TY - JOUR A1 - Haertle, Larissa A1 - Maierhofer, Anna A1 - Böck, Julia A1 - Lehnen, Harald A1 - Böttcher, Yvonne A1 - Blüher, Matthias A1 - Schorsch, Martin A1 - Potabattula, Ramya A1 - El Hajj, Nady A1 - Appenzeller, Silke A1 - Haaf, Thomas T1 - Hypermethylation of the non-imprinted maternal MEG3 and paternal MEST alleles is highly variable among normal individuals JF - PLoS ONE N2 - Imprinted genes show parent-specific activity (functional haploidy), which makes them particularly vulnerable to epigenetic dysregulation. Here we studied the methylation profiles of oppositely imprinted genes at single DNA molecule resolution by two independent parental allele-specific deep bisulfite sequencing (DBS) techniques. Using Roche (GSJunior) next generation sequencing technology, we analyzed the maternally imprinted MEST promoter and the paternally imprinted MEG3 intergenic (IG) differentially methylated region (DMR) in fetal cord blood, adult blood, and visceral adipose tissue. Epimutations were defined as paternal or maternal alleles with >50% aberrantly (de)methylated CpG sites, showing the wrong methylation imprint. The epimutation rates (range 2–66%) of the paternal MEST and the maternal MEG3 IG DMR allele, which should be completely unmethylated, were significantly higher than those (0–15%) of the maternal MEST and paternal MEG3 alleles, which are expected to be fully methylated. This hypermethylation of the non-imprinted allele (HNA) was independent of parental origin. Very low epimutation rates in sperm suggest that HNA occurred after fertilization. DBS with Illumina (MiSeq) technology confirmed HNA for the MEST promoter and the MEG3 IG DMR, and to a lesser extent, for the paternally imprinted secondary MEG3 promoter and the maternally imprinted PEG3 promoter. HNA leads to biallelic methylation of imprinted genes in a considerable proportion of normal body cells (somatic mosaicism) and is highly variable between individuals. We propose that during development and differentiation maintenance of differential methylation at most imprinting control regions may become to some extent redundant. The accumulation of stochastic and environmentally-induced methylation errors on the non-imprinted allele may increase epigenetic diversity between cells and individuals. KW - DNA methylation KW - genomic imprinting KW - polymerase chain reaction KW - blood KW - epigenetics KW - sequence alignment KW - sperm Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170433 VL - 12 IS - 8 ER - TY - JOUR A1 - Weber, Klaus A1 - Osborn, Mary A1 - Franke, Werner W. A1 - Seib, Erinita A1 - Scheer, Ulrich A1 - Herth, Werner T1 - Identification of microtubular structures in diverse plant and animal cells by immunological cross-reaction revealed in immunofluorescence microscopy using antibodies against tubulin from porcine brain N2 - Antibody against tubulin from porcine brain was used to evaluate the immunological cross reactivity of tubulin from a variety of animal and plant cells. Indirect immunofluorescence microscopy revealed microtubule-containing structures including cytoplasmic microtubules, spindle microtubules, cilia and fIagella. Thus tubulin from diverse species of both mammals and plants show immunological cross-reactivity with tubulin from porcine brain. Results obtained by immunofluorescence microscopy are whenever possible compared with previously known ultrastructural results obtained by electron microscopy. KW - Cytologie KW - Microtubules KW - immunofluorescence KW - evolution KW - antibody KW - sperm Y1 - 1977 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-41383 ER - TY - THES A1 - Reichenbach, Juliane Renate T1 - Paternal age effects on sperm DNA methylation and its impact on the next generation T1 - Der väterliche Alterseffekt auf das Spermienmethylom und seine Auswirkungen auf die nächste Generation N2 - The effect of late parenthood on the offspring´s physical and mental health status has recently become an increasingly important topic of discussion. Studies on neurodevelopmental disorders in children of older parents (Naserbakht et al., 2011) outline the negative consequences of aging fathers as unpredictable compared to the better-understood unfavorable maternal influences (Cedars et al. 2015). This may be due to the fact that lifelong production of male gametes becomes more susceptible to error, not only for somatic mutations. Non-genomic mechanisms such as epigenetic methylation also alter DNA dynamically throughout life (Jones et al., 2015) and influence the aging human sperm DNA (Jenkins et al., 2014). These methylation changes may be transmitted to the next generation via epigenetic inheritance mechanisms (Milekic et al., 2015), which may negatively impact the sensitive epigenetic regulation of cell differentiation in the embryonic period (Curley et al., 2011; Spiers et al., 2015). Accordingly, Nardone et al. (2014) reported several hypomethylated regions in autistic patients, illustrating potential epigenetic influences on the multifactorial pathogenesis of neuropsychiatric disorders. In the present study, the methylation status of five gene regions in the sperm DNA of males of different ages was analyzed by two techniques - pyrosequencing and deep bisulfite sequencing. Two gene regions, FOXK1 and DMPK, showed a highly significant age-related methylation loss and FOXK1 a reduced methylation variation at the level of single alleles. In addition, the examined gene region of FOXK1 showed significant methylation changes in the fetal cord blood DNA of the respective offspring of the sperm donor. This fact suggests a transfer of age-related methylation loss to the next generation. Interestingly, a methylation analysis at the level of single alleles showed that the methylation loss was inherited exclusively by the father. FOXK1 is a transcription factor that plays an important role in the epigenetic regulation of the cell cycle during embryonic neuronal development (Huang et al., 2004; Wijchers et al., 2006). For this reason, the methylation status of FOXK1 in the blood of autistic patients and an age- and sex-matched control group was investigated. While both groups showed age-associated FOXK1 methylation loss, a faster dynamics of methylation change was observed in the autistic group. Although further studies are needed to uncover inheritance mechanisms of epigenetic information, the present results show an evident influence of age-related methylation changes on offspring. When advising future fathers, it is important to consider how the paternal epigenome is altered by aging and can have a negative impact on the developing embryo. N2 - Die Auswirkungen einer späten Elternschaft auf die körperliche und geistige Gesundheit der Nachkommen wurde in letzter Zeit zunehmend diskutiert. Studien zu neurologischen Entwicklungsstörungen bei Kindern älterer Eltern (Naserbakht et al. 2011) skizzieren insbesondere die negativen Folgen alternder Väter (Cedars et al. 2015). Dies ist möglicherweise darauf zurückzuführen, dass die lebenslange Produktion männlicher Gameten im Laufe des Lebens nicht nur für somatische Mutationen fehleranfälliger wird. Auch nicht-genomische Mechanismen wie die epigenetische Methylierung verändert die DNA im Laufe des Lebens dynamisch (Jones et al. 2015) und beeinflussen die alternde menschliche Spermien-DNA (Jenkins et al. 2014). Möglicherweise werden diese Methylierungsveränderungen über epigenetische Vererbungsmechanismen an die nächste Generation übertragen (Milekic et al. 2015), was sich negativ auf die empfindliche epigenetische Regulation der Zelldifferenzierung in der Embryonalperiode auswirken kann (Curley et al. 2011; Spiers et al. 2015). Mögliche epigenetische Einflüsse auf die multifaktorielle Pathogenese neuropsychiatrischer Erkrankungen veranschaulichend, zeigten Nardone et al. (2014) mehrere hypomethylierte Regionen bei autistischen Patienten auf. In der vorliegenden Arbeit wurde der Methylierungsstatus von fünf Genregionen in der Spermien-DNA von Männern unterschiedlichen Alters durch zwei Techniken analysiert – das Pyrosequencing und das Deep Bisulfite Sequencing. Zwei Genregionen, FOXK1 und DMPK, zeigten einen hochgradig signifikanten altersbedingten Methylierungsverlust und FOXK1 auf der Ebene einzelner Allele eine verringerte Methylierungsvariation. Darüber hinaus zeigte die untersuchte Genregion von FOXK1 signifikante Methylierungsveränderungen in der Nabelschnurblut-DNA der jeweiligen Nachkommen der Samenspender. Diese Tatsache spricht für eine Übertragung des altersbedingten Methylierungsverlustes auf die nächste Generation. Anhand einer Methylierungsanalyse auf der Ebene einzelner Allele konnte interessanterweise gezeigt werden, dass der Methylierungsverlust ausschließlich durch den Vater vererbt wurde. FOXK1 ist ein Transkriptionsfaktor, der eine wichtige Rolle bei der epigenetischen Regulation des Zellzyklus während der embryonalen neuronalen Entwicklung spielt (Huang et al. 2004; Wijchers et al. 2006). Aus diesem Grund wurde der Methylierungsstatus von FOXK1 im Blut autistischer Patienten und einer alters- und geschlechtsentsprechenden Kontrollgruppe untersucht. Während beide Gruppen einen altersassoziierten FOXK1-Methylierungverlust zeigten, wurde in der autistischen Gruppe eine schnellere Dynamik der Methylierungsänderung beobachtet. Obwohl weitere Studien erforderlich sind, um Vererbungsmechanismen epigenetischer Information aufzudecken, zeigen die vorliegenden Ergebnisse einen offensichtlichen Einfluss altersbedingter Methylierungsveränderungen auf die Nachkommen. Bei der Beratung zukünftiger Väter ist es wichtig zu berücksichtigen, wie das väterliche Epigenom durch das Altern verändert wird und negative Auswirkungen auf den sich entwickelnden Embryo haben kann. KW - Epigenetik KW - Vater KW - Spermium KW - Autismus KW - Methylierung KW - paternal age KW - epigenetics KW - sperm KW - methylation KW - reproduction KW - autism KW - Väterliches Alter KW - Epigenetik KW - Spermien KW - Methylierung Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-199805 ER - TY - JOUR A1 - Rodríguez-Mari, Adriana A1 - Wilson, Catherine A1 - Titus, Tom A. A1 - Canestro, Cristian A1 - BreMiller, Ruth A. A1 - Yan, Yi-Lin A1 - Nanda, Indrajit A1 - Johnston, Adam A1 - Kanki, John P. A1 - Gray, Erin M. A1 - He, Xinjun A1 - Spitsbergen, Jan A1 - Schindler, Detlev A1 - Postlethwait, John H. T1 - Roles of brca2 (fancd1) in Oocyte Nuclear Architecture, Gametogenesis, Gonad Tumors, and Genome Stability in Zebrafish JF - PLoS Genetics N2 - Functional near-infrared spectroscopy (fNIRS) is an established optical neuroimaging method for measuring functional hemodynamic responses to infer neural activation. However, the impact of individual anatomy on the sensitivity of fNIRS measuring hemodynamics within cortical gray matter is still unknown. By means of Monte Carlo simulations and structural MRI of 23 healthy subjects (mean age: (25.0 +/- 2.8) years), we characterized the individual distribution of tissue-specific NIR-light absorption underneath 24 prefrontal fNIRS channels. We, thereby, investigated the impact of scalp-cortex distance (SCD), frontal sinus volume as well as sulcal morphology on gray matter volumes (V(gray)) traversed by NIR-light, i.e. anatomy-dependent fNIRS sensitivity. The NIR-light absorption between optodes was distributed describing a rotational ellipsoid with a mean penetration depth of (23.6 +/- 0.7) mm considering the deepest 5% of light. Of the detected photon packages scalp and bone absorbed (96.4 +/- 9: 7)% and V(gray) absorbed (3.1 +/- 1.8)% of the energy. The mean V(gray) volume (1.1 +/- 0.4)cm(3) was negatively correlated (r = - .76) with the SCD and frontal sinus volume (r = - .57) and was reduced by 41.5% in subjects with relatively large compared to small frontal sinus. Head circumference was significantly positively correlated with the mean SCD (r = .46) and the traversed frontal sinus volume (r = .43). Sulcal morphology had no significant impact on V(gray). Our findings suggest to consider individual SCD and frontal sinus volume as anatomical factors impacting fNIRS sensitivity. Head circumference may represent a practical measure to partly control for these sources of error variance. KW - oocytes KW - zebrafish KW - genetic causes of cancer KW - testes KW - apoptosis KW - gonads KW - sperm KW - embryos Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142285 VL - 7 IS - 3 ER -