TY - JOUR A1 - Mair, Dorothea A1 - Biskup, Saskia A1 - Kress, Wolfram A1 - Abicht, Angela A1 - Brück, Wolfgang A1 - Zechel, Sabrina A1 - Knop, Karl Christian A1 - Koenig, Fatima Barbara A1 - Tey, Shelisa A1 - Nikolin, Stefan A1 - Eggermann, Katja A1 - Kurth, Ingo A1 - Ferbert, Andreas A1 - Weis, Joachim T1 - Differential diagnosis of vacuolar myopathies in the NGS era JF - Brain Pathology N2 - Altered autophagy accompanied by abnormal autophagic (rimmed) vacuoles detectable by light and electron microscopy is a common denominator of many familial and sporadic non‐inflammatory muscle diseases. Even in the era of next generation sequencing (NGS), late‐onset vacuolar myopathies remain a diagnostic challenge. We identified 32 adult vacuolar myopathy patients from 30 unrelated families, studied their clinical, histopathological and ultrastructural characteristics and performed genetic testing in index patients and relatives using Sanger sequencing and NGS including whole exome sequencing (WES). We established a molecular genetic diagnosis in 17 patients. Pathogenic mutations were found in genes typically linked to vacuolar myopathy (GNE, LDB3/ZASP, MYOT, DES and GAA), but also in genes not regularly associated with severely altered autophagy (FKRP, DYSF, CAV3, COL6A2, GYG1 and TRIM32) and in the digenic facioscapulohumeral muscular dystrophy 2. Characteristic histopathological features including distinct patterns of myofibrillar disarray and evidence of exocytosis proved to be helpful to distinguish causes of vacuolar myopathies. Biopsy validated the pathogenicity of the novel mutations p.(Phe55*) and p.(Arg216*) in GYG1 and of the p.(Leu156Pro) TRIM32 mutation combined with compound heterozygous deletion of exon 2 of TRIM32 and expanded the phenotype of Ala93Thr‐caveolinopathy and of limb‐girdle muscular dystrophy 2i caused by FKRP mutation. In 15 patients no causal variants were detected by Sanger sequencing and NGS panel analysis. In 12 of these cases, WES was performed, but did not yield any definite mutation or likely candidate gene. In one of these patients with a family history of muscle weakness, the vacuolar myopathy was eventually linked to chloroquine therapy. Our study illustrates the wide phenotypic and genotypic heterogeneity of vacuolar myopathies and validates the role of histopathology in assessing the pathogenicity of novel mutations detected by NGS. In a sizable portion of vacuolar myopathy cases, it remains to be shown whether the cause is hereditary or degenerative. KW - autophagy KW - FSHD KW - glycogenin 1 KW - muscular dystrophy KW - myofibrillar myopathy KW - next generation sequencing (NGS) KW - Pompe disease KW - sarcotubular myopathy KW - TRIM32 KW - vacuolar myopathy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216048 VL - 30 IS - 5 SP - 877 EP - 896 ER - TY - JOUR A1 - Mainz, Laura A1 - Sarhan, Mohamed A. F. E. A1 - Roth, Sabine A1 - Sauer, Ursula A1 - Maurus, Katja A1 - Hartmann, Elena M. A1 - Seibert, Helen-Desiree A1 - Rosenwald, Andreas A1 - Diefenbacher, Markus E. A1 - Rosenfeldt, Mathias T. T1 - Autophagy blockage reduces the incidence of pancreatic ductal adenocarcinoma in the context of mutant Trp53 JF - Frontiers in Cell and Developmental Biology N2 - Macroautophagy (hereafter referred to as autophagy) is a homeostatic process that preserves cellular integrity. In mice, autophagy regulates pancreatic ductal adenocarcinoma (PDAC) development in a manner dependent on the status of the tumor suppressor gene Trp53. Studies published so far have investigated the impact of autophagy blockage in tumors arising from Trp53-hemizygous or -homozygous tissue. In contrast, in human PDACs the tumor suppressor gene TP53 is mutated rather than allelically lost, and TP53 mutants retain pathobiological functions that differ from complete allelic loss. In order to better represent the patient situation, we have investigated PDAC development in a well-characterized genetically engineered mouse model (GEMM) of PDAC with mutant Trp53 (Trp53\(^{R172H}\)) and deletion of the essential autophagy gene Atg7. Autophagy blockage reduced PDAC incidence but had no impact on survival time in the subset of animals that formed a tumor. In the absence of Atg7, non-tumor-bearing mice reached a similar age as animals with malignant disease. However, the architecture of autophagy-deficient, tumor-free pancreata was effaced, normal acinar tissue was largely replaced with low-grade pancreatic intraepithelial neoplasias (PanINs) and insulin expressing islet β-cells were reduced. Our data add further complexity to the interplay between Atg7 inhibition and Trp53 status in tumorigenesis. KW - pancreatic cancer KW - autophagy KW - p53 KW - metastasis KW - ATG7 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-266005 SN - 2296-634X VL - 10 ER - TY - JOUR A1 - Lüningschrör, Patrick A1 - Slotta, Carsten A1 - Heimann, Peter A1 - Briese, Michael A1 - Weikert, Ulrich M. A1 - Massih, Bita A1 - Appenzeller, Silke A1 - Sendtner, Michael A1 - Kaltschmidt, Christian A1 - Kaltschmidt, Barbara T1 - Absence of Plekhg5 Results in Myelin Infoldings Corresponding to an Impaired Schwann Cell Autophagy, and a Reduced T-Cell Infiltration Into Peripheral Nerves JF - Frontiers in Cellular Neuroscience N2 - Inflammation and dysregulation of the immune system are hallmarks of several neurodegenerative diseases. An activated immune response is considered to be the cause of myelin breakdown in demyelinating disorders. In the peripheral nervous system (PNS), myelin can be degraded in an autophagy-dependent manner directly by Schwann cells or by macrophages, which are modulated by T-lymphocytes. Here, we show that the NF-κB activator Pleckstrin homology containing family member 5 (Plekhg5) is involved in the regulation of both Schwann cell autophagy and recruitment of T-lymphocytes in peripheral nerves during motoneuron disease. Plekhg5-deficient mice show defective axon/Schwann cell units characterized by myelin infoldings in peripheral nerves. Even at late stages, Plekhg5-deficient mice do not show any signs of demyelination and inflammation. Using RNAseq, we identified a transcriptional signature for an impaired immune response in sciatic nerves, which manifested in a reduced number of CD4\(^+\) and CD8\(^+\) T-cells. These findings identify Plekhg5 as a promising target to impede myelin breakdown in demyelinating PNS disorders. KW - Schwann cells KW - autophagy KW - immune response KW - myelin KW - PLEKHG5 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207538 SN - 1662-5102 VL - 14 ER - TY - JOUR A1 - Lüningschrör, Patrick A1 - Binotti, Beyenech A1 - Dombert, Benjamin A1 - Heimann, Peter A1 - Perez-Lara, Angel A1 - Slotta, Carsten A1 - Thau-Habermann, Nadine A1 - von Collenberg, Cora R. A1 - Karl, Franziska A1 - Damme, Markus A1 - Horowitz, Arie A1 - Maystadt, Isabelle A1 - Füchtbauer, Annette A1 - Füchtbauer, Ernst-Martin A1 - Jablonka, Sibylle A1 - Blum, Robert A1 - Üçeyler, Nurcan A1 - Petri, Susanne A1 - Kaltschmidt, Barbara A1 - Jahn, Reinhard A1 - Kaltschmidt, Christian A1 - Sendtner, Michael T1 - Plekhg5-regulated autophagy of synaptic vesicles reveals a pathogenic mechanism in motoneuron disease JF - Nature Communications N2 - Autophagy-mediated degradation of synaptic components maintains synaptic homeostasis but also constitutes a mechanism of neurodegeneration. It is unclear how autophagy of synaptic vesicles and components of presynaptic active zones is regulated. Here, we show that Pleckstrin homology containing family member 5 (Plekhg5) modulates autophagy of synaptic vesicles in axon terminals of motoneurons via its function as a guanine exchange factor for Rab26, a small GTPase that specifically directs synaptic vesicles to preautophagosomal structures. Plekhg5 gene inactivation in mice results in a late-onset motoneuron disease, characterized by degeneration of axon terminals. Plekhg5-depleted cultured motoneurons show defective axon growth and impaired autophagy of synaptic vesicles, which can be rescued by constitutively active Rab26. These findings define a mechanism for regulating autophagy in neurons that specifically targets synaptic vesicles. Disruption of this mechanism may contribute to the pathophysiology of several forms of motoneuron disease. KW - autophagy KW - synaptic vesicles KW - Pleckstrin homology containing family member 5 (Plekhg5) KW - regulation KW - motoneuron disease Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170048 VL - 8 IS - 678 ER - TY - JOUR A1 - Kunz, Tobias C. A1 - Kozjak-Pavlovic, Vera T1 - Diverse facets of sphingolipid involvement in bacterial infections JF - Frontiers in Cell and Developmental Biology N2 - Sphingolipids are constituents of the cell membrane that perform various tasks as structural elements and signaling molecules, in addition to regulating many important cellular processes, such as apoptosis and autophagy. In recent years, it has become increasingly clear that sphingolipids and sphingolipid signaling play a vital role in infection processes. In many cases the attachment and uptake of pathogenic bacteria, as well as bacterial development and survival within the host cell depend on sphingolipids. In addition, sphingolipids can serve as antimicrobials, inhibiting bacterial growth and formation of biofilms. This review will give an overview of our current information about these various aspects of sphingolipid involvement in bacterial infections. KW - infection KW - pathogenic bacteria KW - sphingolipids KW - ceramide KW - autophagy Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201757 VL - 7 IS - 203 ER - TY - JOUR A1 - Kuger, Sebastian A1 - Flentje, Michael A1 - Djuzenova, Cholpon S. T1 - Simultaneous perturbation of the MAPK and the PI3K/mTOR pathways does not lead to increased radiosensitization JF - Radiation Oncology N2 - Background The mitogen-activated protein kinases (MAPK) and the phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathways are intertwined on various levels and simultaneous inhibition reduces tumorsize and prolonges survival synergistically. Furthermore, inhibiting these pathways radiosensitized cancer cells in various studies. To assess, if phenotypic changes after perturbations of this signaling network depend on the genetic background, we integrated a time series of the signaling data with phenotypic data after simultaneous MAPK/ERK kinase (MEK) and PI3K/mTOR inhibition and ionizing radiation (IR). Methods The MEK inhibitor AZD6244 and the dual PI3K/mTOR inhibitor NVP-BEZ235 were tested in glioblastoma and lung carcinoma cells, which differ in their mutational status in the MAPK and the PI3K/mTOR pathways. Effects of AZD6244 and NVP-BEZ235 on the proliferation were assessed using an ATP assay. Drug treatment and IR effects on the signaling network were analyzed in a time-dependent manner along with measurements of phenotypic changes in the colony forming ability, apoptosis, autophagy or cell cycle. Results Both inhibitors reduced the tumor cell proliferation in a dose-dependent manner, with NVP-BEZ235 revealing the higher anti-proliferative potential. Our Western blot data indicated that AZD6244 and NVP-BEZ235 perturbed the MAPK and PI3K/mTOR signaling cascades, respectively. Additionally, we confirmed crosstalks and feedback loops in the pathways. As shown by colony forming assay, the AZD6244 moderately radiosensitized cancer cells, whereas NVP-BEZ235 caused a stronger radiosensitization. Combining both drugs did not enhance the NVP-BEZ235-mediated radiosensitization. Both inhibitors caused a cell cycle arrest in the G1-phase, whereas concomitant IR and treatment with the inhibitors resulted in cell line- and drug-specific cell cycle alterations. Furthermore, combining both inhibitors synergistically enhanced a G1-phase arrest in sham-irradiated glioblastoma cells and induced apoptosis and autophagy in both cell lines. Conclusion Perturbations of the MEK and the PI3K pathway radiosensitized tumor cells of different origins and the combination of AZD6244 and NVP-BEZ235 yielded cytostatic effects in several tumor entities. However, this is the first study assessing, if the combination of both drugs also results in synergistic effects in terms of radiosensitivity. Our study demonstrates that simultaneous treatment with both pathway inhibitors does not lead to synergistic radiosensitization but causes cell line-specific effects. KW - autophagy KW - radiosensitivity KW - NVP-BEZ235 KW - AZD6244 KW - cell cycle arrest KW - apoptosis Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126104 VL - 10 IS - 214 ER - TY - JOUR A1 - Kuger, Sebastian A1 - Cörek, Emre A1 - Polat, Bülent A1 - Kämmerer, Ulrike A1 - Flentje, Michael A1 - Djuzenova, Cholpon S. T1 - Novel PI3K and mTOR Inhibitor NVP-BEZ235 Radiosensitizes Breast Cancer Cell Lines under Normoxic and Hypoxic Conditions N2 - In the present study, we assessed, if the novel dual phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitor NVP-BEZ235 radiosensitizes triple negative (TN) MDA-MB-231 and estrogen receptor (ER) positive MCF-7 cells to ionizing radiation under various oxygen conditions, simulating different microenvironments as occurring in the majority of breast cancers (BCs). Irradiation (IR) of BC cells cultivated in hypoxic conditions revealed increased radioresistance compared to normoxic controls. Treatment with NVP-BEZ235 completely circumvented this hypoxia-induced effects and radiosensitized normoxic, reoxygenated, and hypoxic cells to similar extents. Furthermore, NVP-BEZ235 treatment suppressed HIF-1α expression and PI3K/mTOR signaling, induced autophagy, and caused protracted DNA damage repair in both cell lines in all tested oxygen conditions. Moreover, after incubation with NVP-BEZ235, MCF-7 cells revealed depletion of phospho-AKT and considerable signs of apoptosis, which were signifi-cantly enhanced by radiation. Our findings clearly demonstrate that NVP-BEZ235 has a clinical relevant potential as a radiosensitizer in BC treatment. KW - Novel PI3K KW - NVP-BEZ235 KW - mTOR Inhibitor KW - radiosensibility KW - Akt KW - DNA repair protraction KW - apoptosis KW - hypoxia KW - autophagy Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112708 ER - TY - THES A1 - Hahlbrock, Theresa T1 - Das onkologische Supportivprodukt Avemar: Untersuchungen zum antiproliferativen und antimetabolischen Effekt an humanen gastrointestinalen Tumorzellen T1 - Studies on the antiproliferative and antimetabolic effect of the dietary supplement Avemar on human gastrointestinal tumor cells N2 - Unter dem Namen Avemar sind fermentierte Weizenkeimlinge als onkologisches Supportivprodukt erhältlich. Der hohe Anteil an 2,6-Dimethoxy-1,4-benzochinonen (DMBQ) in Avemar soll für das \(in\) \(vitro\) und \(in\) \(vivo\) belegte antikanzerogene Potential verantwortlich sein. DMBQ wirken über Semichinonradikale bzw. durch Ausbildung von reaktiven Sauerstoffspezies (ROS) und Induktion von oxidativem Stress zytotoxisch. Da Tumorzellen empfindlicher auf oxidativen Stress reagieren als gesunde Zellen, kann dies die selektive zytotoxische Wirkung von Avemar erklären. Die Beteiligung von DMBQ am antiproliferativen Effekt von Avemar und die Wirkung von Avemar auf den Stoffwechsel maligner Zellen sind derzeit nicht eindeutig geklärt. Die antiproliferativen Eigenschaften von Avemar und DMBQ als Reinsubstanz wurden miteinander verglichen. Hierzu wurden DMBQ in einer zu Avemar mit 0,04% Benzochinonen äquimolaren Konzentration von 24 μmol/L eingesetzt. Die Ergebnisse der Arbeit lassen den Schluss zu, dass der starke zytotoxische Effekt von Avemar bei BxPc-3 Zellen auf einen DMBQ-induzierten oxidativen Stress zurückzuführen ist. Im Vergleich zur unbehandelten Kontrolle wurde für BxPc-3 Zellen bei der Inkubation mit DMBQ eine 20-fache bzw. mit Avemar eine 40-fache Zunahme des ROS-Indikators 2',7'-Dichlorofluorescein gemessen. Im Westernblot ließ sich bei BxPc-3 Zellen das Enzym DT-Diaphorase, welches die Zellen vor Benzochinon-induziertem oxidativem Stress schützt, nicht nachweisen. In Zellen der anderen beiden Zelllinien konnte das Enzym nachgewiesen werden. Das mangelnde Schutzsystem gegenüber DMBQ-induziertem oxidativen Stress könnte demzufolge den DMBQ vermittelten zytotoxischen Effekt von Avemar in BxPc-3 Zellen erklären. Zusätzlich zum zytotoxischen Effekt wies Avemar zwei weitere antiproliferative Effekte auf: Zytostase bei 23132/87 Zellen und Wachstumsverzögerung bei HRT-18 Zellen. Beide antiproliferativen Effekte waren auf die Beeinflussung des Zellmetabolismus zurückzuführen. Avemar verringerte den zellulären Glukoseverbrauch von HRT-18 Zellen um 69% und von 23132/87 Zellen um 99%. In 23132/87 Zellen korrelierte der verringerte Glukoseverbrauch mit einer Abnahme von ATP um 70% und einem Zellzyklusarrest in der G\(_2\)/M Phase. Der durch die Inkubation von HRT-18 Zellen mit Avemar ausgelöste verringerte Glukoseverbrauch beeinflusste hingegen weder den ATP-Gehalt noch den Zellzyklus, induzierte aber Autophagie. Dies ließ sich zeigen durch morphologische Veränderungen wie die Bildung von intrazellulären Vakuolen und durch den Nachweis des Autophagiemarkers LC3-II. Die Wertigkeit dieses Phänomens für die zytotoxischen Eigenschaften von Avemar ist in weiteren Untersuchungen zu klären. Die antiproliferativen Eigenschaften von Avemar führen zu Veränderungen im Zellmetabolismus von gastrointestinalen Tumorzellen. Ausschlaggebend dafür, welcher der drei antiproliferativen Effekte von Avemar (zytotoxisch, zytostatisch oder wachstumsverzögernd) dominiert, sind vermutlich zelleigene Schutzsysteme und metabolische Charakteristika der Zellen. Avemar weist ein breites Spektrum antiproliferativer Effekte auf, deren Einfluss auf Zellfunktion und Zellstoffwechsel im Detail noch weiter untersucht werden sollte. N2 - The commercial product Avemar is an oncologic supportive drug that consists of fermented wheat germ extracts. The high content of 2,6-dimethoxy-1,4-benzoquinone (DMBQ) in Avemar is thought to be responsible for the anticancer effects, which were observed both \(in\) \(vitro\) and \(in\) \(vivo\) experiments. The cytotoxic effect of DMBQ is caused by semiquinone radicals which induce oxidative stress in cells. Because tumor cells are more sensitive to oxidative stress than benign cells, the presence of semiquinone radicals might explain the selective cytotoxic effect of Avemar. However, the role of DMBQ in the antiproliferative mechanism of Avemar and the effect of Avemar on the metabolism of malignant cells have not yet been clarified. In this work, the antiproliferative features of Avemar were compared to those of DMBQ as a pure substance. DMBQ was investigated in a concentration of 24 μmol/L, which is equimolar to Avemar with a concentration of 0.04% of DMBQ. Both Avemar and DMBQ exhibited an increase of reactive oxygen species in BxPc-3 cells, which resulted in a cytotoxic effect within 24 hours after starting treatment. Compared to untreated cells, intracellular DCF fluorescence as a measure of reactive oxygen species increased by 20 times for DMBQ and 40 times for Avemar in BxPc-3 cells. Western Blot analysis revealed that the enzyme DT-diaphorase, which protects cells against benzoquinone-induced oxidative stress, was not present in BxPc-3 cells. In contrast, the enzyme could be detected in cells of the other two cell lines. The lack of DT-diaphorase in BxPc-3 cells indicates insufficient protection against DMBQ-induced oxidative stress which could consequently result in a DMBQ-mediated cytotoxic effect when exposed to Avemar. Besides the cytotoxic effect, Avemar showed two additional antiproliferative features: cytostasis in 23132/87 cells and growth delay in HRT-18 cells. Both antiproliferative effects of Avemar were caused by the influence of the substance on the cell metabolism. Avemar impaired the cellular consumption of glucose by 69% in HRT-18 cells and by 99% in 23132/87 cells. The impaired consumption of glucose in 23132/87 cells correlated with a decrease of ATP by 70% and an arrest in the G\(_2\)/M phase during the cell cycle of 23132/87. In contrast, when treated with Avemar, the impaired consumption of glucose in HRT-18 cells did not affect the ATP concentration and did not alter the cell cycle. Instead, Avemar leads to autophagy, as indicated by the formation of intracellular vacuoles. The presence of autophagy in HRT-18 cells was confirmed by the detection of the autophagy marker LC3-II. The relevance of this phenomenon for the cytotoxic properties of Avemar is to be clarified in further studies. Three different mechanisms of action of Avemar were identified: cytotoxic, cytostasis, and growth delay. The relevant effect on each cell type is presumably determined by the available protection mechanism and metabolic character of the cells. Avemar shows a broad spectrum of antiproliferative features whose exact influence on the functions and metabolism of the cell remains to be investigated in more detail in future studies. KW - Oxidativer Stress KW - Chinonderivate KW - Alternative Medizin KW - Gastrointestinaler Tumor KW - Weizenkeim KW - 2,6-Dimethoxybenzochinon KW - Avemar KW - Fermentierte Weizenkeimlinge KW - Autophagie KW - 2,6-Dimethoxybenzoquinone KW - fermented wheat germ KW - autophagy Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-145787 ER - TY - JOUR A1 - Glaser, Jan A1 - Schurigt, Uta A1 - Suzuki, Brian M. A1 - Caffrey, Connor R. A1 - Holzgrabe, Ulrike T1 - Anti-Schistosomal Activity of Cinnamic Acid Esters: Eugenyl JF - Molecules N2 - Bornyl caffeate (1) was previously isolated by us from Valeriana (V.) wallichii rhizomes and identified as an anti-leishmanial substance. Here, we screened a small compound library of synthesized derivatives 1–30 for activity against schistosomula of Schistosoma (S.) mansoni. Compound 1 did not show any anti-schistosomal activity. However, strong phenotypic changes, including the formation of vacuoles, degeneration and death were observed after in vitro treatment with compounds 23 (thymyl cinnamate) and 27 (eugenyl cinnamate). Electron microscopy analysis of the induced vacuoles in the dying parasites suggests that 23 and 27 interfere with autophagy. KW - thymyl cinnamate KW - vacuoles KW - autophagy KW - anti-schistosomal activity KW - schistosoma KW - schistosomula KW - parasite KW - eugenyl cinnamate Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125712 VL - 20 ER - TY - JOUR A1 - Giansanti, Manuela A1 - Theinert, Tobias A1 - Boeing, Sarah Katharina A1 - Haas, Dorothee A1 - Schlegel, Paul-Gerhardt A1 - Vacca, Paola A1 - Nazio, Francesca A1 - Caruana, Ignazio T1 - Exploiting autophagy balance in T and NK cells as a new strategy to implement adoptive cell therapies JF - Molecular Cancer N2 - Autophagy is an essential cellular homeostasis pathway initiated by multiple stimuli ranging from nutrient deprivation to viral infection, playing a key role in human health and disease. At present, a growing number of evidence suggests a role of autophagy as a primitive innate immune form of defense for eukaryotic cells, interacting with components of innate immune signaling pathways and regulating thymic selection, antigen presentation, cytokine production and T/NK cell homeostasis. In cancer, autophagy is intimately involved in the immunological control of tumor progression and response to therapy. However, very little is known about the role and impact of autophagy in T and NK cells, the main players in the active fight against infections and tumors. Important questions are emerging: what role does autophagy play on T/NK cells? Could its modulation lead to any advantages? Could specific targeting of autophagy on tumor cells (blocking) and T/NK cells (activation) be a new intervention strategy? In this review, we debate preclinical studies that have identified autophagy as a key regulator of immune responses by modulating the functions of different immune cells and discuss the redundancy or diversity among the subpopulations of both T and NK cells in physiologic context and in cancer. KW - autophagy KW - effector cells KW - mitophagy KW - metabolism KW - T and NK development Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357515 VL - 22 ER - TY - JOUR A1 - Fraunholz, Martin A1 - Sinha, Bhanu T1 - Intracellular staphylococcus aureus: Live-in and let die JF - Frontiers in Cellular and Infection Microbiology N2 - Staphylococcus aureus uses a plethora of virulence factors to accommodate a diversity of niches in its human host. Aside from the classical manifestations of S. aureus-induced diseases, the pathogen also invades and survives within mammalian host cells. The survival strategies of the pathogen are as diverse as strains or host cell types used. S. aureus is able to replicate in the phagosome or freely in the cytoplasm of its host cells. It escapes the phagosome of professional and non-professional phagocytes, subverts autophagy, induces cell death mechanisms such as apoptosis and pyronecrosis, and even can induce anti-apoptotic programs in phagocytes. The focus of this review is to present a guide to recent research outlining the variety of intracellular fates of S. aureus. KW - staphylococcus aureus KW - bacterial persistence KW - host cell death KW - autophagy KW - phagocytosis KW - phagosomalescape Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123374 VL - 2 IS - 43 ER - TY - JOUR A1 - Frank, Benjamin A1 - Marcu, Ana A1 - de Oliveira Almeida Petersen, Antonio Luis A1 - Weber, Heike A1 - Stigloher, Christian A1 - Mottram, Jeremy C. A1 - Scholz, Claus Jürgen A1 - Schurigt, Uta T1 - Autophagic digestion of Leishmania major by host macrophages is associated with differential expression of BNIP3, CTSE, and the miRNAs miR-101c, miR-129, and miR-210 JF - Parasites & Vectors N2 - Background Autophagy participates in innate immunity by eliminating intracellular pathogens. Consequently, numerous microorganisms have developed strategies to impair the autophagic machinery in phagocytes. In the current study, interactions between Leishmania major (L. m.) and the autophagic machinery of bone marrow-derived macrophages (BMDM) were analyzed. Methods BMDM were generated from BALB/c mice, and the cells were infected with L. m. promastigotes. Transmission electron microscopy (TEM) and electron tomography were used to investigate the ultrastructure of BMDM and the intracellular parasites. Affymetrix® chip analyses were conducted to identify autophagy-related messenger RNAs (mRNAs) and microRNAs (miRNAs). The protein expression levels of autophagy related 5 (ATG5), BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), cathepsin E (CTSE), mechanistic target of rapamycin (MTOR), microtubule-associated proteins 1A/1B light chain 3B (LC3B), and ubiquitin (UB) were investigated through western blot analyses. BMDM were transfected with specific small interfering RNAs (siRNAs) against autophagy-related genes and with mimics or inhibitors of autophagy-associated miRNAs. The infection rates of BMDM were determined by light microscopy after a parasite-specific staining. Results The experiments demonstrated autophagy induction in BMDM after in vitro infection with L. m.. The results suggested a putative MTOR phosphorylation-dependent counteracting mechanism in the early infection phase and indicated that intracellular amastigotes were cleared by autophagy in BMDM in the late infection phase. Transcriptomic analyses and specific downregulation of protein expression with siRNAs suggested there is an association between the infection-specific over expression of BNIP3, as well as CTSE, and the autophagic activity of BMDM. Transfection with mimics of mmu-miR-101c and mmu-miR-129-5p, as well as with an inhibitor of mmu-miR-210-5p, demonstrated direct effects of the respective miRNAs on parasite clearance in L. m.-infected BMDM. Furthermore, Affymetrix® chip analyses revealed a complex autophagy-related RNA network consisting of differentially expressed mRNAs and miRNAs in BMDM, which indicates high glycolytic and inflammatory activity in the host macrophages. Conclusions Autophagy in L. m.-infected host macrophages is a highly regulated cellular process at both the RNA level and the protein level. Autophagy has the potential to clear parasites from the host. The results obtained from experiments with murine host macrophages could be translated in the future to develop innovative and therapeutic antileishmanial strategies for human patients. KW - autophagy KW - BNIP3 KW - CTSE KW - electron tomography KW - leishmania major KW - macrophages KW - miRNAs KW - MTOR KW - siRNAs KW - transmission electron microscopy Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124997 VL - 8 IS - 404 ER - TY - THES A1 - Ehebauer, Franziska T1 - Regulation of Nicotinamide N-methyltransferase Expression in Adipocytes T1 - Regulation der Nicotinamide N-methyltransferase Expression in Adipozyten N2 - Nicotinamide N-methyltransferase (NNMT) is a new regulator of energy homeostasis. Its expression is increased in models of obesity and diabetes. An enhanced NNMT level is also caused by an adipose tissue-specific knockout of glucose transporter type 4 (GLUT4) in mice, whereas the overexpression of this glucose transporter reduced the NNMT expression. Furthermore, the knockdown of the enzyme prevents mice from diet-induced obesity (DIO) and the recently developed small molecule inhibitors for NNMT reverses the DIO. These previous findings demonstrated the exclusive role of NNMT in adipose tissue and further make it to a promising target in obesity treatment. However, the regulation mechanism of this methyltransferase is not yet clarified. The first part of the thesis focus on the investigation whether pro-inflammatory signals are responsible for the enhanced NNMT expression in obese adipose tissue because a hallmark of this tissue is a low-level chronic inflammation. Indeed, the NNMT mRNA in our study was elevated in obese patients compared with the control group, whereas the GLUT4 mRNA expression does not differ between lean and obese humans. To analyze whether pro inflammatory signals, like interleukin (IL 6) and tumor necrosis factor α (TNF-α), regulate NNMT expression 3T3-L1 adipocytes were treated with these cytokines. However, IL 6, TNF α, and leptin, which is an alternative activator of the JAK/STAT pathway, did not affect the NNMT protein or mRNA level in differentiated 3T3-L1 adipocytes. The mRNA and protein levels were measured by quantitative polymerase chain reaction (qPCR) and western blotting. In the second part of this study, 3T3-L1 adipocytes were cultivated with varying glucose concentrations to show whether NNMT expression depends on glucose availability. Further studies with activators and inhibitors of AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) signaling pathways were used to elucidate the regulation mechanism of the enzyme. The glucose deprivation of differentiated 3T3-L1 adipocytes led to a 2-fold increase in NNMT expression. This effect was confirmed by the inhibition of the glucose transports with phloretin as well as the inhibition of glycolysis with 2-deoxyglucose (2-DG). AMPK serves as an intracellular energy sensor and the pharmacological activation of it enhanced the NNMT expression. This increase was also caused by the inhibition of mTOR. Conversely, the activation of mTOR using MHY1485 prevented the effect of glucose deprivation on NNMT. Furthermore, the NNMT up-regulation was also blocked by the different autophagy inhibitors. Taken together, NNMT plays a critical role in autophagy in adipocytes, because an inhibition of this process prevented the augmented NNMT expression during glucose starvation. Moreover, the effect on NNMT protein and mRNA level depends on AMPK and mTOR. However, pro-inflammatory signals did not affect the expression. Further in vivo studies have to clarify whether AMPK activation and mTOR inhibition as well as autophagy are responsible for the increased NNMT levels in obese adipose tissue. In future this methyltransferase emerges as an awesome therapeutic target for obesity. N2 - NNMT ist ein neuer Regler der Energiehomöostase. Seine Expression ist in Adipositas- und Diabetesmodellorgansimen erhöht. Ein verstärktes NNMT Level wird auch durch einen fettgewebs-spezifischen GLUT4 Knockout in Mäusen hervorgerufen, wobei die Überexpression des Glukosetransporters die NNMT Expression reduziert. Des Weiteren schützt der Knockdown von NNMT die Mäuse vor Diät-induzierter Adipositas und die kürzlich entwickelten kleinen Molekülinhibitoren gegen NNMT kehren eine durch die Ernährung bedingte Adipositas wieder um. Neuere Erkenntnisse zeigen die exklusive Rolle von NNMT im Fettgewebe auf und machen das Enzym so zu einem vielversprechenden Target für die Adipositastherapie. Jedoch ist der Regulationsmechanismus dieser Methyltransferase noch nicht geklärt. Der erste Teil der Arbeit befasst sich mit der Untersuchung, ob pro-inflammatorische Signale verantwortlich sind für die erhöhten NNMT Expression im adipösen Fettgewebe, da sich dieses Gewebe durch eine chronische Inflammation auszeichnet. Tatsächlich war die mRNA in unserer Studie verstärkt exprimiert in adipösen Patienten im Vergleich zur Kontrollgruppe, wobei die GLUT4 mRNA Expression zwischen Schlanken und Adipösen nicht verändert war. Um zu untersuchen, ob pro-inflammatorische Signale, wie IL 6 und TNF α, die NNMT Expression regulieren, wurden 3T3-L1 Adipozyten mit diesen Zytokinen behandelt. Jedoch beeinflussten IL 6, TNF α und Leptin, welches ein weiterer Aktivator des JAK/STAT Signalweges ist, NNMT Protein oder mRNA Level in differenzierten 3T3 L1 Adipozyten nicht. Die mRNA und Protein Level wurden mittels qPCR und Western Blot analysiert. Im zweiten Teil dieser Studie wurden 3T3 L1 Adipozyten mit unterschiedlichen Glukosekonzentrationen kultiviert, um zu zeigen, ob die NNMT Expression von der Glukoseverfügbarkeit abhängig ist. Für die Untersuchung des genauen Regulationsmechanismus von NNMT, wurden weitere Studien mit Aktivatoren und Inhibitoren der AMPK und mTOR Signalwege durchgeführt. Der Glukosemangel führte zu einem 2-fachen Anstieg der NNMT Expression in differenzierten 3T3-L1 Adipozyten. Dieser Effekt wurde bestätigt durch die Inhibierung der Glukosetransporter mit Phloretin sowie durch die Inhibierung der Glykolyse mit 2-DG. AMPK ist ein intrazellulärer Energiesensor und dessen pharmakologische Aktvierung erhöhte die NNMT Expression. Dieser Anstieg wurde auch verursacht durch die Inhibierung von mTOR. Hingegen verhinderte die Aktivierung von mTOR mithilfe von MHY1485 den Effekt auf NNMT während des Glukoseentzugs. Des Weiteren wurde die Auswirkungen auf NNMT durch Autophagieinhibitoren unterbunden. Zusammenfassend spielt NNMT eine kritische Rolle für die Autophagie in Adipozyten, da eine Inhibierung des Prozesses die erhöhte NNMT Expression während eines Glukoseentzugs verhinderte. Darüber hinaus ist der Effekt auf die NNMT Protein und mRNA Level abhängig von AMPK and mTOR. Jedoch beeinflussten pro-inflammatorische Signale die Expression nicht. Weitere in vivo Studien müssen klären, ob eine AMPK Aktivierung und eine mTOR Inhibierung sowie die Autophagie in Adipozyten verantwortlich sind für die verstärkte NNMT Expression im adipösen Fettgewebe. Zukünftig wird sich NNMT als ein beeindruckendes Target für die Adipositastherapie herausstellen. KW - Fettzelle KW - Fettsucht KW - Methyltransferase KW - NNMT KW - adipocytes KW - mTOR KW - AMPK KW - autophagy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-217645 ER - TY - JOUR A1 - Cull, Benjamin A1 - Lima Prado Godinho, Joseane A1 - Fernandes Rodrigues, Juliany Cola A1 - Frank, Benjamin A1 - Schurigt, Uta A1 - Williams, Roderick AM A1 - Coombs, Graham H A1 - Mottram, Jeremy C T1 - Glycosome turnover in Leishmania major is mediated by autophagy JF - Autophagy N2 - Autophagy is a central process behind the cellular remodeling that occurs during differentiation of Leishmania, yet the cargo of the protozoan parasite's autophagosome is unknown. We have identified glycosomes, peroxisome-like organelles that uniquely compartmentalize glycolytic and other metabolic enzymes in Leishmania and other kinetoplastid parasitic protozoa, as autophagosome cargo. It has been proposed that the number of glycosomes and their content change during the Leishmania life cycle as a key adaptation to the different environments encountered. Quantification of RFP-SQL-labeled glycosomes showed that promastigotes of L. major possess ~20 glycosomes per cell, whereas amastigotes contain ~10. Glycosome numbers were significantly greater in promastigotes and amastigotes of autophagy-defective L. major Δatg5 mutants, implicating autophagy in glycosome homeostasis and providing a partial explanation for the previously observed growth and virulence defects of these mutants. Use of GFP-ATG8 to label autophagosomes showed glycosomes to be cargo in ~15% of them; glycosome-containing autophagosomes were trafficked to the lysosome for degradation. The number of autophagosomes increased 10-fold during differentiation, yet the percentage of glycosome-containing autophagosomes remained constant. This indicates that increased turnover of glycosomes was due to an overall increase in autophagy, rather than an upregulation of autophagosomes containing this cargo. Mitophagy of the single mitochondrion was not observed in L. major during normal growth or differentiation; however, mitochondrial remnants resulting from stress-induced fragmentation colocalized with autophagosomes and lysosomes, indicating that autophagy is used to recycle these damaged organelles. These data show that autophagy in Leishmania has a central role not only in maintaining cellular homeostasis and recycling damaged organelles but crucially in the adaptation to environmental change through the turnover of glycosomes. KW - ATG8 KW - Leishmania KW - TEM KW - glycosome KW - protozoan parasite KW - ATG KW - autophagy-related KW - GFP KW - green fluorescent protein KW - MVT KW - multivesicular tubule KW - RFP KW - red fluorescent protein KW - transmission electron microscopy KW - adaptation KW - autophagy KW - mC KW - mCherry KW - fluorescent protein Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150277 VL - 10 IS - 12 ER - TY - JOUR A1 - Auer, Daniela A1 - Hügelschäffer, Sophie D. A1 - Fischer, Annette B. A1 - Rudel, Thomas T1 - The chlamydial deubiquitinase Cdu1 supports recruitment of Golgi vesicles to the inclusion JF - Cellular Microbiology N2 - Chlamydia trachomatis is the main cause of sexually transmitted diseases worldwide. As obligate intracellular bacteria Chlamydia replicate in a membrane bound vacuole called inclusion and acquire nutrients for growth and replication from their host cells. However, like all intracellular bacteria, Chlamydia have to prevent eradication by the host's cell autonomous system. The chlamydial deubiquitinase Cdu1 is secreted into the inclusion membrane, facing the host cell cytosol where it deubiquitinates cellular proteins. Here we show that inactivation of Cdu1 causes a growth defect of C. trachomatis in primary cells. Moreover, ubiquitin and several autophagy receptors are recruited to the inclusion membrane of Cdu1‐deficient Chlamydia . Interestingly, the growth defect of cdu1 mutants is not rescued when autophagy is prevented. We find reduced recruitment of Golgi vesicles to the inclusion of Cdu1 mutants indicating that vesicular trafficking is altered in bacteria without active deubiquitinase (DUB). Our work elucidates an important role of Cdu1 in the functional preservation of the chlamydial inclusion surface. KW - autophagy KW - Cdu1 KW - ChlaDUB1 KW - Chlamydia trachomatis KW - DUB KW - Golgi KW - xenophagy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-208675 VL - 22 IS - 5 ER - TY - JOUR A1 - Annunziata, Ida A1 - van de Vlekkert, Diantha A1 - Wolf, Elmar A1 - Finkelstein, David A1 - Neale, Geoffrey A1 - Machado, Eda A1 - Mosca, Rosario A1 - Campos, Yvan A1 - Tillman, Heather A1 - Roussel, Martine F. A1 - Weesner, Jason Andrew A1 - Fremuth, Leigh Ellen A1 - Qiu, Xiaohui A1 - Han, Min-Joon A1 - Grosveld, Gerard C. A1 - d'Azzo, Alessandra T1 - MYC competes with MiT/TFE in regulating lysosomal biogenesis and autophagy through an epigenetic rheostat JF - Nature Communications N2 - Coordinated regulation of the lysosomal and autophagic systems ensures basal catabolism and normal cell physiology, and failure of either system causes disease. Here we describe an epigenetic rheostat orchestrated by c-MYC and histone deacetylases that inhibits lysosomal and autophagic biogenesis by concomitantly repressing the expression of the transcription factors MiT/TFE and FOXH1, and that of lysosomal and autophagy genes. Inhibition of histone deacetylases abates c-MYC binding to the promoters of lysosomal and autophagy genes, granting promoter occupancy to the MiT/TFE members, TFEB and TFE3, and/or the autophagy regulator FOXH1. In pluripotent stem cells and cancer, suppression of lysosomal and autophagic function is directly downstream of c-MYC overexpression and may represent a hallmark of malignant transformation. We propose that, by determining the fate of these catabolic systems, this hierarchical switch regulates the adaptive response of cells to pathological and physiological cues that could be exploited therapeutically. KW - autophagy KW - cancer KW - cancer metabolism KW - cell biology KW - mechanisms of disease Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-221189 VL - 10 ER -