TY - THES A1 - Kastner, Matthias J. T1 - Spectroscopic investigation of molecular adsorption and desorption from individual single-wall carbon nanotubes T1 - Spektroskopische Untersuchung von molekularer Adsorption und Desorption an einzelnen einwandigen Kohlenstoffnanoröhren N2 - Nanoelectronics is an essential technology for down-scaling beyond the limit of silicon-based electronics. Single-Wall Carbon Nanotubes (SWNT) are semiconducting components that exhibit a large variety of properties that make them usable for sensing, telecommunication, or computational tasks. Due to their high surface to volume ratio, carbon nanotubes are strongly affected by molecular adsorptions, and almost all properties depend on surface adsorption. SWNT with smaller diameters (0.7-0.9nm) show a stronger sensitivity to surface effects. An optimized synthesis route was developed to produce these nanotubes directly. They were produced with a clean surface, high quality, and large lengths of 2 μ m. The results complement previous studies on larger diameters (0.9-1.4nm). They allow performing statistically significant assumptions for a perfect nanotube, which is selected from a subset of nanotubes with good emission intensity, and high mechanical durability. The adsorption of molecules on the surface of carbon nanotubes influences the motion and binding strength of chargeseparated states in this system. To gain insight into the adsorption processes on the surface with a minimum of concurrent overlapping effects, a microscopic setup, and a measurement technique were developed. The system was estimated to exhibit excellent properties like long exciton diffusion lengths (>350nm), and big exciton sizes (8.5(5)nm), which was substantiated by a simulation. We studied the adsorption processes at the surface of Single-Wall Carbon Nanotubes for molecules in the gas phase, solvent molecules, and surfactant molecules. The experiments were all carried out on suspended individualized carbon nanotubes on a silicon wafer substrate. The experiments in the gas-phase showed that the excitonic emission energy and intensity experiences a rapid blue shift during observation. This shift was associated with the spontaneous desorption of large clusters of gaseous molecules caused by laser heat up. The measurement of this desorption was essential for creating a reference to an initially clean surface and allows us to perform a comparison with previous measurements on this topic. Furthermore, the adsorption of hydrogen on the nanotube surface at high temperatures was investigated. It was found that a new emission mode arises slightly red-shifted to the excitonic emission in these systems. The new signal is almost equally strong as the main excitonic peak and was associated with the brightening of dark excitons at sp3-defects through a K-phonon assisted pathway. The finding is useful for the direct synthesis of spintronic devices as these systems are known to act as single-photon emitters. The suspended nanotubes were further studied to estimate the effect of solvent adsorption on the excitonic states during nanotube dispersion for each nanotube individually. A significant quantum yield loss is observable for hexane and acetonitrile, while the emission intensity was found to be the strongest in toluene. The reference to a clean surface allowed us to estimate the exact influence of the dielectric environment of adsorbing solvents on the excitonic emission energy. Solvent adsorption was found to lead to an energy shift that is almost twice as high as suggested in previous studies. The amount of this energy shift, however, was comparably similar for all solvents, which suggests that the influence of the distinct dielectric constant in the outer environment less significantly influences the energy shift than previously thought. An interesting phenomenon was found when using acetonitrile as a solvent, which leads to greatly enhanced emission properties. The emission is more than twice as high as in the same air-suspended nanotubes, which suggests a process that depends on the laser intensity. In this study, it was reasonably explained how an energy down-conversion is possible through the coupling of the excitonic states with solvent vibrations. The strength of this coupling, however, also suggests adsorptions to the inside of the tubular nanotube structure leading to a coupled vibration of linear acetonitrile molecules that are adsorbed to the inner surface. The findings are important for the field of nanofluidics and provide an excellent system for efficient energy down-conversion in the transmission window of biological tissue. Having separated the pure effect of solvent adsorption allowed us to study the undisturbed molecular adsorption of polymers in these systems. The addition of polyfluorene polymer leads to a slow but stepwise intensity increase. The intensity increase is overlapping with a concurrent process that leads to an intensity decrease. Unfortunately, observing the stepwise process has a low spacial resolution of only 100-250nm, which is in the range of the exciton diffusion length in these systems and hinders detailed analysis. The two competing and overlapping processes processes are considered to originate from slow π-stacking and fast side-chain binding. Insights into this process are essential for selecting suitably formed polymers. However, the findings also emphasize the importance of solvent selection during nanotube dispersion since solvent effects were proven to be far more critical on the quantum yield in these systems. These measurements can shed light on the ongoing debate on polymers adsorption during nanotube individualization and allow us to direct the discussion more towards the selection of suitable solvents. This work provides fundamental insights into the adsorption of various molecules on the surface of individually observed suspended Single-Wall Carbon Nanotubes. It allows observing the adsorption of individual molecules below the optical limit in the solid, liquid, and gas phases. Nanotubes are able to act as sensing material for detecting changes in their direct surrounding. These fundamental findings are also crucial for increasing the quantum yield of solvent-dispersed nanotubes. They can provide better light-harvesting systems for microscopy in biological tissue and set the base for a more efficient telecommunication infrastructure with nano-scale spintronics devices and lasing components. The newly discovered solvent alignment in the nanotube surrounding can potentially also be used for supercapacitors that are needed for caching the calculation results in computational devices that use polymer wrapped nanotubes as transistors. Although fundamental, these studies develop a strategy to enlighten this room that is barely only visible at the bottom of the nano-scale. N2 - Nanoelektronik ist eine wichtige Technologie um das Größen-Limit gegenwärtiger Silizium-basierter Technologie zu überwinden. Einwandige Kohlenstoffnanoröhren sind halbleitende Moleküle, die eine Reihe von Eigenschaften dafür zur Verfügung stellen. Sie sind einsetzbar als Sensoren, in der Fernmeldetechnik und für elektronische Rechenoperationen. Aufgrund ihres hohen Verhältnisses von Oberfläche zu Volumen werden nahezu alle Eigenschaften von Kohlenstoffnanoröhren stark von Adsorption beeinflusst. Einwandige Kohlenstoffnanoröhren mit kleineren Durchmessern (0.7-0.9nm) zeigen einen stärkeren Einfluss auf Phänomene, die an der Oberfläche auftreten. Um speziell diese Nanoröhren genauer zu untersuchen wurde eine Synthese Strategie entwickelt, die Nanoröhren mit hoher Qualität und Länge herstellen kann und dabei eine saubere Oberfläche gewährleisten ohne ihre Emissions-Stärke durch Bündelung zu verlieren. Die erhaltenen Ergebnisse unterstützen Studien aus der Literatur, die zumeist an Röhren mit größeren Durchmessern durchgeführt wurden. Die Größe des Datensatzes erlaubt es, Nanoröhren mit perfekten Emissions-Eigenschaften und großer mechanischer Stabilität auszuwählen. Adsorptionen beeinflussen die Bewegung und Bindungs-Stärke der Excitonen, da sie ein Coulomb Potential an der Außenseite der Röhre ausbilden. Um die Adsorptionsprozess an der Oberfläche mit minimalen konkurrierenden Effekten zu untersuchen, wurde ein spezielles mikroskopisches Setup gewählt und eine Messmethode entwickelt um dieses System zu untersuchen. Das System wurde mit Hilfe von Bildern und Spektren charakterisiert. Über eine Simulation wurde außerdem gezeigt dass die untersuchten Nanoröhren große Diffusionslängen (>350nm) und Exciton Größen (<8.5nm) besitzen müssen. Der Adsorptions Prozess an Kohlenstoffnanoröhren wurde sowohl mit Molekülen in der Gas-Phase untersucht, also auch in Lösungsmitteln und mit Feststoffen. Alle Experimente wurde dabei an frei hängenden Röhren durchgeführt, die auf einem Silizium Wafer Substrat aufgebracht wurden. Die Experimente in der Gas Phase zeigten, dass die excitonische Emissions-Energie eine instantane und schnelle Blauverschiebung erfährt wenn die Nanoröhren mit einem Laser angeregt werden. Diese Verschiebung wurde auf die Desorption von Oberflächenverunreinigungen zurückgeführt, die an Luft inhärent die Messung beeinflussen. Durch die Annahme, nach der Untersuchung eine reine Oberfläche zu erhalten, konnte die Referenz der Vakkum-Emission erstellt werden, was es ermöglicht, den Einfluss der dielektrischen Umgebung genauer zu bestimmen. In einem weitern Experiment wurde die Adsorption von Wasserstoff getestet. In diesen Systemen bildet sich durch die Ausbildung von sp 3 -Defekten eine neue Emissionsbande aus. Solche Emissionen werden derzeit für die Anwendung als Einzelphotonenemitter diskutiert. Die hier vorgestellte Methode erlaubt die direkte Synthese solcher Systeme im CVD Ofen. Die frei hängenden Nanoröhren wurden weiter analysiert um den Effekt des Lösungsmittels auf die Emission detailiert zu untersuchen. Es wurde gezeigt, dass in Hexan und Acetonitril ein signifikant hoher Quantenausbeute-Verlust zu beobachten ist. Toluol hingegen zeigte sich hier am Besten. Die Energie-Verschiebungen waren insignifikant unterschiedlich zwischen den Lösungsmitteln. Ein Spezialfall war bei Acetonitril zu beobachten, in dem sich über den Zeitraum von 24h eine starke Emission herausbildet, die auf eine Kopplung mit Lösungsmittel-Schwingungen zurückgeführt wird. Die Stärke dieser Emission erlaubt die Vermutung, dass es sich um eine gekoppelte Schwingung von linear orientiertem Acetonitril in der Nanoröhre handelt. Eine solch starke Emission könnte zu Anwendungen in Zell-Gewebe führen, da weder Anregung noch Emission sich im Fenster der Blut- und Wasserabsorption befindet. Durch die eindeutige Identifizierung von Lösungsmitteleffekten auf die Dispergierung von Kohlenstoffnanoröhren war es möglich, den Prozess der Anlagerung von Polyfluorene Polymeren direkt zu beobachten. Das Hinzufügen von Polymer zur Lösung führt zu einem schrittweisen reversiblen Anstieg der Emissions Intensität. Dieser Anstieg wird von einem gleichzeitigen irreversiblen schrittweisen Abfall der Emissionsintensität begleitet. Leider ist das System nur geeignet, Adsorptionen bis maximal 100nm Länge aufzulösen. Eine detaillierte Analyse ist daher schwer. Trotzdem wird vermutet, dass es sich bei dem langsamen Prozess um das Ausbilden von π -Stapeln handelt, wobei der schnelle Prozess mit der nicht-kovalenten Bindung der Polymer-Seitenketten an die Oberfläche assoziiert wird. Obwohl über die eigentliche Bindung des Polymers nur Vermutungen angestellt werden können, so wirft die Untersuchung doch einen Fokus auf die Wahl des Lösungsmittels, da diese Entscheidung einen viel größeren Effekt verursacht, als die Bindung des Polymers selbst. Diese Arbeit stellt fundamentale Betrachtungen zur Adsorption von verschiedenen Molekülen an Kohlenstoffnanoröhren auf. Die Betrachtungen wurden mit festen, flüssigen und gasförmigen Molekülen durchgeführt. Die Ergebnisse zeigen, dass Nanoröhren geeignet sind, als Molekül-Sensoren verwendet zu werden, da sie stark auf Änderungen in ihrer Umgebung reagieren können. Weiterhin wurden Lösungsmittel und Eigenschaften aufgezeigt, die die Quanteneffizienz signifikant beeinflussen. Eine Anwendung in der biologischen Mikroskopie ist denkbar, genauso wie für eine effizientere und sicherere Fernmeldeinfrastruktur. Weiterhin wurden Wege aufgezeigt, Super-Kondensatoren auf Nanorohr-Basis zu bauen, die als Anwendung in einem Kohlenstoffnanorohr-basierenden Computer von Interesse sein könnten. Obwohl die Erkenntnisse fundamental sind, zeigen diese Studien, dass es mit bestimmten Tricks möglich ist, den Raum am unteren Ende der Nanometerskala zu erforschen und zu entdecken. KW - Kohlenstoff-Nanoröhre KW - Einwandige Kohlenstoff-Nanoröhre KW - Adsorption KW - Chemisorption KW - Physisorption KW - nanotube KW - microscopy KW - adsorption Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-211755 ER - TY - THES A1 - Brunecker, Frank T1 - Kohlenstoffnanorohr-Komplexe - Adsorption und Desorption von (Bio-)Polymeren T1 - Carbon Nanotube Complexes - Adsorption and Desorption of (Bio-)Polymers N2 - Zur Charakterisierung der Wechselwirkungen zwischen organischen Dispergiermitteln und nanoskaligen Oberflächen stellen Komplexe aus Kohlenstoffnanoröhren und (Bio-)Polymeren aufgrund der großen Oberfläche der Nanoröhren und der kommerziellen Verfügbarkeit fluoreszenzmarkierter DNA-Oligomere unterschiedlicher Länge sowie intrinsisch fluoreszierender Polymere ein vielversprechendes Modellsystem dar. Im Rahmen der vorliegenden Dissertation wurden verschiedene Methoden evaluiert, um die Stabilität derartiger Komplexe zu untersuchen und dadurch Rückschlüsse auf das Adsorptionsverhalten der (Bio-)Polymere zu ziehen. Dabei konnte gezeigt werden, dass das publizierte helikale Adsorptionsmodell der DNA auf Kohlenstoffnanoröhren die Resultate der durchgeführten Experimente nur unzureichend beschreiben kann und stattdessen andere Adsorptionskonformationen in Erwägung gezogen werden müssen. N2 - Interactions between organic dispersants and nanoscopic surfaces are of crucial interest in the field of nanotechnology. For characterization of such interactions, complexes of single-wall carbon nanotubes and (bio-)polymers are considered to be a promising model system due to the large specific surface of the nanotubes as well as the commercial availability of fluorescently labeled, length-scaled DNA oligomers and intrinsic fluorescent synthetic polymers. The present dissertation focused on probing suitable methods for the investigation of the stability of these complexes in order to determine the adsorption behavior of the examined (bio-)polymers. The findings of the performed experiments are inconsistent with the previously published helical adsorption of DNA to carbon nanotubes but give rise to additional adsorption conformations. KW - Kohlenstoff-Nanoröhre KW - Adsorption KW - Desorption KW - Reaktionskinetik KW - Kinetik KW - Konzentrationssprungmethode KW - Numerische Verfahren KW - Einzelstrang-DNA Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-113485 ER - TY - THES A1 - Scherdel, Christian T1 - Kohlenstoffmaterialien mit nanoskaliger Morphologie - Entwicklung neuartiger Syntheserouten T1 - Carbon material featuring nanoscale morphology - Development of novel synthesis routes N2 - Hochporöse Kohlenstoffaerogele, die über den Sol-Gel-Prozeß auf der Basis von Resorzin und Formaldehyd hergestellt werden, sind Werkstoffe mit beeindruckenden physikalischen Eigenschaften. Leider werden bisher nur geringe Mengen an Kohlenstoffaerogelen produziert und aus Kostengründen auf günstigere Materialien mit vergleichsweise schlechteren Eigenschaften zurückgegriffen. Um diesen Nachteil zu nivellieren lag die Motivation der vorliegenden Arbeit in der Entwicklung neuer Syntheserouten für Kohlenstoffmaterialien mit nanoskaliger Morphologie, wobei insbesondere auf kostengünstige Edukte und/oder einfache Prozessierung zurückgegriffen werden sollte. Als in Frage kommende Eduktsysteme wurden Zucker, sowie Hydroxybenzol-Formaldehyd-Derivate ausgewählt. Die hergestellten Kohlenstoffe wurden hauptsächlich mit Elektronenmikroskopie, Gassorption und Röntgenkleinwinkelstreuung (SAXS) charakterisiert. Um Fehlinterpretationen der experimentellen Daten für das neue Materialsystem zu vermeiden, war ein umfangreiches Wissen zu den Charakterisierungsmethoden und den diesen zugrundeliegenden physikalischen Prinzipien notwendig. Kohlenstoffpulver basierend auf sphärischen Resorzin-Formaldehyd Suspensionen und Sedimenten bilden eine völlig neue Möglichkeit zur Erzeugung von Kohlenstoffnanokugeln. Im Rahmen dieser Arbeit wurde deshalb systematisch der Bereich der Syntheseparameter im RF-System zu den nicht-monolithischen Parametersätzen hin vervollständigt. Anhand der bestimmten Daten konnte diese Stoffklasse umfassend und detailliert charakterisiert und interpretiert werden. Die Partikelgröße hängt im Wesentlichen von der Katalysatorkonzentration und in geringerem Maße von der Eduktmenge in der Startlösung ab. Die ermittelte untere Grenze der Partikelgröße aus stabilen kolloidalen Dispersionen beträgt ca. 30 nm. Größere Partikel als 5 µm konnten trotz Modifikation der Syntheseroute nicht erzeugt werden. Eine Abschätzung über den Aggregationsgrad der Kohlenstoffpulver wurde durchgeführt. Eine Beimischung von Phenol verringert in diesem System zum einen die Partikelgröße und erzeugt zunehmend nicht-sphärische Strukturen. Die aus Gassorption, SAXS und dynamischer Lichtstreuung (DLS) ermittelten Partikelgrößen stimmen gut überein. Bei der Pyrolyse schrumpfen die Partikel auf 84% des Ausgangswerts (Partikeldurchmesser). Ein Fokus dieser Arbeit lag in der Herstellung poröser Kohlenstoffe mit Phenol und Formaldehyd (PF) als Eduktbasis und unterkritischer Trocknung (Kohlenstoffxerogele). Um die Bandbreite der Eigenschaften der resultierenden Kohlenstoffxerogele zu erweitern, wurden zahlreiche Modifikationen der Syntheseparameter und im Herstellungsprozeß durchgeführt. Die Ergebnisse zeigen, daß im Eduktsystem Phenol-Formaldehyd in wäßriger Lösung mit Na2CO3 als basischem Katalysator prinzipiell poröse Xerogele herstellbar sind; allerdings verhindert eine ungewöhnliche Gelierkinetik (Flockenbildung statt Sol-Gel-Übergang) eine umfassende Interpretation des Systems, da die Reproduzierbarkeit der Ergebnisse nicht gewährleistet ist. Bei Phenol-Formaldehyd in wäßriger Lösung und NaOH als Katalysator kommt es meist zu einem Kollabieren des Gelnetzwerks während der Trocknung. Lediglich bei hohem Formaldehydüberschuß zeigt sich ein enger Bereich, in dem Xerogele mit geringer Dichte (rhomin = 0,22 g/cm3) und relevantem Mesoporenvolumen von bis zu 0,59 cm3/g synthetisierbar sind. Die interessanteste Kombination im PF-System ergibt sich mit HCl als Katalysator und n-Propanol als Lösungsmittel. Hier sind hochporöse Kohlenstoffxerogele mit geringen Dichten (rhomin = 0,23 g/cm3) und für Xerogele sehr hoher Mesoporosität von bis zu Vmeso = 0,85 cm3/g möglich. Damit ist es im Rahmen dieser Arbeit erstmals gelungen über konvektive Trocknung homogene hochporöse Xerogel-Formkörper auf PF-Basis zu synthetisieren. Aus der Überwachung des Sol-Gel-Prozesses mit Detektion der Soltemperatur konnten wichtige Erkenntnisse über exo- und endotherme Vorgänge gewonnen werden. Zudem zeigt die Zeitabhängigkeit der Soltemperatur Gemeinsamkeiten für alle untersuchten Hydroxybenzol-Formaldehyd-Systeme. So kann der Gelpunkt der Ansätze zuverlässig und auch reproduzierbar anhand eines zweiten lokalen Temperaturmaximums ermittelt werden, welches mit einer Gelpunktsenthalpie korreliert wird. Damit ist auch eine Prozeßkontrolle, z.B. für die Kombination mit Partikeltechnologien, möglich. Die zugrundeliegenden Strukturbildungsmechanismen, Sol-Gel-Prozeß einerseits und Trocknung andererseits, wurden in-situ mittels SAXS beobachtet und anhand der gewonnenen Daten diskutiert und bewertet. Eine vollständige Adaption des etablierten und akzeptierten Bildungsmechanismus von RF basierten Aerogelen (Partikelbildung aus Kondensationskeimen und Partikelwachstum) für das PF-System wird ausgeschlossen. Vielmehr scheint bei den untersuchten PF-Systemen auch eine Mikrophasenseparation als konkurrierender Prozeß zur Partikelbildung von Relevanz zu sein. N2 - Highly porous carbon aerogels derived via the sol-gel-process based on the precursors resorcinol and formaldehyde are materials with impressive physical properties. In principle, they are suited for many applications (e.g. thermal insulations, components in electrochemical devices). Unfortunately, up to now, there are only small amounts of carbon aerogels available. Due to cost efficiency, cheaper materials with less favourable properties compared to carbon aerogels are used. To compensate for this disadvantage, the motivation for this work was the development of new synthesis routes for carbon materials with nanostructured morphology, applying in particular cheap precursors and/or simple processing. As precursor systems, sugar as well as hydroxybenzene-formaldehyde-derivatives were chosen. The produced carbons were characterised in particular by electron microscopy, gas sorption and small-angle X-ray scattering (SAXS). To avoid misinterpretation of the experimental data of the new materials system, extensive knowledge concerning the characterization methods and their underlying physical principles are essential. Carbon powders based on spherical particles derived from suspensions and sediments of resorcinol-formaldehyde (RF) solutions establish a completely new possibility to generate carbon nanospheres. Within the framework of this thesis the range of the synthesis parameters of the RF-system towards the non-monolithic parameter sets was therefore systematically completed. These materials were characterized and interpreted extensively and in detail by using the derived experimental data. The particle size depends essentially on the catalyst concentration rather than on the amount of precursors in the initial solution. The lower limit particle size derived from stable colloidal suspensions is about 30 nm. Larger particles than 5 µm could not be synthesized, even when modifying the synthesis route. An estimate for the level of aggregation of the carbon powders was determined. Admixing of phenol decreases the particle size in this system and generates increasingly non-spherical structures. The evaluated particle sizes derived from gas sorption, SAXS and dynamic light scattering (DLS) are in good agreement with each other. During pyrolysis, the particles shrink to 84% of the initial value (particle size). One goal of this work was the synthesis of porous carbons with phenol and formaldehyde (PF) as precursors and subcritical drying (carbon xerogels). To extend the possible properties of the resulting carbon xerogels, several modifications of the synthesis parameters as well as in the production process were conducted. The results show, that with the precursors phenol-formaldehyde in aqueous solution using Na2CO3 as catalyst, porous xerogels can in principle be synthesized. However, the unusual gelation kinetics (flake forming instead of sol-gel-transition) prevents a detailed interpretation of this system, because the reproducibility of the results can not be ensured. With the system phenol and formaldehyde in aqueous solution using NaOH as catalyst, the gel network mostly collapses during drying. Only with excess formaldehyde a range in the synthesis parameters exists, where xerogels with low density (rhomin = 0,22 g/cm3) and relevant mesopore volume of up to 0,59 cm3/g can be synthesized. The most interesting combination of PF is with HCl as catalyst and n-propanol as solvent. With this system, highly porous carbon xerogels with low densities (rhomin = 0,23 g/cm3) and for xerogels high mesoporosity of up to Vmeso = 0,85 cm3/g can be synthesized. Hence, within the framework of this thesis highly porous monolithic xerogels based on PF as precursors in combination with subcritical drying have been successfully synthesiszed for the first time. Monitoring of the sol-gel-process by detection of the sol temperature provided important information about exo- and endothermal reactions. Moreover, the temperature dependence of the sol shows similarities for all investigated hydroxybenzene-formaldehyde combinations. The gelling point of the precursor systems can be reproduced reliably by determining a second local maximum of the sol temperature, which can be correlated with an enthalpy of gelation (second order process). By this way, a process control is possible, e.g. for the combination with particle technologies. The basic mechanisms of structure formation, i.e. the sol-gel-process on the one hand and the subcritical drying on the other hand were monitored in-situ by SAXS and discussed on the base of the obtained data. A complete adaptation of the established and accepted structure formation mechanism of RF based aerogels (forming and growing of particles by) can be ruled out for the PF-system. Moreover, microphase separation seems to be a relevant competing process for the particle forming in the PF-system. KW - Sol-Gel-Verfahren KW - Kohlenstoff KW - Aerogel KW - Xerogel KW - Phenol-Formaldehyd-Kondensationsprodukt KW - Nanopartikel KW - Adsorption KW - Röntgen-Kleinwinkelstreuung KW - sol-gel-technology KW - xerogel KW - phenolic resin KW - carbon KW - nanoparticle Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-45325 ER - TY - THES A1 - Schneider, Michael T1 - Entwicklung magnetischer Kompositpartikel zur Fluidbehandlung und Wertstoffrückgewinnung T1 - Developement of magnetic composite particles for the treatment of fluids and resource recovery N2 - In der vorliegenden Arbeit wurden magnetische Kompositpartikel für den Einsatz in Flüssigkeiten entwickelt. Der Aufbau der Partikel erfolgte dabei modular, sodass eine Anpassung an verschiedene Einsatzmöglichkeiten realisierbar sein sollte. Die gezeigten Arbeiten bauen auf Partikeln bestehend aus magnetischen Nanopartikeln eingebettet in eine Silica-Matrix als Trägerpartikel auf, welche im Rahmen der vorliegenden Arbeit weiterentwickelt wurden. Der Schwerpunkt lag dabei auf der Entwicklung eines Adsorbermaterials für Phosphat als Funktionalisierung für die magnetischen Trägerpartikel, welches für den Einsatz der Entfernung von Phosphat aus kommunalem Abwasser geeignet sein sollte, sowie dessen Einsatz im Labor- und Technikumsmaßstab. Besonderes Augenmerk lag auf der umfassenden Charakterisierung des entwickelten Matrerials sowie der Aufklärung des Wirkmechanismus bei der Phosphatadsorption. Ein weiterer Teil der Arbeit beschäftigte sich mit der Steigerung der Magnetisierung des magnetischen Anteils der Partikel für eine verbesserte magnetische Abtrennung. Um die vielseitige Einsetzbarkeit der magnetischen Trägerpartikel zu demonstrieren, wurden abschließend weitere Funktionalisierungen für diese entwickelt und deren Anwendbarkeit grundlegend getestet. So wurde zum einen eine Modifizierung mit Komplexverbindungen und Metal-Organic Frameworks (MOF) realisiert mit dem möglichen Einsatzgebiet der Wasserdetektion in organischen Lösemitteln. Zum anderen wurde eine Beschichtung mit Kohlenstoff durchgeführt und die Entfernung von organischen Farbstoffmolekülen aus Wasser untersucht. N2 - In this work, magnetic composite particles were developed for the application in fluids. The particle structure was designed modular to enable its modification for different applications. The work presented in this thesis builds on earlier research and advances further the synthesis of composite particles consisting of magnetic nanoparticles embedded in a silica matrix used as magnetic carriers. The focus of this work was on the development of a phosphate adsorbent material suitable for the functionalization of the magnetic carrier particles, which were then successfully used at laboratory and pilot scale to remove and recover phosphate from municipal wastewater. Particular attention was paid to the elaborate characterization of the developed adsorbent material, as well as the elucidation of the adsorption mechanism during phosphate removal. Another part of the work was to enhance the magnetization of the magnetic fraction of the particles to improve their magnetic separation. In order to demonstrate the versatility of the magnetic carrier particles, additional functionalizations were developed and their applicability was fundamentally tested. Thus, on the one hand, a functionalization with complex compounds and metal-organic frameworks (MOF) was realized for the possible detection of water in organic solvents. On the other hand, a carbon coating was carried out to investigate the removal of organic substances from water. KW - Magnetisches Trennverfahren KW - Superparamagnetismus KW - Wasserreinigung KW - Eisenoxide KW - Adsorption KW - Wertstoffrückgewinnung KW - Phosphatentfernung KW - Recycling KW - Nano KW - Materialentwicklung KW - magnetic separation KW - resources recovery KW - water purification KW - nano KW - superparamagnetism Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-199681 ER - TY - THES A1 - Beer, Meike Vanessa T1 - Correlation of ligand density with cell behavior on bioactive hydrogel layers T1 - Korrelation der Ligandendichte mit Zellverhalten auf bioaktivierten Hydrogelschichten N2 - Diese Arbeit beschäftigte sich mit der Quantifizierung von Zelladhäsion vermittelnden Liganden in und auf dünnen Hydrogelschichten, die zur Oberflächenmodifizierung auf Biomaterialien aufgebracht wurden. Das bereits etablierte und gut charakterisierte inerte NCO-sP(EO-stat-PO) Hydrogelsystem, das eine einfache und reproduzierbare Bioaktivierung mit Peptiden erlaubt, wurde als Basis für diese Arbeit verwendet. Diese Hydrogele können auf zwei Weisen funktionalisiert werden. Liganden können entweder mit der Prepolymerlösung vor der Beschichtung gemischt (Einmischmethode) oder frische Hydrogelschichten mit einer Ligandenlösung inkubiert werden (Inkubationsmethode). Der erste Teil dieser in drei Hauptteile unterteilten Arbeit, beschäftigte sich mit der Konzentrationsbestimmung der Liganden in der gesamten Tiefe der Hydrogelschicht, während sich der zweite Teil auf die oberflächensensitive Quantifizierung von Zelladhäsion vermittelnden Molekülen an der biologischen Grenzfläche konzentrierte. Die Ergebnisse wurden mit Zelladhäsionskinetiken verglichen. Der dritte Teil dieser Arbeit beschäftigte sich mit der biochemischen als auch strukturellen Nachahmung der komplexen Extrazellulärmatrix (ECM). Das ECM Protein Fibronektin (FN) wurde über Zucker-Lektin Anbindung präsentiert und Zellverhalten auf diesen biomimetischen Oberflächen untersucht. Ebenfalls wurde Zellverhalten in einer dreidimensionalen Faserumgebung mit identischer Oberflächenchemie wie in den beiden ersten Teilen dieser Arbeit untersucht und mit der Peptidkonzentration korreliert. Insgesamt, war die Hauptfragestellung in dieser Arbeit ‘Wie viel?’, d.h. einerseits die Ermittlung der maximalen, als auch der für Zelladhäsion optimalen Ligandendichte. Im ersten praktischen Teil der vorliegenden Arbeit (Klassische Quantifizierung) wurden Liganden in der gesamten Hydrogelschicht, als auch speziell in oberen Bereichen der Schichten quantifiziert. Die Untersuchung der Hydrogelschichten in Wellplatten und auf Glas funktionalisiert mit GRGDS und 125I-YRGDS erfolgte in Kapitel 3 mittels Radioaktivmessung. Wurden Hydrogelschichten mittels Inkubationsmethode funktionalisiert, konnte eine Sättigung mit Liganden bei etwa 600 µg/mL ermittelt werden. Mittels Einmischmethode funktionalisierte Hydrogele erreichten keine maximale Ligandenkonzentration in den Schichten, mit dem Verhältnis 2/1 als maximales verwendetes Verhältnis. Höhere Liganden zu Prepolymer Verhältnisse als 2/1 wurden jedoch nicht verwendet, um eine ausreichende Vernetzung der Hydrogele nicht zu gefährden. Zur Detektion mittels Röntgenphotoelektronenspektroskopie (XPS) und Flugzeit-Sekundärionen-Massen-spektrometrie (TOF-SIMS) (Kapitel 4) wurden eine fluorierte Aminosäure und ein iodiertes Peptid mit den Prepolymeren in molaren Verhältnissen von 1/2, 1/1 und 2/1 gemischt. Beide Methoden ermittelten eine maximale Ligandenkonzentration bei Verhältnissen von 1/1. Zusätzliche Liganden (2/1) führten zu keiner vermehrten Anbindung. Wesentlich im Zusammenhang mit der Ligandenquantifizierung auf Biomaterialien ist, diese an der Oberfläche, die für Zellen zugänglich ist, durchzuführen. Im zweiten Teil dieser Arbeit (Oberflächensensitive Quantifizierung) kamen daher Methoden zum Einsatz, die Liganden ausschließlich auf der Oberfläche quantifizierten. Zur Detektion mit Oberflächenplasmon-resonanz (SPR) und akustischer Oberflächenwellentechnologie (SAW) in Kapitel 5 musste die Standardbeschichtung der Hydrogele von Glas und Silikon auf Cystamin funktionalisierte Goldoberflächen übertragen werden. Mittels Ellipsometrie und Rasterkraftmikroskopie (AFM) konnte nur eine dünne und inhomogene Hydrogelbeschichtung nachgewiesen werden. Dennoch zeigten SPR und SAW die Unterbindung von Serum und Streptavidin (SA) Adsorption auf nicht funktionalisierten Schichten, jedoch eine spezifische und konzentrationsabhängige SA Bindung auf Hydrogelschichten, die mit Biocytin und GRGDSK-biotin funktionalisiert wurden. Die Ligandenquantifizierung mittels Enzymgekoppeltem Immunadsorptionstest (ELISA) und Enzymgekoppelten Lektinadsorptionstest (ELLA) (Kapitel 6) wurde auf Hydrogelschichten in Wellplatten und auf Glas angewendet, die mit verschiedenen Liganden mittels Inkubation und Einmischung funktionalisiert wurden. Das Modellmolekül Biocytin, das biotinylierte Peptid GRGDSK-biotin, das ECM Protein Fibronektin (FN), als auch die Modellzucker N-Acetyl-glukosamin (GlcNAc) und N-Acetyllaktosamin (LacNAc) konnten spezifisch in verschiedenen Konzentrationen nachgewiesen werden. Beispielhaft seien hier Schichten auf Glas genannt, die mittels Einmischmethode mit GRGDSK-biotin funktionalisiert wurden, da diese zum Vergleich in Kapitel 8 herangezogen wurden. Auf diesen Oberflächen wurde eine maximale Peptidkonzentration auf der Oberfläche bei einem Peptid zu Prepolymer Verhältnis von 1/5 ermittelt. Neben diesen verschiedenen Quantifzierungsmethoden ist die in vitro Analyse mit Zellen nicht zu vernachlässigen (Kapitel 7). Hierzu wurden Hydrogele auf Glas aufgebracht und mit GRGDS mittels Einmischmethode funktionalisiert. Durch Zählen adhärenter primärer humaner dermaler Fibroblasten (HDF) auf Mikroskopbildern wurde eine maximale Zelladhäsion bei dem Peptid zu Prepolymer Verhältnis von 1/5 festgestellt. Hingegen wurde ein Verhältnis von 1/2 für optimale Zelladhäsion ermittelt, wenn Zellen zur Quantifizierung von den Hydrogelen abgelöst und im CASY® Zellzähler quantifiziert wurden. Zusätzlich wurde die Zellvitalität durch Messung intrazellulärer Enzymaktivitäten gemessen, jedoch konnte kein Zusammenhang zwischen Zellvitalität und GRGDS Konzentration hergestellt werden. Adhärente HDFs waren in allen Fällen vital, unabhängig von der Ligandenkonzentration auf der Oberfläche. Auch die Mausfibroblasten Zelllinie NIH L929 wurde auf Hydrogelen mit verschiedenen GRGDS zu Prepolymer Verhältnissen durch Zählen adhärenter Zellen auf Mikroskopbildern untersucht. Diese im Verhältnis zu HDFs wesentlich kleineren Mauszellen benötigten höhere GRGDS Konzentrationen (2/1) für maximale Zelladhäsion. Nach der Ligandenquantifizierung in Kapitel 3 bis 7, wurden diese Ergebnisse in Kapitel 8 miteinander verglichen. Hierzu wurden Messungen auf Hydrogelschichten verwendet, die mittels Einmischmethode funktionalisiert wurden. Während die Quantifizierung mittels Radioaktivmessung in der gesamten Tiefe der Hydrogelschichten keine maximale Ligandenkonzentration ermitteln konnte, war in den oberen Bereichen der Schicht ein Maximum an Liganden bei 1/1 festzustellen (XPS, TOF-SIMS). SPR und SAW wurden zum Vergleich nicht herangezogen, da die Beschichtung auf Gold erst optimiert werden muss. Oberflächensensitive Quantifizierung mittels ELISA und Zelladhäsion, die lediglich die sterisch zugänglichen Liganden auf einer Oberfläche nachweisen, ergaben übereinstimmend eine optimale Ligandenkonzentration für SA Bindung und Zelladhäsion bei einem Peptid zu Prepolymer Verhältnis von 1/5. Dies unterstreicht, wie wichtig der Vergleich der Methoden, als auch die Verwendung von oberflächensensitiven Methoden ist. Der dritten Teil dieser Arbeit beschäftigte sich mit der biochemischen und strukturellen Nachahmung der komplexen extrazellulären Umgebung (Advanced ECM engineering), ein wichtiger Aspekt in der Biomaterialforschung, da zum größten Teil zwei-dimensionale Biomaterialien zum Einsatz kommen, die direkt mit Liganden kovalent funktionalisiert werden. Die ECM ist jedoch um ein Vielfaches komplexer und die bestmögliche Nachahmung ist Voraussetzung für eine bessere Akzeptanz durch Zellen und Gewebe. In Kapitel 9 wurde eine Möglichkeit aufgezeigt, das ECM Protein FN nicht-kovalent über Zucker-Lektinbindungen zu immobilisieren. Ein Schichtaufbau von Hydrogel, dem darauf durch Mikrokontakt-druckverfahren (MCP) kovalent gebundenen Zucker Poly-N-Acetyllaktosamin (polyLacNAc) und den darauf nicht-kovalent gebundenen Galektin His6CGL2 und FN, konnte mit Fluoreszenzfärbung elegant nachgewiesen werden. Optimale Konzentrationen für den Schichtaufbau wurden mittels ELLA/ELISA auf Hydrogelschichten ermittelt, die durch Inkubation mit dem Zucker funktionalisiert wurden. Nur der komplette Schichtaufbau konnte zufriedenstellende HDF Adhäsion vermitteln und im Vergleich zu Zellkulturpolystyrol (TCPS) Oberflächen konnten HDFs auf dem biomimetischen Schichtaufbau schneller adhärieren und spreiten. Zudem wurde die Umorganisierung von auf Glas adsorbiertem FN, auf NCO-sP(EO-stat-PO) kovalent gebundenem FN und biomimetisch über polyLAcNAc-His6CGL2 gebundenem FN durch HDFs verglichen. Nur auf den biomimetischen Oberflächen schien eine Umorganisation durch die Zellen möglich, wie sie auch in der ECM zu finden ist. Diese biomimetische und flexible Präsentation eines Proteins erwies sich als vielversprechende Möglichkeit eine biomimetischere Oberfläche für Zellen zu schaffen, die eine optimale Biokompatibilität ermöglichen könnte. Auch die strukturelle Nachahmung der ECM ist eine vielversprechende Strategie zum Nachbau der ECM. In Kapitel 10 wurde ein Einschrittverfahren zur Herstellung synthetischer, bioaktiver und degradierbarer Faserkonstrukte durch Elektrospinnen zur Nachahmung der ECM präsentiert. In diesem System wurden durch Zugabe von NCO-sP(EO-stat-PO) als reaktives Additiv zu Poly(D,L-laktid-co-Glycolid) (PLGA) Fasern hergestellt, die mit einer ultradünnen, inerten Hydrogelschicht versehen waren. Es konnte gezeigt werden, dass durch die Verwendung von NCO-sP(EO-stat-PO) als Additiv die Adsorption von Rinderserumalbumin (BSA) im Vergleich zu PLGA um 99,2% reduziert, die Adhäsion von HDFs verhindert und die Adhäsion von humanen mesenchymalen Stammzellen (MSC) minimiert werden konnten. Spezifische Bioaktivierung wurde durch Zugabe von Peptidsequenzen zur Spinlösung erreicht, welche kovalent in die Hydrogelschicht eingebunden werden konnten und kontrollierte Zell-Faser Interaktionen ermöglichten, Um die spezifische Zelladhäsion an solchen inerten Fasern zu erzielen, wurde GRGDS kovalent auf der Faseroberfläche gebunden. Dies erfolgte durch Zugabe des Peptids zur Polymerlösung vor dem Elektrospinnen. Als Negativkontrolle wurde die Peptidsequenz GRGES an die Faseroberfläche gebunden, welche durch Zellen nicht erkannt wird. Während die Verhinderung unspezifischer Proteinadsorption für die Peptidmodifizierten Fasern erhalten blieb, konnten HDFs lediglich auf den mit GRGDS Peptid modifizierten Fasern adhärieren, proliferieren und nach zwei Wochen eine konfluente Zellschicht aus vitalen Zellen bilden. Zusätzlich konnten MSCs auf GRGDS funktionalisierten Fasern adhärieren. Liganden konnten auf Fasern quantifiziert werden, indem die ELISA Technik aus Kapitel 6 auf Faseroberflächen transferiert wurde. Um das Potential der biochemischen und strukturellen Nachbildung der ECM aufzuzeigen, wurden beide Ansätze miteinander kombiniert. Die Immobilisierung von polyLacNAc auf die Hydrogelfasern durch Inkubation und der Schichtaufbau mit His6CGL2 und FN resultierte in HDF Adhäsion. N2 - This thesis concerned the quantification of cell adhesion molecules (CAM) in and on thin hydrogel films as surface modification of biomaterials. The established and well characterized, per se inert NCO-sP(EO-stat-PO) hydrogel system which allows the easy and reproducible bioactivation with peptides was used as basis for this thesis. Two methods can be used to functionalize the coatings. Ligands can either be mixed into the prepolymer solution in prior to layer formation (mix-in method), or freshly prepared coatings can be incubated with ligand solution (incubation method). Divided into three major parts, the first part of the thesis dealt with the concentration of ligands in the bulk hydrogel, whereas the second part of the thesis focused on the surface sensitive quantification of CAMs at the biointerface. The results were correlated with cell adhesion kinetics. The third part of this thesis investigated the biochemical and the structural mimicry of the extracellular matrix (ECM). ECM proteins were presented via sugar-lectin mediated binding and cell behavior on these surfaces was analyzed. Cell behavior on three-dimensional fibers with identical surface chemistry as the coatings in the previous sections of the thesis was analyzed and correlated with the amount of peptide used for bioactivation. Overall, the main question of this work was ‘How much?’ regarding maximal as well as optimal ligand concentrations for controlled cell-hydrogel interactions. The focus in the first practical part of this thesis was to analyze the amount of ligands in NCO-sP(EO-stat-PO) hydrogels using classical quantification methods. Coatings in 96-well plates as well as on glass were functionalized with GRGDS and 125I-YRGDS for radioisotopic detection (Chapter 3). Using the incubation method for functionalization, a maximal ligand binding using peptide concentrations of 600 µg/mL could be determined. When functionalization was introduced via the mix-in method, a clear tendency for higher ligand concentrations with increasing ligand to prepolymer ratio was observed, but no maximal ligand binding could be detected with a ligand to prepolymer ratio of 2/1 being the highest ratio investigated. This ratio of 2/1 was not exceeded to ensure that complete crosslinking of the hydrogel was not affected. In Chapter 4, a fluorinated amino acid and an iodinated peptide were immobilized to the hydrogels using the mix-in method and were detected by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). In these measurements, maximal ligand binding was detected for a ligand to prepolymer ratio of 1/1. Higher ligand to prepolymer ratios did not result in any significant increase in ligand concentrations in the surface near regions of the crosslinked hydrogels. To address the question of how many ligands were actually accessible for cell interaction at the interface, surface sensitive quantification methods were applied in the second part of this thesis. For the quantification with surface plasmon resonance (SPR) and surface acoustic wave technology (SAW) (Chapter 5), the hydrogel coating procedure needed to be transferred onto cystamine functionalized gold surfaces. Characterization with ellipsometry and atomic force microscopy (AFM) revealed inhomogeneous cystamine binding to the activated surfaces, which resulted in inhomogeneous coatings. Nevertheless, it could be shown that SPR as well as SAW were suitable methods for the surface sensitive quantification of the ligand concentration on NCO-sP(EO-stat-PO) hydrogels. Non-functionalized coatings resisted non-specific serum as well as streptavidin (SA) adsorption. Coatings functionalized with biocytin and GRGDSK-biotin introduced specific SA binding that was dependent on the biotin concentration at the surface. Additionally, enzyme linked immunosorbent assay (ELISA) and enzyme linked lectin assay (ELLA) (Chapter 6) were applied to coatings in 96-well plates and on glass. Coatings were functionalized with the model molecule biocytin, the biotinylated peptide GRGDSK-biotin, the ECM protein fibronectin (FN), as well as the carbohydrates N-acetylglucosamine (GlcNAc) and N-acetyllactosamine (LacNAc). All ligands could be successfully detected with antibodies or SA via ELISA or ELLA. Maximal GRGDSK-biotin binding to the hydrogel coatings on glass was achieved at a peptide to prepolymer ratio of 1/5, which was used as reference value in Chapter 8. Last but not least, cell adhesion (Chapter 7) was quantified depending on the GRGDS concentration on hydrogel coatings on glass. Maximal adhesion of primary human dermal fibroblast (HDF) was observed at GRGDS to prepolymer ratios of 1/5, when adherent cells were counted on life cell images. Quantification of adherent cells using the CASY® cell counter revealed maximal HDF adhesion at molar ligand to prepolymer ratios of 1/2. However, cell vitality detected by intracellular enzyme activities was not dependent on the GRGDS concentration. Cells which managed to adhere were vital regardless of the amount of ligands present. Additionally, adhesion of fibroblasts from the murine cell line NIH L929 was analyzed by counting on life cell images. These cells, being much smaller than the HDF cells, needed higher GRGDS to prepolymer ratios (2/1) for proper cell adhesion. All quantification methods applied to analyze hydrogels which were functionalized by the mix-in method in Chapter 3, 4, 6 and 7, were compared in Chapter 8. Radiodetection gave information about the ligand concentrations throughout the whole hydrogel and no maximal amount of ligands could be detected when increasing the peptide to prepolymer ratio. In contrast, XPS and TOF-SIMS which only penetrated the surface near regions of the coating, a maximal ligand binding to the hydrogel was detected for 1/1 ratios. SPR and SAW were not included in this comparison, as the coatings on gold need to be optimized first. The two surface sensitive quantification methods (ELISA and HDF adhesion) could give information about the quantity of peptide which was sterically available for SA or cell binding. With these methods, maximal SA and cell binding was detected at ratios of 1/5. These results underline the importance of carefully compare the different methods. Beside ligand quantification on hydrogels, the third part of this thesis was concerned with the biochemical and structural mimicry of the ECM by advanced ECM engineering to design biomimetic biomaterials that are better accepted by cells and tissue. The subject of Chapter 9 was the biomimetic and flexible presentation of the ECM protein FN. FN was attached via sugar-lectin mediated binding to NCO-sP(EO-stat-PO) hydrogels. The build-up of the covalently immobilized sugar poly-N-acetyllactosamine (polyLacNAc), the subsequent non-covalent binding of the fungal galectin His6CGL2, and FN could be elegantly proven by fluorescent staining on coatings which were functionalized with the sugar by micro contact printing (MCP). Further experiments were carried out on build-ups, where polyLacNAc was immobilized on the hydrogel by incubation. Optimal parameters for the layer build-up were determined by ELLA/ELISA. Only the complete build-up induced proper adhesion of HDFs. Compared to tissue culture polystyrene (TCPS), cells adhered and spread faster on the biomimetic surfaces. The flexible presentation of FN allowed HDFs to rearrange homogenously immobilized FN into fibrillar structures, which seemed not to be possible when FN was adsorbed on glass or covalently bound directly to the hydrogel coatings. This new approach of a flexible and biomimetic presentation of an ECM protein allows new ways to design biomaterials with best possible cell-material interactions. The work described in Chapter 10 focused on the structural mimicry of the fibrous ECM structures by electrospinning of synthetic, bioactive, and degradable fibers. Poly(D,L-lactide-co-glycolide) (PLGA) and NCO-sP(EO-stat-PO) were electrospun out of one solution in an easy one-step preparation resulting in fibers with an ultrathin inert hydrogel layer at the surface. By adding GRGDS to the solution prior to electrospinning, specifically interacting fibers could be obtained. In comparison to PLGA, the adsorption of bovine serum albumin (BSA) could be reduced by 99.2%. As a control, the non-active peptide GRGES was immobilized to the fiber. These fibers did not allow cell adhesion, showing that the integrity of the hydrogel coated fibers was not affected by the immobilization of peptides. HDF adhesion was obtained by functionalization with GRGDS, leading to the adhesion, spreading, and proliferation of HDFs. Also mesenchymal stem cells (MSC) could adhere to GRGDS functionalized fibers. Additionally, for ligand quantification, the ELISA technique was successfully transferred to fiber substrates. To highlight the potential of the approaches for the biochemical and structural mimicry of the ECM, the sugar polyLacNAc was immobilized on the PLGA/sP(EO-stat-PO) fibers followed by the subsequent layer build-up with His6CGL2 and FN. These fibers triggered HDF adhesion. KW - Hydrogel KW - Biomaterial KW - Zelladhäsion KW - Adsorption KW - Ligand KW - Quantifizierung KW - Proteinadsorption KW - Funktionalisierung KW - protein adsorption Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74454 ER - TY - THES A1 - Balzer, Christian T1 - Adsorption-Induced Deformation of Nanoporous Materials — in-situ Dilatometry and Modeling T1 - Adsorptionsinduzierte Deformation nanoporöser Materialien — in-situ Dilatometrie und Modellierung N2 - The goal of this work is to improve the understanding of adsorption-induced deformation in nanoporous (and in particular microporous) materials in order to explore its potential for material characterization and provide guidelines for related technical applications such as adsorption-driven actuation. For this purpose this work combines in-situ dilatometry measurements with in-depth modeling of the obtained adsorption-induced strains. A major advantage with respect to previous studies is the combination of the dilatometric setup and a commercial sorption instrument resulting in high quality adsorption and strain isotherms. The considered model materials are (activated and thermally annealed) carbon xerogels, a sintered silica aerogel, a sintered hierarchical structured porous silica and binderless zeolites of type LTA and FAU; this selection covers micro-, meso- and macroporous as well as ordered and disordered model materials. All sample materials were characterized by scanning electron microscopy, gas adsorption and sound velocity measurements. In-situ dilatometry measurements on mesoporous model materials were performed for the adsorption of N2 at 77 K, while microporous model materials were also investigated for CO2 adsorption at 273 K, Ar adsorption at 77 K and H2O adsorption at 298 K. Within this work the available in-situ dilatometry setup was revised to improve resolution and reproducibility of measurements of small strains at low relative pressures, which are of particular relevance for microporous materials. The obtained experimental adsorption and strain isotherms of the hierarchical structured porous silica and a micro-macroporous carbon xerogel were quantitatively analyzed based on the adsorption stress model; this approach, originally proposed by Ravikovitch and Neimark, was extended for anisotropic pore geometries within this work. While the adsorption in silica mesopores could be well described by the classical and analytical theory of Derjaguin, Broekhoff and de Boer, the adsorption in carbon micropores required for comprehensive nonlocal density functional theory calculations. To connect adsorption-induced stresses and strains, furthermore mechanical models for the respective model materials were derived. The resulting theoretical framework of adsorption, adsorption stress and mechanical model was applied to the experimental data yielding structural and mechanical information about the model materials investigated, i.e., pore size or pore size distribution, respectively, and mechanical moduli of the porous matrix and the nonporous solid skeleton. The derived structural and mechanical properties of the model materials were found to be consistent with independent measurements and/or literature values. Noteworthy, the proposed extension of the adsorption stress model proved to be crucial for the correct description of the experimental data. Furthermore, it could be shown that the adsorption-induced deformation of disordered mesoporous aero-/xerogel structures follows qualitatively the same mechanisms obtained for the ordered hierarchical structured porous silica. However, respective quantitative modeling proved to be challenging due to the ill-shaped pore geometry of aero-/xerogels; good agreement between model and experiment could only be achieved for the filled pore regime of the adsorption isotherm and the relative pressure range of monolayer formation. In the intermediate regime of multilayer formation a more complex model than the one proposed here is required to correctly describe stress related to the curved adsorbate-adsorptive interface. Notably, for micro-mesoporous carbon xerogels it could be shown that micro- and mesopore related strain mechanisms superimpose one another. The strain isotherms of the zeolites were only qualitatively evaluated. The result for the FAU type zeolite is in good agreement with other experiments reported in literature and the theoretical understanding derived from the adsorption stress model. On the contrary, the strain isotherm of the LTA type zeolite is rather exceptional as it shows monotonic expansion over the whole relative pressure range. Qualitatively this type of strain isotherm can also be explained by the adsorption stress model, but a respective quantitative analysis is beyond the scope of this work. In summary, the analysis of the model materials' adsorption-induced strains proved to be a suitable tool to obtain information on their structural and mechanical properties including the stiffness of the nonporous solid skeleton. Investigations on the carbon xerogels modified by activation and thermal annealing revealed that adsorption-induced deformation is particularly suited to analyze even small changes of carbon micropore structures. N2 - Ziel dieser Arbeit ist es, dass Verständnis der adsorptionsinduzierter Deformation von nanoporösen (insbesondere mikroporösen) Materialien zu erweitern, um ihr Potenzial für die Materialcharakterisierung zu erforschen. Zusätzlich sollen Orientierungshilfen für technische Anwendungen, wie z.B. adsorptionsgetriebene Aktuatoren, bereitgestellt werden. Hierfür kombiniert diese Arbeit in-situ Dilatometriemessungen und detaillierte Modellierung der gemessenen adsorptionsinduzierten Dehnungen. Der wesentliche Vorteil dieser Arbeit gegenüber vorherigen Studien ist die Kombination des dilatometrischen Messaufbaus mit einer kommerziellen Gasadsorptionsanlage, was die Messung qualitativ hochwertiger Adsorptions- und Dehnungsisothermen erlaubt. Die betrachteten Materialsysteme sind (aktivierte und geglühte) Kohlenstoffxerogele, ein gesintertes Silica-Aerogel, ein gesintertes, hierarchisch strukturiertes, poröses Silica und binderlose Zeolithe der Typen LTA und FAU. Diese Auswahl umfasst mikro-, meso- und makroporöse ebenso wie geordnete und ungeordnete Modellmaterialien. Alle Modellmaterialien wurden mit Rasterelektronenmikroskopie, Gasadsorption und Schallgeschwindigkeitsmessungen charakterisiert. In-situ Dilatometriemessungen an mesoporösen Modellsystemen wurden für N2-Adsorption bei 77 K durchgeführt, während alle mikroporösen Modellsysteme zusätzlich bei CO2-Adsorption (273 K), Ar-Adsorption (77 K) und H2O-Adsorption (298 K) untersucht wurden. Der verfügbare Messaufbau für in-situ Dilatometrie wurde im Rahmen dieser Arbeit weiterentwickelt, um Auflösung und Reproduzierbarkeit der Messungen von kleinen Dehnungen zu verbessern, was insbesondere für mikroporöse Materialien von Bedeutung ist. Die experimentellen Adsorptions- und Dehnungsisothermen des hierarchisch strukturierten, porösen Silicas und des mikro-makroporösen Kohlenstoff-Xerogels wurden mit dem adsorption-stress-Modell quantitativ ausgewertet. Hierfür wurde das adsorption-stress-Modell, ursprünglich eingeführt von Ravikovitch et al., für die Verwendung von anisotropen Porengeometrien erweitert. Während die der Deformation zu Grunde liegende Adsorption im Fall des mesoporösen Silicas gut mit der klassischen und analytischen Theorie von Derjaguin, Broekhoff und de Boer beschrieben werden konnte, erforderte die Adsorption in den Kohlenstoffmikroporen umfassende Berechnungen mittels nichtlokaler Dichtefunktionaltheorie. Um die adsorptionsinduzierten Spannungen mit entsprechenden Dehnungen zu korrelieren, wurden zusätzlich mechanische Modelle für die untersuchten Materialien entworfen. Das resultierende theoretische Konstrukt aus Adsorptions-, adsorption-stress- und mechanischem Modell wurde auf die ermittelten experimentellen Daten angewandt und strukturelle und mechanische Eigenschaften der Modellmaterialien bestimmt, d.h. Porengröße bzw. Porengrößenverteilung sowie die mechanischen Module der porösen Matrix und des unporösen Festkörperskeletts. Es konnte gezeigt werden, dass die ermittelten Materialeigenschaften konsistent mit unabhängigen Messungen und/oder Literaturwerten sind. Hierbei ist zu beachten, dass sich die Erweiterung des adsorption-stress-Modells für eine korrekte Auswertung der experimentellen Daten als zwingend erforderlich erwies. Des Weiteren konnte gezeigt werden, dass die adsorptionsinduzierte Deformation von ungeordneten mesoporösen Aero-/Xerogelstrukturen qualitativ denselben Mechanismen folgt, die für das geordnete, hierarchisch strukturierte, poröse Silica identifiziert wurden. Die entsprechende quantitative Modellierung erwies sich allerdings als schwierig, da die Poren in Aero-/Xerogelstrukturen geometrisch schlecht zu fassen sind. Gute Übereinstimmung zwischen Modell und Experiment konnte nur für das Stadium gefüllter Poren und den relativen Druckbereich der Monolagenbildung erzielt werden. Der Zwischenbereich der Multilagenadsorption erfordert ein komplexeres Modell, um die Spannung quantitativ korrekt zu beschreiben, die sich auf Grund der gekrümmten Adsorbat-Adsorptiv-Grenzfläche im Material ausbildet. Mit Hinblick auf mikro-mesoporöse Kohlenstoffxerogele konnte gezeigt werden, dass sich dort Deformationsmechanismen von Mikro- und Mesoporen überlagern. Die Dehnungsisothermen der Zeolithe wurden nur qualitativ ausgewertet. Das Ergebnis für den Zeolithen vom Typ FAU stimmt gut mit anderen in der Literatur beschriebenen Experimenten und dem theoretischen Verständnis überein, das sich aus dem adsorption-stress-Modell ergibt. Im Gegensatz dazu ist die gemessene Dehnungsisotherme des Zeolithen vom Typ LTA eher ungewöhnlich, da sie monotone Expansion des LTA-Zeolithen über den gesamten Druckbereich zeigt. Qualitativ kann dieses Ergebnis ebenfals mit dem adsorption-stress-Modell erklärt werden, aber eine detaillierte, quantitative Analyse übersteigt den Rahmen dieser Arbeit. Insgesamt erweist sich die Analyse der adsorptionsinduzierten Dehnungen der Modellmaterialien als geeignetes Mittel, um Informationen über deren strukturelle und mechanische Eigenschaften zu erlangen, was auch die Steifigkeit des unporösen Festkörperskeletts miteinschließt. Desweiteren zeigen Untersuchungen an aktivierten und geglühten Kohlenstoffxerogelen, dass adsorptionsinduzierte Deformation insbesondere geeignet ist, um kleine Änderungen an Mikroporenstrukturen zu analysieren. KW - Nanoporöser Stoff KW - Adsorption KW - Deformation KW - Dilatometrie KW - adsorption-induced deformation KW - density functional theory KW - adsorption KW - deformation KW - nanostructured KW - dilatometer KW - modeling Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157145 ER - TY - THES A1 - Kröger, Ingo T1 - Adsorption von Phthalocyaninen auf Edelmetalloberflächen T1 - Adsorption of phthalocyanines on noble metal surfaces N2 - In dieser Arbeit wurden methodenübergreifend die Adsorbatsysteme CuPc/Ag(111), CuPc/Au(111), CuPc/Cu(111), H2Pc/Ag(111) und TiOPc/Ag(111) untersucht und detailliert charakterisiert. Der Schwerpunkt der Experimente lag in der Bestimmung der lateralen geometrischen Strukturen mit hochauflösender Elektronenbeugung (SPA-LEED) und Rastertunnelmikroskopie (STM), sowie der Adsorptionshöhen mit der Methode der stehenden Röntgenwellenfeldern (NIXSW). Hochauflösende Elektronenenergieverlustspektroskopie (HREELS) wurde verwendet, um die vibronische Struktur und den dynamischen Ladungstransfer an der Grenzfläche zu charakterisieren. Die elektronische Struktur und der Ladungstransfer in die Moleküle wurde mit ultraviolett Photoelektronenspektroskopie (UPS) gemessen. Die wichtigsten Ergebnisse dieser Arbeit betreffen den Zusammenhang zwischen Adsorbat-Substrat Wechselwirkung und der Adsorbat-Adsorbat Wechselwirkung von Phthalocyaninen im Submonolagenbereich. N2 - In this thesis the adsorbate systems CuPc/Ag(111), CuPc/Au(111), CuPc/Cu(111), H2Pc and TiOPc/Ag(111) were investigated and characterized in great detail using complementary methods. The focus of the experiments was the determination of lateral geometric structures with spot-profile-analysis low energy electron diffraction (SPA-LEED) and scanning tunneling microscopy (STM), as well as the measurement of adsorption heights using the method of normal incidence x-ray standing waves (NIXSW). High resolution electron energy loss spectroscopy (HREELS) was used to characterize the vibronic properties of the molecule and the interface dynamical charge transfer (IDCT). The electronic structure and the charge transfer into the molecule were investigated with ultraviolet photoelectron spectroscopy (UPS). The most important results of this work are related with the interplay between adsorbate-substrate and adsorbate-adsorbate interaction of Phthalocyanines in the submonolayer regime. KW - Oberfläche KW - Edelmetall KW - Phthalocyanin KW - Adsorption KW - Oberflächenphysik KW - Adsorption KW - Phthalocyanine KW - CuPc KW - TiOPc KW - H2Pc KW - Ag(111) KW - Au(111) KW - Cu(111) KW - SPA-LEED KW - NIXSW KW - HREELS KW - STM KW - UPS KW - Paarpotentiale KW - surface science KW - adsorption KW - phthalocyanine KW - CuPc KW - TiOPc KW - H2Pc KW - Ag(111) KW - Au(111) KW - Cu(111) KW - SPA-LEED KW - NIXSW KW - HREELS KW - STM KW - UPS KW - pair potentials Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-57225 ER -