TY - THES A1 - Baumann, Daniel T1 - Charakterisierung der Pharmakokinetik und Pharmakodynamik intranasaler Glucocorticoide anhand von in vitro und ex vivo Modellen T1 - Pharmacokinetic and pharmacodynamic characterisation of intranasal glucocorticoids using in vitro and ex vivo models N2 - Ziel dieser Arbeit war es die intranasalen pharmakokinetischen Abläufe nach topischer Applikation mittels in vitro und ex vivo Experimenten zu charakterisieren und ihre Auswirkungen auf die Pharmakodynamik zu beschreiben. Es wurden hierbei die nasal angewendeten Glucocorticoide Triamcinolonacetonid (TCA), Budesonid (Bud), Beclomethasondipropionat (BDP), Fluticasonpropionat (FP), Mometasonfuroat (MF) und Fluticasonfuroat (FF) sowie ihre handelsüblichen Präparate Nasacort® (TCA), Budes® (Bud), ratioAllerg® (BDP), Flutide® Nasal (FP), Nasonex® (MF) und Avamys® (FF) untersucht. Zum Aufbringen der Wirkstoffsuspension auf die nasale Mukosa durch den Patienten kommen Dosierpumpsprays zum Einsatz, deren Dosiervorrichtung das Applikationsvolumen festlegen. Die Bestimmung des Sprühstoßvolumens unterschiedlicher handelsüblicher Präparate ergab Werte zwischen 56 und 147 µL/Sprühstoß. Zum ersten Mal wurde eine Methode entwickelt, die es ermöglichte die Glucocorticoidkonzentration in den wässrigen Überständen handelsüblicher Präparate zu bestimmen. Die Wasserlöslichkeit der unterschiedlichen Glucocorticoide sowie die galenische Zusammensetzung der Formulierungen konnten als mögliche Einflussfaktoren für den bereits gelösten Wirkstoffanteil ermittelt werden. Es konnte erstmals gezeigt werden, dass die Löslichkeit der Wirkstoffkristalle der lipophileren Substanzen wie BDP, FP, MF und FF durch das KNS signifikant verbessert wurde. Die Löslichkeit der hydrophileren Wirkstoffe wie TCA und Bud wurde durch das KNS dagegen nur leicht beeinflusst. Nach der Auflösung der Wirkstoffkristalle können die gelösten Moleküle zur cytoplasmatischen Zielstruktur, dem Glucocorticoidrezeptor diffundieren und spezifisch binden. Neben der Rezeptorbindung erfolgt auch eine unspezifische Bindung an Nasengewebe. So wurde zunächst mit einem einfachen, bereits etablierten Versuchsaufbau erstmalig die Bindung von FF an Nasengewebe im Vergleich zu anderen Glucocorticoiden in vitro untersucht. Die lipophileren Substanzen wie FF, MF und FP grenzten sich hierbei durch eine höhere Gewebebindung von den hydrophileren TCA und Bud ab. Es wurde ein neues Modell entwickelt, welches die pharmakokinetische Untersuchung zur Gewebebindung mit der Pharmakodynamik der Wirkstoffe in Form ihres antiinflammatorischen Effektes im Zellkulturmodell verknüpfen sollte. So wurde wirkstoffgesättigtes Gewebe einer extensiven Auswaschphase in Humanplasma ausgesetzt, um es anschließend mit humanen Lungenepithelzellen zu inkubieren. Es konnte gezeigt werden, dass alle Gewebeproben den Wirkstoff in das Zellkulturmedium freisetzten, was eine Hemmung der IL-8 Sekretion aus Lungenepithelzellen zur Folge hatte. Die Stärke des antiinflammatorischen Effektes der IL-8 Hemmung durch FF, FP, Bud und TCA entsprach der Kombination aus Geweberetention und intrinsischer Aktivität (Rezeptoraffinität) der Wirkstoffe. Gewebeproben des MF führten zur geringsten IL-8 Hemmung, was durch die chemische Instabilität der Substanz erklärt werden konnte. Um eine weitere Annäherung an physiologische Verhältnisse zu erreichen, wurde erfolgreich ein Modell entwickelt, welches nach Applikation der Suspension auf die Mukosa die pharmakokinetischen Abläufe simulieren sollte. Dafür entscheidend war die Einbettung respiratorischen Gewebes in eine Gel-Matrix, wodurch eine zusammenhängende Mukosa-ähnliche Oberfläche erreicht werden konnte. Als Modellsubstanzen wurden Bud aus Budes®-Nasenspray und FP aus Flutide® Nasal sowie als Vertreter der Antihistaminika Azelastin-HCl (AZ-HCl) aus Vividrin® akut eingesetzt. Es konnte gezeigt werden, dass die Gewebebindung des AZ-HCl im Vergleich zu den Glucocorticoiden am höchsten war. Die gute Korrelation der Gewebebindung der Substanzen mit ihrem Verteilungsvolumen und der Vergleich von FP mit Bud zeigte die erfolgreiche Etablierung des Modells. Beide Glucocorticoide zeigten nach Applikation der Wirkstoffsuspension zunächst eine ähnliche Assoziation an das Gewebe. Bei der Inkubation der Gewebe-Gel-Matrix mit Humanplasma wurde schließlich Fluticasonpropionat aus der Gewebe-Gel-Bindung im Vergleich zu Budesonid langsam freigesetzt. Weiterhin wurde im Gewebe-Gel-Modell die Bedeutung der Pharmakokinetik der Wirkstoffe auf die Pharmakodynamik ermittelt. Es wurden Freisetzungsproben der Gewebe-Gel-Matrices von AZ-HCl und FP auf ihre antiinflammatorische Aktivität untersucht. Die deutlich höhere Bindung des AZ-HCl an die Gewebe-Gel-Matrix äußerte sich auch in höheren Plasmakonzentrationen bei der Freisetzung im Vergleich zu FP. Jedoch konnte im Zellkulturmodell gezeigt werden, dass die Hemmung der IL-8 Freisetzung des FP, trotz der geringeren Konzentration in der Freisetzungsmatrix, das antiinflammatorische Potential des AZ-HCl übertraf. N2 - The aim of this thesis was to characterize the intranasal pharmacokinetics after topical administration using in vitro and ex vivo experiments and to assess their impact on pharmacodynamic effects. Therefore the nasal glucocorticoids triamcinolone acetonide (TCA), budesonide (Bud), beclomethasone dipropionate (BDP), fluticasone propionate (FP), mometasone furoate (MF) and fluticasone furoate (FF) and their commercially available preparations Nasacort® (TCA), Budes® (Bud), ratioAllerg® (BDP), Flutide® Nasal (FP), Nasonex® (MF) and Avamys® (FF) were part of the analysis. As delivery device metered-dose pump sprays are used to deposit the drug suspension on the nasal mucosa. Their dosing system defines the volume of administration. The determination of the spray volume of different commercially available nasal pump sprays revealed results between 56 and 147 µL/volume per spray. For the first time a method was developed which permitted the determination of glucocorticoid concentrations in the aqueous supernatants of commercially available drug suspensions. Both water solubility of the different compounds and the galenics of the formulation were found to affect the proportion of solute glucocorticoid in the supernatant. For the first time it was shown that the solubility of the more lipophilic compounds BDP, FP, MF and FF was significantly enhanced in ANF. In contrast, the solubility of the more hydrophilic drugs TCA and Bud was only slightly influenced by ANF. After dissolution of the drug crystals the solubilised molecules can reach their cytoplasmatic target, the glucocorticoid receptor, and bind specifically. Beside the receptor binding a nonspecific tissue binding to nasal tissue occurs. On the one hand a high tissue binding is desirable to increase the probability of occupating the receptor for a prolonged time. In addition, tissue-bound glucocorticoid slows down the redistribution of the drug into the systemic circulation delivering desired low plasma concentrations. In an established experimental set-up the binding of FF compared to different glucocorticoids to nasal tissue in vitro was analysed for the first time. The more lipophilic compounds FP, MF and FF revealed higher tissue binding and differed from the more hydrophilic TCA and Bud with less tissue-bound drug. The anti-inflammatory activity of intranasal glucocorticoids is responsible for their therapeutic benefit. A new model was established connecting the pharmacokinetic assay of tissue binding with the anti-inflammatory activity of the drugs in cell culture. Therefore, glucocorticoid-saturated tissue samples were extensively washed in human plasma and then incubated with human lung epithelial cells. All tissue samples released tissue bound drug into cell culture medium and decreased the IL-8 secretion of the cells. The intensity of the anti-inflammatory effect of IL-8 inhibition by FF, FP, Bud and TCA was in good correlation with both their tissue retention and their intrinsic activity (receptor affinity). Tissue samples of MF resulted in the least IL-8 inhibition. The chemical instability of MF explained this observation of lower anti-inflammatory activity. To converge physiologic conditions a new model was successfully established which allowed the simulation of the pharmacokinetic course of events after administration of the formulation on the mucosa, the dissolution of crystals in nasal mucus, the mucociliary clearance, the diffusion and retention of drugs at the target tissue and the redistribution of the bound drug into the blood compartment. The hallmark of this approach was the embedding of respiratory tissue in a gel matrix simulating a coherent mucosa-like surface. Both glucocorticoids Bud (Budes® nasal spray) and FP (Flutide® Nasal) and Azelastine-HCl (AZ-HCl, Vividrin® akut) as a representative of antihistamines were analysed. The experiments showed highest tissue binding for AZ-HCl compared to the glucocorticoids. On the one hand this was due to the application of AZ as a salt in solution, on the other hand it was ascribed to the high lipophilicity of the drug. Good correlation of drug tissue binding with the drug’s volume of distribution reflected the successful introduction of the model. After application of drug suspensions both glucocorticoids showed a similiar association to the tissue. Incubation of the tissue-gel matrix in human plasma revealed in a slower release of FP compared to Bud. Moreover, the impact of pharmacokinetics for the pharmacodynamic effect was analysed in the tissue-gel-model. Samples of tissue gel incubation in human plasma from both AZ-HCl and FP were analysed for their anti-inflammatory activity. The clearly higher binding of AZ-HCl to the tissue-gel matrix yielded higher plasma concentrations compared to FP. However, the experiments revealed that the inhibition of the IL-8 release by FP samples exceeded the anti-inflammatory potential of AZ-HCl samples. KW - Pharmakokinetik KW - Pharmakodynamik KW - Glucocorticosteroide KW - Lokaltherapie KW - Pharmakokinetik KW - Pharmakodynamik KW - Glucocorticoide KW - intranasal KW - pharmacokinetics KW - pharmacodynamics KW - glucocorticoids KW - intranasal Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-57230 ER - TY - THES A1 - Saltin, Jochen T1 - Die an der Pharmakokinetik orientierte Aminoglykosidtherapie - Ergebnisse und Einflussfaktoren in der Intensivtherapie T1 - Pharmacokinetic dosing of aminoglycosides - facts and important factors in the intensive care medicine N2 - Ausarbeitung der Vorteile einer pharmakokinetisch gesteuerten Gentamicintherapie bei Intensivpatienten. N2 - facts why a pharmacokinetic driven dosing regimen is neccessary in critically ill patients KW - Pharmakokinetik KW - Aminoglykoside KW - pharmacokinetics KW - aminoglycosides Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74921 ER - TY - THES A1 - Väth, Thomas T1 - Die Cerebrale Toxoplasmose bei AIDS : Untersuchungen zur Pharmakokinetik von Sulfadiazin unter Urinalkalisierung T1 - Cerebral Toxoplasmosis in AIDS : Studies of Sulfadiazine Pharmacokinetics under Urine Alkalinization N2 - Die cerebrale Toxoplasmose stellt eine wichtige opportunistische Infektion im Verlauf einer HIV-Infektion dar. Unter der Standardtherapie mit Sulfadiazin kommt es häufig zu nephrotoxischen Nebenwirkungen aufgrund einer Kristallisation des Sulfadiazin und seines Metaboliten N4-Acetylsulfadiazin im Harntrakt. Die Therapie dieser Nebenwirkung erfordert unter Anderem die Alkalisierung des Harns. In der vorliegenden Arbeit wurde der Einfluss einer Urinalkalisierung auf die Pharmakokinetik beider Stoffe in vivo untersucht. N2 - Cerebral toxoplasmosis is an important opportunistic infection in the course of a HIV-infection. Under standard therapy with sulfadiazine there are often nephrotoxic side-effects due to crystallisation of sulfadiazine and its metabolite N4-acetylsulfadiazine in the urinary tract. Therapy of this amongst others requires alkalinization of urine. In this study the influence of urine alkalinization on in-vivo pharmacokinetics of both substances was investigated. KW - AIDS KW - Toxoplasmose KW - Sulfadiazin KW - Pharmakokinetik KW - Urinalkalisierung KW - AIDS KW - toxoplasmosis KW - sulfadiazine KW - pharmacokinetics KW - urine alkalinization Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-20042 ER - TY - THES A1 - Gräfe, Eva Ulrike T1 - Relative systemische Verfügbarkeit und Pharmakokinetik von Quercetin und Quercetinglykosiden (Quercetin-4'-0-glucosid und Quercetin-3-0-rutinosid) im Menschen T1 - Relative bioavailability and pharmacokinetics of the flavonol quercetin and quercetin glycosides (quercetin-4'-0-glucoside and quercetin-3-0-rutinoside) in humans N2 - Aufgrund seiner potentiell gesundheitsfoerdernden Wirkung wurde das Falvonol Quercetin in den letzten Jahren intensiv untersucht. Daten zur Bioverfuegbarkeit nach oraler Applikation sind jedoch selten und widerspruechlich. Fruehere Untersuchungen deuteten darauf hin, dass die Disposition von Quercetin von der Zuckerkomponente des Glykosids oder der Pflanzenmatrix abhaengen koennte. Um den Einfluss der Zuckerkomponente oder der Matrix auf die Resorption von Quercetin festzustellen, wurden zwei isolierte Quercetinglykoside sowie zwei Pflanzenextrakte in einer vierarmigen, randomisierten cross-over Studie an 12 gesunden Probanden getestet. Jeder Proband erhielt eine Zwiebelzubereitung oder Quercetin-4'-O-glucosid, jeweils entsprechend 100 mg Quercetinaglykon, sowie Quercetin-3-O-rutinosid oder Buchweizenkrauttee entsprechend 200 mg Quercetinaglykon. Die Proben wurden mittels HPLC und Coulometrischer Arraydetektion analysiert. Im Plasma wurden ausschliesslich Quercetinglucuronide detektiert. Freies Quercetin und die Glykoside waren nicht nachweisbar. Die Bioverfuegbarkeit und Pharmakokinetik nach Applikation von Zwiebeln und Quercetin-4'-glucosid zeigte keine signifikanten Unterschiede. Maximale Plasmakonzentrationen von 2.3±1.5 µg·mL-1 and 2.1±1.6 µg·mL-1 (MW±SD) wurden nach 0.7±0.2 h und 0.7±0.3 h erreicht. Nach Einnahme von Buchweizenkraut und Rutin wurden maximale Plasmakonzentrationen (trotz der doppelten Dosis) von nur 0.6±0.7 µg·mL-1 und 0.3±0.3 µg·mL-1 nach 4.3±1.8 h bzw. 7.0±2.9 h erreicht. Die terminale Halbwertszeit lag bei ca. 11 h fuer alle vier Pruefpraeparate. Die Disposition von Quercetin ist daher primaer von der Zuckerkomponente abhaengig. Zu einem geringern Anteil beeinflusst die Pflanzenmatrix im Falle von Buchweizenkrauttee sowohl Geschwindigkeit als auch Ausmass der Resorption. Der Resorptionsort scheint fuer Quercetin-4‘-O-glucoside und Quercetin-3-O-rutinoside unterschiedlich zu sein. Die bedeutung spezifischer carrier fuer die Resorption von Quercetinglykosiden sowie von intestinalen ß-Glucosidasen muss in weiteren Untersuchungen geklaert werden. N2 - Due to its potentially beneficial impact on human health the polyphenol quercetin has come into the focus of medicinal interest. However, data on the bioavailability of quercetin after oral intake are scarce and contradictory. Previous investigations indicate that the disposition of quercetin may depend on the sugar moiety of the glycoside or the plant matrix. In order to determine the influence of the sugar moiety or matrix on the absorption of quercetin, two isolated quercetin glycosides and two plant extracts were administered to 12 healthy volunteers in a four-way cross-over study. Each subject received an onion supplement or quercetin-4‘-O-glucoside both equivalent to 100 mg quercetin, as well as quercetin-3-O-rutinoside and buckwheat tea both equivalent to 200 mg quercetin. Samples were analyzed by HPLC with a 12-channel coulometric array detector. In human plasma only quercetin glucuronides, but no free quercetin, could be detected. There was no significant difference in the bioavailability and pharmacokinetic parameters between the onion supplement and quercetin-4‘-O-glucoside. Peak plasma concentrations were 2.3±1.5 µg·mL-1 and 2.1±1.6 µg·mL-1 (mean±SD) and were reached after 0.7±0.2 h and 0.7±0.3 h, respectively. After administration of buckwheat tea and rutin, however, peak plasma levels were (despite the higher dose) only 0.6±0.7 µg·mL-1 and 0.3±0.3 µg·mL-1, respectively. Peak concentrations were reached 4.3±1.8 h after administration of buckwheat tea and 7.0±2.9 h after ingestion of rutin. The terminal elimination half life was about 11 h for all treatments. Thus, the disposition of quercetin in humans is primarily depending on the sugar moiety. To a minor extent, the plant matrix influences both rate and extent of absorption in the case of buckwheat tea administration compared to the isolated compound. The site of absorption seems to be different for quercetin-4‘-O-glucoside and quercetin-3-O-rutinoside. The significance of specific carriers on the absorption of quercetin glycosides as well as specific intestinal ß-glucosidases needs to be further evaluated. KW - Mensch KW - Stoffwechsel KW - Quercetin KW - Pharmakokinetik KW - Flavonoide KW - Quercetin KW - Zwiebel KW - Buchweizenkraut KW - Bioverfügbarkeit KW - Pharmakokinetik KW - Metabolismus KW - Resorption KW - flavonoids KW - quercetin KW - bioavailibility KW - pharmacokinetics KW - absorption KW - metabolism KW - onion KW - buckwheat Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-1333 ER - TY - THES A1 - Kurlbaum, Max T1 - Verteilungsvorgänge und Metabolismus ausgewählter Verbindungen eines standardisierten Kiefernrindenextraktes in menschlichem Blut T1 - Distribution and metabolism of different constituents of a standardized French maritime pine extract (pinus pinaster) in the human blood N2 - Sekundäre Pflanzenstoffe zeichnen sich wegen ihrer heterogenen Zusammensetzung und großen Strukturvariabilität durch eine komplexe Pharmakokinetik aus. Wissen um die Pharmakokinetik ist wiederum für die Beurteilung von pharmakodynamischen Prozessen unabdingbar. Ziel dieser Arbeit war es durch die Bestimmung wichtiger pharmakokinetischer Parameter zur Erweiterung des Verständnisses um die Verteilung von verschiedenen Bestandteilen und Metaboliten eines standardisierten Extraktes der französischen Meereskieker (pinus pinaster) im menschlichen Körper beizutragen. Es erfolgte zunächst, unter Verwendung zweier verschiedener Methoden, die Bestimmung der Plasmaproteinbindung dieser Substanzen. Hierbei fand eine affinitätschromatographische Methode mit immobilisiertem Albumin Anwendung. Die Flavonoide Taxifolin, (+)-Catechin sowie das Catechindimer Procyanidin B1 zeigten eine, aufgrund der vorliegenden Polyphenolstruktur der Substanzen gut erklärbare ausgeprägte Bindung, während für Kaffesäure, Ferulasäure und ein δ-(3,4-Dihydroxyphenyl)-γ-valerolacton (Metabolit M1), das in vivo als Metabolit aus(+)-Catechin gebildet wird, eine wesentlich geringere Affinität zu Albumin ermittelt werden konnte. Desweiteren kam eine Filtrationsmethode zur Anwendung, die durch Abtrennung der Proteine aus dem Plasma eine Bestimmung der Bindung ermöglichte. Um die in Vorversuchen gezeigte ausgeprägte unspezifische Bindung der Flavonoide (+)-Catechin und Taxifolin an Membran- und Gefäßoberflächen zu minimieren wurde eine Vorbehandlung der Membranen vorgenommen. Die Resultate beider Methoden zeigten eine gute Übereinstimmung, ausgenommen der bei der Ultrafiltration erhaltenen geringen Proteinbindung des Procyanidin B1. Auch die Ultrafiltrationsmethode ergab für Taxifolin und (+)-Catechin eine beinahe vollständige Bindung. Für die Phenolcarbonsäuren Ferulasäure und Kaffeesäure sowie den Metaboliten M1 hingegen ergaben sich geringere Affinitäten so dass die Ergebnisse der affinitätschromatographischen Methode bestätigt und durch die Verwendung von zwei verschiedenen unabhängigen Bestimmungsansätzen eine gesteigerte Aussagekraft der Resultate erreicht werden konnte. Eine weitere Ergänzung der Aufklärung des pharmakokinetischen Profils erfolgte durch die Ermittlung der Verteilung dieser Substanzen zwischen Plasma und verschiedenen Blutzellen. Insbesondere für den Metaboliten M1 zeigte sich bei einigen der Versuche eine ausgeprägte Affinität zu Erythrozyten und mononukleären Zellen. Ob diesem Phänomen möglicherweise aktive Transportmechanismen zu Grunde lagen sollte durch weiterführende Betrachtungen geklärt werden. Die Untersuchungen ergaben, dass an dieser Verteilung weder ein Aminosäuretransporter noch das para-Glykoprotein beteiligt gewesen waren, jedoch ließen ergänzende Versuche den Schluss zu, dass eine erleichterte Diffusion in das Zellinnere durch den Glucose-Transporter GLUT-1 ermöglicht werden könnte. Diese Vermutung wurde durch vergleichende Energiefeld-,Oberflächen-, und Volumenberechnungen zwischen dem natürlichen Substrat des Transporters Glucose und dem Metaboliten M1 gestützt. Aufbauend auf den Ergebnissen der Verteilungsversuche wurde ein möglicher intrazellulärer Metabolismus der Substanzen in Erythrozyten und mononukleären Zellen, insbesondere durch Reaktionen des Phase II Metabolismus, untersucht. Mittels massenspektrometrischer Untersuchungen konnten Hinweise auf die Bildung eines Addukts zwischen Glutathion und dem Metaboliten M1 in Erythrozyten gefunden werden. Abschließend wurde durch die Bestimmung der protektiven Eigenschaften des Metaboliten M1 gegen oxidative Schädigungen der Erythrozytenmembran auch ein pharmakodynamischer Aspekt dieser Verbindung hinzugefügt. Zwar zeigte sich bereits in einem Konzentrationsbereich von 1 μM eine ausgeprägte antioxidative Aktivität des Metaboliten M1, jedoch konnte kein Hinweis auf Beeinflussung oxidativer Membranschädigungen durch möglicherweise intrazellulär gebildete Konjugate obiger Verbindung gefunden werden. Im Rahmen dieser Arbeit konnten für verschiedene Bestandteile eines Kiefernrindenextraktes und ein δ-(3,4-Dihydroxyphenyl)-γ-valerolacton Plasmaproteinbindungen und erstmals die Verteilung dieser Substanzen zwischen Plasma und Blutzellen ermittelt werden. Insbesondere die in einigen Versuchen gezeigte Aufnahme bzw. Adsorption könnte einen Beitrag zur Klärung der Beobachtung liefern, dass eine deutliche Diskrepanz gefunden wurde zwischen in vivo gemessenen Plasmakonzentrationen, welche in vitro nicht ausreichend sind um deutliche Effekte auszulösen und Ergebnissen aus ex vivo Untersuchungen, die eine deutliche Beeinflussung insbesondere antiinflammatorischer Prozesse zeigten. N2 - Secondary plant compounds are characterized by complex pharmacokinetics due to their heterogeneous composition and distinct variability of formation. Knowledge is indispensable about pharmacokinetics for estimation of pharmacodynamic effects. The objective of this thesis was to contribute to the knowledge of distribution of different constituents of a standardized French maritime pine extract (pinus pinaster) in the human body. At first two different methods were used to determine the plasma protein binding of these substances. An affinity chromatographic method using immobilized albumin was applied. The flavonoids taxifolin, (+)-catechin and the dimer procyanidin B1 revealed a pronounced binding due to their polyphenolic structures while a considerably lower affinity to albumin was found for caffeic acid, ferulic acid and δ-(3,4-dihydroxyphenyl)-γ-valerolactone (metabolite M1), an in vivo formed metabolite from (+)-catechin. Additionally a filtration method was used which allowed to quantify the extent of binding by separating the proteins from the plasma. Owing to the relatively lipophilic properties of the flavonoids (+)-catechin and taxifolin membranes were pretreated to reduce the non specific binding to surfaces. The results of both methods showed good agreement, except for a lower protein binding of procyanidin B1 observed by the ultrafiltration method. Taxifolin and (+)-catechin displayed almost complete protein binding in the affinity chromatography and the ultrafiltration method. For the phenolic acids ferulic acid, caffeic acid and the metabolite M1, however, there was lower affinity and these results were consistend with the data obtained by affinity chromatography confirming the validity of the results. Further investigations regarding the pharmacokinetic profile included determining the distribution of these substances between plasma and blood cells. Particularly a pronounced binding of the metabolite M1 to erythrocytes and mononuclear cells was found. Whether an active transport underlied this phenomenon mechanisms should be clarified by further investigations. The experiments showed that this distribution was neither influenced by amino acid transporters nor that the para glycoprotein was involved. But based on additional testing it was concluded that a facilitated diffusion of M1 was mediated by the glucose transporter GLUT-1. This assumption was supported by comparative force field, surface and volume calculations between the natural substrate of the transporter glucose and the metabolite M1. A potential intracellular phase II metabolism of the compounds in erythrocytes and mononuclear cells was examined based on the results of partition experiments. Mass spectrometric investigations revealed an adduct formation between glutathione and the metabolite M1 in human erythrocytes. Finally, by determining the protective properties of the metabolite M1 against oxidative damage of erythrocyte membrane, a pharmacodynamic aspect of this compound was added. Strong antioxidant activity occurred for the metabolite M1 already in a concentration range of 1 μM. However, obviously any intracellulary formed glutathione metabolite did not contribute to this effect. Within the scope of this work the first time plasma protein binding and the distribution between plasma and blood cells were determined for different compounds and a metabolite of a maritime pine extract. Especially the uptake of the compounds into blood cells might contribute to explain the observation that a significant discrepancy is found between in vivo measured and antiinflammatorily effective plasma concentrations and the fact that these concentrations are not sufficient to trigger significant effects in vitro. KW - Pharmakokinetik KW - Phenolcarbonsäuren KW - Strandkiefer KW - Blut KW - pharmacokinetics KW - phenolic acids Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-64794 ER -