TY - THES A1 - Weigand, Frank T1 - XANES und MEXAFS an magnetischen Übergangsmetalloxiden : Entwicklung eines digitalen Lock-In-XMCD-Experiments mit Phasenschieber T1 - XANES and MEXAFS studies of magnetic transition metal oxides Development of a digital Lock-In XMCD experiment with phase retarder N2 - In dieser Arbeit werden drei Lanthanmanganat-Systeme mittels SQUID-(Superconducting Quantum Interference Device) Magnetometrie und XMCD-(X-ray Magnetic Circular Dich-roism) Messungen an den jeweiligen Absorptionskanten (XANES: X-ray Absorption Near Edge Structure) sowie im kantenfernen Bereich (MEXAFS: Magnetic Extended X-ray Ab-sorption Fine Structure) im Hinblick auf die Klärung ihrer magnetischen (Unter-)Struktur untersucht. Bei Lanthanmanganaten wird sowohl im Verlauf des spingemittelten als auch spinabhängigen Absorptionskoeffizienten an der Mn K Kante immer eine energetisch über 40eV ausgedehnte Doppelstruktur beobachtet. Durch Vergleich mit theoretischen Bandstrukturrechnungen und Messungen an Referenzsystemen lassen sich diese Strukturen auf zwei energetisch getrennte, resonante Übergänge in leere Mn 4p Zustände zurückführen. Die Ursachen liegen in der Kristallstruktur der Lanthanmanganate und damit ihrer Bandstruktur begründet. XMCD-Messungen an den La L2,3 Kanten zeigen, dass dieses Element zur Gesamtmagnetisierung dieser Verbindungen nur ein unerhebliches Moment beiträgt und daher in einer Xenon-ähnlichen Elektronenkonfiguration vorliegt. Durch die interatomare Coulombwechselwirkung der nahezu unbesetzten La 5d Zustände mit den magnetisch aktiven Ionen im Kristall dienen XMCD-Messungen an den La L2,3 Kanten als Sonde für die magnetische Lanthanumgebung. Ähnliches gilt für die entsprechenden MEXAFS. Der proportionale Zusammenhang der Größe der MEXAFS mit dem Spinmoment der Nachbarionen besitzt auch bei den Lanthanmanganat-Systemen mit den stark hybridisierten Elektronen der Mn 3d Schale Gültigkeit. Der Spinmoment-Korrelationskoeffizient aSpin gilt auch hier, was eine weitere Bestätigung des MEXAFS-Modells auch für oxidische Systeme ist. Im dotierten System La1.2Nd0.2Sr1.6Mn2O7 koppelt das Neodymmoment innerhalb einer Doppellage antiferromagnetisch zum Mn-Untergitter. Durch die Neodym-Dotierung am La/Sr-Platz im Kristall ist die ferromagnetische Kopplung der Doppellagen untereinander abge-schwächt und die Rückkehr in die antiferromagnetische Phase nach dem Abschalten des äußeren Magnetfeldes damit erleichtert. Das Mn-Bahnmoment ist von nahezu verschwindender Größe („gequencht“). Das System La1.2Sr1.8Mn2-xRuxO7 zeigt mit zunehmendem Rutheniumgehalt eine Erhöhung der Curie-Temperatur, was bei Ruddlesden-Popper Phasen zum ersten Mal beobachtet wurde. Das Ru-Untergitter und das Mn-Gitter sind zueinander antiparallel gekoppelt. Durch Bestimmung der Valenzen von Mn und Ru wird ein dem Superaustausch ähnliches Kopplungsmodell entworfen, womit der Anstieg in der Curie-Temperatur erklärbar ist. Das neu entwickelte XMCD-Experiment auf Basis eines Phasenschiebers und digitaler Sig-nalaufbereitung durch eine Lock-In Software besitzt ein Signal-Rausch Verhältnis in der Nähe der Photonenstatistik und liefert einen großen Zeit- und Qualitätsgewinn gegenüber Messmethoden mit Magnetfeldwechsel. Auf teure analoge Lock-In Messverstärker kann verzichtet werden. Zukünftig erweitert sich mit diesem Aufbau die für XMCD-Experimente zugängliche Anzahl an Synchrotronstrahlplätzen. Diese Experimente sind jetzt auch mit linear polarisierter Röntgenstrahlung an Wiggler/Undulator Strahlplätzen und zukünftigen XFELs (X-ray Free Electron Laser) durchführbar. N2 - In this work three Lanthanum Manganate systems are investigated in terms of their magnetic (sub) structures. These investigations are done with SQUID- (Superconducting Quantum Interference Device) magnetometry and XMCD- (X-ray Magnetic Circular Dichroism) measurements at the respective absorption edges (XANES: X-ray Absorption Near Edge Structure) as well as in the MEXAFS (Magnetic Extended X-ray Absorption Fine Structure) range. For Lanthanum Manganates at the Mn K edge there is always seen a double peak structure in the shape of the spin dependent and spin averaged absorption coefficient, which is energetically expanded over more than 40eV. These structures are ascribed to two energetic separated, resonant transitions into empty Mn 4p states by comparing with theoretical band structure calculations and measurements of reference systems and are caused in the crystal structure of the Lanthanum Manganates and with it their band structure. XMCD-measurements at the La L2,3 edges show that this element adds only a negligible magnetic moment to the total magnetisation and La is therefore in a Xenon-like electronic configuration. These measurements probe the magnetic neighbourhood of the Lanthanum in the crystal due to the interatomic Coulomb interaction of the almost empty La 5d states with the magnetic active ions like the MEXAFS. The proportionality of the MEXAFS amplitude with the spin-moment of the neighboring ions is even valid here for Lanthanum Manganate systems with their strongly hybridized Mn 3d shell electrons. The validity of the correlation coefficient of the spin-moment aSpin confirms the MEXAFS-model also for oxide systems. In the doped system La1.2Nd0.2Sr1.6Mn2O7 the Neodymium moment couples antiferromagnetically with the Mn-sublattice within a double layer. The ferromagnetic coupling of the double layers is weak among each other due to the Nd doping at the La/Sr crystal position. Therefore the reversion into the antiferromagnetic phase is relieved after switching off the external magnetic field. The orbital moment of Mn is almost vanishing (“quenched”). The system La1.2Sr1.8Mn2-xRuxO7 shows an increasing of the Curie-temperature with an increase of the Ruthenium doping level, observed for the first time for Ruddlesden-Popper phases. The Ru-sublattice is antiparallel coupled to the Mn-sublattice. A superexchange like coupling model is composed through determination of the valences of Mn and Ru, also explaining the increase of the Curie-temperature. A new XMCD-experiment is developed with phase retarder and digital signal processing through Lock-In software with signal to noise ratio nearby photon statistics. This experiment provides a huge benefit in time and quality compared to XMCD-measurement with changing the external magnetic field. Also there is no need of expensive Lock-In analog amplifiers. Now the number of synchrotron beamlines for XMCD-measurements are increased and XMCD-experiments are realizable also at Wiggler/Undulator beamlines with linear polarized radiation and in future at XFEL (X-ray Free Electron Laser). KW - Lanthanoxid KW - Manganate KW - XANES KW - EXAFS KW - Röntgenzirkulardichroismus KW - Perowskite KW - CMR-Systeme KW - Phasenschieber KW - digitaler Lock-In KW - XMCD KW - perovskites KW - CMR-systems KW - phase retarder KW - digital Lock-In Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-8849 ER - TY - THES A1 - Gold, Stefan T1 - Winkel- und Temperaturabhängigkeit der magnetokristallinen Anisotropieenergie und der mikroskopischen magnetischen Momente des ferromagnetischen Halbmetalls CrO2 T1 - Angle- and temperature dependence of the magnetocrystalline anisotropy energy and the microscopic magnetic moments of the ferromagnetic half metal CrO2 N2 - Im Rahmen dieser Arbeit wurden die magnetischen Eigenschaften des Halbmetalls CrO2 untersucht. CrO2 hat in den letzten Jahren erneut ein sehr starkes Interesse erfahren. Der Grund hierfür liegt darin, dass dieses Material, aufgrund seiner theoretisch vorhergesagten und inzwischen nachgewiesenen Spinpolarisation von nahezu 100 % an der Fermikante und seiner metastabilen Eigenschaften, ein stark diskutierter Kandidat für Spintronic-Anwendungen wie den Quantencomputer ist. Die Möglichkeit der Spininjektion ist für CrO2 gegeben und in der Zwischenzeit auch erfolgreich umgesetzt worden. Die Untersuchungen zielten auf eine Erklärung für die intrinsischen Eigenschaften wie magnetokristalline Anisotropie, magnetischer Dipolterm und dem eigentlich gequenchten Bahnmoment. Die Untersuchungen fanden an den Cr L2,3 und an der O K Kante statt. Insbesondere für die Auswertung an den Cr L2,3-Kanten war es notwendig, mit einer neuartigen Auswertemethodik sämtliche aufgenommenen Daten zu analysieren, da eine herkömmliche Summenregelauswertung leider nicht durchgeführt werden konnte. Der Grund hierfür lag in der zu geringen L2,3-Aufspaltung des leichten 3d-Übergangmetalls Cr. Mit Hilfe der so genannten Momentenanalyse war es nun möglich, die überlappenden Strukturen voneinander zu separieren, und darüber hinaus auch verschiedene Anteile der Bandstruktur verschiedenen spektralen Beiträgen zuzuordnen. Die Ergebnisse an CrO2 zeigten eine sehr starke Abhängigkeit des magnetischen Bahnmomentes, der Summe von Spin und magnetischem Dipolterm sowie der magnetokristallinen Anisotropieenergie vom Winkel zwischen den rutilen a- und c-Achsen. Noch mehr als das Gesamtbahnmoment zeigen zwei, mit Hilfe der Momentenanalyse separierbare, spektrale Beiträge starke Änderungen der einzelnen Bahnmomente. Dieses unerwartete und ausgeprägte Verhalten konnte mittels eines Vergleichs mit den Sauerstoff K-Kanten XMCD-Daten bestätigt werden, was auf eine sehr starke Hybridisierung der beiden Zustände schließen lässt. Die Trennung der stark anisotropen Summe von Spin-Moment und TZ-Term über die Summenregel für den magnetischen Dipolterm liefert eine Größenordnung des TZ-Terms, wie er bis zu diesem Zeitpunkt nicht vorgefunden wurde. Ein Vergleich der magnetokristallinen Anisotropieenergie, gewonnen durch die Messung von elementspezifischen Hysteresekurven mit Hilfe des XMCD-Effektes, mit dem Brunomodell, das eine magnetisch leichte Richtung für die Achse mit dem größten Bahnmoment vorhersagt, kommt zu keinem positiven Ergebnis. Erst die von G. van der Laan aufgezeigte Erweiterung, in der auch der TZ-Term mit aufgenommen ist, liefert für das System CrO2 ein quantitativ übereinstimmendes Ergebnis der MAE mit den gemessenen experimentellen Momenten. Erwähnenswert in diesem Zusammenhang ist die Tatsache, dass das Bahnmoment und der magnetische Dipolterm unterschiedliche leichte Richtungen bevorzugen und beide Anteile fast gleich groß sind, wobei der magnetische Dipolterm die Überhand hat. In einem zweiten Teil der Arbeit wurde nun auch eine Temperaturabhängigkeit untersucht. Ziel war es, Aussagen über die Entstehung von Bahnmomenten, Dipolterm und MAE in Abhängigkeit des vorliegenden Spinmomentes zu gewinnen und diese mit vorhandenen theoretischen Modellen zu vergleichen. Das gemessene Spinmoment wurde mit SQUID-Daten verglichen und zeigte eine qualitative Übereinstimmung. Die extrahierten Bahnmomente zeigten wie der magnetische Dipolterm ein identisches Temperaturverhalten wie das Spinmoment. Dies ist ein Beweis, dass beide Momente in einem solchen System nur durch eine Kopplung mit dem Spinmoment entstehen und durch dieses verursacht sind. Im Weiteren konnte auch eine quadratische Abhängigkeit der MAE vom Spinmoment nachgewiesen werden. Dieses von G. van der Laan und in Vorarbeiten von P. Bruno vorhergesagte Verhalten konnte erstmalig in dieser Arbeit verifiziert werden. Zusammenfassend lässt sich sagen, dass in dieser Arbeit das ungewöhnliche magnetische Verhalten, insbesondere die Winkelabhängigkeit der magnetischen Momente, durch die Kombination von XAS- und XMCD-Spektroskopie, mit der Verwendung der Momentenanalyse sowie der Untersuchung durch elementspezifische Hystereskurven, ein geschlossenes Bild des Probensystems CrO2 aufgezeigt werden konnte. Das Gesamtbild, das sich ergeben hat, zeigt ganz deutlich auf, dass eine Bandstrukturbeschreibung das gefundene Verhalten erklären kann. Die allgemein vorherrschende, und sicherlich im ersten Moment deutlich intuitivere Vorstellung, dass man im Falle von CrO2 eine Art ionische Bindung hätte, mit einer d2-Konfiguration und erwarteten 2 µB magnetischem Moment am Cr-Platz kann insbesondere die Temperaturabhängigkeit der Anisotropieenergie nicht erklären. Auch in diesem Zusammenhang liefert das Bandmodell eine sehr gute Beschreibung. N2 - In this work, the magnetic properties of the half metal CrO2 were analyzed. CrO2 has attracted a very strong interest due to its theoretical predicted and meantime proven spin polarization of near 100 % at the Fermi-edge, which makes it a strong candidate for a spintronic device or quantum computing. Even a spin injection is possible for CrO2 and has been shown in literature. The aim of this work was to examine, by use of XMCD-effect and additional measurements with SQUID-magnetometer, spin moments and hysteresis loops, but also to clarify the intrinsic properties like magnetocrystalline anisotropy, magnetic dipole term, and the nearly quenched orbital moment. The XMCD-measurements were done at the Cr L2,3- and the O K-edge. Especially for the analysis at the Cr L2,3-edges it was necessary to work with a completely new analysis method, because a “normal” sum rule analysis was not possible. The reason for that is the very small L2,3-exchange energy for the light 3d-transition metal CrO2. By the use of the so called moment analysis it is possible to separate the two transitions from each other and even more to address different features of the XMCD-spectra to different parts of the CrO2-band structure. The idea of this new analysis method for XMCD-spectra is the opportunity to fit spectral forms and analyze these with the use of the ground state moments. With this method, one can draw conclusions, even if there is a spectral overlap between L2 and L3 edges like for CrO2. The results for CrO2 show a strong dependence of the orbital, the sum of spin moment and magnetic dipole term, and the magnetocrystalline anisotropy energy from the angle between rutile a- and c-axis. Even more than the complete orbital moment, two separable and different spectral features show strong alterations of the different orbital moments. This unexpected and pronounced behaviour was approved by a comparison with the O K-edge XMCD spectra, indicating a strong hybridisation of both states. The strong anisotropy of the O K-edge XAS spectra give comparable results to literature. The quantitative analysis of the strong anisotropic sum of spin moment and TZ-term by the use of the magnetic dipole sum rule results in an order of magnitude, which was not found up to now. The comparison of the magnetocrystalline anisotropy energy with the Bruno model, has a negative result. Taking into account the TZ.term, the extension discussed by G. van der Laan, CrO2 shows a good and qualitative agreement between MAE and the measured magnetic moments. Mentionable in this context is the fact, that orbital moment and TZ-term prefer different easy axis. They nearly cancel out each other, but TZ-term is a bit stronger. This might be the reason why CrO2 changes its magnetic easy axis for thin films, because due to the reduction of nearest neighbours and the therefore enhanced orbital moment in thin films, this unstable disequilibrium is distorted. In a second part of this work the temperature dependence was investigated. The aim was to clarify the origin of the orbital moment, dipole term, and MAE in dependence of the spin moment and compare the results to different theoretical models. The measured spin moment was first of all compared with SQUID data. It shows a qualitative agreement, but it shows not the quantitative same behaviour. This was attributed to two reasons, the element specifity of the XMCD effect and its surface sensitivity. The extracted orbital moments and the magnetic dipole term show the same temperature dependence as the spin moment. This is a clear proof, that both, orbital moment and TZ-term, are generated by a coupling to the spin moment. In the following a dependence of the squared measured spin moment could be found for the MAE. This was predicted by Bruno and van der Laan and could be proven for the first time. Recapitulating one can say, that in this work the unusual magnetic behaviour, especially the angle dependence of the magnetic moments, was shown a conclusive description of CrO2 by the combination of XAS and XMCD together with the new moment analysis and the use of element specific hysteresis loops. For the first time the magnetic dipole term could be identified as the reason of the magnetocrystalline anisotropy energy. This proves the model of G. van der Laan, even verified by the temperature dependence for a wide temperature range. A strong Cr – O hybridisation was found, which shows in a similar structure and temperature dependence of the orbital moments for Cr L2,3 and the XMCD effect at O – K edge. The general view shows clearly, that a band structure description can explain the measured dependencies. The intuitional and widely common belief of an ionic binding for CrO2, two electrons at the Cr with a magnetic moment of 2 µB, cannot elucidate especially the temperature dependence of the MAE, which is again good represented by a band structure description. KW - Chromoxid KW - Magnetische Eigenschaft KW - Magnetismus KW - XMCD KW - CrO2 KW - Anisotropieenergie KW - Halbmetall KW - magnetism KW - XMCD KW - CrO2 KW - anisotropy energy KW - half metal Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-20141 ER - TY - THES A1 - Tcakaev, Abdul-Vakhab T1 - Soft X-ray Spectroscopic Study of Electronic and Magnetic Properties of Magnetic Topological Insulators T1 - Spektroskopische Untersuchung der elektronischen und magnetischen Eigenschaften magnetischer topologischer Isolatoren mit weicher Röntgenstrahlung N2 - After the discovery of three-dimensional topological insulators (TIs), such as tetradymite chalcogenides Bi$_2$Se$_3$, Bi$_2$Te$_3$ and Sb$_2$Te$_3$ – a new class of quantum materials characterized by their unique surface electronic properties – the solid state community got focused on topological states that are driven by strong electronic correlations and magnetism. An important material class is the magnetic TI (MTI) exhibiting the quantum anomalous Hall (QAH) effect, i.e. a dissipationless quantized edge-state transport in the absence of external magnetic field, originating from the interplay between ferromagnetism and a topologically non-trivial band structure. The unprecedented opportunities offered by these new exotic materials open a new avenue for the development of low-dissipation electronics, spintronics, and quantum computation. However, the major concern with QAH effect is its extremely low onset temperature, limiting its practical application. To resolve this problem, a comprehensive understanding of the microscopic origin of the underlying ferromagnetism is necessary. V- and Cr-doped (Bi,Sb)$_2$Te$_3$ are the two prototypical systems that have been widely studied as realizations of the QAH state. Finding microscopic differences between the strongly correlated V and Cr impurities would help finding a relevant model of ferromagnetic coupling and eventually provide better control of the QAH effect in these systems. Therefore, this thesis first focuses on the V- and Cr-doped (Bi,Sb)$_2$Te$_3$ systems, to better understand these differences. Exploiting the unique capabilities of x-ray absorption spectroscopy and magnetic circular dichroism (XAS/XMCD), combined with advanced modeling based on multiplet ligand-field theory (MLFT), we provide a detailed microscopic insight into the local electronic and magnetic properties of these systems and determine microscopic parameters crucial for the comparison with theoretical models, which include the $d$-shell filling, spin and orbital magnetic moments. We find a strongly covalent ground state, dominated by the superposition of one and two Te-ligand-hole configurations, with a negligible contribution from a purely ionic 3+ configuration. Our findings indicate the importance of the Te $5p$ states for the ferromagnetism in (Bi, Sb)$_2$Te$_3$ and favor magnetic coupling mechanisms involving $pd$-exchange. Using state-of-the-art density functional theory (DFT) calculations in combination with XMCD and resonant photoelectron spectroscopy (resPES), we reveal the important role of the $3d$ impurity states in mediating magnetic exchange coupling. Our calculations illustrate that the kind and strength of the exchange coupling varies with the impurity $3d$-shell occupation. We find a weakening of ferromagnetic properties upon the increase of doping concentration, as well as with the substitution of Bi at the Sb site. Finally, we qualitatively describe the origin of the induced magnetic moments at the Te and Sb sites in the host lattice and discuss their role in mediating a robust ferromagnetism based on a $pd$-exchange interaction scenario. Our findings reveal important clues to designing higher $T_{\text{C}}$ MTIs. Rare-earth ions typically exhibit larger magnetic moments than transition-metal ions and thus promise the opening of a wider exchange gap in the Dirac surface states of TIs, which is favorable for the realization of the high-temperature QAH effect. Therefore, we have further focused on Eu-doped Bi$_2$Te$_3$ and scrutinized whether the conditions for formation of a substantial gap in this system are present by combining spectroscopic and bulk characterization methods with theoretical calculations. For all studied Eu doping concentrations, our atomic multiplet analysis of the $M_{4,5}$ x-ray absorption and magnetic circular dichroism spectra reveals a Eu$^{2+}$ valence, unlike most other rare earth elements, and confirms a large magnetic moment. At temperatures below 10 K, bulk magnetometry indicates the onset of antiferromagnetic ordering. This is in good agreement with DFT results, which predict AFM interactions between the Eu impurities due to the direct overlap of the impurity wave functions. Our results support the notion of antiferromagnetism coexisting with topological surface states in rare-earth doped Bi$_2$Te$_3$ and corroborate the potential of such doping to result in an antiferromagnetic TI with exotic quantum properties. The doping with impurities introduces disorder detrimental for the QAH effect, which may be avoided in stoichiometric, well-ordered magnetic compounds. In the last part of the thesis we have investigated the recently discovered intrinsic magnetic TI (IMTI) MnBi$_6$Te$_{10}$, where we have uncovered robust ferromagnetism with $T_{\text{C}} \approx 12$ K and connected its origin to the Mn/Bi intermixing. Our measurements reveal a magnetically intact surface with a large moment, and with FM properties similar to the bulk, which makes MnBi$_6$Te$_{10}$ a promising candidate for the QAH effect at elevated temperatures. Moreover, using an advanced ab initio MLFT approach we have determined the ground-state properties of Mn and revealed a predominant contribution of the $d^5$ configuration to the ground state, resulting in a $d$-shell electron occupation $n_d = 5.31$ and a large magnetic moment, in excellent agreement with our DFT calculations and the bulk magnetometry data. Our results together with first principle calculations based on the DFT-GGA$+U$, performed by our collaborators, suggest that carefully engineered intermixing plays a crucial role in achieving a robust long-range FM order and therefore could be the key for achieving enhanced QAH effect properties. We expect our findings to aid better understanding of MTIs, which is essential to help increasing the temperature of the QAH effect, thus facilitating the realization of low-power electronics in the future. N2 - Nach der Entdeckung von dreidimensionalen topologischen Isolatoren (TIs), einer neuen Klasse von Quantenmaterialien, die sich durch ihre einzigartigen elektronischen Oberflächeneigenschaften auszeichnen – und zu denen beispielsweise die Tetradymit-Di\-chal\-kogenide Bi2Se3, Bi2Te3 und Sb2Te3 gehören –, gerieten zunehmend topologische Zustände, deren Eigenschaften von starken elektronische Korrelationen und Magnetismus bestimmt werden, in den Fokus aktueller Festkörperforschung. Eine wichtige Materialklasse bilden die magnetischen TI (MTI), die einen quantenanomalen Hall-Effekt (QAH) aufweisen, d.h. eine dissipationsfreie, quantisierte Randzustandsleitfähigkeit in Abwesenheit eines externen Magnetfeldes, die aus dem Zusammenspiel von Ferromagnetismus und einer topologisch nicht-trivialen Bandstruktur resultiert. Die beispiellosen Möglichkeiten, die solche neuen, exotischen Materialien bieten, eröffnen einen neuen Weg für die Entwicklung von Elektronik mit geringer Verlustleistung, sowie von Spintronik und von Quanten\-com\-pu\-tern. Das Hauptproblem des QAH-Effekts ist jedoch die extrem niedrige Temperatur, bei der er auftritt, was seine praktische Anwendung einschränkt. Um dieses Problem zu lösen, ist ein umfassendes Verständnis des mikroskopischen Ursprungs des zugrunde liegenden Ferromagnetismus erforderlich. V- und Cr-dotiertes (Bi,Sb)2Te3 sind die beiden prototypischen Systeme, die als Realisierungen des QAH-Zustands umfassend untersucht wurden. Die Suche nach mikro\-skopischen Unterschieden zwischen den stark korrelierten V- und Cr-Dotieratomen würde helfen, ein relevantes Modell für die ferromagnetische Kopplung zu finden und schließlich eine bessere Kontrolle des QAH-Effekts in diesen Systemen zu ermöglichen. Daher konzentriert sich diese Arbeit zunächst auf die V- und Cr-dotierten (Bi,Sb)2Te3-Systeme, um diese Unterschiede besser zu verstehen. Unter Ausnutzung der einzigartigen Möglich\-keiten der Röntgenabsorptionsspektroskopie und des magnetischen Zirkulardichroismus (XAS/XMCD), kombiniert mit fortschrittlicher Modellierung auf der Grundlage der Multiplett-Liganden-Feld-Theorie (MLFT), geben wir einen detaillierten mi\-kro\-sko\-pi\-schen Einblick in die lokalen elektronischen und magnetischen Eigenschaften dieser Systeme und bestimmen mikroskopische Parameter, die für den Vergleich mit theoretischen Modellen entscheidend sind. Wir finden einen stark kovalenten Grundzustand, der von der Überlagerung von Ein- und Zwei-Te-Liganden-Loch-Konfigurationen dominiert wird, mit einem vernachlässigbaren Beitrag einer rein ionischen 3+ Konfiguration. Unsere Ergebnisse weisen auf die Bedeutung der Te 5p$−Zustände für den Ferromagnetismus in(Bi,Sb)\(2Te3 hin und deuten auf magnetische Kopplungsmechanismen mit pd-Austausch hin. Unter Verwendung modernster Dichtefunktionaltheorie (DFT)-Rechnungen in Kombination mit XMCD und resonanter Photoelektronenspektroskopie (resPES) demonstrieren wir die wichtige Rolle der 3d-Dotieratomzustände bei der Vermittlung der magnetischen Austauschkopplung. Unsere Berechnungen zeigen, dass die Art und Stärke der Austauschkopplung mit der 3d-Schalenbesetzung der Dotieratome variiert. Wir stellen eine Abschwächung der ferromagnetischen Eigenschaften bei Erhöhung der Dotierungskonzentration fest, ebenso wie bei Substitution von Bi an der Sb-Stelle. Schließlich beschreiben wir qualitativ den Ursprung der induzierten magnetischen Momente an den Te- und Sb-Stellen im Wirtsgitter und diskutieren ihre Rolle bei der Vermittlung eines robusten Ferromagnetismus auf der Grundlage des pd$−Austauschwechselwirkungsszenarios. Unsere Ergebnisse liefern wichtige Anhaltspunkte für die Entwicklung von MTIsmithöherem\(TC. Seltenerdionen weisen typischerweise größere magnetische Momente auf als Über\-gangsmetall-Ionen und legen daher die Öffnung einer größeren Austausch\-lücke in den Dirac-Ober\-flächenzuständen von TIs nahe, was für den Hochtemperatur-QAH-Effekt günstig ist. Daher haben wir uns weiter auf Eu-dotiertes Bi2Te3 konzentriert und untersucht, ob die Bedingungen für die Bildung einer substantiellen Lücke in diesem System gegeben sind, indem wir spektroskopische und Bulk-Charakterisierungsmethoden mit theoretischen Berechnungen kombiniert haben. Für alle untersuchten Eu\hyp{}Dotierungs\-kon\-zen\-trationen zeigt unsere atomare Multiplettanalyse der M4,5-Röntgenabsorptions- und der magnetischen Zirkulardichroismus-Spektren eine Eu2+-Valenz, im Gegensatz zu den meisten anderen Seltenen Erden, und bestätigt ein großes magnetisches Moment. Bei Temperaturen unter 10 K zeigt die Magnetometrie das Einsetzen einer antiferromagnetischen Ordnung an. Dies steht in guter Übereinstimmung mit DFT-Ergebnissen, die AFM-Wechselwirkungen zwischen den Eu-Dotieratomen aufgrund des direkten Überlapps der Wellenfunktionen der Dotieratome vorhersagen. Unsere Ergebnisse unterstützen die Annahme von Antiferromagnetismus, der mit topologischen Oberflächenzuständen in mit Seltenerdatomen dotiertem Bi2Te3 koexistiert, und bestätigen das Potenzial einer solchen Dotierung, einen antiferromagnetischen TI mit exotischen Quanteneigenschaften zu erzeugen. Dotierung führt zu einer für den QAH-Effekt nachteiligen Unordnung, die in stöchiometrischen, gut geordneten magnetischen Verbindungen vermieden werden kann. Im letzten Teil der Arbeit haben wir den kürzlich entdeckten, intrinsischen magnetischen TI (IMTI) MnBi6Te10 untersucht, in dem wir robusten Ferromagnetismus mit TC≈12 K beobachtet und seinen Ursprung mit Mn/Bi-Antilagendefekte (Substitution von Mn auf Bi-Plätzen und umgekehrt) in Verbindung gebracht haben. Unsere Messungen zeigen eine magnetisch intakte Oberfläche mit einem großen Moment und mit FM-Eigenschaften, die denen im Inneren des Materials ähnlich sind, was MnBi6Te10 zu einem vielversprechenden Kandidaten für den QAH-Effekt bei erhöhten Temperaturen macht. Darüber hinaus haben wir mit Hilfe eines fortgeschrittenen ab initio MLFT-Ansatzes die Grundzustandseigenschaften von Mn bestimmt und einen vorherrschenden Beitrag der d5-Konfiguration zum Grundzustand festgestellt, was zu einer d-Schalen-Elektronenbesetzung nd=5.31 und einem großen magnetischen Moment führt, in hervorragender Übereinstimmung mit unseren DFT-Berechnungen und den Daten der Magnetometrie. Unsere Ergebnisse, kombiniert mit den auf DFT-GGA+U basierenden First-Principle-Berechnungen, die von Kollegen durchgeführt wurden, deuten darauf hin, dass sorgfältig herbeigeführte Antilagendefekte eine entscheidende Rolle bei der Erzielung einer robusten langreichweitigen FM-Ordnung spielen und daher der Schlüssel zur Er\-zie\-lung verbesserter QAH\hyp{}Eigenschaften sein könnten. Wir erwarten, dass unsere Ergebnisse zu einem besseren Verständnis von MTIs beitragen werden, was wiederum die Erhöhung der Temperatur des QAH-Effekts und damit die Realisierung von Low-Power-Elektronik in der Zukunft erleichtern wird. KW - Topologischer Isolator KW - Röntgenspektroskopie KW - x-ray spectroscopy KW - topological insulators KW - XMCD Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-303786 ER - TY - JOUR A1 - Han, Luyang A1 - Wiedwald, Ulf A1 - Biskupek, Johannes A1 - Fauth, Kai A1 - Kaiser, Ute A1 - Ziemann, Paul T1 - Nanoscaled alloy formation from self-assembled elemental Co nanoparticles on top of Pt films JF - Beilstein Journal of Nanotechnology N2 - The thermally activated formation of nanoscale CoPt alloys was investigated, after deposition of self-assembled Co nanoparticles on textured Pt(111) and epitaxial Pt(100) films on MgO(100) and SrTiO3(100) substrates, respectively. For this purpose, metallic Co nanoparticles (diameter 7 nm) were prepared with a spacing of 100 nm by deposition of precursor-loaded reverse micelles, subsequent plasma etching and reduction on flat Pt surfaces. The samples were then annealed at successively higher temperatures under a H2 atmosphere, and the resulting variations of their structure, morphology and magnetic properties were characterized. We observed pronounced differences in the diffusion and alloying of Co nanoparticles on Pt films with different orientations and microstructures. On textured Pt(111) films exhibiting grain sizes (20–30 nm) smaller than the particle spacing (100 nm), the formation of local nanoalloys at the surface is strongly suppressed and Co incorporation into the film via grain boundaries is favoured. In contrast, due to the absence of grain boundaries on high quality epitaxial Pt(100) films with micron-sized grains, local alloying at the film surface was established. Signatures of alloy formation were evident from magnetic investigations. Upon annealing to temperatures up to 380 °C, we found an increase both of the coercive field and of the Co orbital magnetic moment, indicating the formation of a CoPt phase with strongly increased magnetic anisotropy compared to pure Co. At higher temperatures, however, the Co atoms diffuse into a nearby surface region where Pt-rich compounds are formed, as shown by element-specific microscopy. KW - alloy KW - CoPt KW - HRTEM KW - nanoparticles KW - XMCD KW - Co KW - epitaxy KW - magnetometry KW - Pt Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142869 VL - 2 ER - TY - THES A1 - Heßler, Markus T1 - Elektronenspektroskopie an Übergangsmetallclustern T1 - Electron spectroscopy on transition metal clusters N2 - Im Rahmen der vorliegenden Arbeit wurden Untersuchungen zum Magnetismus und der elektronischen Struktur deponierter Cluster der 3d-Übergangsmetalle Fe, Co und Ni durchgeführt. Dabei zeigte sich, dass die Deposition der Cluster in Argon-Dünnfilme nicht nur zur fragmentationsfreien Probenpräparation genutzt werden kann, sondern auch die Untersuchung der Cluster in einer Umgebung mit geringer Wechselwirkung erlaubt. Die Beobachtung des atomaren Co-Multipletts sowie die Übereinstimmung der, mittels XMCD bestimmten, magnetischen Gesamtmomente von Fe- und Co-Clustern mit Gasphasenexperimenten zeigen auf, dass unter stabil gewählten Bedingungen die intrinsischen magnetischen Clustereigenschaften tatsächlich experimentell zugänglich sind. Die synchrotroninduzierte Mobilität von Clustern und Argon manifestiert sich in der Veränderung der Form der Absorptions- und Photoemissionslinien sowie in der zunehmenden Verminderung der gemessenen Magnetisierung. Neben den geeigneten Experimentierbedingungen ist zur Bestimmung der magnetischen Momente die Anwendbarkeit der XMCD-Summenregeln auf die Spektroskopie an Clustern notwendig. Besondere Beachtung verdient dabei auf Grund der reduzierten Symmetrie in Clustern der "magnetische Dipolterm" zur Spin-Summenregel. Der Vergleich des spektroskopisch ermittelten Gesamtmoments mit demjenigen, welches aus superparamagnetischen Magnetisierungskurven bestimmt wurde, erlaubt es, für seinen Beitrag bei Co-Clustern eine obere Schranke von 10% anzugeben. Erwartungsgemäß weisen die Spinmomente von Fe- und Co-Clustern gemessen am Festkörper deutlich erhöhte Werte auf, allerdings reichen sie nicht an die mittels Stern-Gerlach-Ablenkung bestimmten magnetischen Gesamtmomente der Cluster heran. Die elektronische Struktur von Nickelclustern erweist sich als sehr empfindlich gegen Wechselwirkungen mit Fremdatomen, so dass die magnetischen Resultate aus der Gasphase nicht nachvollzogen werden können. Allen Clustern in der Argonumgebung ist jedoch eine starke Erhöhung des bahnartigen Anteils am Gesamtmoment, generell auf mehr als 20% gemein. Damit kann nachgewiesen werden, dass die bestehende Diskrepanz zwischen berechneten Spinmomenten und experimentell bestimmten Gesamtmomenten in der Tat auf große Bahnmomente zurückzuführen ist. Dies gilt um so mehr, als die in dieser Arbeit bestimmten magnetischen Gesamtmomente an Fe- und Co-Clustern in guter Übereinstimmung mit Stern-Gerlach-Experimenten stehen. Die Wechselwirkung der Cluster mit der Oberfläche des Graphits führt bereits in den XAS-Absorptionsprofilen der L-Kanten zu sichtbaren Veränderungen in Form und energetischer Position der Absorptionsresonanzen. Alle untersuchten Cluster erfahren gleichzeitig eine starke Reduktion ihrer magnetischen Momente, häufig bis unter die Nachweisgrenze. Unter diesen Umständen ist es durchaus angebracht, von einer starken Cluster-Substrat-Wechselwirkung auszugehen. Dieser Befund wird durch die mittels Photoelektronenspektroskopie erzielten Ergebnisse untermauert. Veränderungen durch das "Einschalten" der Substratwechselwirkung sind sowohl in den Rumpfniveau- als auch den Valenzbandspektren zu erkennen. Charakteristisch für die ausführlicher untersuchten Ni-Cluster ist die Ausbildung einer, mit dem Graphitsubstrat hybridisierten, Elektronenstruktur mit reduzierter Zustandsdichte in der Umgebung des Ferminiveaus. Eine solche Konfiguration begünstigt die Ausbildung von "low-spin" - Zuständen, wie sie in den XMCD-Experimenten bei vorhandener Wechselwirkung mit dem Graphit gefunden werden. Die starke Kopplung der elektronischen Zustände von Cluster und Substrat äußert sich ebenfalls in dem Verlust des Fano-Resonanzverhaltens in der resonanten Photoemission an der 3p-Absorptionsschwelle. Das Fehlen der analogen Beobachtung an der 2p-Schwelle, muss einer starken Lokalisierung des 2p-rumpflochangeregten Zwischenzustandes zugeschrieben werden. Die genaue Analyse der Veränderung des resonant-Raman-Verhaltens in der 2p-RESPES könnte wertvolle komplementäre Informationen liefern, wird aber durch die Gegenwart der Argon-Valenzemission zu stark behindert, um konkrete Aussagen zuzulassen. Die Analyse der RESPES-Daten lässt den Schluss zu, dass die tatsächliche Besetzung der 3d-Zustände durch die Substratwechselwirkung nicht nennenswert verändert wird. Neben der Charakterisierung der großen magnetischen Clustermomente nach Spin- und Bahnanteilen vermitteln die Experimente dieser Arbeit einen guten Einblick in die Veränderungen der elektronischen Eigenschaften durch die Wechselwirkung mit dem Graphit. Der Einfluss des Substrates führt zu einer starken Verkleinerung der magnetischen Momente. Offensichtlich wird die elektronische Gesamtenergie an der Grenzfläche durch die Ausbildung von hybridisierten Zuständen minimiert, welche nahe der Fermienergie eine geringe Zustandsdichte besitzen. N2 - The present thesis presents investigations on the magnetism and the electronic structure of deposited 3d transition metal clusters. Clusters are being deposited into thin argon layers in order to avoid fragmentation. At the same time the argon is used as a matrix providing an environment of weak interaction. Under suitably chosen stable experimental conditions the atomic absorption multiplet is observed and the magnetic moments of Fe and Co clusters determined by XMCD compare well to those observed in gas phase experiments. Thus intrinsic magnetic cluster properties can be probed from rare gas matrix isolated clusters. At elevated x-ray photon flux densities mobility of both, rare gas atoms and clusters, is generated by the synchrotron beam and leads to noticeable changes in spectroscopic line shapes and the reduction of the magnetic moments. Besides suitable experimental conditions it is important to ascertain the applicability of the XMCD sum rules in the case of the clusters. Due to the reduced symmetry in the clusters the magnetic dipole contribution to the spin sum rule deserves particular attention. From the comparison of the total magnetic moment determined by XMCD to the one following from superparamagnetic magnetisation curves an upper limit of 10% for this contribution can be determined. As expected the spin magnetic moments in Fe and Co clusters exceed those of the corresponding bulk materials. They do not, however, reach the values of the total magnetic moments determined from Stern-Gerlach deflection experiments. The electronic structure of Ni clusters proves to be particulary sensitive with respect to the interaction with foreign atoms. Therefore the gas phase magnetic moments cannot be reproduced in the present experiments. Common to all clusters within the argon film is a strong enhancement of the orbital contribution to the total magnetic moment, generally above 20%. This observation of strong orbital moments bridges the gap between calculated spin magnetic moments an experimental total moments. In particular we find good agreement of the total magnetic moments determined in the present work compared to those of Stern-Gerlach experiments. When the clusters interact with the graphite surface noticeable changes occur in both, the spectral shape and the energy positions of the L edge resonance profiles, respectively. All clusters investigated undergo a strong reduction of their magnetic moments under these conditions. It is therefore appropriate to consider the cluster substrate interaction to be considerable. This finding is further substantiated by the experimental results obtained by photoelectron spectroscopy. The substrate interaction leads to visible changes in the core level as well as the valence band spectra. For Ni clusters the latter reveal the formation of a hybridised electronic structure with a reduced density of states in the vicinity of the Fermi level. Such an electronic configuration favors the formation of low spin states which are indeed observed for the clusters interacting with graphite. The strong coupling of cluster an substrate electronic states is also reflected by the loss of the fano line shape in the 3p resonant photoemission signal. This observation does not hold for the RESPES at the 2p-threshold, however. This apparent discrepancy is attributed to a strongly localised core excited intermediate state at the 2p edge. While the detailed analysis of the resonant raman regime could yield useful complementary information it is prevented by the strong emission from the argon valence states. Nevertheless it can be inferred from the RESPES data that the 3d occupation number in Ni clusters is not substantially altered by the substrate interaction. The experiments of this work does provide the characterisation of the cluster magnetic moments in terms of their spin and orbital contributions. In addition they provide an inside into the modifications of the electronic properties emanating from the cluster substrate interaction. The hybridisation with graphite electronic structure leads to a strong reduction of the magnetic moments. Obviously, the interfacial total energy is minimised by adopting an electronic level structure with little density of states near the Fermi level. KW - Übergangsmetall KW - Metallcluster KW - Elektronenspektroskopie KW - Cluster KW - Magnetismus KW - XMCD KW - Übergangsmetall KW - cluster KW - magnetism KW - XMCD KW - transition metal Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-18689 ER -