TY - THES A1 - von der Assen [geb. Weiß], Katrin Barbara T1 - Markierung von humanen mesenchymalen Stammzellen mit für die Magnet-Partikel-Spektroskopie geeigneten Eisenoxidnanopartikeln, Untersuchung des Zellverhaltens in dreidimensionaler Umgebung und nicht-invasive Analyse mittels Raman-Spektroskopie T1 - Labeling of human mesenchymal stem cells using iron oxide nanoparticles which are traceable by magnetic particle spectroscopy, examination of cell behaviour in a 3D environment and non-invasive analysis using raman spectroscopy N2 - Stem cell research has already been challenged for years by the question how to design tissues or even whole organs in vitro. Human mesenchymal stem cells (hMSC) seem to be very promising for this task as they can be extracted in many cases directly from the recipient. Thus potential graft rejections are avoided. For further research on the behaviour of stem cells in vivo it is essential to be able to track them non-invasively. This is for example possible by Magnetic Particle Imaging (MPI). For this purpose stem cells have to be labelled with a suitable substance, for example with superparamagnetic iron oxide nanoparticles (SPION). Presently there are no SPION approved by FDA or EMA that are able to enter hMSC without transfection agent (TA). Therefore the aim of this dissertation was to identify at least one SPION that possesses an optimal interaction with hMSC and can be tracked by MPI as well as by Raman-Spectroscopy. Furthermore the identified SPION should be detectable for a longer period of time and should not have any influence on hMSC. This dissertation was performed within the framework of the EU-wide `IDEA-project´. hMSC have been labelled with the iron oxide nanoparticles M4E, M4F, M4F2 and M3A-PDL in varying concentrations. For M3A-PDL and M4E examinations were done with concentrations of 0.5 mg/ml in standard cell culture as well as in a three-dimensional environment on a matrix of small intestinal submucosae (SIS-ser). Furthermore chondrogenic differentiation of M4E labelled hMSC was examined. Additionally Magnetic Particle Spectroscopy (MPS) and Raman-Spectroscopy were used as non-invasive detection systems. Histologically SPION uptake was proven by Prussian blue staining. Cell viability and proliferation were examined by Trypan blue staining and Ki67 antibody staining. In order to prove that also labelled cells proliferate, a special staining protocol combining Prussian blue and immunohistochemical stainings was established. The success of chondrogenic differentiation was histologically verified by Alcian blue staining, Aggrecan and Collagen II antibody staining. It could be demonstrated, that M4E has a very good cell-particle interaction when used for labelling hMSC. In contrast to M3A, which is only taken up into hMSC when covered by a TA, M4E can be used without TA. Both particles do not influence cell viability or proliferation. M4F and M4F2 are not suitable to lable hMSC. SPION could be detected at least for four weeks after labelling in a three-dimensional environment which is significantly longer than the maximum detection time of two weeks in cell culture. Chondrogenic differentiation is influenced by cell labelling with 0.5 mg/ml M4E. M3A-PDL can be detected by MPS. Raman-Spectroscopy is suitable to differentiate between M3A-PDL labelled and unlabelled hMSC. This dissertation has been able to identify an iron oxide nanoparticle with an excellent cell-particle interaction that allows intense cell labelling without TA and can be detected by MPS. In further studies at the institute it could already be shown that Raman-Spectroscopy can differentiate also between M4E labelled and unlabelled cells. However, chondrogenic differentiation of hMSC was inhibited in this dissertation. In literature several authors came to the conclusion that there is a dose-dependent inhibition of differentiation. Therefore further experiments are necessary to find out whether inhibition of differentiation might be less immanent when using smaller SPION concentrations. Additionally it should be evaluated if smaller SPION concentrations remain detectable by MPS for several weeks. Finally further studies should be done in testing systems that are more similar to the situation in vivo. Such systems are for example the dynamic environment of a BioVaSc-TERM®. This is important to make better predictions of the behaviour of labelled hMSC in vivo. N2 - Die Stammzellforschung beschäftigt sich bereits seit Jahren mit der Frage, wie Gewebe oder sogar Organe im Labor hergestellt werden können. Als besonders vielversprechend erscheinen hierfür humane Mesenchymale Stammzellen (hMSC), da diese in vielen Fällen direkt vom Empfänger gewonnen werden können und so keine Organ- oder Gewebeabstoßung durch Abwehrreaktionen zu erwarten ist. Für die weitere Erforschung des Verhaltens von Stammzellen in vivo ist es notwendig, diese nicht-invasiv darstellen zu können. Dies ist zum Beispiel mittels Magnetischer Partikel Bildgebung (MPI) möglich. Hierfür müssen die Stammzellen mit einer geeigneten Substanz markiert werden. Eine solche sind beispielsweise superparamagnetische Eisenoxidnanopartikel (SPION). Derzeit gibt es keine von den medizinischen Zulassungsbehörden zugelassenen SPION die ohne TA in hMSC aufgenommen werden. In der hier vorliegenden Arbeit sollte also im Rahmen des EU-weiten „IDEA-Projekts“ ein geeigneter SPION identifiziert werden, der eine optimale Zell-Partikel-Interaktion aufweist und sowohl mittels MPI als auch mit Raman-Spektroskopie nachweisbar ist. Zudem sollte die Nachweisbarkeit des SPION über einen längeren Zeitraum gegeben und kein Einfluss auf die hMSC feststellbar sein. Es wurden hMSC mit den Eisenoxidnanopartikeln M4E, M4F, M4F2 und M3A-PDL in unterschiedlichen Konzentrationen markiert. Für M3A-PDL und M4E erfolgten bei einer Konzentration von 0,5 mg/ml Untersuchungen in Zellkultur sowie auf SIS-ser als Matrix im 3D-Modell. Desweiteren wurde das Differenzierungsverhalten der mit M4E markierten hMSC bei chondrogener Differenzierung untersucht. Außerdem kamen Magnetische Partikel Spektroskopie (MPS) und Raman-Spektroskopie als nicht-invasive Nachweisverfahren zum Einsatz. Der SPION-Nachweis erfolgte histologisch mittels Berliner Blau Färbung. Untersuchungen zu Zellviabilität und Proliferation erfolgten durch Trypanblau sowie Ki67-Antikörper-Färbung. Um Nachzuweisen ob auch markierte Zellen proliferieren wurde eigens ein kombiniertes Färbeprotokoll zur Kombination von Berliner Blau und immunhistochemischer Färbung etabliert. Der Erfolg der chrondrogenen Differenzierung wurde mittels Alcianblau, Aggrecan- und Kollagen-II-Antikörper Färbung überprüft. Es konnte gezeigt werden, dass M4E bei der Markierung von hMSC eine sehr gute Zell-Partikel-Interaktion aufweist und im Gegensatz zu M3A auch ohne TA in die Zellen aufgenommen wird. Durch beide Partikel werden Zellviabilität und Proliferation nicht beeinflusst. M4F sowie M4F2 ist zur Markierung nicht geeignet. Die Markierung ließ sich im 3D-Modell mit vier Wochen deutlich länger nachweisen als in 2D Zellkultur mit maximal zwei Wochen. Die chondrogene Differenzierung wird durch die Markierung mit 0,5 mg/ml M4E beeinflusst. M3A-PDL sind durch MPS nachweisbar. Die Raman-Spektroskopie eignet sich zur Differenzierung zwischen mit M3A-PDL markierten und unmarkierten hMSC. Es ist im Rahmen dieser Arbeit gelungen, einen Eisenoxidnanopartikel mit hervorragender Zell-Partikel-Interaktion zu identifizieren, der ohne zusätzliches TA eine intensive Markierung der hMSC ermöglicht und mit MPS nachweisbar ist. Für M4E konnte in weiteren Arbeiten am Institut bereits gezeigt werden, dass auch eine Differenzierung zwischen markierten und unmarkierten Zellen mittels Raman-Spektroskopie möglich ist. Die chondrogene Differenzierung der hMSC wurde in der vorliegenden Arbeit allerdings beeinträchtigt. In der Literatur finden sich Hinweise auf eine dosisabhängige Inhibition der Differenzierung. Es sind daher weitere Versuche notwendig, um herauszufinden, ob die Inhibition der Differenzierung möglicherweise bei geringerer SPION-Konzentration weniger ausgeprägt ist. Zudem sollte untersucht werden, ob auch geringere Konzentrationen in den Zellen über mehrere Wochen mittels MPS nachweisbar bleiben. Desweiteren sollten Untersuchungen in, der in vivo Situation ähnlicheren, Systemen, wie dem dynamischen Umfeld einer BioVaSc-TERM® durchgeführt werden um bessere Vorhersagen zum Verhalten markierter hMSC in vivo treffen zu können. KW - Stammzellforschung KW - Eisenoxid-Nanopartikel KW - Magnet-Partikel-Spektroskopie KW - Raman-Spektroskopie KW - 3D-Kultur KW - humane mesenchymale Stammzellen Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219095 ER - TY - THES A1 - Seidensticker, Katharina T1 - Aufbau eines humanen 3D-Atemwegsmodells zur Modellierung der Atemwegsinfektion mit Bordetella pertussis T1 - Investigations of pertussis toxins in a 3D in vitro model of the human respiratory mucosa N2 - Mittels Tissue Engineering hergestellte humane 3D in vitro-Testsysteme sind ein neuer Ansatz, um u.a. Erkrankungen der Atemwege zu simulieren und zu untersuchen. Obwohl gegen B. pertussis, den Erreger des Keuchhustens, Impfstoffe zur Verfügung stehen, nimmt die Erkrankungs-Inzidenz in den letzten Jahren deutlich zu. Da B. pertussis zu den obligat humanpathogenen Erregern zählt, sind die aus Tierversuchen stammenden Daten nur unzureichend auf den Menschen übertragbar. Die genauen Pathomechanismen der Infektion sind bisher nicht geklärt. Auf einer biologischen Kollagenmatrix wurde eine Ko-Kultur aus humanen tracheobronchialen Fibroblasten und humanen tracheobronchialen Epithelzellen (hTEC) angesiedelt und 3 Wochen unter apikaler Belüftung kultiviert. Die ausdifferenzierten 3D Testsysteme wurden mit Überständen von Bordetella pertussis-Kulturen inkubiert und auf licht- und elektronenmikroskopischer Ebene analysiert. Weiterhin wurden 2D Kulturen der hTEC mit Hilfe der Ramanspektroskopie nicht-invasiv auf intrazelluläre Veränderungen nach der Inkubation mit den bakteriellen Überständen untersucht. Das 3D Testsystem der humanen Atemwegschleimhaut zeigte auf lichtmikroskopischer und ultrastruktureller Ebene eine hohe in vitro – in vivo-Korrelation. Die elektronenmikroskopische Analyse zeigte morphologische Veränderungen nach der Inkubation mit den B. pertussis Überständen, die mit vorbeschrieben Effekten einer B. pertussis Infektion korrelieren. Mittels der Ramanspektroskopie ließen sich Gruppen von unbehandelten Zellen von Gruppen, die zuvor mit Bakterienüberständen inkubiert wurden, trennen. Somit zeigte sich die Ramanspektroskopie sensitiv für intrazelluläre Infektionsfolgen. Zusammenfassend wurde belegt, dass das 3D-Modell der humanen Atemwegschleimhaut zur Untersuchung obligat humanpathogener Infektionserreger geeignet ist und dass die Ramanspektroskopie eine nicht-invasive Methode ist, um durch Infektionen hervorgerufene intrazellulären Pathologien zu analysieren. N2 - Three dimensional (3D) tissue-engineered human tissue models are of high relevance, e.g. to investigate virulence mechanisms of human obligate pathogens in vitro. One major obligate agent causing acute respiratory diseases is Bordetella pertussis (Bp), the agent of whooping cough. The progress towards elimination Bp has stalled which is mainly caused due to an absence of suitable models to gain more knowledge about its pathomechanism. On a biological collagen matrix (SISser) a co-culture of human fibroblasts and human airway epithelial cells (hTEC) was seeded and cultured under airlift conditions. The completely differentiated test systems were treated with sterile-filtrated supernatants of Bp and afterwards analyzed with light and transmission electron microscopy. 2D cultures of hTEC were also infected and analyzed with Raman spectroscopy. The 3D test system of the human airway mucosa shows high in vitro - in vivo - correlation on both structural and ultrastructural level. Preliminary morphological analysis after infection with Bp supernatant reveals considerable ultrastructural changes which were not observed in control samples and correlate to effects knows from Bp infections in vivo. In 2D cultivation conditions the Raman spectra of infected hTEC clearly differ from spectra of the control. It is shown that the 3D airway mucosa model represents pathological effects of Bp toxins and offers an opportunity to further examine their pathomechanisms. Raman spectroscopy appears to be a practical method to show intracellular changes on living cells non-invasively. KW - Bordetella pertussis KW - Tissue Engineering KW - Raman-Spektroskopie KW - 3D-Gewebemodell KW - Keuchhusten KW - Konfokale Ramanspektroskopie KW - Airlift-Kultur Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-242092 ER - TY - THES A1 - Hatzing, Florian T1 - Evaluation eines Raman-Spektroskopie basierten Klassifikationssystems von Leukoplakien des Stimmlippenepithels T1 - Evaluating a classification system of glottic leukoplakias based on Raman spectrosopy N2 - Leukoplakien der Stimmlippe können verschiedene histopathologische Diagnosen wie beispielsweise Hyper- oder Parakeratosen, dysplastische Prozesse oder invasive Karzinome des Epithels zugrunde liegen. Bisher werden klinisch detektierte Leukoplakien nach Probeexzision und histologischer Aufarbeitung anhand verschiedener histomorphologischer Klassifikationssysteme, wie zum Beispiel dem System der WHO oder dem „Ljubljana classification“-System, eingeordnet. Hinsichtlich der Aussagekraft in Bezug auf die Prognose einer Entwicklung eines invasiven Plattenepithelkarzinoms sind die genannten Systeme jedoch eingeschränkt. In der Raman-Spektroskopie wird das zu untersuchende Gewebe mit einem Laser bestrahlt. Die beim Durchdringen des Materials entstehende Raman-Streuung ist charakteristisch für verschiedene Moleküle und Bindungen. So kann mithilfe dieser Methodik auf die molekularbiologische Zusammensetzung des Gewebes geschlossen werden. In dieser Arbeit wurde die Klassifikation verschiedener Dysplasiegrade des Stimmlippenepithels mittels Spektraldaten aus der Raman-Spektroskopie nachvollzogen und erörtert, ob aus den gewonnenen Informationen auf das Risiko der Entstehung eines invasiven Plattenepithelkarzinoms geschlossen werden kann. Durch den Vergleich der Mittelwertspektren dysplasiefreier, dysplastischer und maligne entarteter Gewebeproben sowie der Methodik einer Hauptkomponentenanalyse kann auf eine unterschiedliche Zusammensetzung der Studiengruppen an Bestandteilen der DNA, Proteine, Lipide und Kohlenhydrate geschlossen werden. Unter Verwendung einer linearen Diskriminanzanalyse wurden Modelle erstellt, um die Klassifizierbarkeit der verschiedenen Studiengruppen nachzuvollziehen. Außerdem wurden die Modelle auf die Aussagekraft einer Prognose hinsichtlich einer möglichen Karzinomentwicklung überprüft. Durch diese Modelle können gute Differenzbarkeiten durch die Spektraldaten der einzelnen Studiengruppen untereinander erreicht werden. Zudem kann mit hoher Spezifität, Sensitivität und Genauigkeit prognostiziert werden, ob sich beim jeweiligen Patienten ein invasives Plattenepithelkarzinom der Stimmlippe entwickeln wird. Um die erlangten Erkenntnisse zu validieren und das Verfahren in den klinischen Alltag zu integrieren, bedarf es jedoch prospektiver Studien. N2 - Leukoplakias of the vocal cord can lead to various diagnoses like keratosis, dysplasias or an invasive squamous cell carcinoma. Clinically detected leukoplakias are examined histologically after excision and can be graded with cellular and histological criteria, e.g. the WHO classification scheme or the “Ljubljana classification“. These classifications are often limited regarding a prognosis of the development of an invasive squamous cell carcinoma. With the method of Raman spectroscopy biological tissue can be further analysed on a molecular level through characteristic Raman scatterings of molecules and bonds. In this thesis, classification of dysplastic grades was retraced by information of the Raman spectra leading to further results which could deliver a prognosis of possible development of a squamous cell carcinoma. In comparison of the average spectra and with a subsequent principal component analysis of tissue without dysplastic changes, different dysplastic grades or invasive squamous cell carcinoma could be discriminated by means of detecting a specific composition of DNA, proteins, lipids or carbohydrates. Furthermore, with a linear discriminant analysis, good differentiation of the various groups could be confirmed and patients who developed a squamous cell carcinoma of the vocal cord could be identified in the follow-up examination. To verify these conclusions and implement these findings into clinical procedures and therapeutic measures, more prospective studies are needed. KW - Raman-Spektroskopie KW - Leukoplakie KW - Stimmband KW - Stimmlippe KW - leukoplakia KW - vocal cord KW - Raman spectroscopy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-235161 ER -