassend zeigt diese Arbeit, dass Zelldifferenzierung in pathogenen Bakterien ein grundlegendes Phänomen ist. Diese zu erfassen ist zentral für das Verständnis nosokomialer Infektionen und die Konzeption neuer Strategien gegen Infektionen. KW - Staphylococcus aureus KW - Zelldifferenzierung KW - Pathogenität KW - Biofilm KW - Cell differentiation KW - Multicellular aggregates KW - Biofilms KW - Multizellulären Bakteriengemeinschaften Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148059 ER - TY - THES A1 - Hertlein, Tobias T1 - Visualization of Staphylococcus aureus infections and antibiotic therapy by bioluminescence and 19F magnetic resonance imaging with perfluorocarbon emulsions T1 - Darstellung von Staphylococcus aureus Infektionen und Antibiotikatherapie durch Biolumineszenzbildgebung und 19F-Kernspintomografie mit Perfluorcarbon-Emulsionen N2 - Staphylococcus aureus is a major threat to public health systems all over the globe. This second most cause of nosocomial infections is able to provoke a wide variety of different types of infection in humans and animals, ranging from superficial skin and skin structure infections to invasive disease like sepsis or pneumonia. But not enough, this pathogen is also notorious in acquiring and/or developing resistance to antimicrobial compounds, thus limiting available treatment options severely. Therefore, development of new compounds and strategies to fight S. aureus is of paramount importance. But since only 1 out of 5 compounds, which entered clinical trials, becomes a drug, the preclinical evaluation of promising compounds has to be reconsidered, too. The aim of this thesis was to address both sides of this problem: first, to improve preclinical testing by incorporating in vivo imaging technologies to the preclinical testing procedure in order to acquire additional and clearer data about efficacy of promising compounds and second, by evaluating lysostaphin, which is a promising, new option to fight S. aureus infections. The first aim of this thesis focused on the establishment of a dual modality in vivo imaging platform, consisting of Bioluminescence Imaging (BLI) and Magnetic Resonance Imaging (MRI), to offer detailed insights into the course and gravity of S. aureus infection in the murine thigh infection model. Since luciferase-expressing S. aureus strains were generated in former studies and enabled thus bioluminescence imaging of bacterial infection, this technology should be implemented into the compound evaluation platform in order to non-invasively track the bacterial burden over time. MRI, in contrast, was only rarely used in earlier studies to visualize and measure the course of infection or efficacy of anti-bacterial therapy. Thus, the first set of experiments was performed to identify benefits and drawbacks of visualizing S. aureus infections in the mouse model by different MR methods. Native, proton-based MR imaging showed in this regard increased T2 relaxation times in the infected thigh muscles, but it was not possible to define a clear border between infected and uninfected tissue. Iron oxide nanoparticles and perfluorocarbon emulsions, two MR contrast agents or tracer, in contrast, offered this distinction. Iron oxide particles were detected in this regard by their distortion of 1H signal in proton-based MRI, while perfluorocarbon emulsion was identified by 19F MRI. Mammals do not harbor sufficient intrinsic amounts of 19F to deliver specific signal and therefore, 19F MR imaging visualizes only the signal of administered perfluorocarbon emulsion. The in vivo accumulation of perfluorocarbon emulsion can be imaged by 19F MRI and overlayed on a simultaneously acquired 1H MR image, which shows the anatomical context in clear detail. Since this is advantageous compared to contrast agent based MR methods like iron oxide particle-based MRI, further experiments were performed with perfluorocarbon emulsions and 19F MRI. Experimental studies to elucidate the accumulation of perfluorocarbon emulsion at the site of infection showed robust 19F MR signals after administration between day 2 and at least day 8 p.i.. Perfluorocarbon emulsion accumulated in all investigated mice in the shape of a ‘hollow sphere’ at the rim of the abscess area and the signal remained stable as long as the infection prevailed. In order to identify the mechanism of accumulation, flow cytometry, cell sorting and histology studies were performed. Flow cytometry and cell sorting analysis of immune cells at the site of infection showed that neutrophils, monocytes, macrophages and dendritic cells carried contrast media at the site of infection with neutrophils accounting for the overwhelming portion of perfluorocarbon signal. In general, most of the signal was associated with immune cells, thus indicating specific immune cell dependent accumulation. Histology supported this observation since perfluorocarbon emulsion related fluorescence could only be visualized in close proximity to immune cell nuclei. After establishing and testing of 19F MRI with perfluorocarbon emulsions as infection imaging modality, the effects of antibiotic therapy upon MR signal was investigated in order to evaluate the capability of this modality for preclinical testing procedure. Thus, the efficacy of vancomycin and linezolid, two clinically highly relevant anti - S. aureus compounds, were tested in the murine thigh infection model. Both of them showed reduction of the colony forming units and bioluminescence signal, but also of perfluorocarbon emulsion accumulation strength and volume at the site of infection, which was visualized and quantified by 19F MRI. The efficacy pattern with linezolid being more efficient in clearing bacterial infection was shown similarly by all three methods. In consequence, 19F MRI with perfluorocarbon emulsion as MR tracer proved to be capable to visualize antibacterial therapy in preclinical testing models. The next step was consequently to evaluate a promising new compound against S. aureus infections. Thus, lysostaphin, an endo-peptidase that cleaves the cell wall of S. aureus, was tested in different concentrations alone or in combination with oxacillin for efficacy in murine thigh and catheter associated infection models. Lysostaphin only in the concentration of 5 mg/kg body weight or combined with oxacillin in the concentration of 2 mg/kg showed strong reduction of bacterial burden by colony forming unit determination and bioluminescence imaging in both models. The perfluorocarbon accumulation was investigated in the thigh infection model by 19F MRI and was strongly reduced in terms of volume and signal strength in both above-mentioned groups. In general, lysostaphin showed comparable or superior efficacy than vancomycin or oxacillin alone. Therefore, further development of lysostaphin for the treatment of S. aureus infections is recommended by these experiments. Overall, the antibiotic efficacy pattern of all applied antibiotic regimens was similar with all three applied methods, demonstrating the usefulness of MRI for antibiotic efficacy testing. Importantly, treatment with oxacillin either alone or in combination with lysostaphin resulted in stronger perfluorocarbon emulsion accumulation at the site of infection than expected compared to the results from bioluminescence imaging and colony forming unit determination. This might be an indication for immunomodulatory properties of oxacillin. Further murine infection experiments demonstrated in this context a differential release of cytokine and chemokines in the infected thigh muscle in dependence of the applied antibacterial therapy. Especially treatment with oxacillin, but to a less degree with minocycline or linezolid, too, exhibited high levels of various cytokines and chemokines, although they reduced the bacterial burden efficiently. In consequence, possible immunomodulatory effects of antibacterial compounds have to be taken into account for future applications of imaging platforms relying on the visualization of the immune response. However, this observation opens a new field for these imaging modalities since it might be extraordinary interesting to study the immunomodulatory effects of compounds or even bacterial factors in vivo. And finally, a two modality imaging platform which combines methods to visualize on the one hand the bacterial burden and on the other hand the immune response offers an innovative, new platform to study host-pathogen interaction in vivo in a non-invasive fashion. In summary, it could be shown that perfluorocarbon emulsions accumulate in immune cells at the site of infection in the murine S. aureus thigh infection model. The accumulation pattern shapes a ‘hollow sphere’ at the rim of the abscess area and its size and perfluorocarbon content is dependent on the severity of disease and/or efficacy of antibiotic therapy. Thus, 19F MRI with perfluorocarbon emulsions is a useful imaging modality to visualize sites and course of infection as well as to evaluate promising antibacterial drug candidates. Furthermore, since the accumulation of tracer depends on immune cells, it might be additionally interesting for studies regarding the immune response to infections, auto-immune diseases or cancer, but also to investigate the efficacy of immunomodulatory compounds and immunization. N2 - Staphylococcus aureus ist als zweithäufigste Ursache nosokomialer Infektionen eine ernste Bedrohung für Gesundheitssysteme weltweit. Dieses Pathogen ist in der Lage eine Vielzahl verschiedener Krankheitsformen, von oberflächlichen Wund- und Gewebsinfektionen bis hin zu invasiven Erkrankungen wie Bakteriämie oder Pneumonie, in Mensch und Tier zu verursachen. Zudem erwies sich dieser Krankheitserreger in der Vergangenheit als höchst anpassungsfähig durch den Erwerb oder die Entwicklung von Resistenzen gegenüber antibakterieller Substanzen, wodurch die Verfügbarkeit wirksamer Therapiemöglichkeiten drastisch eingeschränkt wurde. Aus diesem Grund ist die Entwicklung neuer Antibiotika und Behandlungsstrategien gegen S. aureus Infektionen von enormem gesellschaftlichem Interesse. Da aber lediglich eine von fünf Substanzen, die in klinische Studien eintreten, später als Medikament zugelassen wird, sollte die präklinische Evaluierung neuer, vielversprechender Therapeutika ebenso verbessert und überdacht werden. Diese Doktorarbeit addressiert in diesem Zusammenhang beide Facetten: zum einen wurde durch Einbeziehung von in vivo Bildgebungstechnologien ein deutlicheres Bild von der Effizienz neuer Substanzen während der präklinischen Evaluierung ermöglicht, zum anderen wurde mit Lysostaphin eine neuartige Substanzklasse zur Behandlung von S. aureus Infektionen getestet. Primärziel dieser Arbeit war deshalb die Entwicklung und Etablierung einer dualen Bildgebungsplattform bestehend aus Biolumineszenz- (BLI) und Kernspintomografischer (MRI) Bildgebung, um detaillierte Einblicke in Verlauf und Schwere von S. aureus Infektionen im Muskelinfektionsmodell der Maus zu ermöglichen. Die Biolumineszenzbildgebung bakterieller Infektionen wurde durch die Entwicklung von Luziferase-exprimierenden S. aureus Stämmen bereits in früheren Arbeiten ermöglicht und wurde in die Bildgebungsplatform integriert, um die Entwicklung der Bakterienlast nicht-invasiv verfolgen zu können. Kernspintomografie wurde in früheren Arbeiten hingegen kaum zur Darstellung der Effizienz anti-bakterieller Therapien während der Präklinik verwendet. Aus diesem Grund dienten die ersten Experimente zur Erkennung von Vor- und Nachteilen der Darstellung von S. aureus Infektionen im Tiermodell durch verschiedene Kernspintomografische Bildgebungsmethoden. Native, Protonen-basierte Kernspintomografie wies verlängerte T2 Relaxationszeiten im infizierten Muskelgewebe nach, doch eine klare Eingrenzung des infizierten Bereiches war nicht möglich. Die Anwendung von Eisenoxid und Perfluorcarbon Nanopartikeln, zwei Kontrastmittel zur Kernspintomografie, ermöglichte ebendiese. Eisenoxid Nanopartikel wurden durch ihren Signalstöreffekt auf das MR Protonensignal detektiert, während Perfluorcarbon Emulsionen durch 19F basierte Kernspintomografie nachgewiesen wurden. Säugetiere verfügen nicht über ausreichende Mengen von 19F Atomen, um ein spezifisches Signal zu liefern, weshalb 19F Kernspintomografie lediglich applizierte Perfluorcarbon Emulsion in vivo abbilden kann. Dieses Bild kann dann über ein zugleich aufgenommenes Protonen MR Bild gelegt werden, wodurch die Akkumulation des Kontrastmittels im Detail in anatomischer Umgebung dargestellt werden kann. Da es sich hierbei um einen Vorteil gegenüber anderen Kontrastmittel-basierten MR Bildgebungsmethoden wie Eisenoxid Nanopartikel gestützter Kernspintomografie handelt, wurden nachfolgende Experimente mit Perfluorcarbon Emulsionen durchgeführt. Studien zur Bildgebung der Perfluorcarbon Akkumulation am Infektionsherd des Muskelabszessmodels von S. aureus in der Maus zeigten deutliches 19F MR Signal nach Gabe zwischen Tag 2 und Tag 8 p.i.. In allen untersuchten Tieren zeigte sich eine Ansammlung des Kontrastmittels in Form einer Hohlkugel um den Abszessbereich, wobei das Signal während der gesamten Infektion stabil war. Um den Akkumulationsmechanismus zu identifizieren, wurden Durchflusszytometrie-, Zellseparations- und histologische Experimente durchgeführt. In diesem Zusammenhang erwiesen sich Neutrophile, Makrophagen, Monozyten und Dendritische Zellen als Perfluorcarbon-tragende Immunzelltypen, wobei das Gros an Kontrastmittel in Neutrophilen nachgewiesen werden konnte. Im Allgemeinen war der Großteil des Perfluorcarbonsignals mit Immunzellen assoziert, weshalb eine spezifische Immunzell-abhängige Akkumulation wahrscheinlich erscheint. Die histologischen Untersuchungen stützten diese Beobachtung, da die Kontrastmittel assoziierten Fluoreszenzmarker nur in der Nähe von Immunzellnuclei gefunden werden konnten. Die Etablierung von 19F Kernspintomografie mit Perfluorcarbon Emulsionen als Infektionsbildgebungsmethode ermöglichte im nächsten Schritt die Untersuchung von antibakterieller Therapie auf das MR Signal, um die Eignung dieser Methode für die Präklinik zu evaluieren. Deshalb wurden die Wirksamkeit von Vancomycin und Linezolid, zweier klinisch höchst relevanter Antibiotika zur Behandlung von S. aureus Infektionen, im Muskelabszessmodel der Maus untersucht. Beide erwiesen sich als effizient in der Verringerung der bakteriellen Last im infizierten Muskel und des Bakterien-Biolumineszenzsignals, aber auch bei der Reduktion der Stärke und des Volumens der Perfluorcarbon Akkumulation am Infektionsherd, die durch 19F Kernspintomografie dargestellt und vermessen wurde. Alle drei Methoden zeigten dabei das gleiche Effizienzmuster nach dem Linezolid wirksamer bei der Bekämpfung der Infektion war. Folglich erwies sich 19F Kernspintomografie mit Perfluorcarbon Emulsionen als effektiv um den antibakteriellen Effekt von Antibiotika in präklinischen Modellen zu untersuchen. Konsequenterweise wurde im nächsten Schritt eine neuartige Substanz zur Behandlung von S. aureus Infektionen mit Hilfe der Bildgebungsplattform untersucht: Lyostaphin. Diese Endopeptidase schneidet spezifisch die Zellwand von S. aureus und wurde in verschiedenen Konzentrationen oder in Kombination mit Oxacillin im Muskelabszess- oder Katheterinfektionsmodell der Maus gestestet. Lysostaphin in der Konzentration von 5 mg/kg Körpergewicht (Maus) oder Lysostaphin in der Konzentration von 2 mg/kg in Kombination mit Oxacillin führten zu einer starken Verringerung der Bakterienlast und des Biolumineszenzsignals in beiden Modellen. Die Ansammlung von Perfluorcarbon Kontrastmittel war zudem in diesen beiden Gruppen stark reduziert im Vergleich zur Negativkontrolle und den mit Vancomycin und Oxacillin behandelten Tieren. Zusammenfassend kann festgestellt werden, dass Lysostaphin eine vergleichbare oder bessere Wirksamkeit als Vancomycin oder Oxacillin alleine lieferte. Aus diesem Grund scheint eine Weiterentwicklung dieser Substanz zur Behandlung von S. aureus empfohlen. Der Nutzen der Bildgebungsplattform wurde in diesen Experimenten zudem dadurch deutlich, dass alle drei Methoden zur Bestimmung der Schwere der Erkrankung ähnliche Wirksamkeiten der Antibiotika anzeigten. Dennoch muss festgestellt werden, dass die Gruppen, die Oxacillin entweder alleine oder in Kombination mit Lysostaphin erhielten, stärkere Perfluorocarbon Akkumulation am Infektionsherd aufwiesen als von den Bakterienlast- oder Biolumineszenz-Ergebnissen zu erwarten gewesen wäre. Ein Grund hierfür könnten mögliche immunomodulatorischen Effekte von Oxacillin sein. Tatsächlich zeigten weitere Experimente Variationen in den Konzentrationen von Cytokinen und Chemokinen im infizierten Muskel in Abhängigkeit der verwendeten Antibiotikatherapie. Besonders die Behandlung mit Oxacillin, in geringerem Maße aber auch mit Minocyclin oder Linezolid, führte zu erhöhten Konzentrationen, wenngleich die Bakterienlast deutlich reduziert werden konnte. Folglich sollten mögliche immuno-modulatorischen Effekte antibakterieller Substanzen bei zukünftiger Anwendung von Bildgebungsplattform, die auf dem Markieren von Immunzellen basieren, mit ins Kalkül gezogen werden. Auf der anderen Seite eröffnet diese Beobachtung ein neues Anwendungsfeld für diese Bildgebungsmethoden, da es außerordentlich interessant erscheint, damit immuno-modulatorische Substanzen oder bakterielle Faktoren in vivo zu untersuchen. Zu guter Letzt, ermöglicht diese Bildgebungsplattform, die Methoden zur Darstellung der bakteriellen Last auf der einen und des Immunsystems auf der anderen Seite verknüpft, eine innovative, neue Möglichkeit Wirt-Pathogen Interaktionen nicht-invasiv und in vivo studieren zu können. Zusammenfassend konnte gezeigt werden, dass Perfluorcarbon Emulsionen in Immunzellen am Infektionsherd des S. aureus Muskelabszessmodells der Maus akkumulieren. Die Ansammlung formt eine Hohlkugel am Rand des Abszessbereiches, deren Größe und Fluorgehalt von der Schwere der Erkrankung und/oder der Wirksamkeit der angewandten Antibiotikatherapie abhängt. Aus diesem Grund erwies sich 19F Kernspintomografie mit Perfluorcarbon Emulsionen als Kontrastmittel als nützliche Platform zur präklinischen Evaluierung antibakterieller Substanzen. Weiterhin erscheint diese Methode wegen der Akkumulation des Kontrastmittels in Immunzellen, als interessant zum Studium der Immunantwort gegenüber Infektionen, aber auch Krebs oder Autoimmunerkrankungen sowie zur Erforschung von immuno-modulatorischen Substanzen und Impfansätzen. KW - Staphylococcus aureus KW - Kernspintomographie KW - Infektion KW - In vivo Imaging KW - Infection imaging KW - Infektionsbildgebung KW - Antibiotikum KW - Bilderzeugung KW - Molekulare Bildgebung Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-105349 ER - TY - THES A1 - Ibrahim, Eslam Samir Ragab T1 - Unraveling the function of the old yellow enzyme OfrA in \(Staphylococcus\) \(aureus\) stress response T1 - Entschlüsselung der Funktion des “alten gelben Enzyms” OfrA in der Stressreaktion von \(Staphylococcus\) \(aureus\) N2 - Biological systems are in dynamic interaction. Many responses reside in the core concepts of biological systems interplay (competition and cooperation). In infection situation, the competition between a bacterial system and a host is shaped by many stressors at spatial and temporal determinants. Reactive chemical species are universal stressors against all biological systems since they potentially damage the basic requirements of these systems (nucleic acids, proteins, carbohydrates, and lipids). Either produced endogenously or exogenously, reactive chemical species affect the survival of pathogens including the gram-positive Staphylococcus aureus (S. aureus). Therefore, bacteria developed strategies to overcome the toxicity of reactive species. S. aureus is a widely found opportunistic pathogen. In its niche, S. aureus is in permanent contact with surrounding microbes and host factors. Deciphering the deterministic factors in these interactions could facilitate pinpointing novel bacterial targets. Identifying the aforementioned targets is crucial to develop new strategies not only to kill the pathogenic organisms but also to enhance the normal flora to minimize the pathogenicity and virulence of potential pathogens. Moreover, targeting S. aureus stress response can be used to overcome bacterial resistance against host-derived factors. In this study, I identify a novel S. aureus stress response factor against reactive electrophilic, oxygen, and hypochlorite species to better understand its resilience as a pathogen. Although bacterial stress response is an active research field, gene function is a current bottleneck in characterizing the understudied bacterial strategies to mediate stress conditions. I aimed at understanding the function of a novel protein family integrated in many defense systems of several biological systems. In bacteria, fungi, and plants, old yellow enzymes (OYEs) are widely found. Since the first isolation of the yellow flavoprotein, OYEs are used as biocatalysts for decades to reduce activated C=C bonds in α,β-unsaturated carbonyl compounds. The promiscuity of the enzymatic catalysis is advantageous for industrial applications. However, the physiological function of OYEs, especially in bacteria, is still puzzling. Moreover, the relevance of the OYEs in infection conditions remained enigmatic.   Here, I show that there are two groups of OYEs (OYE flavin oxidoreductase, OfrA and OfrB) that are encoded in staphylococci and some firmicutes. OfrA (SAUSA300_0859) is more conserved than OfrB (SAUSA300_0322) in staphylococci and is a part of the staphylococcal core genome. A reporter system was established to report for ofrA in S. aureus background. The results showed that ofrA is induced under electrophilic, oxidative, and hypochlorite stress. OfrA protects S. aureus against quinone, methylglyoxal, hydrogen peroxide, and hypochlorite stress. Additionally, the results provide evidence that OfrA supports thiol-dependent redox homeostasis. At the host-pathogen interface, OfrA promotes S. aureus fitness in murine macrophage cell line. In whole human blood, OfrA is involved in S. aureus survival indicating a potential clinical relevance to bacteraemia. In addition, ofrA mutation affects the production of the virulence factor staphyloxanthin via the upper mevalonate pathway. In summary, decoding OfrA function and its proposed mechanism of action in S. aureus shed the light on a conserved stress response within multiple organisms. N2 - Biologische Systeme unterliegen ständig dynamischen Interaktionen. Diese werden geprägt von Konkurrenz und Kooperation. Im Falle einer Infektion wird die Konkurrenz zwischen einem bakteriellen Organismus und dem infizierten Wirt von der Einwirkung vieler Stressoren in allen biologischen Nischen geprägt. Eine fundamentale Rolle spielen dabei reaktive chemische Verbindungen die als universale Stressoren alle biologischen Systeme mit ihren fundamentalen Makromolekülen (Nukleinsäuren, Proteine, Kohlenhydrate und Lipide) potenziell schädigen. Reaktive chemische Verbindungen, entweder endogen oder exogen gebildet, beeinträchtigen das Überleben aller Pathogene, auch das Überleben des in dieser Arbeit behandelten gram-positiven Bakteriums Staphylococcus aureus (S. aureus). Um die lebensbedrohende Toxizität der reaktiven Verbindungen zu umgehen, haben Bakterien eine Vielzahl hoch spezialisierter Überlebensstrategien entwickelt. S. aureus ist ein weit verbreiteter opportunistischer Krankheitserreger. Er unterliegt dem permanenten Kontakt mit dem umgebenden Mikrobiom und den verschiedenartigen Wirtsfaktoren. Das Wissen um die Mechanismen der bakteriellen Stressabwehr während einer Pathogen-Wirts-Beziehung könnte als Grundlage für die Identifizierung neuer antibakterieller Zielstrukturen dienen. Eine spezifische Inaktivierung solcher Strukturen könnte dann den pathogenen Organismus schädigen ohne die normale Flora zu schwächen. Ferner können Untersuchungen an der Stressantwort von S. aureus genutzt werden, um die bakterielle Resistenz gegen wirtseigene Faktoren zu schwächen. Im Mittelpung dieser Arbeit steht die Charakterisierungeines neuartigen Faktors in der Stressantwort von S. aureus, der sowohl gegen elektrophilen Stress als auch gegen reaktive Sauerstoff- und Hypochlorit-Verbindungen aktiv ist. Die Ergebnisse der Arbeiten tragen zu einem besseren Verständnis der Stressantwort von dem wichtigen pathogenen Bakterium S. aureus bei. Trotz der Tatsache, dass die Untersuchung bakterieller Stressantworten Gegenstand der aktuellenForschung ist, sind viele Prozesse und die daran beteiligten Faktoren nur unzureichend charakterisiert. Daher war die Zielsetzung dieser Thesisdie Funktion eines Vertreters einer neuen Proteinfamilie, die mglw. in vielen Abwehrsystemen gegen chemische Stressoren eine wichtige Rolle spielt, zu untersuchen. Die von Otto Warburg erstmalig als “old yellow enzymes” (OYEs) bezeichnete Proteinfamilie ist im Bakterien-, Pilz- und Pflanzenreich weit verbreitet. Nach der erstmaligen Isolation des gelben Flavoproteins, werden OYEs seit vielen Jahrzehnten als Biokatalysatoren verwendet, um aktivierte C=C-Doppelbindungen in α,β-ungesättigte Carbonylverbindungen zu reduzieren. Die Promiskuität der enzymatischen Katalyse ist für industrielle Anwendungen sehr vorteilhaft. Nichtsdestotrotz konnte die physiologische Funktion von OYEs besonders in Bakterien bislang nur ansatzweise aufgeklärt werden und die Beteiligung der OYEs unter Infektionsbedingungen ist weiterhin unbekannt. In dieser Arbeit wurden zwei Vertreterder OYEs (OYE flavin oxidoreductase OfrA und OfrB) im Genom von Staphylokokken und Firmicuten identifiziert. OfrA (SAUSA300_0859) ist in Staphylokokken stärker konserviert als OfrB (SAUSA300_0322) und ist Teil des Kerngenoms. Es wurde ein Reportersystem etabliert, um die Expression von ofrA in S. aureus-Stämmen zu untersuchen. Die Daten dieser Arbeit zeigen, dass ofrA unter elektrophilen, oxidativen und hypochloriten Stressbedingungen induziert wird. OfrA schützt S. aureus vor Stress durch Quinone, Methylglyoxal, Wasserstoffperoxid und Hypochlorit. Weiterhin liefern die Ergebnisse Evidenz, dass OfrA die Thiol-abhängige Redox-Homöostase unterstützt. Weiterhin ist OfrA an der Fitness und dem Überleben von S. aureus nach Phagozytose in murinen Makrophagen beteiligt. Das Überleben von S. aureus in humanem Vollblut war ebenfalls sehr stark von der OfrA Expression abhängig. Somit kann auf eine wichtige Rolle von OfrA während des Infektionsgeschehens z.B. bei Bakteriämie geschlossen werden. Weiterhin zeigt sich, dass Mutationen in ofrA, die Produktion des Virulenzfaktors Staphyloxanthin über den oberen Mevalonatweg beeinflussen. Insgesamt liefert die vorliegende Arbeit neue Einblicke in die Funktion und Verbeitung von OfrA, einem neuen Vertreter aus der Klasse der OYEs. Die vorliegenden Ergebnisse ermöglichen somit auch ein besseres Verständnis konservierter Strategien der Stressantwort bei Bakterien und deren Bedeutung während des Infektionsgeschehens. KW - Staphylococcus aureus KW - stress response KW - ROS KW - Bacteria KW - Stressreaktion Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-289600 ER - TY - THES A1 - Makgotlho, Phuti Edward T1 - Molecular characterization of the staphylococcal two component system sae and its role in the regulation of the adhesin Eap under SDS stress stimulation T1 - Die molekulare charakterisierung des zwei komponenten-systems sae in staphylokokken und seiner rolle in der Regulation des Eap adhäsins unter SDS vermittelten stress bedingungen N2 - The Staphylococcus aureus two component system (TCS) sae governs expression of numerous virulence factors, including Eap (extracellular adherence protein), which in turn among other functions also mediates invasion of host cells. The sae TCS is encoded by the saePQRS operon, with saeS coding for the sensor histidine kinase (SaeS) and saeR encoding the response regulator (SaeR). The saeRS system is preceded by two additional open reading frames (ORFs), saeP and saeQ, which are predicted to encode a lipoprotein (SaeP) and a membrane protein (SaeQ), respectively. Earlier, we have shown that SDS-containing subinhibitory concentrations of biocides (Perform®) and SDS alone activate sae transcription and increase cellular invasiveness in S. aureus strain Newman. The effect is associated with an amino acid exchange in the N-terminus of SaeS (L18P), specific to strain Newman. In this work, the role of whether the two additional genes, saePQ coding for the accessory proteins SaeP and SaeQ, respectively, are involved in SDS-mediated saeRS was investigated. It could demonstrated that the lack of the SaeP protein resulted in an increased saeRS transcription without SDS stress in both SaeSL/P variants, while the SDS effect was less pronounced on sae and eap expression compared to the Newman wildtype, suggesting that the SaeP protein represses the sae system. Also, SDS-mediated inductions of sae and eap transcription along with enhanced invasion were found to be dependent on presence of the SaeSP variant in Newman wildtype. On the other hand, the study also shows that the saePQ region of the sae operon is required for fully functional two-component system saeRS under normal growth conditions, but it is not involved in SDS-mediated activation of the saeS signaling and sae-target class I gene, eap. In the second approach, the study investigates whether SDS-induced sae expression and host cell invasion is common among S. aureus strains not carrying the (L18P) point mutation. To demonstrate this strain Newman, its isogenic saeS mutants, and various S. aureus isolates were analysed for sae, eap expression and cellular invasiveness. Among the strains tested, SDS exposure resulted only in an increase of sae transcription, Eap production and cellular invasiveness in strain Newman wild type and MRSA strain ST239-635/93R, the latter without an increase in Eap. Interestingly, the epidemic community-associated MRSA strain, USA300 LAC showed a biphasic response in sae transcription at different growth stages, which, however, was not accompanied by increased invasiveness. All other clinical isolates investigated displayed a decrease of the parameters tested. While in strain Newman the SDS effect was due to the saeSP allele, this was not the case in strain ST239-635/93R and the biphasic USA300 strains. Also, increased invasiveness of ST239-635/93R was found to be independent of Eap production. Furthermore, to investigate the global effect of SDS on sae target gene expression, strain Newman wild-type and Newman ∆sae were treated with SDS and analyzed for their transcription profiles of sae target genes using microarray assays. We could show that subinhibitory concentrations of SDS upregulate and downregulate gene expression of several signaling pathways involved in biosynthetic, metabolic pathways as well as virulence, host cell adherence, stress reponse and many hypothetical proteins. In summary, the study sheds light on the role of the upstream region saePQ in SDS-mediated saeRS and eap expression during S. aureus SDS stress. Most importantly, the study also shows that subinhibitory SDS concentrations have pronounced strain-dependent effects on sae transcription and subsequent host cell invasion in S. aureus, with the latter likely to be mediated in some strains by other factors than the known invasin Eap and FnBP proteins. Moreover, there seems to exist more than the saeSP-mediated mechanism for SDS-induced sae transcription in clinical S. aureus isolates. These results help to further understand and clarify virulence and pathogenesis mechanisms and their regulation in S. aureus. N2 - Das Zwei Komponenten-Systems (TCS) Sae in S. aureus reguliert die Expression einer Vielzahl von Virulenzfaktoren, dazu gehört unter anderem das extrazelluläre Adhärenzprotein Eap, welches neben weiteren Funktionen, die Invasion in eukaryotische Wirtszellen vermittelt. Die Gene des sae TCS sind in einem Operon organisiert (saePQRS), wobei saeS für die sensorische Histidinkinase (SaeS) und saeR für den „Response Regulator“ (SaeR) kodieren. Diesen Genen sind zwei weitere Genabschnitte, saeP und saeQ, vorangestellt, wobei saeP vermutlich für ein Lipoprotein (SaeP) und saeQ für ein Membranprotein (RelQ) kodieren. In einer früheren Arbeit konnten wir zeigen, dass SDS-haltige Biozide (Perform©) unter sub- inhibitorischen Konzentrationen, sowie reines SDS, die sae Transkription aktiviert und dadurch zu einer erhöhten Invasion des S. aureus Stamms Newman in Wirtszellen führt. Dieser Effekt ist assoziiert mit einem spezifischen Aminosäureaustausch im N-terminus von SaeS (L18P) des Stamm Newman. In dieser Arbeit soll nun die Beteiligung der zwei zusätzlichen Gene, saeP und saeQ, an der SDS vermittelten transkriptionellen Induktion von saeR/S untersucht werden. Es konnte gezeigt werden, dass ohne SaeP, die saeR/S Transkription in beiden SaeL/P Varianten erhöht war, wobei eine zusätzliche SDS Behandlung hierfür nicht notwendig war. Im Gegenteil, es zeigte sich, dass der SDS Effekt auf die sae und eap Expression in der saeP Mutante deutlich weniger ausgeprägt ist als im Wildtyp Stamm. Das läßt vermuten, dass das Lipoprotein SaeP repremierend auf das sae System einwirkt. Des Weiteren wurde festgestellt, dass die SDS vermittelte transkriptionelle Induktion von sae und eap, zusammen mit der erhöhten Invasion, abhängig vom vorhanden sein der SaeSP Variante im Newman Wildtyp Stamm ist. Die Arbeit zeigt, dass die saePQ Region wichtig ist für die vollständige Funktion des Zwei Komponenten Systems SaeRS unter normalen Wachstumsbedingungen. Jedoch ist diese Region nicht involviert in der Aktivierung von SaeS, mit SDS als Signalgeber, sowie der darauffolgenden Aktivierung des sae Zielgens eap. In einem zweiten Ansatz wurde untersucht, ob die SDS induzierte sae Expression und Wirtszellinvasion auch häufig in S. aureus Stämmen auftritt, welche keine (L18P) Punktmutation besitzen. Dafür wurde Stamm Newman, die isogene saeS Mutante und verschiedene S. aureus Klinikisolate auf ihre sae, eap Expression, sowie zelluläre Invasionsfähigkeit hin analysiert. Von den getesteten Stämmen reagiert nur Wildtyp Stamm Newman und ein MRSA Stamm ST239-635/93R mit gesteigerter sae Transkription, Eap Produktion und zellulärer Invasion. Der MRSA Stamm jedoch ohne erhöhte Eap Produktion. Interessanterweise zeigt der „community- associated“ MRSA Stamm USA300 LAC eine biphasische sae Transkription in verschiedenen Wachstumsphasen, welche jedoch nicht einhergeht mit erhöhter Invasion. Alle anderen Klinikisolate zeigten abnehmende Tendenzen in den getesteten Parametern. Während im Stamm Newman der SDS Effekt auf das saeSP Allel zurückzuführen ist, gilt dies nicht für den Stamm ST239-635/93R, sowie den biphasischen Stamm USA300. Außerdem konnte gezeigt werden, dass die erhöhte Invasion des Stamms ST239-635/93R unabhängig von seiner Eap Produktion ist. Des Weiteren zeigten wir den globalen Effekt von SDS auf die sae Zielgenexpression. Dafür behandelten wir Wildtyp Stamm Newman mit SDS und analysierten die Transkription der sae Zielgene mittels Microarray Analyse. Wir konnten zeigen, dass subinhibitorische SDS Konzentrationen, induzierende als auch repremierende Auswirkungen auf die Genexpression haben. Dabei sind Gene betroffen, die involviert sind in verschiedene Signalwege, Biosynthese/Metabolismus als auch in Virulenz, Wirtzelladhärenz und Stressantwort. Zusammenfassend gibt die Arbeit Aufschluss über die Rolle der „upstream“ Region saePQ hinsichtlich der SDS-abhängigen saeRS und eap Expression in S. aureus. Am wichtigsten ist hierbei die Erkenntnis, das subinhibitorische SDS Konzentrationen einen deutlichen stammabhängigen Effekt auf die sae Transkription und daraus folgernd auf die Wirtszellinvasion von S. aureus haben. Letzteres wird vermutlich in manchen Stämmen durch andere Faktoren als die bekannten Invasinproteine Eap und FnBP vermittelt. Außerdem scheint es in den klinischen S. aureus Isolaten mehr als nur den saeSP abhängigen Mechanismus der sae Induktion durch SDS zu geben. Diese Ergebnisse helfen uns die Virulenz und pathogenen Mechanismen als auch deren Regulation in S. aureus zu verstehen. Die Beobachtungen tragen zu unserem Verständnis bei, wie das sae System Signale der Umgebung detektieren kann. Dies ist bis jetzt eine Fragestellung mit vielen Unbekannten. KW - Staphylococcus aureus KW - Eap KW - Newman strain sae KW - virulence KW - Cellular invasion Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149403 ER - TY - THES A1 - Mielich-Süß, Benjamin T1 - Elucidating structural and functional aspects of prokaryotic membrane microdomains T1 - Aufklärung struktureller und funktioneller Aspekte von prokaryotischen Membranmikrodomänen N2 - Bacterial functional membrane microdomains (FMMs) are membrane platforms that resemble lipid rafts of eukaryotic cells in certain functional and structural aspects. Lipid rafts are nanometer-sized, dynamic clusters of proteins and lipids in eukaryotic cell membranes that serve as signaling hubs and assembling platforms. Yet, studying these structures can often be hampered by the complexity of a eukaryotic cell. Thus, the analogous structures of prokaryotes are an attractive model to study molecular traits of this type of membrane organization. Similar to eukaryotic lipid rafts, the bacterial FMMs are comprised of polyisoprenoid lipids, scaffold proteins and a distinct set of membrane proteins, involved in signaling or secretion. Investigating bacterial FMMs not only contributes to the understanding of the physiological importance of FMMs in bacteria, but also helps to elucidate general principles of rafts beyond prokaryotes. In this work, a bacterial model organism was used to investigate effects of synthetic overproduction of the raft scaffolding proteins on bacterial physiology. This overexpression causes an unusual stabilization of the FMM-harbored protease FtsH and therefore the proteolytic targets of FtsH are not correctly regulated. Developmental defects and aberrances in shape are the consequence, which in turn negatively affects cell physiology. These findings may be adapted to better understand lipid raft processes in humans, where flotillin upregulation is detected along with development of neurological diseases. Moreover, it was aimed at understanding the FMM-proteome of the human pathogen Staphylococcus aureus. An in-depth quantitative mass-spectrometry analysis reveals adaption of the protein cargo during different conditions, while maintaining a distinct set of core FMM proteins. As a case study, the assembly of the type VII secretion system was shown to be dependent on FMM integrity and more specifically on the activity of the FMM-scaffold flotillin. This secretion system is important for the virulence of this pathogen and its secretion efficiency can be targeted by small molecules that inhibit flotillin activity. This opens new venues for non-conventional antimicrobial compounds to treat staphylococcal infections. N2 - Funktionelle Membranmikrodomänen (FMMs) in Bakterien sind Membranplattformen, die in strukturellen und funktionellen Aspekten mit Lipid Rafts eukaryotischer Zellen vergleichbar sind. Diese Nanometer-großen, dynamischen Protein-/Lipid-Cluster in der eukaryotischen Zellmembran dienen als Signalzentrum und Assemblierungsplattformen. Allerdings ist die Arbeit an diesen Strukturen durch die Komplexität der eukaryotischen Zellen oft eingeschränkt. Daher sind prokayotische Zellen attraktive Modellsysteme, um molekulare Eigenschaften dieser Art von Membranorganisation zu untersuchen. Ähnlich wie eukaryotische Lipid Rafts, bestehen FMMs aus polyisoprenoiden Lipiden, Scaffold-Proteinen und bestimmten Membranproteinen, die z.B. an Signalweiterleitung und Sekretion beteiligt sind. Die Untersuchung bakterieller FMMs trägt nicht nur dazu bei, die physiologische Relevanz der FMMs in Bakterien selbst zu verstehen, sondern auch um generelle Membranorganisationsprinzipien aufzuklären, die über Bakterien hinausgehen. In dieser Arbeit wurde daher ein bakterieller Modellorganismus benutzt, um Effekte von synthetischer Überproduktion von Raft-assoziierten Scaffold-Proteinen zu untersuchen. Diese Überexpression führt zu einer unüblichen Stabilisierung der Protease FtsH, die in den FMMs zu finden ist, was eine fehlerhafte Regulierung der Zielproteine von FtsH zur Folge hat. Demzufolge sind Entwicklungsdefekte und Anomalien in der Zellform die Konsequenzen, die im Umkehrschluss die Zellphysiologie negativ beeinträchtigen. Diese Ergebnisse können dazu dienen, Lipid-Raft Prozesse in Menschen besser zu verstehen, wo die Hochregulierung von Flotillin im Zusammenhang mit neurologischen Krankheiten steht. Darüber hinaus zielt diese Arbeit darauf ab, das FMM-Proteom des humanen Pathogenes Staphylococcus aureus besser zu verstehen. Eine detaillierte, quantitative Massenspektrometrieanalyse hat ergeben, dass das Proteincargo der FMMs sich zwar verschiedenen Bedingungen anpasst, aber auch ein bestimmtes Kernproteom in allen getesteten Bedingungen beibehält. Als Fallstudie wurde gezeigt, dass die Assemblierung des Typ VII Sekretionssystems von den FMMs, und im Detail von der Aktivität des Scaffoldproteins Flotillin, abhängig ist. Dieses Sekretionssystem ist wichtig für die Virulenzausbildung dieses Pathogenes und die Sekretionseffizienz kann durch kleine Moleküle verringert werden, die die Aktivität von Flotillin inhibieren. Diese Strategie eröffnet neue Möglichkeiten für die Anwendung unkonventioneller, antimikrobieller Substanzen, um Staphylokokken-Infektionen zu behandeln. KW - Staphylococcus aureus KW - Heubacillus KW - Membranlipide KW - Bacillus subtilis KW - lipid rafts Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162037 ER - TY - THES A1 - Mietrach, Nicole Aline T1 - Structural and functional elucidation of the Type VIIb secretion system from Staphylococcus aureus T1 - Strukturelle und funktionelle Analyse des Typ VIIb Sekretionssystems aus Staphylococcus aureus N2 - The Type VII secretion system (T7SS) is linked to virulence and long-term pathogenesis in a broad range of Gram-positive bacteria, including the human commensal and pathogen Staphylococcus aureus. The Type VIIb secretion system (T7SSb) is responsible for the export of small toxic proteins, which induce antibacterial immune responses and mediate bacterial persistence in the host. In addition, it is also involved in bacterial competition. The T7SSb requires several proteins to build up the secretion machinery. This work focuses on the structural and functional investigation of the motor ATPase EssC and the putative pore forming, multi-pass membrane component EsaA. Both proteins are indispensable for substrate secretion. EssC belongs to the FtsK/SpoIIIE ATPase family and is conserved among the T7SSs. It contains three C-terminal, cytosolic ATPase domains, designated as EssC- D1, -D2 and -D3, whereby EssC-D3 is the most distal one. In this thesis, I am presenting the crystal structure of the EssC-D3 at 1.7 Å resolution. As the deletion of EssC-D3 abrogates substrate export, I have demonstrated that this domain comprises a hydrophobic, surface-exposed pocket, which is required for substrate secretion. More specifically, I have identified two amino acids involved in the secretion process. In addition, my results indicate that not only EssC-D3 is important for substrate interaction but also EssC-D2 and/or EssC-D1. Unlike in the related Yuk T7SSb of Bacillus subtilis, the ATPase activity of D3 domain contributes to substrate secretion. Mutation of the modified Walker B motif in EssC-D3 diminishes substrate secretion completely. The membrane protein EsaA encompasses an extracellular segment spanning through the cell wall of S. aureus. I was able to reveal that this part folds into a stable domain, which was crystallized and diffracted up to 4 Å. The first attempts to dissolve the structure failed due to a lack of homologues structures. Therefore, crystals for single-wavelength anomalous dispersion, containing selenomethionyl-substitutes, were produced and the structure solution is still in progress. Preliminary experiments addressing the function of the extracellular domain indicate an important role in substrate secretion and bacterial competition. N2 - Das Typ VII Sekretionssystem (T7SS) ist wichtig für Virulenz und Langzeit- Pathogenität von Gram-positiven Bakterien. Zu diesen gehört auch Staphylococcus aureus, bekannt als Kommensal und Pathogen im Menschen. Das Typ VIIb Sekretionssystem (T7SSb) exportiert kleine, toxische Proteine, die antibakterielle Immunantworten auslösen und für bakterielle Persistenz verantwortlich sind. Außerdem ist es an dem Konkurrenzkampf zwischen Bakterien beteiligt. Das System benötigt verschiedene Komponenten, um eine Sekretion zu ermöglichen. Diese Doktorarbeit konzentriert sich auf zwei dieser Proteine, die ATPase EssC und das Membranprotein EsaA. Beide Komponenten sind unentbehrlich für eine vollständige Funktionalität. EssC gehört zu der Familie der FtsK/SpoIIIE ATPasen und ist evolutionär in allen T7SSs erhalten. EssC besitzt drei C-terminale, zytosolische ATPase Domänen, bezeichnet als EssC-D1, -D2 und D3, wobei EssC-D3 C-terminal gelegen ist. In dieser Arbeit präsentiere ich die Kristallstruktur der ATPase Domäne EssC-D3, aufgelöst bis zu 1.7 Å. Die Domäne ist unabdingbar für die Sekretion. Durch die Strukturauflösung wurde eine hydrophobe, Oberflächen-exponierte Substrat- Bindetasche bestimmt, die eine essenzielle Rolle für den Export der toxischen Substrate einnimmt. Durch dieses Projekt konnten zwei Aminosäuren in dieser Tasche bestimmt werden, die für den Prozess der Substratsekretion wichtig sind. Weiterhin wurde bewiesen, dass nicht nur EssC-D3, sondern auch die ATPase Domäne EssC-D2 und/oder EssC-D1 mit den Substraten interagieren kann. Im Gegensatz zu dem verwandten T7SSb in Bacillus subtilis, verfügt EssC-D3 über ATPase Aktivität und ermöglicht dadurch den Substratexport. Das Membranprotein EsaA besitzt einen extrazellulären Abschnitt, der sich durch die Zellwand von S. aureus erstreckt. Dieser extrazelluläre Part besteht aus einer stabilen Domäne, welche kristallisiert werden konnte und bis zu 4 Å diffraktiert. Aufgrund von fehlenden homologen Strukturen konnte die Struktur der Domäne noch nicht bestimmt werden. Für die Phasenbestimmung, die wichtig für die Strukturauflösung ist, wurden Kristalle mit Selenomethionyl-Substituten hergestellt. Die Strukturauflösung ist noch nicht beendet. Erste Experimente bezüglich der extrazellulären Domäne zeigen, dass diese ebenfalls wichtig für die Substratsekretion und zusätzlich am Konkurrenzkampf zwischen Bakterien beteiligt ist. KW - Secretion KW - Gram-positive bacteria KW - Type VIIb secretion system KW - Staphylococcus aureus Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214824 ER - TY - THES A1 - Mishra, Shambhavi T1 - Structural and Functional Characterization of the Enzymes Involved in the Menaquinone Biosynthesis and Benzoate Degradation T1 - Strukturelle und funktionelle Charakterisierung von Enzymen, die an der Menaquinon-Biosynthese und der Biodegradation von Benzoat beteiligt sind N2 - The present work illustrates the structural and biochemical characterization of two diverse proteins, BadI and MenD from Rhodopseudomonas palustris and Staphylococcus aureus, respectively. BadI or 2-ketocyclohexanecarboxyl-CoA is one of the key enzymes involved in the anaerobic degradation of aromatic compounds. The degradation of aromatic compounds is a vital process for the maintenance of the biogeochemical carbon cycle and bioremediation of xenobiotic compounds, which if present at higher concentrations can cause potential hazards to humans. Due to the relatively inert nature of aromatic compounds, enzymes catalyzing their degradation are of special interest for industrial applications. BadI is one of the key enzymes involved in the anaerobic degradation of aromatic compounds into an aliphatic moiety. The major focus of this study was to provide mechanistic insights into the reaction catalyzed by BadI. BadI belongs to the crotonase superfamily and shares high sequence homology with the family members of MenB or dihydroxynaphthoate synthase. BadI is known to catalyze the cleavage of the cyclic ring of 2-ketocyclohexane carboxyl-CoA by hydrolyzing the C-C bond leading to the formation of the aliphatic compound pimelyl CoA. On the other hand MenB catalyzes the condensation reaction of o-succinylbenzoyl-CoA to dihydroxylnaphthoyl-CoA. A comprehensive amino acid sequence analysis between BadI and MenB showed that the active site residues of MenB from Mycobacterium tuberculosis (mtMenB) are conserved in BadI from Rhodopseudomonas palustris. MenB is involved in the menaquinone biosynthesis pathway and is a potential drug target against Mycobacterium tuberculosis as it has no known human homologs. Due to the high homology between MenB and BadI and the inability to obtain MenB-inhibitor complex structures we extended our interest to BadI to explore a potential substitute model for mtMenB as a drug target. In addition, BadI possesses some unique mechanistic characteristics. As mentioned before, it hydrolyzes the substrate via a retro Dieckmann’s reaction contrasting its closest homolog MenB that catalyzes a ring closing reaction through a Dieckmann’s reaction. Nevertheless the active site residues in both enzymes seem to be highly conserved. We therefore decided to pursue the structural characterization of BadI to shed light on the similarities and differences between BadI and MenB and thereby provide some insights how they accomplish the contrasting reactions described above. We determined the first structures of BadI, in its apo and a substrate mimic bound form. The crystal structures revealed that the overall fold of BadI is similar to other crotonase superfamily members. However, there is no indication of domain swapping in BadI as observed for MenB. The absence of domain swapping is quite remarkable because the domain swapped C-terminal helical domain in MenB provides a tyrosine that is imperative for catalysis and is also conserved in the BadI sequence. Comparison of the active sites revealed that the C-terminus of BadI folds onto its core in such a way that the conserved tyrosine is located in the same position as in MenB and can form interactions with the ligand molecule. The structure of BadI also confirms the role of a serine and an aspartate in ligand interaction, thus validating that the conserved active site triad participates in the enzymatic reaction. The structures also reveal a noteworthy movement of the active site aspartate that adopts two major conformations. Structural studies further illuminated close proximity of the active site serine to a water and chlorine molecule and to the carbon atom at which the carbonyl group of the true substrate would reside. Biochemical characterization of BadI using enzyme kinetics validated that the suggested active site residues are involved in substrate interaction. However, the role of these residues is very distinct, with the serine assuming a major role. Thus, the present work ascertain the participation of putative active site residues and demonstrates that the active site residues of BadI adopt very distinctive roles compared to their closest homolog MenB. The MenD protein also referred to as SEPHCHC (2-succinyl-5-enolpyruvyl-6- hydroxy-3-cyclohexene-1-carboxylic acid) synthase is one of the enzymes involved in menaquinone biosynthesis in Staphylococcous aureus. Though S. aureus is usually considered as a commensal it can act as a remarkable pathogen when it crosses the epithelium, causing a wide spectrum of disorders ranging from skin infection to life threatening diseases. Small colony variants (SCVs), a slow growing, small sized subpopulation of the bacteria has been associated with persistent, recurrent and antibiotic resistant infections. These variants show autotrophy for thiamine, menaquinone or hemin. Menaquinone is an essential component in the electron transport pathway in gram-positive organisms. Therefore, enzymes partaking in this pathway are attractive drug targets against pathogens such as Mycobacterium tuberculosis and Bacillus subtilis. MenD, an enzyme catalyzing the first irreversible step in the menaquinone biosynthetic pathway has been implicated in the SCV phenotype of S. aureus. In the present work we explored biochemical and structural properties of this important enzyme. Our structural analysis revealed that despite its low sequence identity of 28%, the overall fold of staphylococcal MenD (saMenD) is similar to Escherichia coli MenD (ecMenD) albeit with some significant disparities. Major structural differences can be observed near the active site region of the protein and are profound in the C-terminal helix and a loop near the active site. The loop contains critical residues for cofactor binding and is well ordered only in the ecMenD-ThDP structure, while in the apo and substrate bound structures of ecMenD the loop is primarily disordered. In our saMenD structure the loop is for the first time completely ordered in the apo form and displays a novel conformation of the cofactor-binding loop. The loop adopts an unusual open conformation and the conserved residues, which are responsible for cofactor binding are located too far away to form a productive complex with the cofactor in this conformation. Additionally, biochemical studies in conjugation with the structural data aided in the identification of the substrate-binding pocket and delineated residues contributing to its binding and catalysis. Thus the present work successfully divulged the unique biochemical and structural characteristics of saMenD. N2 - Die vorliegende Arbeit befasst sich mit der strukturellen und biochemischen Charakterisierung der beiden unterschiedlichen bakteriellen Enzyme BadI von Rhodopseudomonas palustris und MenD von Staphylococcus aureus. Die 2-Ketocyclohexancarboxyl-CoA-Hydrolase BadI ist eines der Schlüsselenzyme des anaeroben Abbaus aromatischer Verbindungen. Der Abbau aromatischer Verbindungen ist essentiell für die Aufrechterhaltung des biogeochemischen Kohlenstoffkreislaufs und der biologischen Beseitigung von Xenobiotika, welche in höheren Konzentrationen eine Gefahr für den menschlichen Organismus darstellen können. Wegen des inerten Charakters aromatischer Verbindungen sind Enzyme, welche deren Abbau katalysieren, von besonderem Interesse für industrielle Anwendungen. BadI ist eines der Schlüsselenzyme für den anaeroben Abbau aromatischer Verbindungen zu aliphatischen Gruppen. Das Hauptaugenmerk dieses Projekts lag auf der Aufklärung des Reaktionsmechanismus, welcher von BadI katalysiert wird. BadI gehört zur Überfamilie der Crotonasen und zeigt hohe Sequenzhomologie mit der zugehörigen Dihydroxynaphthoat-Synthase MenB. Durch die Hydrolyse einer C-C Bindung katalysiert BadI den Schnitt des zyklischen Rings von 2-Ketocyclohexancarboxyl-CoA, welcher zur Bildung der aliphatischen Verbindung Pimelyl-CoA führt. MenB, andererseits, katalysiert die Kondensationsreaktion von O-Succinylbenzyl-CoA zu Dihydronaphthoyl-CoA. Ein umfassender Aminosäuresequenzvergleich zwischen BadI und MenB zeigt, dass die Reste des aktiven Zentrums von MenB aus Mycobacterium tuberculosis (mtMenB) in BadI von R. palustris konserviert sind. MenB ist Teil des Menaquinon Biosynthesewegs und ein potentielles Wirkstoffziel gegen M. tuberculosis, da kein humanes Homolog existiert. Wegen der ausgeprägten Homologie zwischen MenB und BadI und der Tatsache, dass bisher keine MenB-Inhibitor Komplex Strukturen gelöst werden konnten, erweiterten wir unser Interesse auf BadI, da es als Model für mtMenB als Wirkstoffziel dienen könnte. Darüber hinaus besitzt BadI einige einzigartige mechanistische Charakteristika. Wie zuvor erwähnt, hydrolysiert es das Substrate durch eine reverse Dieckmanns Reaktion in Gegensatz zu seinem ähnlichsten Homolog MenB, das einen Ringschluss durch eine Dieckmanns Reaktion katalysiert. Dennoch scheinen die Reste des aktiven Zentrums streng konserviert zu sein. Daher entschieden wir die strukturelle Charakterisierung von BadI anzugehen um Gemeinsamkeiten und Unterschiede zwischen BadI und MenB aufzuzeigen und einen Einblick zu erhalten, wie sie die gegenläufigen Reaktionen durchführen. Wir lösten die ersten Strukturen von BadI in seiner Apo-Form und einer Substrat-Mimik gebundenen Form. Die Kristallstrukturen von BadI zeigten die gleiche Gesamtfaltung wie andere Mitglieder der Crotonase Familie. Allerdings gibt es in BadI kein Anzeichen für Domain-Swapping, wie es in MenB beobachtet wurde. Das Fehlen des Domain-Swappings ist bemerkenswert, da die vertauschte C-terminale helikale Domäne in MenB ein Tyrosin enthält, welches essentiell für die Katalyse ist und auch in BadI konserviert vorliegt. Der Vergleich des aktiven Zentrums zeigt, dass der C-Terminus von BadI so auf seinen Kern/Hauptteil faltet, dass das konservierte Tyrosin an der gleichen Stelle positioniert ist wie in MenB und mit dem Liganden interagieren kann. Die Struktur von BadI bestätigt auch die Rolle eines Serin- und eines Aspartatrests für die Ligandenbindung und bekräftigt damit, dass das konservierte aktive Zentrum an der enzymatischen Reaktion teilnimmt. Die Strukturen zeigen auch eine bemerkenswerte Verschiebung des aktiven Aspartats, welches zwei Hauptkonformationen einnimmt. Strukturelle Analysen zeigten auch die Nähe des Serinrests zu einem Wasser- und Chlormolekül, sowie einem Kohlenstoffrest, an dessen Stelle der Carbonylrest des eigentlichen Substrats läge. Die biochemische Charakterisierung von BadI in enzymkinetischen Untersuchungen bestätigte dass die vorgeschlagenen Reste des aktiven Zentrums an der Substratbindung beteiligt sind. Jedoch ist die Rolle der verschiedenen Reste sehr verschieden, wobei dem Serin eine herausragende Rolle zugedacht wird. Die hier dargestellte Arbeit bestätigt die Mitwirkung des mutmaßlichen aktiven Zentrums und zeigt, dass die Reste des Aktiven Zentrums von BadI eine unterschiedliche Rolle, im Vergleich zu ihrem ähnlichsten Homolog MenB, spielen. MenD, eine SEPHCHC (2-Succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carbonsäure) Synthase, ist an der Menaquinonbiosynthese von S. aureus beteiligt. Obwohl S. aureus gewöhnlich als Kommensale betrachtet wird, kann es als bemerkenswertes Pathogen auftreten, wenn es die Epithelwand durchbricht und eine Vielzahl an Erkrankungen, von einfachen Hautinfektionen bis zu lebensbedrohlichen Zustanden, verursachen. Sogenannte „Small colony variants“ (SCVs), eine langsam wachsende, kleinzellige Subpopulation der Bakterien wurde mit persistenten, rezidivierenden und antibiotika-resistenten Infektionen assoziiert. Diese Varianten weisen einen Mangel von Thiamin, Menaquinon und Hämin auf. Menaquinon ist ein essentieller Bestandteil der Elektronentransport-Kette in grampositiven Organismen. Daher sind Enzyme dieses Stoffwechselwegs attraktive Wirkstoffziele gegen Krankheitserreger wie M. tuberculosis oder Bacillus subtilis. MenD, das Enzym, welches den ersten irreversiblen Schritt des Menaquinon-Biosynthesewegs katalysiert, wurde mit dem SCV Phänotyp von S. aureus in Verbindung gebracht. In dieser Arbeit werden die biochemischen und strukturellen Eigenschaften dieses wichtigen Enzyms untersucht. Unsere strukturelle Untersuchung zeigte, dass trotz einer niedrigen Sequenzidentität von 28%, die Gesamtfaltung von S. aureus MenD (saMenD) mit derjenigen von Escherichia coli MenD (ecMenD), trotz einiger signifikanter Abweichungen, übereinstimmt. Größere strukturelle Unterschiede können nahe des aktives Zentrums des Proteins beobachtet werden, vor allem in der C-terminalen Helix und einer Schleife nahe dem aktiven Zentrum. Die Schleife enthält kritische Reste für die Kofaktorbindung und liegt nur in der ecMenD-ThDP Komplexstruktur definiert vor, während die in der Apo-Form und der Substrat-gebundenen Struktur von ecMenD ungeordnet ist. In unserer saMenD Struktur zeigt sich die Schleife erstmals komplett geordnet in der Apo-Form und stellt eine neue Konformation der Kofaktor-Bindeschleife dar. Die Schleife nimmt eine ungewöhnlich offene Konformation an und die konservierten Reste, welche für die Kofaktorbindung verantwortlich sind, sind zu weit entfernt, um in dieser Position einen produktiven Komplex mit dem Kofaktor zu bilden. Zudem haben biochemische Studien in Verbindung mit den strukturellen Daten zur Identifizierung der Substratbindetasche und der an der Bindung und Katalyse beteiligten Aminosäuren beigetragen. In der vorliegenden Arbeit wurden die biochemischen und strukturellen Charakteristika von saMenD erfolgreich aufgeklärt. KW - Benzoate KW - Menaquinon-BIosynthese KW - SEPHCHC Synthase KW - Menaquinone Biosynthesis KW - Benzoate degradation KW - Biologischer Abbau KW - Enzym KW - Rhodopseudomonas palustris KW - Staphylococcus aureus Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-90848 ER - TY - THES A1 - Schiebel, Johannes T1 - Structure-Based Drug Design on Enzymes of the Fatty Acid Biosynthesis Pathway T1 - Strukturbasiertes Wirkstoffdesign an Enzymen der Fettsäurebiosynthese N2 - Während die Wirkung der meisten gebräuchlichen Antibiotika auf einer Beeinträchtigung wichtiger bakterieller Prozesse beruht, wirken manche Substanzen durch die Störung der Zellmembran-Struktur. Da Fettsäuren ein essentieller Bestandteil von Membran-Phospholipiden sind, stellt die bakterielle Fettsäurebiosynthese II (FAS-II) einen relativ wenig erforschten, aber dennoch vielversprechenden Angriffspunkt für die Entwicklung neuer Antibiotika dar. Das wichtige Antituberkulotikum Isoniazid blockiert die mykobakterielle Fettsäurebiosynthese und ruft dadurch morphologische Änderungen sowie letztlich die Lyse des Bakteriums hervor. Eine wichtige Erkenntnis war, dass Isoniazid den letzten Schritt des FAS-II Elongationszyklus inhibiert, der durch die Enoyl-ACP Reduktase katalysiert wird. Darauf aufbauend wurden mehrere Programme ins Leben gerufen, die sich zum Ziel gesetzt hatten, neue Moleküle zu entwickeln, welche dieses Protein verschiedener Pathogene hemmen. Die S. aureus Enoyl-ACP Reduktase (saFabI) ist von besonders großem Interesse, da drei vielversprechende Inhibitoren dieses Proteins entwickelt werden konnten, die momentan in klinischen Studien eingehend untersucht werden. Trotz dieser Erfolgsaussichten waren zum Zeitpunkt, als die vorliegenden Arbeiten aufgenommen wurden, keine Kristallstrukturen von saFabI öffentlich verfügbar. Daher war es eines der Hauptziele dieser Doktorarbeit, auf der Basis von kristallographischen Experimenten atomar aufgelöste Modelle für dieses wichtige Protein zu erzeugen. Durch die Entwicklung einer verlässlichen Methode zur Kristallisation von saFabI im Komplex mit NADP+ und Diphenylether-Inhibitoren konnten Kristallstrukturen von 17 verschiedenen ternären Komplexen gelöst werden. Weitere kristallographische Experimente ergaben zwei apo-Strukturen sowie zwei Strukturen von saFabI im Komplex mit NADPH und 2-Pyridon-Inhibitoren. Basierend auf der nun bekannten saFabI-Struktur konnten Molekulardynamik-Simulationen durchgeführt werden, um zusätzliche Erkenntnisse über die Flexibilität dieses Proteins zu erhalten. Die so gewonnenen Informationen über die Struktur und Beweglichkeit des Enzyms dienten in Folge als ideale Grundlage dafür, den Erkennungsprozess von Substrat und Inhibitor zu verstehen. Besonders bemerkenswert dabei ist, dass die verschiedenen saFabI Kristallstrukturen Momentaufnahmen entlang der Reaktionskoordinate der Ligandenbindung und des Hydrid-Transfers repräsentieren. Dabei verschließt der so genannte Substratbindungsloop das aktive Zentrum des Enzyms allmählich. Die außergewöhnlich hohe Mobilität von saFabI konnte durch molekulardynamische Simulationen bestätigt werden. Dies legt nahe, dass die beobachteten Änderungen der Konformation tatsächlich an der Aufnahme und Umsetzung des Substrates beteiligt sind. Eine Kette von Wassermolekülen zwischen dem aktiven Zentrum und einer wassergefüllten Kavität im Inneren des Tetramers scheint für die Beweglichkeit des Substratbindungsloops und somit für die katalysierte Reaktion von entscheidender Bedeutung zu sein. Außerdem wurde die erstaunliche Beobachtung gemacht, dass der adaptive Substratbindungsprozess mit einem Dimer-Tetramer Übergang gekoppelt ist, welcher die beobachtete positive Kooperativität der Ligandenbindung erklären kann. Alles in allem weist saFabI im Vergleich zu FabI Proteinen aus anderen Organismen mehrere außergewöhnliche Eigenschaften auf, die für die Synthese von verzweigten Fettsäuren nötig sein könnten, welche wiederum für die Überlebensfähigkeit von S. aureus im Wirt von Bedeutung sind. Diese Erkenntnis könnte erklären, warum S. aureus selbst bei Anwesenheit von exogenen Fettsäuren von FAS-II Inhibitoren abgetötet werden kann. Somit können die gewonnenen atomaren saFabI Modelle einen entscheidenden Beitrag zur Entwicklung neuer Hemmstoffe dieses validierten Angriffszieles leisten. Tatsächlich konnten die neuen Strukturen genutzt werden, um die Bindungsstärken sowie die Verweilzeiten verschiedener saFabI Inhibitoren molekular zu erklären. Die Struktur von saFabI im Komplex mit dem 2-Pyridon Inhibitor CG400549 hingegen enthüllte spezifische Wechselwirkungen in der geweiteten Bindetasche des S. aureus Enzyms, welche das geringe Aktivitätsspektrum dieses derzeit klinisch erprobten Inhibitors erklären. Diese Studien schaffen somit eine ideale Voraussetzung für die Entwicklung neuer wirksamer saFabI Inhibitoren, was am Beispiel des 4-Pyridons PT166 belegt werden kann. Im Rahmen der vorliegenden Dissertation konnten außerdem die Strukturen des Enzyms KasA im Komplex mit mehreren Derivaten des Naturstoffs Thiolactomycin gelöst werden. N2 - Whereas most currently used antibiotics act by interfering with essential bacterial processes, a smaller group of antibacterials disturbs the integrity of the cell membrane. Since fatty acids are a vital component of membrane phospholipids, the type-II fatty acid biosynthesis pathway (FAS-II) of bacteria constitutes a promising drug target. The front-line anti-tuberculosis prodrug isoniazid blocks the FAS-II pathway in M. tuberculosis thereby leading to morphological changes and finally to cell lysis. When it became evident that the enoyl-ACP reductase in the FAS-II pathway is the target of the activated isoniazid, several programs were initiated to develop novel inhibitors directed against this protein in different pathogens. The S. aureus enoyl-ACP reductase (saFabI) is of particular interest since three promising drug candidates inhibiting this homologue have reached clinical trials. However, despite these prospects, no crystal structures of saFabI were publicly available at the time the present work was initiated. Thus, one major goal of this thesis was the generation of high-resolution atomic models by means of X-ray crystallography. The development of a highly reproducible approach to co-crystallize saFabI in complex with NADP+ and diphenyl ether-based inhibitors led to crystal structures of 17 different ternary complexes. Additional crystallographic experiments permitted the view into two apo-structures and two atomic models of saFabI in complex with NADPH and 2-pyridone inhibitors. Based on the established saFabI structure, molecular dynamics (MD) simulations were performed to improve our understanding of the conformational mobility of this protein. Taken together, these investigations of the saFabI structure and its flexibility served as an ideal platform to address important questions surrounding substrate and inhibitor recognition by this enzyme. Intriguingly, our saFabI structures provide several vastly different snapshots along the reaction coordinate of ligand binding and hydride transfer, including the closure of the flexible substrate binding loop (SBL). The extraordinary mobility of saFabI was confirmed by MD simulations suggesting that conformational motions indeed play a pivotal role during substrate delivery and turnover. A water chain linking the active site with a water-basin inside the homo-tetrameric enzyme was found likely to be crucial for the closure and opening of the SBL and, thus, for the catalyzed reaction. Notably, the induced-fit ligand binding process involves a dimer-tetramer transition, which could be related to the observed positive cooperativity of cofactor and substrate binding. Overall, saFabI displays several unique characteristics compared to FabI proteins from other organisms that might be necessary for the synthesis of branched-chain fatty acids, which in turn are required for S. aureus fitness in vivo. This finding may explain why S. aureus is sensitive to FAS-II inhibitors even in the presence of exogenous fatty acids. Accordingly, saFabI remains a valid drug target and our structures can be used as a molecular basis for rational drug design efforts. In fact, binding affinity trends of diphenyl ether inhibitors and, more importantly, the correlated residence times could be rationalized at the molecular level. Furthermore, the structure of saFabI in complex with the 2-pyridone inhibitor CG400549 revealed unique interactions in the wider binding crevice of saFabI compared to other FabI homologues explaining the narrow activity spectrum of this clinical candidate with proven human efficacy. In summary, these studies provide an ideal platform for the development of new, effective saFabI inhibitors as exemplified by the promising 4-pyridone PT166. In the context of this dissertation, crystal structures of the condensing enzyme KasA in complex with several analogs of the naturally occurring inhibitor thiolactomycin have been solved. KW - Staphylococcus aureus KW - Kristallstruktur KW - Enoyl-acyl-carrier-protein-Reductase KW - Fettsäurebiosynthese KW - Enoyl-Reduktase KW - Staphylococcus aureus KW - fatty acid biosynthesis KW - enoyl reductase KW - Staphylococcus aureus KW - Fettsäurestoffwechsel KW - Inhibition KW - Wirkstoff KW - Lipide Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69239 ER - TY - THES A1 - Selle, Martina T1 - Interaktionen zwischen sekretierten Proteinen von Staphylococcus aureus und der Immunantwort des Wirtes T1 - Interaction of secreted proteins of Staphylococcus aureus and host immune response N2 - Staphylococcus aureus ist ein grampositives Bakterium, welches häufig als kommensaler Besiedler auf der Nasen- und Rachenschleimhaut von Säugetieren vorkommt. Darüber hinaus besitzt dieser fakultativ pathogene Mikroorganismus die Fähigkeit schwer zu behandelnde Krankenhausinfektionen auszulösen. Aufgrund der weiten Verbreitung von Antibiotikaresistenzen und dem Mangel an effektiven Therapien, verursachen S. aureus Infektionen jährlich enorme Kosten für das Gesundheitssystem. S. aureus wird meist von der Nase zum primären Infektionsort übertragen, wodurch zunächst sehr häufig Wund- und Weichteilinfektionen hervor gerufen werden. Von diesem primären Infektionsort ausgehend, kann der Erreger tiefer liegende Gewebsschichten infizieren oder sich über den Blutstrom im gesamten Organismus ausbreiten. Das Spektrum an Krankheitsbildern reicht von leichten Abszessen der Haut bis zu schweren, lebensbedrohlichen Erkrankungen wie Pneumonien und akuter Sepsis. Für die erfolgreiche Kolonisierung und Infektion des Wirtes exprimiert S. aureus eine Vielzahl unterschiedlicher Virulenzfaktoren. Die wohl größte Gruppe an Virulenzfaktoren umfasst die Proteine, die an der Immunevasion und der Umgehung von verschiedenen Abwehrstrategien des Immunsystems beteiligt sind. Das bisherige Wissen über die Interaktion von S. aureus mit dem Immunsystem des Wirtes und die zugrunde liegenden Pathogenitätsmechanismen ist bisher limitiert. Um neue Erkenntnisse über die Interaktion von Wirt und Pathogen zu erlangen, wurden im Rahmen dieser Arbeit bislang unbekannte sekretierte und Oberflächen-assoziierte Proteine von S. aureus funktionell charakterisiert. Die Funktion der ausgewählten Proteine wurde in vitro hinsichtlich Einfluss auf Komponenten des Immunsystems, Adhäsion an Wirtsfaktoren und Invasion in eukaryotische Zellen untersucht. Mit Hilfe der vorangegangenen in-vitro-Charakterisierung der putativen Virulenzfaktoren, konnte für die cytoplasmatische Adenylosuccinat-Synthase PurA eine neuartige Funktion identifiziert werden. PurA ist bekannt als essentielles Enzym der de novo Purin-Synthese. In dieser Arbeit wurde nun gezeigt, dass PurA zudem an der Immunevasion beteiligt ist. Durch die Bindung des humanen Faktor H des Komplementsystems schützt PurA S. aureus vor der lytischen Aktivität des Komplementsystems und verhindert die Opsonisierung des Pathogens. Basierend auf diesen Ergebnissen wurde PurA detailliert charakterisiert. In Bindungsstudien mit rekombinantem Faktor H und PurA wurde eine direkte Interaktion beider Proteine nachgewiesen, wobei Faktor H mit dem N-terminalen Bereich von PurA interagiert. Weiterhin konnte PurA durch Immunfluoreszenz und FACS-Analysen auf der Zelloberfläche nachgewiesen werden, wo es wahrscheinlich mit der Zellwand assoziiert vorliegt. Dort rekrutiert es Faktor H an die bakterielle Oberfläche und verhindert das Fortschreiten der Komplement-Kaskade und damit die Lyse des Pathogens. Aufgrund der Multifunktionalität zählt PurA somit zur Gruppe der Moonlighting Proteine. Des Weiteren wurde die Rolle von PurA im Infektionsgeschehen in zwei unabhängigen Tiermodellen untersucht. In beiden Modellen wurde ein signifikant reduziertes Virulenzpotential der ΔpurA-Mutante beobachtet. Zukünftig soll geklärt werden, ob die verminderte Virulenz in der fehlenden Komplementevasion oder im Defekt in der Purin-Synthese begründet ist. Aufgrund der sehr starken Attenuation in allen untersuchten Infektionsmodellen sollte PurA als potentielles Target für eine Therapie von S. aureus Infektionen weiter charakterisiert werden. Im Ergebnis dieser Arbeit wurde demnach mit PurA ein neues Moonlighting Protein identifiziert, das als Inhibitor des Komplementsystems wesentlich zur Immunevasion von S. aureus beiträgt. Für das bessere Verständnis der humoralen S. aureus-spezifischen Immunantwort, Unterschieden in der Antikörperantwort und der gebildeten Antikörperspezifitäten wurde weiterhin das während der Kolonisierung und Infektion gebildete S. aureus-spezifische Antikörperprofil untersucht. Dazu wurden Plasmen von humanen nasalen Trägern und Nicht-Trägern sowie murine Seren von infizierten Tieren untersucht. Insbesondere wurde das Pathogen-spezifische Antikörperprofil in unterschiedlichen Infektionsmodellen mit Hilfe eines Proteinarrays analysiert, der im Rahmen dieser Arbeit in einer Kooperation mit der Firma Alere Technologies (Jena, Deutschland) und universitären Forschergruppen der Universitäten Greifswald, Münster und Jena mitentwickelt wurde. Die Antikörperprofile von intramuskulär und intravenös infizierten Tieren resultierten in jeweils spezifischen Antikörperprofilen. Diese Ergebnisse deuten auf einen Zusammenhang zwischen der Art der Infektion und der gebildeten Antikörperspezifitäten hin. Wahrscheinlich beruht dies auf einer gewebespezifischen Genexpression als Anpassung an die individuellen Bedürfnisse im Wirtsorganismus. Das ausgebildete Antikörperprofil gibt somit einen Einblick in das Expressionsmuster von Virulenzfaktoren von S. aureus unter in vivo Bedingungen und trägt damit zum Verständnis der komplexen Interaktion von Pathogen und Wirt bei. Diese Untersuchungen ergänzen zudem die bisherigen Kenntnisse über die Anpassung der humoralen Immunantwort an eine asymptomatische Kolonisierung im Gegensatz zu einer akuten Infektion durch S. aureus. Darüber hinaus können die gewonnenen Ergebnisse für diagnostische Zwecke und zur Identifikation von neuen Zielstrukturen für eine Vakzin-Entwicklung genutzt werden. N2 - S. aureus is a gram-positive bacterium that is prevalent in animals. It is part of the commensal nasal and respiratory flora. Moreover, it has the ability to transform into a pathogenic micro-organism, thereby eliciting different diseases including hospital-associated infections. S. aureus is transmitted via direct contact from nasal mucosa to the site of infection where it may provoke skin and soft tissue infections. Due to the rapid development of resistance to antibiotics and a current lack of effective treatment options, S. aureus infections cause enormous costs for the health-care system. Starting from the primary site of infection, S. aureus invades into deeper tissues and into the bloodstream during the course of the infection. This leads to a dissemination of the pathogen in the body and is associated with a broad spectrum of diseases including skin abscesses, pneumonia or even acute septicaemia. The pathogen S. aureus produces a multitude of virulence factors that help to colonize and infect the human host. Probably the most extensive group habours proteins involved in immune evasion and circumvent different host defence mechanisms. Understanding of the interaction between S. aureus and the host immune response and the underlying pathogenicity mechanism is still limited. As a part of this work, the interaction of novel secreted and surface-associated proteins of S. aureus with the host immune response was investigated in order to expand the knowledge of host pathogen interactions. Therefore, the function of thus far uncharacterized extracellular proteins of S. aureus was investigated in vitro in relation to influence on components of the immune system, adhesion to host factors and invasion in eukaryotic cells. By using results from previous in vitro characterization of putative virulence factors, a novel function of cytoplasmic adenylosuccinate synthetase PurA was identified. Beside the catalytic reaction during de novo purine synthesis, PurA is independently involved in immune evasion. By binding human complement regulators such as factor H, it protects the bacteria from the lytic activity of the human complement system and prevents the opsonization of the pathogen. The progression of the complement cascade on the bacterial surface is prevented by recruiting complement FH. On the basis of these findings, the moonlighting protein PurA was therefore characterized in detail. In this, the binding between both interaction partners FH and PurA was analysed first. Moreover, it was shown that the cytosolic protein PurA is also associated with the bacterial cell wall. Besides the in vitro characterization of PurA, the impact of the multitasking protein of S. aureus on virulence was investigated in vivo. Therefore ΔpurA deletion mutants were studied regarding their virulence potential in the alternative animal model Galleria mellonella as well as in mice. Due to the reduced virulence of ΔpurA deletion mutants in all investigated animal models, PurA was suggested as a potential target for antibiotic treatment during S. aureus infection. In summary, the moonlighting protein PurA enlarges the spectrum of immune evasion strategies used by S. aureus with a complement system inhibitor. For better understanding of the pathogen-specific humoral immune response, the differences in antibody response and specificities were investigated in human plasma of nasal carriers and non-carriers as well as in murine sera of infected animals. Moreover, the anti-S. aureus antibody profile developed during infection was characterized depending on the type of infection by using a protein array that was co-developed in cooperation with the company Alere technologies (Jena, Germany) and university research groups from Greifswald, Münster and Jena. The results of the differentially infected mice indicated a relationship between developed antibody specificities and type of infection which is likely due to differential gene expression as an adaptation to individual requirements in the host environment. The results give insights into the expression pattern of virulence factors of S. aureus under in vivo conditions contributing to the understanding of the highly complex interaction between pathogen and host. Moreover, these findings supplement the current experience in the adaptations of the humoral immune response to asymptomatic colonization and acute infection. The results gained from this study can be used as a diagnostic tool or for target identification in the development of vaccine. KW - Staphylococcus aureus KW - Komplement KW - Virulenzfaktor KW - Antikörper-Antwort Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128031 ER - TY - THES A1 - Wencker, Freya Dorothea Ruth T1 - The methionine biosynthesis operon in \(Staphylococcus\) \(aureus\): Role of concerted RNA decay in transcript stability and T-box riboswitch turnover T1 - Das Methioninbiosynthese-Operon in \(Staphylococcus\) \(aureus\): Der Einfluss von koordiniertem RNA Abbau auf Transkriptstabilität und T-Box-Riboswitch-Prozessierung N2 - Methionine is the first amino acid of every newly synthesised protein. In combination with its role as precursor for the vital methyl-group donor S-adenosylmethionine, methionine is essential for every living cell. The opportunistic human pathogen Staphylococcus aureus is capable of synthesising methionine de novo, when it becomes scarce in the environment. All genes required for the de novo biosynthesis are encoded by the metICFE-mdh operon, except for metX. Expression is controlled by a hierarchical network with a methionyl-tRNA-specific T-box riboswitch (MET-TBRS) as centrepiece, that is also referred to as met leader (RNA). T-box riboswitches (TBRS) are regulatory RNA elements located in the 5’-untranslated region (5’-UTR) of genes. The effector molecule of T-box riboswitches is uncharged cognate tRNA. The prevailing mechanism of action is premature termination of transcription of the nascent RNA in the absence of the effector (i.e. uncharged cognate tRNA) due to formation of a hairpin structure, the Terminator stem. In presence of the effector, a transient stabilisation of the alternative structure, the Antiterminator, enables transcription of the downstream genes (‘read-through’). Albeit, after the read-through the thermodynamically more stable Terminator eventually forms. The Terminator and the Antiterminator are two mutually exclusive structures. Previous work of the research group showed that in staphylococci the MET-TBRS ensures strictly methionine-dependent control of met operon expression. Uncharged methionyl-tRNA that activates the system is only present in sufficient amounts under methionine-deprived conditions. In contrast to other bacterial TBRS, the staphylococcal MET-TBRS has some characteristic features regarding its length and predicted secondary structure whose relevance for the function are yet unkown. Aim of the present thesis was to experimentally determine the structure of the met leader RNA and to investigate the stability of the met operon-specific transcripts in the context of methionine biosynthesis control. Furthermore, the yet unknown function of the mdh gene within the met operon was to be determined. In the context of this thesis, the secondary structure of the met leader was determined employing in-line probing. The structural analysis revealed the presence of almost all highly conserved T-box riboswitch structural characteristics. Furthermore, three additional stems, absent in all T-box riboswitches analysed to date, could be identified. Particularly remarkable is the above average length of the Terminator stem which renders it a potential target of the double-strand-specific endoribonuclease III (RNase III). The RNase III-dependent cleavage of the met leader could be experimentally verified by the use of suitable mutants. Moreover, the exact cleavage site within the Terminator was determined. The unusual immediate separation of the met leader from the met operon mRNA via the RNase III cleavage within the Terminator stem induces the rapid degradation of the met leader RNA and, most likely, that of the 5’-region of the met mRNA. The met mRNA is degraded from its 5’-end by the exoribonuclease RNase J. The stability of the met mRNA was found to vary over the length of the transcript with an instable 5’-end (metI and metC) and a longer half-life towards the 3’-end (metE and mdh). The varying transcript stability is reflected by differences in the available cellular protein levels. The obtained data suggest that programmed mRNA degradation is another level of regulation in the complex network of staphylococcal de novo methionine biosynthesis control. In addition, the MET-TBRS was studied with regard to a future use as a drug target for novel antimicrobial agents. To this end, effects of a dysregulated methionine biosynthesis on bacterial growth and survival were investigated in met leader mutants that either caused permanent transcription of the met operon (‘ON’) or prevented operon transcription (‘OFF’), irrespective of the methionine status in the cell. Methionine deprivation turned out to be a strong selection pressure, as ‘OFF’ mutants acquired adaptive mutations within the met leader to restore met operon expression that subsequently re-enabled growth. The second part of the thesis was dedicated to the characterisation of the Mdh protein that is encoded by the last gene of the met operon and whose function is unknown yet. At first, co-transcription and -expression with the met operon could be demonstrated. Next, the Mdh protein was overexpressed and purified and the crystal structure of Mdh was solved to high resolution by the Kisker research group (Rudolf-Virchow-Zentrum Würzburg). Analysis of the structure revealed the amino acid residues crucial for catalytic activity, and zinc was identified as a co-factor of Mdh. Also, Mdh was shown to exist as a dimer. However, identification of the Mdh substrate was, in the context of this thesis, (still) unsuccessful. Nevertheless, interactions of Mdh with enzymes of the met operon could be demonstrated by employing the bacterial two-hybrid system. This fact and the high conservation of mdh/Mdh on nucleotide and amino acid level among numerous staphylococcal species suggests an important role of Mdh within the methionine metabolism that should be a worthwhile subject of future research. N2 - Methionin ist die erste Aminosäure in jedem neu gebildeten Protein. Zusammen mit seiner Funktion als Vorläufermolekül für die Synthese des essenziellen Methylgruppendonors S-Adenosylmethionin ist Methionin damit für jede lebende Zelle unverzichtbar. Staphylococcus aureus, ein opportunistisches Humanpathogen, ist in der Lage, Methionin de novo zu synthetisieren, wenn es nicht in ausreichender Menge in der Umgebung vorhanden ist. Mit Ausnahme von MetX sind alle für die Methioninsynthese benötigten Enzyme im metICFE-mdh-Operon kodiert. Die Expression des Operons wird durch ein komplexes hierarchisches Netzwerk reguliert, dessen zentrales Steuerelement ein Methionyl-tRNA-spezifischer T-Box-Riboswitch (MET-TBRS) ist, der auch als met-leader (RNA) bezeichnet wird. T-Box Riboswitches (TBRS) sind regulatorische RNA-Elemente, die in der untranslatierten Region am 5'-Ende (5'-UTR) ihrer zu kontrollierenden Gene liegen. Sie nutzen unbeladene tRNAs als Effektormoleküle. Die Funktionsweise der meisten TBRS beruht auf dem vorzeitigen Abbruch der Transkription der naszierenden mRNA, der durch die Ausbildung einer Haarnadelstruktur (Terminator) im Transkript herbeigeführt wird, wenn das Effektormolekül (i.e. unbeladene tRNA) fehlt. Sobald passende unbeladene tRNA verfügbar ist und bindet, wird eine alternative Struktur, der Antiterminator, kurzzeitig stabilisiert, der die Transkription und damit ein "Durchlesen" in die stromabwärtsliegenden Gene ermöglicht. Terminator und Antiterminator sind zwei sich gegenseitig ausschließende Strukturen, wobei der Terminator die thermodynamisch deutlich stabilere Struktur des TBRS ist, die sich dementsprechend auch in den vollständigen Transkripten erneut ausbildet. Bisherige Vorarbeiten der Arbeitsgruppe zeigten, dass in Staphylokokken der MET-TBRS die Kontrolle der Methioninsynthese in strikter Abhängigkeit von Methionin gewährleistet. Unbeladene Methionyl-tRNA, die nur unter Methioninmangelbedingungen in ausreichenden Konzentrationen vorliegt, aktiviert das System. Im Unterschied zu anderen bakteriellen TBRS weist der Staphylokokken-MET-TBRS (met-leader) hinsichtlich seiner Länge und vorhergesagten Struktur einige Besonderheiten auf, deren Bedeutung für die Funktion bislang unklar sind. Ziel der vorliegenden Arbeit war es daher, die Struktur der met-leader-RNA experimentell zu bestimmen und die Stabilität met-Operon-spezifischer Transkripte im Kontext der Methioninbiosynthesekontrolle zu untersuchen. Ebenso sollte die bisher unbekannte Funktion des mdh-Genes im Operon aufgeklärt werden. Im Rahmen dieser Doktorarbeit wurde die Sekundärstruktur der met-leader-RNA mit Hilfe des so genannten In-line Probings bestimmt. Die Sekundärstruktur weist neben fast allen hochkonservierten Strukturmerkmalen eines T-Box-Riboswitches auch drei zusätzliche Haarnadelstrukturen auf, die bisher in keinem anderen T-Box-Riboswitch gefunden wurden. Besonders auffällig ist die überdurchschnittliche Länge des met-leader-Terminators, der dadurch zur potentiellen Zielstruktur für die Doppelstrang-spezifische Endoribonuklease RNase III wird. Mittels geeigneter Mutanten konnte die RNase III-abhängige Prozessierung der met-leader-RNA experimentell bewiesen werden. Ebenso wurde die exakte Schnittstelle im Terminator bestimmt. Die ungewöhnliche Prozessierung des Terminators durch die RNase III spaltet die met-leader-RNA von der met-mRNA ab, was den raschen weiteren Abbau der met-leader-RNA und sehr wahrscheinlich auch den der met-mRNA einleitet. So wird die met-mRNA durch die Exoribonuklease RNase J vom 5'-Ende her abgebaut, wobei die Stabilität bezogen auf die Gesamtheit des Moleküls stark variiert: Das 5'-Ende mit den Genen metI und metC wird äußerst schnell degradiert, während das 3'-Ende mit metE und mdh deutlich stabiler ist. Die variierende mRNA-Stabilität spiegelt sich auch in Unterschieden hinsichtlich der verfügbaren zellulären Proteinmengen wider. Die Daten legen daher nahe, dass programmierte mRNA-Degradation eine weitere Ebene im komplexen Kontrollnetzwerk darstellt, durch die in Staphylokokken die Methioninbiosynthese sehr exakt den jeweiligen Bedürfnissen angepasst wird. Des Weiteren wurde der MET-TBRS im Hinblick auf eine zukünftige Nutzung als Angriffspunkt für neue antibakterielle Wirkstoffe untersucht. Dazu wurden die Auswirkungen einer dysregulierten Methioninbiosynthese auf das bakterielle Wachstum und Überleben mit Hilfe von met-leader-Mutanten analysiert, die entweder zu einer permanenten Aktivierung („ON“) oder Deaktivierung („OFF“) der met-Operon-Transkription, unabhängig vom Methioninstatus in der Zelle, führten. Es zeigte sich, dass Methioninmangel einen starken Selektionsdruck darstellt, da die „OFF“-Mutanten in der Lage waren, durch den Erwerb von adaptiven Mutationen innerhalb der met-leader-Sequenz, das met-Operon erneut zu aktivieren und wieder zu wachsen. Der zweite Teil dieser Arbeit widmete sich der Charakterisierung des Mdh-Proteins, das im letzten Gen des met-Operons kodiert ist und dessen Funktion derzeit gänzlich unbekannt ist. Zunächst konnte die Kotranskription und -expression von mdh mit dem met-Operon gezeigt werden. In Zusammenarbeit mit der Arbeitsgruppe Kisker (Rudolf-Virchow-Zentrum Würzburg) wurden anhand von Kristallstrukturanalysen die Aminosäuren identifiziert, die entscheidend für die katalytische Aktivität des Mdh-Enzyms sind, wobei Zink als ein Kofaktor fungiert. Ebenso zeigte sich, dass Mdh als Dimer vorliegt. Allerdings ist die Identifizierung des Mdh-Substrates im Rahmen dieser Arbeit (noch) nicht gelungen. Mittels eines bakteriellen Zwei-Hybridsystems wurde jedoch nachgewiesen, dass Mdh mit den anderen Enzymen des met-Operons interagiert. Dies und die hohe Konservierung von mdh/Mdh auf Nukleotid- und Aminosäureebene in verschiedenen Staphylokokkenarten legt eine wichtige Funktion von Mdh im Methioninstoffwechsel nahe, die lohnenswerter Gegendstand weiterer Untersuchungen sein sollte. KW - Staphylococcus aureus KW - RNA Abbau KW - Methioninbiosynthese KW - MET-T-box riboswitch KW - riboswitch KW - methionine biosynthesis KW - RNA decay Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207124 ER - TY - THES A1 - Wermser, Charlotte T1 - Morphology, regulation and interstrain interactions in a new macrocolony biofilm model of the human pathogen \(Staphylococcus\) \(aureus\) T1 - Morphologie, Regulation und stammübergreifende Wechselwirkungen in einem neuen Makrokolonie-Biofilmmodell des Humanpathogens \(Staphylococcus\) \(aureus\) N2 - The role of multicellularity as the predominant microbial lifestyle has been affirmed by studies on the genetic regulation of biofilms and the conditions driving their formation. Biofilms are of prime importance for the pathology of chronic infections of the opportunistic human pathogen Staphylococcus aureus. The recent development of a macrocolony biofilm model in S. aureus opened new opportunities to study evolution and physiological specialization in biofilm communities in this organism. In the macrocolony biofilm model, bacteria form complex aggregates with a sophisticated spatial organization on the micro- and macroscale. The central positive and negative regulators of this organization in S. aureus are the alternative sigma factor σB and the quorum sensing system Agr, respectively. Nevertheless, nothing is known on additional factors controlling the macrocolony morphogenesis. In this work, the genome of S. aureus was screened for novel factors that are required for the development of the macrocolony architecture. A central role for basic metabolic pathways was demonstrated in this context as the macrocolony architecture was strongly altered by the disruption of nucleotide and carbohydrate synthesis. Environmental signals further modulate macrocolony morphogenesis as illustrated by the role of an oxygen-sensitive gene regulator, which is required for the formation of complex surface structures. A further application of the macrocolony biofilm model was demonstrated in the study of interstrain interactions. The integrity of macrocolony communities was macroscopically visibly disturbed by competitive interactions between clinical isolates of S. aureus. The results of this work contribute to the characterization of the macrocolony biofilm model and improve our understanding of developmental processes relevant in staphylococcal infections. The identification of anti-biofilm effects exercised through competitive interactions could lead to the design of novel antimicrobial strategies targeting multicellular bacterial communities. N2 - Die Rolle von Multizellularität als der vorherrschende mikrobielle Lebensstil wurde durch Studien über die genetische Steuerung von Biofilmen und über Biofilmbildung-fördernde Bedingungen bestätigt. Biofilme sind wichtige Faktoren in der Pathogenese chronischer Infektionen durch das opportunistische Humanpathogen Staphylococcus aureus. Die kürzlich erfolgte Entwicklung eines Makrokolonie-Biofilmmodells für S. aureus eröffnet neue Möglichkeiten evolutionäre Entwicklungen und die physiologische Spezialisierung in bakteriellen Gemeinschaften zu untersuchen. Im Makrokolonie-Biofilmmodell bilden Bakterien komplexe Aggregate, die sich durch eine hochentwickelte räumliche Organisation auf mikroskopischer und makroskopischer Ebene auszeichnen. Die positiven und negativen Hauptregulatoren dieser Organisation sind der alternative Sigmafaktor σB sowie das Quorum sensing System Agr. Dennoch sind weitere Faktoren, die die Morphogenese der Makrokolonien steuern, unbekannt. In dieser Arbeit wurde das Genom von S. aureus im Hinblick auf neue Faktoren, die für die Entwicklung der Makrokoloniearchitektur nötig sind, analysiert. Dabei wurde belegt, dass zentrale Stoffwechselwege eine zentrale Rolle spielen. Störungen der Nukleotid- und Kohlenhydrat-Synthese hatten starke Auswirkungen auf die Makrokoloniearchitektur. Weiterhin wurde anhand eines Sauerstoff-sensitiven Genregulators, der für die Ausbildung von Oberflächenstrukturen nötig ist, demonstriert, wie die Morphogenese der Makrokolonien durch Umweltsignale moduliert wird. Das Makrokolonie-Biofilmmodell fand weitere Anwendung in der Untersuchung von stammübergreifenden Interaktionen. Die Integrität der Makrokolonie-Biofilme wurde durch die Wechselwirkungen in Konkurrenz stehender klinischer Isolate stark herabgesetzt. Die Ergebnisse dieser Arbeit tragen zur Charakterisierung des Makrokolonie-Biofilmmodells bei und geben Einsicht in Entwicklungsprozesse, die während Staphylokokken-Infektionen ablaufen. Die Beschreibung der negativen Beeinflussung der Biofilme durch bakterielle Wechselwirkungen könnte zur Entwicklung neuer antimikrobieller Strategien, die gezielt gegen multizelluläre bakterielle Gemeinschaften wirksam sind, beitragen. KW - Staphylococcus aureus KW - Biofilm KW - MRSA KW - macrocolony KW - interactions KW - biofilm architecture KW - Makrokolonie KW - Wechselwirkungen KW - Biofilmarchitektur Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165931 ER -