TY - THES A1 - Löffler, Andreas T1 - Selbstorganisiertes Wachstum von (Ga)InAs/GaAs-Quantenpunkten und Entwicklung von Mikroresonatoren höchster Güte für Experimente zur starken Exziton-Photon-Kopplung T1 - Growth of self-assembled (Ga)InAs/GaAs Quantum Dots and Realization of high Quality Microcavities for Experiments in the field of strong Exciton Photon Coupling N2 - Als erster Schritt wurde der dreidimensionale optische Einschluss der Mikroresonatoren verbessert. Eine höhere Güte der Strukturen konnte vor allem durch Weiterentwicklung des Herstellungsprozesses erzielt werden. Der Ätzprozess der Türmchen wurde so optimiert, um möglichst glatte und senkrechte Seitenwände der Resonatoren zu erreichen. Dies reduziert Streu- und Beugungsverluste an den Seitenwänden der Mikroresonatoren und verbessert deren optischen Einschluss. Des Weiteren wurde der epitaktische Schichtaufbau der Resonatoren sowie die Wachstumsparameter der einzelnen Halbleiterschichten optimiert. Somit konnte der Q-Faktor der Resonatoren zum Beispiel durch die Verwendung von Spiegeln mit einer höheren Reflektivität und einem angepassten V/III-Verhältnis bei den verschiedenen Epitaxieschichten weiter erhöht werden. Für einen aktiven Mikroresonator mit 26 (30) Spiegelpaaren im oberen (unteren) DBR und einem Durchmesser von 4 µm wurden somit Rekordwerte für den Q-Faktor von ca. 90000 erreicht. Parallel hierzu wurden Analysen zum Wachstum von selbstorganisierten GaInAs-Quantenpunkten auf GaAs-Substraten angestellt. Hierbei war sowohl die Entstehung der dreidimensionalen Wachstumsinseln als auch deren optische Eigenschaften Gegenstand der Untersuchungen. Die morphologischen Eigenschaften der Quantenpunkte wurde mittels Transmissions- und Rasterelektronenmikroskopie analysiert, womit die optischen Eigenschaften durch Photolumineszenz- und Photoreflexionsmessungen untersucht wurden. Die optischen und vor allem die geometrischen Eigenschaften der selbstorganisiert gewachsenen GaInAs-Quantenpunkte konnten entscheidend verbessert werden. Durch die Verwendung von einer gering verspannten Nukleationsschicht mit einem Indiumgehalt von 30 % konnte die Flächendichte der Quantenpunkte auf 6 - 9 x 10^9 cm^-2 verringert und ihre geometrischen Abmessungen auf typische Längen von 50 - 100 nm und Breiten von ca. 30 nm erhöht werden. Durch den reduzierten Indiumgehalt wird die Gitterfehlanpassung zwischen den Quantenpunkten und der umgebenden Matrix verkleinert. Die verringerte Verspannung beim Quantenpunktwachstum führt zu einer erhöhten Migrationslänge der abgeschiedenen Atome auf der Oberfläche, was wiederum zur Bildung von größeren Quantenpunkten mit geringerer Flächendichte führt. Schließlich wurden die gewonnenen Erkenntnisse über das MBE-Wachstum von Mikroresonatoren, ihre Prozessierung und das selbstorganisierte Inselwachstum von GaInAs auf GaAs als Basis für die Herstellung weiterer Proben verwendet. Es wurden nun beide Bereiche miteinander verknüpft und gering verspannte GaInAs-Quantenpunkte in die Mikroresonatoren eingewachsen. Die hohen Güten der realisierten Mikrokavitäten in Kombination mit Quantenpunkten mit vergrößerten Abmessungen und geringen Dichten machen diese Strukturen zu idealen Kandidaten für die Grundlagenforschung im Bereich der Quantenelektrodynamik. Als Höhepunkt ermöglichten diese Strukturen zum ersten Mal den Nachweis einer starken Wechselwirkung zwischen Licht und Materie in einem Halbleiter. Für den Fall der gering verspannten vergrößerten Quantenpunkte im Regime der starken Kopplung konnte eine Vakuum-Rabi-Aufspaltung von ca. 140 µeV zwischen der Resonatormode und dem Quantenpunkt-Exziton beobachtet werden. Durch die verbesserten Güten der Kavitäten konnte das Regime der starken Wechselwirkung ebenfalls für kleinere Quantenpunkte erreicht werden. Eine Rabi-Aufspaltung von ca. 60 µeV wurde zum Beispiel für kreisrunde GaInAs-Quantenpunkte mit einem Indiumgehalt von 43 % und Durchmessern zwischen 20 und 25 nm gemessen. Das Regime der starken Kopplung ermöglicht es weiterhin, Rückschlüsse auf die Oszillatorstärke der eingewachsenen Quantenpunkte zu ziehen. So konnte zum Beispiel für die vergrößerten Quantenpunktstrukturen eine Oszillatorstärke von ca. 40 - 50 abgeschätzt werden. Dagegen weisen die leicht verkleinerten Quantenpunkte mit einem Indiumgehalt von 43 % nur eine Oszillatorstärke von ca. 15 - 20 auf. Des Weiteren wurden für einen späteren elektrischen Betrieb der Bauteile dotierte Mikroresonatoren hergestellt. Die hohen Güten der dotierten Türmchen ermöglichten ebenso die Beobachtung von klaren quantenelektrodynamischen Effekten im elektrischen Betrieb. Die untersuchten elektrisch gepumpten Mikroresonatoren mit kleinen GaInAs-Quantenpunkten in der aktiven Schicht operierten im Regime der schwachen Kopplung und zeigten einen deutlichen Purcell-Effekt mit einem Purcell-Faktor von ca. 10 im Resonanzfall. Durch den Einsatz von vergrößerten GaInAs-Quantenpunkten konnte ebenfalls im elektrischen Betrieb das Regime der starken Wechselwirkung mit einer Rabi-Aufspaltung von 85 µeV erreicht werden. N2 - At the beginning, we improved the three dimensional optical confinement of the micropillars. A higher Q factor could be achieved mainly due to a further development of the fabrication process. The etching for the pillars was optimized in order to obtain very smooth and vertical sidewalls of the resonators. This reduces the losses due to scattering at the sidewalls of the micropillars und improves their optical confinement. Furthermore, the sample design of the cavities as well as the growth parameters of every single semiconductor layer was optimized. Thus, the quality factor of the pillars could be increased by the use of higher reflectivity mirrors and a matched V/III ratio for the different epitaxial layers. Hence, a record quality factor of about 90000 was achieved for an active micropillar with 26 (30) mirror pairs in the top (bottom) DBR and a diameter of 4 µm. In parallel to this, we made studies on the growth of self-assembled GaInAs quantum dots on GaAs substrates. Here, the nucleation of three dimensional islands as well as their optical properties were object of the investigation. The morphological properties of the dots were analyzed by transmission and scanning electron microscopy, and the optical properties were investigated by photoluminscence and photoreflectance measurements. The optical and particularly the morphological properties of the self-assembled GaInAs quantum dots were essentially improved. Due to a low strain nucleation layer with an indium content of 30 %, the dot density could be reduced to 6 - 9 x 10^9 cm^-2 and their geometric dimensions were increased to typical lengths between 50 and 100 nm and widths of about 30 nm. The lattice mismatch between the quantum dots and the surrounding matrix is decreased due to the reduced indium content. The minimized strain during the dot growth leads to an enhanced migration length of the deposited atoms on the surface, which again leads to the formation of enlarged quantum dots with a reduced density. Finally, the obtained findings of the MBE growth of microcavities, their fabrication and the self-assembled island growth of GaInAs on GaAs were used for the realization of further samples. Both fields were now combined and low strain GaInAs quantum dots were embedded into the microresonators. The high quality factor of the realized cavities in combination with enlarged quantum dots with a low dot density make these structures ideal candidates for fundamental research in the field of cavity quantum electrodynamics. As a highlight, these structures allowed for the first time the observation of strong coupling between light and matter in a semiconductor. In case of the low strain quantum dots with enlarged dimensions in the strong coupling regime, a vacuum Rabi-splitting of about 140 µeV between the cavity mode and the exciton could be observed. Due to an improved optical confinement of the microresonators, we were able to reach the strong coupling regime also for smaller quantum dots. For example a Rabi-splitting of about 60 µeV was measured for circular GaInAs dots with an indium content of 43 % and diameters between 20 and 25 nm. The strong coupling regime furthermore allows the estimation of the oscillator strength of the embedded quantum dots. Thus we could conclude an oscillator strength of approximately 40 - 50 for the enlarged quantum dot structures. In contrast to that, the slightly smaller dots with an indium content of 43 % only show an oscillator strength of about 15 - 20. Furthermore, doped microcavities were realized with regard to electrically driven devices. The high quality of the doped pillars allowed us the observation of pronounced quantum electrodynamic effects also for electrically pumped structures. The investigated electrically driven mircocavities with embedded GaInAs quantum dots were operating in the weak coupling regime and showed a clear Purcell effect with a Purcell factor in resonance of about 10. Due to the use of enlarged GaInAs quantum dots, we were able to reach the strong coupling regime with a vacuum Rabi-splitting of 85 µeV also for electrically driven micropillars. KW - Quantenpunkt KW - Optischer Resonator KW - Quantenelektrodynamik KW - Molekularstrahlepitaxie KW - Licht-Materie-Wechselwirkung KW - Light-Matter-Interaction Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-30323 ER - TY - THES A1 - Geßler, Jonas T1 - Reduktion des Modenvolumens von Mikrokavitäten im Regime der schwachen und starken Kopplung T1 - Reduction of the mode volume of microcavities in the regime of weak and strong coupling N2 - Ziel dieser Arbeit war die Reduktion des Modenvolumens in Mikrokavitäten. Ein klei-nes Modenvolumen ist für die Stärke der Licht-Materie-Wechselwirkung wesentlich, weil dadurch z.B. die Schwelle für kohärente Lichtemission gesenkt werden kann [1]. Der Purcell-Faktor, ein Maß für die Rate der spontanen Emission, wird durch ein mi-nimales Modenvolumen maximiert [2, 3]. Im Regime der starken Kopplung steigt mit Abnahme des Modenvolumens die Rabi-Aufspaltung und damit die maximale Tempe-ratur, bei der das entsprechende Bauteil funktioniert [4, 5]. Spektrale Eigenschaften treten deutlicher hervor und machen die Funktion der Struktur stabiler gegenüber stö-renden Einflüssen. Der erste Ansatz, das Modenvolumen einer Mikrokavität zu reduzieren, zielte darauf, die Eindringtiefe der optischen Mode in die beiden Bragg-Spiegel einer Mikrokavität zu minimieren. Diese hängt im Wesentlichen vom Kontrast der Brechungsindizes der alternierenden Schichten eines Bragg-Spiegels ab. Ein maximaler Kontrast kann durch alternierende Schichten aus Halbleiter und Luft erreicht werden. Theoretisch kann auf diese Weise das Modenvolumen in vertikaler Richtung um mehr als einen Faktor 6 im Vergleich zu einer konventionellen Galliumarsenid/Aluminiumgalliumarsenid Mikro-kavität reduziert werden. Zur Herstellung dieser Strukturen wurden die aluminiumhal-tigen Schichten einer Galliumarsenid/Aluminiumgalliumarsenid Mikrokavität voll-ständig entfernt und so der Brechungsindexkontrast maximiert. Die Schichtdicken sind dabei entsprechend anzupassen, um weiterhin die Bragg-Bedingung zu erfüllen. Die Herstellung einer freitragenden Galliumarsenid/Luft-Mikrokavität konnte so erfolg-reich demonstriert werden. Die Photolumineszenz der Bauteile weist diskrete Reso-nanzen auf, deren Ursache in der begrenzten lateralen Größe der Strukturen liegt. In leistungsabhängigen Messungen kann durch ausgeprägtes Schwellenverhalten und auf-lösungsbegrenzte spektrale Linienbreiten Laseremission nachgewiesen werden. Wegen der Abhängigkeit der photonischen Resonanz vom genauen Brechungsindex in den freitragenden Schichten eignen sich die vorgestellten Strukturen auch zur Bestimmung von Brechungsindizes. Alternativ kann die photonische Resonanz durch Einbringen verschiedener Gase in die freitragenden Schichten abgestimmt werden. Beides konnte mit Erfolg nachgewiesen werden. Der Nachteil dieses Ansatzes liegt vor allem darin, dass ein elektrischer Betrieb der so gefertigten Strukturen nicht möglich ist. Hier bie-tet der zweite Ansatz eine bestmögliche Lösung. Das alternative Konzept für den oberen Bragg-Spiegel einer konventionellen Galli-umarsenid/Aluminiumgalliumarsenid Mikrokavität ist das der Tamm-Plasmonen. Der photonische Einschluss wird hier durch einen unteren Bragg-Spiegel und einem dün-nen oberen Metallspiegel erreicht. An der Grenzfläche vom Halbleiter zum Metall bil-den sich die optischen Tamm-Plasmonen aus. Dabei kann der Metallspiegel gleichzei-tig auch als elektrischer Kontakt genutzt werden. Die Kopplung von Quantenfilm-Exzitonen an optische Tamm-Plasmonen wird in dieser Arbeit erfolgreich demons-triert. Im Regime der starken Kopplung wird mittels Stark-Effekt eine vollständige elektro-optische Verstimmung, d.h. vom Bereich positiver bis hin zur negativen Ver-stimmung, des Quantenfilm-Exzitons gegenüber der Tamm-Plasmonen Mode nachge-wiesen. Die Messungen bestätigen entsprechend des reduzierten Modenvolumens (Faktor 2) eine erhöhte Rabi-Aufspaltung. Dabei sind die spektrale Verschiebung und die Oszillatorstärke des Quantenfilm-Exzitons konsistent mit der Theorie und mit Li-teraturwerten. Der wesentliche Nachteil des Ansatzes liegt in der maximalen Güte, die durch den großen Extinktionskoeffizienten des Metallspiegels limitiert ist. N2 - The goal of this thesis was to reduce the mode volume of microcavities. A reduced mode volume increases the strength of light matter coupling, which leads to lower lasing thresholds. The Purcell-factor, a measure for the spontaneous emission rate, is at maximum for a minimum mode volume. In the regime of strong coupling, a smaller mode volume leads to a larger Rabi splitting, which in turn increases the maximum operating temperature of a given device. Spectral features become more pronounced and the microcavity is more robust against disturbances caused by environmental fluctuations. The first approach to reduce the mode volume of a microcavity addresses the penetration depth of the optical field into the Bragg mirrors of a microcavity. It mainly depends on the refractive index contrast of the alternating layers of the Bragg mirror. The maximum contrast is realized by alternating layers consisting of semiconductor and air. Based on theoretical calculations, the mode volume can be decreased in the vertical direction by a factor of 6 compared to a conventional gallium arsenide/aluminum gallium arsenide microcavity. Therefore the aluminum containing layers of a conventional gallium arsenide/aluminum gallium arsenide microcavity are completely removed. The layer thicknesses have to be adjusted to still satisfy the Bragg condition. The successful fabrication of high quality gallium arsenide/air microcavities is demonstrated. Photoluminescence measurements reveal discrete resonances due to the finite dimensions of the structure. Power dependent measurements show a distinct threshold which indicates – combined with the resolution limited spectral linewidth – photon lasing. The dependence of the photonic resonance on the exact value of the refractive index of the Bragg mirror is used to determine the refractive index of gases channeled into the selfsupporting air layers. Alternatively, the photonic resonance of the structure can be tuned by injecting gas into the air layers. Both features could be demonstrated successfully. The structure not being suitable for electrical operation is the main disadvantage of this approach. In this case the second concept is the better solution. The alternative approach for the upper Bragg mirror of a conventional gallium arsenide/aluminum gallium arsenide microcavity exploits the Tamm-Plasmons. To achieve photonic confinement, the cavity is sandwiched between a lower Bragg mirror and a thin metal top mirror. At the semiconductor-metal interface, photonic Tamm-Plasmon states appear. Additionally, the metal mirror is used as electrical contact. The coupling of the quantum well exciton to the Tamm-Plasmon is presented. In the strong coupling regime, a complete electro-optical resonance tuning (i.e. from positive to negative tuning of the exciton resonance compared to the Tamm-Plasmon state) is demonstrated, exploiting the quantum confined Stark effect. The measurements confirm an increased Rabi splitting due to the reduced mode volume (factor of 2 reduced mode volume). Spectral shift and oscillator strength of the exciton in the electric field are consistent with theory and literature values. The most critical point of this approach lies within the limited Q-factor due to the large extinction coefficient of the top metal layer. KW - Galliumarsenidlaser KW - Optischer Resonator KW - Mikrooptik KW - Moden KW - Mikrokavität KW - Licht-Materie-Wechselwirkung KW - GaAs/Luft-Braggspiegel KW - Tamm-Plasmonen Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144558 ER -