TY - THES A1 - Lee, Wook T1 - Computational study on the catalytic mechanism of mtKasA T1 - Theoretische Untersuchungen des katalytischen Mechanismus von mtKasA N2 - Das Enzym KasA spielt eine entscheidende Rolle in der Biosynthese von Mykolsäuren, den Bausteinen der Zellwände von Mycobacteriumtuberculosis. Dessen essentielle Notwendigkeit zeigt sich bei Abwesenheit von KasA in einer Zelllyse (Auflösung von Zellen) bei Mycobacteriumtuberculosis. Durch seine Bedeutung für Mycobacteriumtuberculosis, dem Erreger von Tuberkulose und damit der zweithäufigsten Todesursache durch Infektionskrankheiten, stellt KasA ein vielversprechendes Ziel für die Entwicklung neuer Medikamente gegen Tuberkulose dar. Durch das Auftreten von extensiv resistenten Stämmen welche die meisten bekannten Antibiotika zur Bekämpfung von Tuberkulose inaktivieren wird es dringend notwendig neue Medikamente gegen Tuberkulose zu entwickeln. In Kapitel 3.1 wird der Protonierungszustand der katalytischen Reste im Ruhezustand untersucht. Für diese Untersuchungen wurden Free Energy Perturbation (FEP) Rechnungen und MD Simulationen verwendet. Die Ergebnisse zeigten, dass der zwitterionische Zustand am wahrscheinlichsten ist. Um diese Aussage mit weiteren handfesten Daten zu untermauern wurden Potential(hyper)flächen (PES) für den Protonentransfer zwischen neutralen und zwitterionischen Zustand mit Hilfe von QM/MM Methoden berechnet. Durch die starke Abhängigkeit der QM/MM Optimierung von der Ausgangsstruktur war es nicht möglich konsistente Ergebnisse für diese Berechnungen zu bekommen. Um dieses Problem zu umgehen wurde ein auf QM/MM basierendes Umbrella Sampling mit Semiempirischen Methoden (RM1) durchgeführt. Die sich daraus ergebende PMF Fläche zeigt das der zwitterionische Zustand stabiler ist als der neutrale Zustand. In Kapitel 3.2 wurde der Protonierungszustand der entsprechenden Reste im Acyl-Enzym Zustand untersucht. Im Unterschied zu anderen katalytischen Resten ist der Protonierungszustand von His311 ist nicht eindeutig im Acyl-Enzym Zustand und es ergeben sich aus den verschiedenen Protonierungszuständen verschiedene Decarboxylierungsmechanismen. Um den wahrscheinlichsten Protonierungszustand bezüglich der freien Energie zu bestimmen wurden FEP Rechnungen durchgeführt. Die Ergebnisse zeigen, dass der pKa Wert an Nδ beträchtlich durch die Enzymumgebung verringert wird, während dies für Nε nicht der Fall ist. Zusätzlich dazu wurden die PMF Profile für den Protonentransfer zwischen Lys340 und Glu354 mit der QM/MM basierten Umbrella Sampling Methode berechnet. Die Ergebnisse zeigen, dass das Lys340/Glu354 Paar eher neutral als ionisch ist, wenn His311 an Nε protoniert ist. Ein relativ hoher ionischer Charakter des Lys340/Glu354 Paares, wenn His311 doppelt protoniert ist, gibt einen wertvollen Einblick in die Rolle welche das Lys340/Glu354 Paar beim verschieben des Protonierungszustandes von Nδ zu Nε im His311 nach dem Acyltransferschritt spielt. Die Ergebnisse zeigen, dass His311 neutral und an Nε protoniert ist. Ebenso ist das Lys340/Glu354 Paar neutral im Acyl-Enzym Zustand. Diese berechneten Ergebnisse führen zu dem Schluss, dass die Decarboxylierung durch ein Oxyanion Loch erleichtert wird welches aus zwei katalytischen Histidin Resten besteht. In Kapitel 3.3 wurde der Protonierungszustand der katalytischen Reste im Ruhezustand erneut untersucht da eine aktuelle Benchmarkstudie zeigte, dass die verwendete Semiempirische Methode (RM1) in Kapitel 3.1 dazu tendiert die Stabilisation des zwitterionischen Zustandes zu überschätzen. Auch wurde in Kapitel 3.1 das Lys340/Glu354 Paar als rein ionisch angesehen, während sich in Kapitel 3.2 herausstellte, dass es sich um eine Mischung aus neutralen und ionischen Charakter handelt. Die neuen Untersuchungen beinhalten eine größere QM Region inklusive des Lys340/Glu354 Paares. Der dafür verwendete BLYP/6-31G** Ansatz ist ausreichend akkurat für die aktuelle Fragestellung, was durch Vergleichsrechnungen bewiesen wurde. Die neuen Ergebnisse der QM/MM MD und FEP Rechnungen deuten an, dass die katalytischen Reste im Ruhezustand höchst wahrscheinlich neutral vorliegen. Dies wiederum führt zu der Frage wie KasA aktiviert werden kann um die katalytische Reaktion zu initiieren. Auf der Basis der Ergebnisse der MD Simulationen und FEP Rechnungen für den His311Ala Mutanten in Kapitel 3.1 stellten wir die Hypothese auf, dass die offene Konformation von Phe404 die Aktivierung der katalytischen Reste durch die (Aus)bildung einer starken Wasserstoffbindung einleitet. Die QM/MM MD Simulation bestätigt dass diese Aktivierung der katalytischen Reste durch die offene Konformation des Phe404 bewerkstelligt werden kann. Das entsprechende auf Kraftfeld basierende PMF Profil zeigt auch, dass dieser Konformationswechsel energetisch realisierbar ist. Die Verteilung der hydrophilen und hydrophoben Reste in der Malonyl Bindungstasche in Verbindung mit unseren berechneten Ergebnissen geben einen Einblick in den detaillierten N2 - KasA is a key enzyme which plays an essential part in the biosynthetic pathway of mycolic acids, the building block of cell wall in Mycobacterium tuberculosis. Its importance was demonstrated by the finding that the depletion of KasA leads to the cell lysis of Mycobacterium tuberculosis. Since Mycobacterium tuberculosis is a pathogen of tuberculosis, the second leading cause of death from an infectious disease worldwide, KasA has drawn attention as one of the attractive drug targets against tuberculosis. Due to the emergence of extensively drug-resistant strains which make most of the known antibiotics for treating tuberculosis ineffective, it became an urgent issue to develop new drugs against tuberculosis. In chapter 3.1, the protonation state of the catalytic residues in the resting state was mainly addressed. The FEP computation and MD simulations were employed for this investigation, and the results showed that the zwitterionic state is most probable. To underpin this conclusion with more solid data, The PESs for the proton transfer between the neutral and zwitterionic state were computed in the context of QM/MM. However, due to the strong dependency of the QM/MM optimization on the initial structure, it was not possible to obtain consistent results from these computations. To circumvent this problem, QM/MM based umbrella sampling was carried out with a semi-empirical method (RM1), and the resulting PMF surface indicated that the zwitterionic state is more stable than the neutral state. In chapter 3.2, the protonation state of significant residues in the acyl-enzyme state was investigated. Unlike other catalytic residues, the protonation state of His311 is ambiguous in the acyl-enzyme state, and different decarboxylation mechanisms can be derived depending on the protonation state of His311 in the acyl-enzyme state. Therefore, FEP computations were carried out to find most probable protonation state of His311 in terms of free energy, and the results showed that the pKa value at Nδ is considerably lowered by the enzyme environment while that of Nε is not. Additionally, the PMF profiles for the proton transfer between Lys340 and Glu354 were computed using QM/MM based umbrellas sampling method, and the results showed that the property of the Lys340/Glu354 pair is neutral rather than ionic when His311 is protonated at Nε. Moreover, a relatively larger ionic character of the Lys340/Glu354 pair when His311 is doubly protonated provides a valuable insight into how the Lys340/Glu354 pair plays a role in shifting the protonated state from Nδ to Nε in His311 after the acyl-transfer step. Overall, the results demonstrated that His311 is neutral and protonated at Nε, and the Lys340/Glu354 pair is also neutral in the acyl-enzyme state. Those computational results lead to the conclusion that the decarboxylation reaction is facilitated by an oxyanion hole which is comprised of two catalytic histidines. In chapter 3.3, the protonation state of catalytic residues in the resting state was revisited because a recent benchmark study showed that the employed semi-empirical method (RM1) in chapter 3.1 tends to overestimate the stabilization of the zwitterionic state. Furthermore, the Lys340/Glu354 pair was considered as purely ionic in chapter 3.1, while it actually has a mixed neutral and ionic character as demonstrated in chapter 3.2. The new investigations employed a larger QM region including the Lys340/Glu354 pair with the BLYP/6-31G** approach, which was proven to be accurate enough for the present purpose by benchmark computations. The new results from the QM/MM MD and FEP computations indicated the catalytic residues to be neutral most probably in the resting state, and this in turn brought up the question how KasA can be activated to initiate the catalytic reaction. On the basis of the results from the MD simulations and FEP computations for the His311Ala mutant in chapter 3.1, we hypothesized that the open conformation of Phe404 would trigger the activation of the catalytic residues by the formation of a strong hydrogen bond. The QM/MM MD simulation proved that the activation of the catalytic residues can indeed be accomplished by the open conformation of Phe404 we suggested, and the corresponding force field based PMF profile also indicated that this conformational change is energetically feasible. The distribution of hydrophilic and hydrophobic residues in the malonyl binding pocket in conjunction with our computational results further provided a valuable insight into the detailed process how the catalytic residues is activated upon the substrate entering. KW - Tuberkelbakterium KW - KasA KW - katalytischer Mechanismus KW - QM/MM KW - Molekular Dynamik KW - KasA KW - catalytic mechanism KW - QM/MM KW - Molecular dynamics KW - Enzymkatalyse KW - Enzym Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-83989 ER - TY - THES A1 - Becker, Johannes T1 - Development and implementation of new simulation possibilities in the CAST program package T1 - Entwicklung und Implementierung neuer Simulationsmöglichkeiten in das CAST Programmpaket N2 - The aim of the present work is the development and implementation of new simulation possibilities for the CAST program package. Development included, among other things, the partial parallelization of the already existing force fields, extension of the treatment of electrostatic interactions and implementation of molecular dynamics and free energy algorithms. The most time consuming part of force field calculations is the evaluation of the nonbonded interactions. The calculation of these interactions has been parallelized and it could be shown to yield a significant speed up for multi-core calculations compared to the serial execution on only one CPU. For both, simple energy/gradient as well as molecular dynamics simulations the computational time could be significantly reduced. To further increase the performance of calculations employing a cutoff radius, a linkedcell algorithm was implemented which is able to build up the non-bonded interaction list up to 7 times faster than the original algorithm. To provide access to dynamic properties based on the natural time evolution of a system, a molecular dynamics code has been implemented. The MD implementation features two integration schemes for the equations of motion which are able to generate stable trajectories. The basic MD algorithm as described in Section 1.2 leads to the sampling in the microcanonical (NVE) ensemble. The practical use of NVE simulations is limited though because it does not correspond to any experimentally realistic situation. More realistic simulation conditions are found in the isothermal (NVT) and isothermalisobaric (NPT) ensembles. To generate those ensembles, temperature and pressure control has been implemented. The temperature can be controlled in two ways: by direct velocity scaling and by a Nose-Hoover thermostat which produces a real canonical ensemble. The pressure coupling is realized by implementation of a Berendsen barostat. The pressure coupling can be used for isotropic or anisotropic box dimensions with the restriction that the angles of the box need to be 90� . A crucial simulation parameter in MD simulations is the length of the timestep. The timestep is usually in the rang of 1fs. Increasing the timestep beyond 1fs can lead to unstable trajectories since the fastest motion in the system, usually the H-X stretch vibration can not be sampled anymore. A way to allow for bigger timesteps is the use of a constraint algorithm which constrains the H-X bonds to the equilibrium distance. For this the RATTLE algorithm has been implemented in the CAST program. The velocity Verlet algorithm in combination with the RATTLE algorithm has been shown to yield stable trajectories for an arbitrary length of simulation time. In a first application the MD implementation is used in conjunction with the MOPAC interface for the investigation of PBI sidechains and their rigidity. The theoretical investigations show a nice agreement with experimentally obtained results. Based on the MD techniques two algorithms for the determination of free energy differences have been implemented. The umbrella sampling algorithm can be used to determine the free energy change along a reaction coordinate based on distances or dihedral angles. The implementation was tested on the stretching of a deca-L-alanine and the rotation barrier of butane in vacuum. The results are in nearly perfect agreement with literature values. For the FEP implementation calculations were performed for a zero-sum transformation of ethane in explicit solvent, the charging of a sodium ion in explicit solvent and the transformations of a tripeptide in explicit solvent. All results are in agreement with benchmark calculations of the NAMD program as well as literature values. The FEP formalism was then applied to determine the relative binding free energies between two inhibitors in an inhibitor-protein complex. Next to force fields, ab-initio methods can be used for simulations and global optimizations. Since the performance of such methods is usually significantly poorer than force field applications, the use for global optimizations is limited. Nevertheless significant progress has been made by porting these codes to GPUs. In order to make use of these developments a MPI interface has been implemented into CAST for communication with the DFT code TeraChem. The CAST/TeraChem combination has been tested on the $H_2 O_{10}$ cluster as well as the polypeptide met-Enkephalin. The pure ab-initio calculations showed a superior behavior compared to the standard procedure where the force field results are usually refined using quantum chemical methods. N2 - Das Ziel der hier vorliegenden Arbeit ist die Entwicklung und Implementierung neu- er Simulationsalgorithmen in das CAST Programmpaket. Neben der teilweisen Para- llelisierung der bereits impelentierten Kraftfelder wurde das Programm um einen Mole- kulardynamikcode erweitert. Aufbauend auf diesem Code wurden Algorithmen zur Be- rechnung der freien Energie entlang einer Reaktionskooridnate, sowie eine Erweiter-ung der Behandlung elektrostatischer Wechselwirkungen auf Basis einer Ewald Summation implementiert. Der zeitaufwändigste Teil einer Kraftfeldrechnung stellt die Evaluierung der nichtbin- denden Wechselwirkungen dar. Die Berechnung dieser Wechselwirkungen wurde für die Nutzung von Mehrkernprozessoren optimiert und parallelisiert. Die Parallelisie- rung zeigte eine signifikante Reduktion der benötigten Rechenzeit auf mehreren Re- chenkernen im Vergleich zur seriellen Berechnung auf nur einem Rechenkern für einfa- che Energie- bzw. Gradientenrechnungen sowie für Molekulardynamikrechnungen. Um Rechnungen, die einen cutoff Radius benutzen, weiter zu beschleunigen, wurde der Auf- bau der Verlet-Liste modifiziert. Statt des Standardalgorithmus, der eine Doppelschleife über alle Atome verwendet, wurde ein linked-cell Algorithmus implementiert. Der Auf- bau der Verlet-Liste konnte damit um den Faktor 7 beschleunigt werden. Der Molekulardynamikcode enthält mehrere Algorithmen zur Berechnung von Syste- men in verschiedenen Ensembles. Zur numerischen Integration der Bewegungsgleichun- gen wurden der Velocity-Verlet sowie eine modifizierte Version von Beemans Algorith- mus implementiert. Da der minimale Code, wie er in Kapitel 1.2 beschrieben wird, ein mikrokanonisches Ensemble produziert, und dieses keiner realistischen experimentel- len Situation entspricht, wurden Methoden zur Berechnung und Aufrechterhaltung von Temperatur und Druck implementiert. Die Temperatur kann mittels zweier verschiede- ner Möglichkeiten kontrolliert werden. Die erste Möglichkeit ist die direkte Skalierung der Geschwindigkeiten der Partikel, die zweite Möglichkeit besteht in der Nutzung ei- nes Nòse-Hoover Thermostaten, der ein echtes kanonisches Ensemble generiert. Für die Kontrolle des Drucks wurde ein Berendsen Barostat implementiert. Da die Kontrolle des Drucks die Nutzung von periodischen Randbedingungen voraussetzt, ist die Form der Simulationszelle wichtig. CAST unterstützt aktuell isotrope und anisotrope Simulationszellen, mit der Einschränkung, dass alle Winkel 90◦betragen. Ein kritischer Punkt bei einer MD Simulation ist die Länge des Zeitschritts, der in der Regel bei 1fs liegt. Sollen größere Zeitschritte verwendet werden, müssen die schnell- sten Bewegungnen im System eingeschränkt werden. Dies sind im Normalfall die H-X Streckschwingungen. Zur Einschränkung dieser wurde der RATTLE Algorithmus imple- mentiert der die H-X Bindung mit Hilfe von Lagrange-Multiplikatoren auf den Gleich- gewichtsabstand fixiert. Als erste Anwendung des MD Codes wurde in Kombination mit dem MOPAC Programm die Rigidität und Flexibilität von PBI Seitenketten erfolgreich untersucht. Basierend auf dem MD Code wurden zwei Möglichkeiten zur Bestimmung der freien Energie eingebaut, Umbrella Sampling und Free Energy Perturbation. Umbrella Samp- ling erlaubt die Bestimmung der freien Energie entlang einer Reaktionskoordinate, hier Abstände oder Diederwinkel. Der Algorithmus wurde erfolgreich an zwei Literatur- beispielen, der Streckung von Deca-L-Alanin sowie der Rotation von Butan um den zentralen Diederwinkel getetstet. Die FEP Implementierung wurde an drei Beispielen getestet, einer Nullsummen-Transformation von Ethan in Ethan in explizitem Solvent, dem Lösen eines Natriumions in Wasser und der Transformation von Tyrosin in Alanin in einem Tripeptid. Die Ergebnisse dieser Testrechnungen stimmen hervorragend mit Vergleichsrechnungen mit NAMD sowie Literaturwerten überein. Die FEP Methode wurde schließlich benutzt um die relative freie Bindungsenergie zweier Inhibitoren in einem Inhibitor-Protein-Komplex zu bestimmen. Neben Kraftfeldern können auch ab-initio Methoden für Simulationen benutzt werden. Da die Rechenzeit dieser Methoden um ein vielfaches höher ausfällt als die für Kraftfel- der, ist die Benutzung für die globale Optimierung jedoch limitiert. In den letzten Jah- ren wurde im Bereich der Leistungsfähigkeit dieser Methoden jedoch große Fortschritte erzielt, indem diese Methoden auf Grafikkarten portiert wurden. Um diese Entwick- lung nutzbar zu machen wurde eine MPI-Schnittstelle in CAST implementiert, die mit dem DFT Programm TeraChem kommuniziert. Die Kombination aus beiden Program- men, sowie die Funktionsfähigkeit der Schnittstelle, wurde an H2O10 Clustern sowie dem Polypeptid Met-Enkephalin getestet. Die reinen ab-initio Rechnungen zeigten ein besseres Verhalten gegenüber dem Normalen Protokoll, welches Kraftfeldrechungen mit nachfolgender Optimierung mit qunatenchemischen Methoden vorsieht. KW - Molekulardynamik KW - Molecular dynamics KW - Molecular mechanics KW - Molecular Simulation KW - Free Energy Perturbation (1987 : Princeton, NJ) Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132032 ER - TY - THES A1 - Mladenovic, Milena T1 - Theoretical Investigation into the Inhibition of Cystein Proteases T1 - Theoretische Untersuchung der Inhibierung von Cysteinproteasen N2 - Although known about and investigated since the late 1970’s, the picture of the basic principles governing inhibitor strengths and the structure-activity relationships of the cysteine protease inhibition mechanism is still very incomplete. Computational approaches can be a very useful tool for investigating such questions, as they allow the inspection of single, specific effects in isolation from all others, in a manner very difficult to achieve experimentally. The ab initio treatments of such large systems like proteins are still not feasible. However, there is a vast number of computational approaches capable of dealing with protein structures with reasonable accuracy. This work presents a summary of theoretical investigations into cysteine protease cathepsin B using a range of methods. We have concentrated on the investigation of cysteine protease inhibition by epoxide- and aziridine-based inhibitors in order to obtain better insight into these important topics. Various model systems are simulated by means of pure quantum mechanical methods and by hybrid (QM/MM) methods. Both approaches provide a static picture. Dynamical effects are then accounted for by additional molecular dynamics (MD) simulations, using both classical and QM/MM MD approaches. The quantum mechanical approach was used to study very small model systems consisting only of the electrophilic warhead of the inhibitor (both substitituted and not) and molecular moieties simulating a very simplified protein active site (methylthiolate instead of Cys29 and methylimidazolium instead of His199 residue) and solvent surroundings (two waters or two ammonium ions, in combination with a continuum solvent model). Although simple, such a system provides a good description of the most important interactions involved in the inhibition reaction. It also allows investigation of the influence of the properties of the electrophilic warhead on the reaction rate. Beside the properties of the electrophilic warhead, the protein and solvent environment is also an important factor in the irreversible deactivation of the enzyme active site by the inhibitor. The non-covalent interactions of the inhibitor with the oxyanion hole and other subsites of the enzyme, as well as its interaction with the solvent molecules, need to be explicitly taken into account in the calculations, because of their possible impact on the reaction profile. As molecular modeling methods allow the treatment of such large systems, but lack the possibility of describing covalent interactions, our method of choice was the combined quantum mechanics/molecular modeling approach. By splitting the system into a smaller part that undergoes the bond cleavage/formation process and must be treated quantum mechanically, and a larger part, comprised of the rest of the protein, which could be treated using force fields, we managed to simulate the system at the desired precision. Our investigations concentrated on the role of His199 in the inhibition mechanism as well as on the structure-reactivity relationships between cysteine protease and various inhibitors, yielding new insight into the kinetics, regio- and stereospecificity of the inhibition. In particular, our calculations provide the following insights: i.) an explanation for the regioselectivity of the reaction, and original insight into which interactions affect the stereoselectivity; ii.) a clear model which explains the known structure-activity relationships and connects these effects with the pH-dependency of the inhibition; iii.) our computations question the generally accepted two-step model by showing that substituent effects accelerate the irreversible step to such an extent that the achievement of an equilibrium in the first step is doubtful; iv.) by way of theoretical characterizations of aziridine models, the reasons for similarities and differences in the mode of action of epoxide- and aziridine-based inhibitors are elucidated; and finally, v.) combining our results with experimental knowledge will allow rational design of new inhibitors. To account for dynamical effects as well, molecular dynamics (MD) computations were also performed. In these calculations the potential energy was computed at the force field level. The results not only supported and clarified the QM/MM results, but comparison with previous X-ray structures helped correct existing errors in the available geometrical models and resolved inconsistencies in the weighting of various factors governing the inhibition. In the work the first QM/MM MD calculations on the active site of the cysteine proteases are presented. In contrast to the MD simulations, these calculations used potential energies computed at the QM/MM-level. With the help of these computations we sought to address strongly disputed questions about the reasons for the existence of the active site ion pair and its role in the high activity of the enzyme. N2 - Obwohl bereits seit den späten 70ern bekannt und untersucht, ist das Bild über die grundsätzlichen Prinzipien, welche die Wirksamkeit der Inhibition und die Struktur-Aktivitäts-Beziehungen (SAB) der Cysteinprotease-Hemmmechanismen beeinflussen, immer noch sehr unvollständig. In dieser Arbeit wurden quantenmechanische (QM), molekulardynamische (MD) und gemischte quantenmechanische/molekularmechanische (QM/MM) Berechnungen durchgeführt, um die irreversible Inaktivierung des Enzyms durch den Inhibitor, zu untersuchen. Die Stärke von computergestützten Verfahren liegt in der Möglichkeit, den Einfluss einzelner spezifischer Effekte durch das Ausblenden von Umgebungseffekten zu untersuchen. Diese Herangehensweise ist nur sehr schwer im Experiment zu erreichen. Die quantenmechanische Methode wurde benutzt, um sehr kleine Modellsysteme zu untersuchen, welche lediglich aus dem elektrophilen Kerngerüst des Inhibitors und einigen, das aktive Zentrum im Protein vereinfachend darstellenden, Molekülen bestanden. Die Solvensumgebung wurde durch zwei explizite Wassermoleküle und zwei Ammoniumionen in Kombination mit einem Kontinuum-Solvensmodell berücksichtigt. Ein solches vereinfachtes System liefert bereits eine gute Beschreibung der meisten wichtigen Wechselwirkungen während der Inhibierungsreaktion. Es erlaubt die Untersuchung des Einflusses der Eigenschaften des elektrophilen „Warheads“ auf den Reaktionsverlauf. Neben den Eigenschaften des elektrophilen „Warheads“ ist sowohl die Protein- als auch die Solvensumgebung von großer Bedeutung für die irreversible Deaktivierung des aktiven Zentrums des Enzyms durch den Inhibitor. Aufgrund eines möglichen Einflusses auf das Reaktionsprofil müssen Solvensmoleküle sowie die nicht-kovalenten Wechselwirkungen des Inhibitors mit dem Oxyanionloch und anderen Nebenbindungstellen des Enzyms explizit behandelt werden. Berücksichtigt man, dass nur molekularmechanische Methoden eine Behandlung von solch großen Systeme erlauben, im Gegenzug aber nicht in der Lage sind, kovalente Wechselwirkungen zu beschreiben, so wurde als Methode der Wahl ein kombinierter QM/MM Ansatz gewählt. Durch das Aufteilen des Gesamtsystems in einen kleinen Bereich, der die Bindungsspaltung- und Bindungsbildungsreaktionen beinhaltet (mit QM behandelt), und in einen großen Teil, welcher den Rest des Proteins umfasst (mit MM behandelt), waren wir in der Lage, das System mit gewünschter Genauigkeit zu simulieren. In den Kapiteln 3.2.2 bis 3.2.4 werden die Struktur-Reaktivitäts-Beziehungen (SRB) zwischen der Cysteinprotease und verschiedenen Inhibitoren vorgestellt. Es wird gezeigt, dass die SRB eine entscheidende Rolle in Kinetik, Regio- und Stereoselektivität der Inhibierung spielen. Um auch die dynamischen Effekte im Anspruch zu nehmen, wurden klassische molekulardynamische (MD) Simulationen durchgeführt. Die Ergebnisse dieser Berechnungen haben nicht nur unterstützt und die QM/MM Ergebnisse näher erklärt, sondern auch durch der Vergleich mit bereits bestehenden Röntgenstrukturen verschiedener Cysteineprotease-Inhibitor-Komplexen geholfen, Fehler in vorhandenen Proteinkristallstrukturen zu korrigieren. Somit wurden Widersprüche in der Bewertung verschiedener Funktionen, die die Inhibierungsreaktion bestimmen, aufgelöst (Kapitel 3.2.5). In der Arbeit werden auch die ersten QM/MM MD Berechnungen vom aktiven Zentrum der Cysteineprotease vorgestellt. Im Kontrast zu den klassischen MD Simulationen, wird in diesen Untersuchungen die potentielle Energie auf dem QM/MM Theorieniveau berechnet. Hier haben wir versucht die stark umstrittene Frage über die Gründe für das Vorhandensein des aktiven Zentrums als His199+/Cys29- Ion-paar und seine Rolle für die hohe Aktivität des Enzyms zu beantworten. KW - Quantenchemie KW - Quantum mechanics / molecular modeling KW - Molecular dynamics Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-25763 ER -