TY - THES A1 - Wäldchen, Felix T1 - 3D Single Molecule Imaging In Whole Cells Enabled By Lattice Light-Sheet Illumination T1 - 3D Einzelmolekülbildgebung in ganzen Zellen ermöglicht durch Gitterlichtblattbeleuchtung N2 - Single molecule localization microscopy has seen a remarkable growth since its first experimental implementations about a decade ago. Despite its technical challenges, it is already widely used in medicine and biology and is valued as a unique tool to gain molecular information with high specificity. However, common illumination techniques do not allow the use of single molecule sensitive super-resolution microscopy techniques such as direct stochastic optical reconstruction microscopy (dSTORM) for whole cell imaging. In addition, they can potentially alter the quantitative information. In this thesis, I combine dSTORM imaging in three dimensions with lattice lightsheet illumination to gain quantitative molecular information from cells unperturbed by the illumination and cover slip effects. Lattice light-sheet illumination uses optical lattices for beam shaping to restrict the illumination to the detectable volume. I describe the theoretical background needed for both techniques and detail the experimental realization of the system as well as the software that I developed to efficiently evaluate the data. Eventually, I will present key datasets that demonstrate the capabilities of the developed microscope system with and without dSTORM. My main goal here was to use these techniques for imaging the neural cell adhesion molecule (NCAM, also known as CD56) in whole cells. NCAM is a plasma membrane receptor known to play a key role in biological processes such as memory and learning. Combining dSTORM and lattice light-sheet illumination enables the collection of quantitative data of the distribution of molecules across the whole plasma membrane, and shows an accumulation of NCAM at cell-cell interfaces. The low phototoxicity of lattice light-sheet illumination further allows for tracking individual NCAM dimers in living cells, showing a significant dependence of its mobility on the actin skeleton of the cell. N2 - Die Einzelmoleküllokalisationsmikroskopie hat seit der ersten experimentellen Umsetzung vor etwa 10 Jahren einen bemerkenswerten Aufschwung erfahren. Trotz des hohen technischen Anspruchs findet sie bereits weite Verbreitung in der Biologie und Medizin und wird als einzigartiges Werkzeug geschätzt, um molekulare Information mit hoher Spezifität zu erlangen. Dennoch erschweren die gebräuchlichen Beleuchtungsmethoden die Anwendung von Methoden der Einzelmoleküllokalisationsmikroskopie wie dSTORM (engl. direct stochastic optical reconstruction microscopy) auf das Volumen ganzer Zellen, denn hier kann die Beleuchtung selbst die quantitativen Daten beeinflussen. In dieser Arbeit kombiniere ich dreidimensionale dSTORM-Bildgebung mit Gitterlichtblattbeleuchtung (engl. lattice light-sheet illumination) um quantitative, molekulare Information ohne durch die Beleuchtung verursachte Störungen zu gewinnen. Die Gitterlichtblattbeleuchtung nutzt optische Gitter zur Strahlformung, um das beleuchtete Volumen auf das detektierbare Volumen zu beschränken. Ich stelle den nötigen, theoretischen Hintergrund für beide Methoden dar und beschreibe die experimentelle Umsetzung sowie die von mir zur effizienten Datenauswertung entwickelte Software. Schließlich präsentiere ich verschiedene Datensätze, die die Fähigkeiten des Systems mit und ohne dSTORM demonstrieren. Mein Hauptziel war hierbei, beide Methoden zu nutzen, um das neuronale Zelladhäsionsmolekül (NCAM, engl. neural cell adhesion molecule) in ganzen Zellen abzubilden. NCAM (auch bekannt als CD56) ist ein Rezeptor auf der Plasmembran, der für seine Schlüsselrolle im Zusammenhang mit biologischen Prozessen wie Lernen und Gedächtnis bekannt ist. Die Kombination von dSTORM und Gitterlichtblattbeleuchtung ermöglicht das sammeln quantitativer Daten der Verteilung über die komplette Plasmamembran, wobei sich eine Akkumulation an Zell-Zell Kontaktflächen zeigt. Die niedrige Photoschädigung der Gitterlichtblattbeleuchtung ermöglicht weiterhin das Verfolgen von einzelnen NCAM-Dimeren in lebenden Zellen. Dort zeigt sich eine signifikante Abhängigkeit ihrer Mobilität vom Aktinskelett der Zelle. KW - Einzelmolekülmikroskopie KW - Optik KW - Light-Sheet KW - Lattice Light-Sheet KW - dSTORM KW - Single Molecule Imaging KW - Localization Microscopy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207111 ER - TY - THES A1 - Then, Patrick T1 - Waveguide-based single molecule detection in flow T1 - Wellenleiter-basierte Einzelmoleküldetektion in Strömungen N2 - In this work fluorescence-based single molecule detection at low concetration is investigated, with an emphasis on the usage of active transport and waveguides. Active transport allows to overcome the limits of diffusion-based systems in terms of the lowest detectable threshold of concentration. The effect of flow in single molecule experiments is investigated and a theoretical model is derived for laminar flow. Waveguides on the other hand promise compact detection schemes and show great potential for their possible integration into lab-on-a-chip applications. Their properties in single molecule experiments are analyzed with help of a method based on the reciprocity theorem of electromagnetic theory. N2 - Diese Arbeit untersucht fluoreszenzbasierte Einzelmoleküldetektion bei niedrigen Konzentrationen, mit einem Fokus auf den Einsatz von aktivem Transport und Wellenleitern. Aktiver Transport ermöglicht es, Limitierungen von diffusionsbasierten Systemen im Hinblick auf die niedrigste erreichbare Konzentration zu überwinden. Der Einfluss von Strömungen auf Einzelmolekülexperimente wird untersucht und ein theoretisches Modell für laminare Strömungen hergeleitet. Wellenleiter hingegen versprechen kompakte Detektorsysteme und zeigen beträchtliches Potential für eine mögliche Integration in lab-on-a-chip Anwendungen. Ihre Eigenschaften in Einzelmolekülexperimenten werden mithilfe einer auf dem Reziprozitätstheorem aus der elektromagnetischen Theorie basierenden Methode analysiert. KW - Optik KW - physics KW - optics KW - waveguides Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-140548 ER - TY - THES A1 - Pfeifer, Thomas T1 - Adaptive control of coherent soft X-rays T1 - Adaptive Kontrolle kohärenter weicher Röntgenstrahlung N2 - The availability of coherent soft x-rays through the nonlinear optical process of high-harmonic generation allows for the monitoring of the fastest events ever observed in the laboratory. The attosecond pulses produced are the fundamental tool for the time-resolved study of electron motion in atoms, molecules, clusters, liquids and solids in the future. However, in order to exploit the full potential of this new tool it is necessary to control the coherent soft x-ray spectra and to enhance the efficiency of conversion from laser light to the soft x-ray region in the harmonic-generation process. This work developed a comprehensive approach towards the optimization of the harmonic generation process. As this process represents a fundamental example of \emph{light}--\emph{matter} interaction there are two ways of controlling it: Shaping the generating laser \emph{light} and designing ideal states of \emph{matter} for the conversion medium. Either of these approaches was closely examined. In addition, going far beyond simply enhancing the conversion process it could be shown that the qualitative spectral response of the process can be modified by shaping the driving laser pulse. This opens the door to a completely new field of research: Optimal quantum control in the attosecond soft x-ray region---the realm of electron dynamics. In the same way as it is possible to control molecular or lattice vibrational dynamics with adaptively shaped femtosecond laser pulses these days, it will now be feasible to perform real-time manipulation of tightly bound electron motion with adaptively shaped attosecond light fields. The last part of this work demonstrated the capability of the herein developed technique of coherent soft-x-ray spectral shaping, where a measured experimental feedback was used to perform a closed-loop optimization of the interaction of shaped soft x-ray light with a sulfur hexafluoride molecule to arrive at different control objectives. For the optimization of the high-harmonic-generation process by engineering the conversion medium, both the gas phase and the liquid phase were explored both in experiment and theory. Molecular media were demonstrated to behave more efficiently than commonly used atomic targets when elliptically polarized driving laser pulses are applied. Theory predicted enhancement of harmonic generation for linearly polarized driving fields when the internuclear distance is increased. Reasons for this are identified as the increased overlap of the returning electron wavefunction due to molecular geometry and the control over the delocalization of the initial electronic state leading to less quantum-mechanical spreading of the electron wavepacket during continuum propagation. A new experimental scheme has been worked out, using the method of molecular wavepacket generation as a tool to enhance the harmonic conversion efficiency in `pump--drive' schemes. The latter was then experimentally implemented in the study of high-harmonic generation from water microdroplets. A transition between the dominant laser--soft-x-ray conversion mechanisms could be observed, identifying plasma-breakdown as the fundamental limit of high-density high-harmonic generation. Harmonics up to the 27th order were observed for optimally laser-prepared water droplets. To control the high-harmonic generation process by the application of shaped laser light fields a laser-pulse shaper based on a deformable membrane mirror was built. Pulse-shape optimization resulted in increased high-harmonic generation efficiency --- but more importantly the qualitative shape of the spectral response could be significantly modified for high-harmonic generation in waveguides. By adaptive optimization employing closed-loop strategies it was possible to selectively generate narrow (single harmonics) and broad bands of harmonic emission. Tunability could be demonstrated both for single harmonic orders and larger regions of several harmonics. Whereas any previous experiment reported to date always produced a plateau of equally intense harmonics, it has been possible to demonstrate ``untypical'' harmonic soft x-ray spectra exhibiting ``switched-off'' harmonic orders. The high degree of controllability paves the way for quantum control experiments in the soft x-ray spectral region. It was also demonstrated that the degree of control over the soft x-ray shape depends on the high-harmonic generation geometry. Experiments performed in the gas jet could not change the relative emission strengths of neighboring harmonic orders. In the waveguide geometry, the relative harmonic yield of neighboring orders could be modified at high contrast ratios. A simulation based solely on the single atom response could not reproduce the experimentally observed contrast ratios, pointing to the importance of propagation (phase matching) effects as a reason for the high degree of controllability observed in capillaries, answering long-standing debates in the field. A prototype experiment was presented demonstrating the versatility of the developed soft x-ray shaping technique for quantum control in this hitherto unexplored wavelength region. Shaped high-harmonic spectra were again used in an adaptive feedback loop experiment to control the gas-phase photodissociation reaction of SF$_6$ molecules. A time-of-flight mass spectrometer was used for the detection of the ionic fragments. The branching ratios of particular fragmentation channels could be varied by optimally shaped soft x-ray light fields. Although in one case only slight changes of the branching ratio were possible, an optimal solution was found, proving the sufficient technical stability of this unique coherent soft-x-ray shaping method for future applications in optimal control. Active shaping of the spectral amplitude in coherent spectral regions of $\sim$10~eV bandwidth was shown to directly correspond to shaping the temporal features of the emerging soft x-ray pulses on sub-femtosecond time scales. This can be understood by the dualism of frequency and time with the Fourier transformation acting as translator. A quantum-mechanical simulation was used to clarify the magnitude of temporal control over the shape of the attosecond pulses produced in the high-harmonic-generation process. In conjunction with the experimental results, the first attosecond time-scale pulse shaper could thus be demonstrated in this work. The availability of femtosecond pulse shapers opened the field of adaptive femtosecond quantum control. The milestone idea of closed-loop feedback control to be implemented experimentally was expressed by Judson and Rabitz in their seminal work titled ``Teaching lasers to control molecules''. This present work extends and turns around this statement. Two fundamentally new achievements can now be added, which are ``Teaching molecules to control laser light conversion'' and ``Teaching lasers to control coherent soft x-ray light''. The original idea thus enabled the leap from femtosecond control of molecular dynamics into the new field of attosecond control of electron motion to be explored in the future. The \emph{closed}-loop approach could really \emph{open} the door towards fascinating new perspectives in science. Coming back to the introduction in order to close the loop, let us reconsider the analogy to the general chemical reaction. Photonic reaction control was presented by designing and engineering effective media (catalysts) and controlling the preparation of educt photons within the shaped laser pulses to selectively produce desired photonic target states in the soft x-ray spectral region. These newly synthesized target states in turn could be shown to be effective in the control of chemical reactions. The next step to be accomplished will be the control of sub-femtosecond time-scale electronic reactions with adaptively controlled coherent soft x-ray photon bunches. To that end a time-of-flight high-energy photoelectron spectrometer has recently been built, which will now allow to directly monitor electronic dynamics in atomic, molecular or solid state systems. Fundamentally new insights and applications of the nonlinear interaction of shaped attosecond soft x-ray pulses with matter can be expected from these experiments. N2 - Die Verfügbarkeit kohärenter weicher Röntgenstrahlung durch den nichtlinear-optischen Prozess der Erzeugung hoher Harmonischer von Laserstrahlung erlaubt es, die schnellsten jemals im Labor beobachteten Ereignisse in ihrem Ablauf zu verfolgen. Die in diesem Prozess erzeugten Attosekundenpulse stellen das wichtigste Werkzeug dar, um in Zukunft die zeitaufgelöste Elektronenbewegung in Atomen, Molekülen, Clustern, Flüssigkeiten und Festkörpern zu untersuchen. Um jedoch das volle Potential dieses Werkzeugs zu nutzen, ist es notwendig, den Prozess der Erzeugung hoher Harmonischer in einer Weise zu optimieren, die es ermöglicht, zum einen gezielt Einfluss auf die Eigenschaften der kohärenten weichen Röntgenspektren zu nehmen und zum anderen die Konversionseffizienz bei der Umwandlung von Laserlicht in harmonische Strahlung zu erhöhen. In dieser Arbeit wurde eine umfassende Herangehensweise an das Problem der Optimierung des Erzeugungsprozesses der hohen Harmonischen Strahlung entwickelt. Da der Prozess ein fundamentales Beispiel einer Licht-Materie-Wechselwirkung darstellt, gibt es genau zwei Möglichkeiten, ihn zu kontrollieren: Die Formung des erzeugenden Laser\emph{lichtes} und die Entwicklung idealer \emph{Materie}zustände als Konversionsmedien. Beide Möglichkeiten wurden im Rahmen dieser Arbeit gründlich untersucht. Zusätzlich zur bloßen Steigerung der Ausbeute an Hoher-Harmonischer-Strahlung konnte darüber hinaus gezeigt werden, dass es möglich ist, die Spektren der erzeugten kohärenten weichen Röntgenstrahlung durch geformte Laserpulse qualitativ zu modifizieren. Dies eröffnet Möglichkeiten für ein grundlegend neues Forschungsgebiet: Optimale Quantenkontrolle im Attosekunden- und weichen Röntgenbereich---dem Bereich elektronischer Dynamik. Auf die gleiche Art und Weise wie es heutzutage möglich ist, Molekül- oder Gitterschwingungsdynamik mit adaptiv geformten Femtosekundenpulsen zu kontrollieren, sind wir ab jetzt in der Lage, mit adaptiv geformten Attosekunden-Lichtfeldern die Bewegung von fest gebundenen Elektronen in Echtzeit zu beeinflussen. Im letzten Teil dieser Arbeit wird das Potential der hierin entwickelten Methode der Formung kohärenter weicher Röntgenspektren demonstriert, indem ein gemessenes experimentelles Rückkopplungssignal benutzt wurde, um eine `closed-loop' Optimierung der Wechselwirkung von geformtem weichen Röntgenlicht mit Schwefelhexafluoridmolekülen für unterschiedliche Kontrollziele durchzuführen. Im Hinblick auf die Entwicklung und Anpassung des Konversionsmediums zur Optimierung des Prozesses der Erzeugung hoher Harmonischer wurden sowohl die Gas- als auch die Flüssigphase sowohl im Experiment als auch in der Theorie erforscht. Es wurde gezeigt, dass molekulare Medien sich effizienter als Atome verhalten, wenn der erzeugungende Laserpuls elliptisch polarisiert ist. In einer theoretischen Untersuchung wird eine Zunahme der Konversionseffizienz für linear polarisierte Erzeugungspulse erwartet wenn der Kernabstand vergrößert wird. Gründe dafür sind zum einen die Zunahme des Überlapps der zum Atom zurückkehrenden Wellenfunktion des Elektrons wegen der Molekülgeometrie. Zum anderen ermöglicht die Variation des Kernabstands die Kontrolle über die Delokalisation des elektronischen Anfangszustands, die zu einem verminderten quantenmechanischen Zerlaufen des Wellenpakets während seiner Propagation im Kontinuum führt. Eine neuartige experimentelle Methode wurde ausgearbeitet, die sich die Technik der Erzeugung molekularer Wellenpakete als Werkzeug zunutze macht, um die Konversionseffizienz der harmonischen Strahlung in einem so genannten `pump--drive' Verfahren zu erhöhen. Dieses wurde dann in einer Untersuchung der Erzeugung hoher Harmonischer an Wasser-Mikrotropfen experimentell implementiert. Dadurch konnte ein Übergang zwischen den beiden dominanten Mechanismen der Umwandlung von Laserstrahlung in weiches Röntgenlicht beobachtet werden, der den Plasma-Durchbruch als die natürliche Grenze bei der Erzeugung von hohen Harmonischen in hochdichten Medien identifizierte. Harmonische bis hin zur 27sten Ordnung wurden für optimal durch den Laser präparierte Wassertropfen nachgewiesen. Um den Prozess der Erzeugung hoher Harmonischer durch geformte Lichtfelder zu kontrollieren, wurde ein auf einem deformierbaren Membranspiegel basierender Laserpulsformer aufgebaut. Mittels Pulsformoptimierung war es ebenfalls möglich, eine Erhöhung der harmonischen Erzeugungseffizienz zu erzielen---wichtiger jedoch: Es konnte die qualitative Form der erzeugten kohärenten weichen Röntgenspektren signifikant modifiziert werden. Durch adaptive Optimierung unter Anwendung von `closed-loop' Strategien war es möglich, selektiv schmal- (einzelne harmonische Ordnungen) und breitbandige harmonische Spektren zu erzeugen. Durchstimmbarkeit wurde demonstriert sowohl für einzelne Harmonische als auch für größere zusammenhängende Bereiche mehrerer harmonischer Ordnungen. Während in allen bislang durchgeführten Experimenten ein Plateau gleichintensiver harmonischer Ordnungen beobachtet wurde, ist es jetzt zum ersten Mal gelungen, ``untypische'' weiche Röntgenspektren zu generieren, bei denen einzelne harmonische Ordnungen ``ausgeschaltet'' sind. Der hohe Grad der Kontrollierbarkeit bereitet den Weg für Experimente zur Quantenkontrolle im weichen Röntgenbereich. Es wurde ebenso gezeigt, dass der Grad der Kontrolle über die Form der weichen Röntgenspektren von der Erzeugungsgeometrie des Umwandlungsprozesses abhängt. In Experimenten zur Umwandlung im Gasstrahl war es nicht möglich die relative Emissionsstärke benachbarter harmonischer Ordnungen zu verändern. Im Gegensatz dazu konnte in der Wellenleitergeometrie die relative Ausbeute benachbarter Ordnungen mit hohem Kontrastverhältnis modifiziert werden. Eine auf der Antwort eines einzelnen Atoms beruhende Simulation konnte die experimentell beobachteten Kontrastverhältnisse nicht ausreichend reproduzieren: Ein Hinweis auf den Einfluss von Propagationseffekten (Phasenanpassung) als Ursache des in Wellenleitern beobachteten hohen Grades an Kontrollierbarkeit, was offene Debatten auf diesem Feld beantwortet. Um das Anwendungspotential der entwickelten Technik zur Formung kohärenter weicher Röntgenspektren im Hinblick auf Quantenkontrollexperimente in der entspechenden diesbezüglich bislang unerforschten Wellenlängenregion aufzuzeigen, wurde ein Prototypexperiment durchgeführt. Hier wurden wiederum mittels adaptiver Rückkopplungsschleife die nun formbaren Röntgenspektren dazu eingesetzt, die Photodissoziationsreaktion von SF$_6$-Molekülen in der Gasphases zu kontrollieren. Ein Flugzeitmassenspektrometer wurde zur Detektion der ionischen Fragmente herangezogen. Das Verzweigungsverhältnis einzelner Fragmentationskanäle konnte durch den Einfluss optimal geformter weicher Röntgenfelder variiert werden. Obwohl in einem Fall nur eine leichte Veränderung möglich war, konnte eine optimale Lösung gefunden werden, wodurch die ausreichende technische Stabilität dieser einzigartigen Methode zur Formung kohärenter weicher Röntgenstrahlung für zukünftige Anwendungen auf dem Gebiet der optimalen Kontrolle bewiesen wurde. Es wurde ferner darauf eingegangen, dass aktive Formung der spektralen Amplitude in kohärenten Spektren von $\sim$10~eV Bandbreite in direktem Zusammenhang steht mit der Formung zeitlicher Eigenschaften der entstehenden weichen Röntgenpulsen auf einer Subfemtosekundenzeitskala. Dies kann durch den Frequenz-Zeit-Dualismus verstanden werden, in dem die Fouriertransformation als Übersetzer fungiert. Eine quantenmechanische Simulation wurde durchgeführt, um das Ausmaß der zeitlichen Kontrolle über die Attosekundenpulsform beim Umwandlungsprozess näher zu beleuchten. Zusammen mit den experimentellen Ergebnissen konnte damit der erste Attosekundenpulsformer in dieser Arbeit demonstriert werden. Die Verfügbarkeit von Femtosekundenpulsformern eröffnete das Gebiet der adaptiven Femtosekunden-Quantenkontrolle. Die bahnbrechende Idee der `closed-loop' Rückkopplungskontrolle, die dazu experimentell implementiert wurde, war von Judson und Rabitz in ihrer wegweisenden Arbeit mit dem Titel ``Teaching lasers to control molecules'' (``Es Lasern beibringen, Moleküle zu kontrollieren'') zum Ausdruck gekommen. Die vorliegende Arbeit kann dieser Idee nun eine erweiterte und eine ``umgekehrte'' Form hinzufügen: ``Teaching molecules to control laser light conversion'' (``Es Molekülen beibringen, Laserlichtkonversion zu kontrollieren'') und ``Teaching lasers to control coherent soft x-ray light'' (``Es Lasern beibringen, kohärentes weiches Röntgenlicht zu kontrollieren''). Die ursprüngliche Idee erlaubte somit nun also auch den Sprung von der Femtosekundenkontrolle molekularer Dynamik hinein in das neue Gebiet der Attosekundenkontrolle elektronischer Bewegung, dessen Erforschung nun unmittelbar bevorsteht. Die Idee der \emph{geschlossenen} Schleife (`closed-loop') konnte damit tatsächlich das Tor \emph{öffnen} hinaus in eine Fülle neuer Perspektiven für die Naturwissenschaft. KW - Ultrakurzer Lichtimpuls KW - Femtosekundenbereich KW - Frequenzvervielfachung KW - Kohärente Anregung KW - Weiche Röntgenstrahlung KW - Kohärente Kontrolle KW - Erzeugung hoher Harmonischer KW - Femtosekunden-Laserpulsformung KW - Atom und Molekülphysik KW - Optik KW - Ultraschnelle Röntgenstrahlung KW - Coherent Control KW - High-Harmonic Generation KW - Femtosecond Laser Pulse Shaping KW - Atomic KW - Molecular and Optical Physics KW - Ultrafast X-Ray Science Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-9854 ER - TY - THES A1 - Kießling, Tobias T1 - Symmetry and Optical Anisotropy in CdSe/ZnSe Quantum Dots N2 - Halbleiter Quantenpunkte (QDs) erregen immenses Interesse sowohl in der Grundlagen- als auch der anwendungsorientierten Forschung, was sich maßgeblich aus ihrer möglichen Nutzung als Fundamentalbausteine in neuartigen, physikalisch nicht-klassischen Bauelementen ergibt, darunter die Nutzung von QDs als gezielt ansteuerbare Lichtquellen zur Erzeugung einzelner Paare polarisationsverschränkter Photonen, was einen Kernbaustein in den intensiv erforschten optischen Quantenkryptographiekonzepten darstellt. Ein goßes Hindernis stellen hierbei die in allen aktuell verfügbaren QDs intrinsisch vorhandenen, ausgeprägten Asymmetrien dar. Diese sind eine Begleiterscheinung der selbstorganisierten Wachstumsmethoden der QDs und sie treten in verschiedenen Gestalten, wie Formasymmetrie oder inhomogenen Verspannungsverhältnissen innerhalb der QDs, auf. Im Gegenzug verursachen jene Asymmetrien deutliche Anisotropien in den optischen Eigenschaften der QDs, wodurch das optische Ansprechverhalten klassisch beschreibbar wird. Aus Sicht der anwendungsorientierten Forschung stehen Asymmetrien daher im Ruf ungewollte Nebeneffekte zu sein und es wird mit großem Aufwand daran geforscht, diese unter Kontrolle zu bringen. Für die Grundlagenforschung sind anisotrope QDs jedoch ein interessantes Modellsystem, da an ihnen fundamentale Quantenphysik beobachtbar ist, wobei anders als in Atomen die einschnürenden Potentiale nicht zwangsläufig zentralsymmetrisch sein müssen. Auf der Basis winkel- und polarisationsaufgelöster Photolumineszenzuntersuchungen (PL) wird die Anisotropie des linearen Polarisationsgrades in der Lumineszenzstrahlung (kurz: optische Anisotropie) der an CdSe/ZnSe-QDs gebundenen Exzitonen untersucht. Es wird gezeigt, dass die Elektron-Loch Austauschwechselwirkung in asymmetrischen QDs zu einer effektiven Umwandlung linearer in zirkulare Polarisationsanteile und umgekehrt führt. Die experimentellen Befunde lassen sich erfolgreich im Rahmen eines Exziton-Pseudospinformalismus, der auf der durch die Austauschwechselwirkung induzierten Feinstruktur der hellen Exzitonzustände basiert, beschreiben. Dies legt nahe, dass QDs funktionelle Bauelemente in hochintegrierten rein optischen Architekturen jenseits der viel diskutierten nichtklassischen Konzepte darstellen können, insbesondere als optische Polarisationskonverter und/oder -modulatoren. Weiterhin wird der Exziton-Pseudospinformalismus in Untersuchungen zur optischen Ausrichtung in QDs genutzt und gezeigt, wie so die anders nicht direkt messbare Symmetrieverteilung eines Ensembles von QDs detektiert werden kann. Diese Messungen stellen ein wertvolles Bindeglied zwischen optischen und strukturellen Untersuchungen dar, da sie einen direkten experimentellen Zugang zum mit topologischen Methoden nicht einsehbaren Anordnungsverhalten eingekapselter QDs liefern. Abschließend wird die optische Anisotropie unter Anlegung eines Magnetfeldes in der QD-Ebene untersucht. Dabei wird beobachtet, dass die Achse der linearen Polarisation der Lumineszenzstrahlung entweder entgegengesetzt zur Magnetfeldrichtung in der Probenebene rotiert oder fest entlang einer gegebenen kristallographischen Achse orientiert ist. Eine qualitative Auswertung der Ergebnisse auf der Basis des exzitonischen Pseudospin-Hamiltonian belegt, dass diese Polarisationsanteile durch isotrope und anisotrope Beiträge des Schwerloch Zeeman Terms begründet werden, wobei die anisotropen Anteile für ein kritisches Magnetfeld von B=0, 4 T gerade die forminduzierten uni-axialen Polarisationsanteile kompensieren, so dass ein optisches Verhalten resultiert, das man für hochsymmetrische QDs erwarten würde. Zur quantitativen Beschreibung wurde der vollständige k.p-Hamiltonianin der Basis der Schwerlochexzitonzustände numerisch ausgewertet und damit die optische Polarisation als Funktion der Magnetfeldstärke und -orientierung berechnet. Die Modellrechnungen stimmen mit die gemessenen Daten im Rahmen der experimentellen Unsicherheit mit einem jeweils probenspezifischen Parametersatz quantitativ überein. Dabei wird gezeigt, dass ein Ensemble von QDs ein optisches Signal, das man für hochsymmetrisches QDs erwarten würde, erzeugen kann ohne dass eine Symmetrisierung der hellen Exzitonzustände stattfindet, wie sie für nicht-klassische Anwednungen notwendig ist. Daraus ergibt sich, dass Konzepte, die Magnetfelder in der Probenebene zur Symmetrisierung des optischen Signals nutzen, mindestens die vier stark durchmischten Schwerlochexzitonzusände berücksichtigen müssen und eine Beschreibung, die nur die beiden hellen Exzitonzustände in Abwesenheit magnetischer Felder beinhaltet, zu kurz greift. Für die kontrovers geführte Diskussion bezüglich aktueller experimenteller Studien zur Erzeugung polarisationsverschränkter Photonen in asymmetrischen QDs ist daher zu verstehen, dass von solch einer vereinfachten Beschreibung nicht a priori erwartet werden kann, verlässliche Ergebnisse in Bezug auf exzitonische Bellzustände zu erzeugen. N2 - Semiconductor Quantum Dots (QDs) have been attracting immense interest over the last decade from both basic and application-orientated research because of their envisioned use as fundamental building blocks in non-classical device architectures. Their presumable ease of integration into existing semiconductor technology has bought them the reputation of being cost-efficiently scalable and renders them a place among the top candidates in a wide range of proposed quantum logic and quantum information processing schemes. These include the highly acclaimed use of QD as triggered sources of single pairs of entangled photons, which is a key ingredient of most of the intensivly investigated optical quantum cryptography operations. A big obstacle towards these goals are the pronounced asymmetries that are intrinsically present in all currently availabe semiconductor QD systems. They are a natural by-product that stems from the employed self-assembled growth methods and manifest in various forms such as shape-asymmetry, inhomogeneous strain distribution within the QD and concomittant piezo-elecric fields. These asymmetries in return give rise to distinct anisotropies in the optical properties of QDs, which in fact render their optical response classic. For device oriented research these anisotropies are therefore typically considered unwanted and actively researched to be controlled. They are, however, interesting from a fundamental point of view, as anisotropic QDs basically provide a testbed system for fundamental atom-like quantum physics with non-centrosymmetric potentials. As shall be shown in the current work, this gives rise to novel and interesting physics in its own right. Employing photoluminescence spectroscopy (PL) we investigate the optical anisotropy of the radiative recombination of excitons confined to CdSe/ZnSe QDs. This is done by angle-dependent polarization-resolved PL. We demonstrate experimentally that the electron-hole exchange interaction in asymmetric QDs gives rise to an effective conversion of the optical polarization from linear to circular and vice versa. The experiment is succesfully modeled in the frame of an exciton pseudospin-formalism that is based on the exchange induced finestructure splitting of the radiative excitonic states and unambiguously proves that the observed polarization conversion is the continuous-wave equivalent to quantum beats between the exchange split states in the time domain. These results indicate that QDs may offer extended functionality beyond non-classical light sources in highly integrated all-optical device schemes, such as polarization converters or modulators. In a further extension we apply the exciton pseudospin-formalism to optical alignment studies and demonstrate how these can be used to directly measure the otherwise hidden symmetry distribution over an ensemble of QDs. This kind of measurement may be used on future optical studies in order to link optical data more directly to structural investigations, as it yields valuable information on capped QDs that cannot be looked at directly by topological methods. In the last part of this work we study the influence of an in-plane magnetic field on the optical anisotropy. We find that the optical axis of the linear polarization component of the photoluminescence signal either rotates in the opposite direction to that of the magnetic field or remains fixed to a given crystalline direction. A qualitative theoretical analysis based on the exciton pseudospin Hamiltonian unambiguously demonstrates that these effects are induced by isotropic and anisotropic contributions to the heavy-hole Zeeman term, respectively. The latter is shown to be compensated by a built-in uniaxial anisotropy in a magnetic field B=0.4 T, resulting in an optical response that would be expected for highly symmetric QDs. For a comprehensive quantitative analysis the full heavy-hole exciton k.p-Hamiltonian is numerically calculated and the resulting optical polarization is modeled. The model is able to quantitatively describe all experimental results using a single set of parameters. From this model it is explicitly seen that a optical response characteristic for high symmetry QDs may be obtained from an ensemble of asymmetric QDs without a crossing of the zero-field bright exciton states, which was required for application of QDs in non-classical light sources. It is clearly demonstrated that any scheme using in-plane magnetic fields to symmetrize the optical response has to take into account at least four optically active states instead of the two observed in the absence of magnetic fields. These findings may explain some of the major disagreement on recent entanglement studies in asymmetric QDs, as models that do not take the above result into account cannot be a priori expected to provide reliable results on excitonic Bell states. KW - Quantenpunkt KW - Cadmiumselenid KW - Wide-gap-Halbleiter KW - Zinkselenid KW - Optische Anisotropie KW - Symmetrie KW - Optik KW - Austauschaufspaltung KW - optical polarization conversion Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-40683 ER - TY - THES A1 - Elsässer, Sebastian T1 - Lattice dynamics and spin-phonon coupling in the multiferroic oxides Eu(1-x)Ho(x)MnO3 and ACrO2 T1 - Gitterdynamik und Spin-Phonon Kopplung in den multiferroischen Oxiden Eu(1-x)Ho(x)MnO3 und ACrO2 N2 - The focus of this thesis is the investigation of the lattice dynamics and the coupling of magnetism and phonons in two different multiferroic model systems. The first system, which constitutes the main part in this work is the system of multiferroic manganites RMnO$_{3}$, in particular Eu$_{1-x}$Ho$_{x}$MnO$_{3}$ with $0 \le x \le 0.5$. Its cycloidal spin arrangement leads to the emergence of the ferroelectric polarization via the inverse Dzyaloshinskii-Moriya interaction. This system is special among RMnO$_{3}$ as with increasing Ho content $x$, Eu$_{1-x}$Ho$_{x}$MnO$_{3}$ does not only become multiferroic, but due to the exchange interaction with the magnetic Ho-ion, the spin cycloid (and with it the electric polarization) is also flipped for higher Ho contents. This makes it one of the first compounds, where the cycloidal reorientation happens spontaneously, rather than with the application of external fields. On the other hand, there is the delafossite ACrO$_{2}$ system. Here, due to symmetry reasons, the spin-spiral pattern can not induce the polarization according to the inverse Dzyaloshinskii-Moriya interaction mechanism. Instead, it is thought that another way of magnetoelectric coupling is involved, which affects the charge distribution in the $d-p$ hybridized orbitals of the bonds. The lattice vibrations as well as the quasi-particle of the multiferroic phase, the electromagnon, are studied by Raman spectroscopy. Lattice vibrations like the B$_{3g}$(1) mode, which involves vibrations of the Mn-O-Mn bonds modulate the exchange interaction and serve as a powerful tool for the investigation of magnetic correlations effects with high frequency accuracy. Raman spectroscopy acts as a local probe as even local magnetic correlations directly affect the phonon vibration frequency, revealing coupling effects onto the lattice dynamics even in the absence of global magnetic order. By varying the temperature, the coupling is investigated and unveils a renormalization of the phonon frequency as the magnetic order develops. For Eu$_{1-x}$Ho$_{x}$MnO$_{3}$, the analysis of this spin-induced phonon frequency renormalization enables the quantitative determination of the in-plane spin-phonon coupling strengths. This formalism, introduced by Granado et al., is extended here to evaluate the out-of-plane coupling strengths, which is enabled by the identification of a previously elusive feature as a vibrational mode. The complete picture is obtained by studying the lattice- and electromagnon dynamics in the magnetic field. Further emphasis is put towards the development of the cycloidal spin structure and correlations with temperature. A new model of describing the temperature-dependent behavior of said spin correlations is proposed and can consistently explain ordering phenomena which were until now unaddressed. The results are underscored with Monte Carlo based simulations of the spin dynamics with varying temperature. Furthermore, a novel effect of a tentative violation of the Raman selection rules in Eu$_{1-x}$Ho$_{x}$MnO$_{3}$ was discovered. While the phonon modes can be separated and identified by their symmetry by choosing appropriate polarization configurations, in a very narrow temperature range, Eu$_{1-x}$Ho$_{x}$MnO$_{3}$ shows an increase of phonon intensities in polarization configurations where they should be forbidden. This is interpreted as a sign of local disorder, caused by 90° domain walls and could be explained within the model framework. This course of action is followed with the material system of delafossites ACrO$_{2}$. Being a relatively new class of multiferroic materials, the investigations on ACrO$_{2}$ are also of characterizing nature. For this, shell model calculations are performed as a reference to compare the vibrational frequencies obtained by the Raman experiments to. A renormalization of the vibrational frequencies is observed in this system as well and systematically analyzed across the sample series of \textit{A}=Cu, Pd and Ag. Eventually, the effect of applying an external magnetic field is studied. A particularly interesting feature specific for CuCrO$_{2}$ is a satellite peak which appears at lower temperatures. It is presumably related to a deformation of the lattice and therefore going to be discussed in further detail. N2 - Mit der Entdeckung des Riesenmagnetoelektischen Effekts (Giant Magnetoelectric Effect) in TbMnO$_{3}$ durch Kimura et al., im Jahre 2003, erlebte das Forschungsgebiet der multiferroischen Seltenerdmanganate RMnO$_{3}$ einen neuen Aufschwung durch die neuen Möglichkeiten, die sich durch diese Entdeckung offenbarten. \cite{Kimura2003} Der Effekt besteht darin, dass sich durch ein bestimmtes Muster der magnetischen Ordnung eine direkt an dieses Muster gekoppelte ferroelektrische Polarisation ergibt. Die Kopplung von magnetischer und ferroelektrischer Ordnung bewirkt, dass stets beide Parameter simultan beeinflusst werden, wenn ein externes elektrisches oder magnetisches Feld angelegt wird: Wird das Magnetisierungsmuster durch ein externes Magnetfeld beeinflusst, wirkt sich dies direkt auf die elektrische Polarisation aus. Umgekehrt, wenn die Polarisation durch ein elektrisches Feld beeinflusst wird, ist die magnetische Ordnung entsprechend betroffen. Dies erlaubt die vollständige Umordnung der elektrischen Polarisation durch ein magnetisches Feld oder der magnetischen Ordnung durch ein elektrisches Feld. Materialien, die mindestens zwei ferroische Eigenschaften, in diesem Fall eine spontane Magnetisierung und spontane elektrische Polarisation, in der gleichen Phase aufweisen, werden als Multiferroika bezeichnet. Diese allgemeine Klassifikation ist noch zu unterteilen in Typ-I und Typ-II Multiferroika. Zu Typ-I Multiferroika zählen Systeme wie BiFeO$_{3}$, bei denen die ferroelektrische und die magnetische Ordnung weitestgehend unabhängig voneinander und daher bei verschiedenen Temperaturen einsetzen ($T_{C} = 1100$~K für die ferroelektrische, $T_{N}=$ 643~K für die magnetische Ordnung \cite{Khomskii2009}). Dementsprechend sind Magnetisierung und Polarisation in diesem System kaum miteinander gekoppelt. Demgegenüber stehen die hier betrachteten Systeme der orthorhombischen RMnO$_{3}$ Seltenerdmanganate und der ACrO$_{2}$ Delafossite, die der Gruppe der Typ-II Multiferroika angehören. Hier ist die magnetische Ordnung die direkte Ursache der ferroelektrischen Polarisation, d.h. beide Phänomene treten simultan ab der gleichen Ordnungstemperatur auf. Das Ziel von Forschungsbemühungen auf diesem Gebiet der Multiferroika ist zum Einen, neue Materialien zu finden, die solcherlei Kopplungseffekte zeigen. Zum Anderen gilt es, den Effekt besser nutzbar zu machen, sei es durch eine größere Kopplungsstärke oder durch höhere mögliche Ordnungstemperaturen. Um dies zu erreichen ist es von essentieller Bedeutung die zu Grunde liegenden mikroskopischen Mechanismen zu ergründen, diese zu studieren und schließlich ein besseres Verständnis der multiferroischen Kopplungsmechanismen zu erlangen. In dieser Dissertation liegt der Fokus auf der systematischen Untersuchung von Kopplungseffekten zwischen der magnetischen Ordnung und der Dynamik des Kristallgitters mittels Ramanspektroskopie. Insbesondere werden Renormalisierungseffekte der Frequenzen der Gitterschwingungen untersucht, die sich durch die Ausbildung der magnetischen Ordnung und Kopplung derselben an die Gitterdynamik ergeben, die sogenannte Spin-Phonon Kopplung (SPC). Zu diesem Zweck werden die spektroskopischen Experimente mit Augenmerk auf die Polarisations-, Temperatur- und Magnetfeldabhängigkeit der ramanaktiven Moden durchgeführt. Dabei werden Serien von Proben zweier Materialsysteme untersucht, bei denen sich die multiferroische Phase durch unterschiedliche Mechanismen ausbildet: Zum Einen das System Eu$_{1-x}$Ho$_{x}$MnO$_{3}$ ( $0 \le x \le 0.5$), welches zu den orthorhombischen RMnO$_{3}$ Systemen zählt und sowohl multiferroische als auch nicht-multiferroische Proben umfasst. Hierbei beruht der magnetoelektrische Effekt auf der inversen Dzyaloshinskii-Moriya Wechselwirkung. Im Vergleich dazu wird außerdem das System der ACrO$_{2}$ Delafossite mit A= Cu, Ag, Pd untersucht. Dieses System ist im Kontext der Multiferroika noch als relativ neu anzusehen. Hier kann die inverse Dzyaloshinskii-Moriya Wechselwirkung aus Symmetriegründen ausgeschlossen werden, sodass ein neuartiger magnetoelektrischer Kopplungsmechanismus vorliegt. Durch die Spin-Bahn Kopplung verschiebt sich die Gewichtung der Ladungsverteilung der Bindungen und führt dadurch zur Entstehung der elektrischen Polarisation. Im Vergleich der beiden Systeme, werden die Unterschiede der Spin-Phonon Kopplungsstärken und der Einfluss von lokalen Ordnungseffekten diskutiert. KW - Festkörperphysik KW - Gitterdynamik KW - Raman-Spektroskopie KW - Magnon KW - Optik KW - Spin-Phonon Kopplung KW - Elektromagnon KW - Multiferroika KW - Multiferroics KW - Electromagnon KW - Spin-phonon coupling Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-179719 ER -