TY - THES A1 - Kugler, Sabrina T1 - Wirkung von Cannabinoiden auf die Tandemporenkaliumkanäle TASK-1 und TASK-3 T1 - Effects of cannabinoids on the two-pore-domain potassium channels TASK-1 and TASK-3 N2 - In dieser Arbeit wurde die Wirkung der ungesättigten Fettsäure Arachidonsäure, des Endocannabinoids Anandamid und des synthetischen Cannabinoid-Rezeptor-Agonisten WIN55,212-2 auf die Tandemporenkaliumkanäle TASK-1 und TASK-3 untersucht. Dazu wurden an Xenopus Oozyten, denen die entsprechende Kanal-RNA injiziert wurde, in der Zwei-Elektroden-Spannungsklemme elektrophysiologische Messungen durchgeführt. Zunächst wurden für alle drei Substanzen Dosis-Wirkungs-Beziehungen bestimmt. Diese führten zu folgenden Ergebnissen: • TASK-1 wird durch WIN55,212-2 um bis zu ca. 81% gehemmt. Die IC50 beträgt 0,83 µM. Anandamid besitzt eine IC50 von 1,92 µM und hemmt den Strom um bis zu ca. 71%. Bei WIN55,212-2 bzw. bei Anandamid liegt mit einem Hill-Koeffizienten (nH) von 1,65 bzw. von 1,42 positive Kooperativität vor. Arachidonsäure hingegen inhibiert den Strom nur um bis zu ca. 63%. Die IC50 beträgt 11,3 µM. Der Hill-Koeffizient von 0,9 ergibt negative Kooperativität. • TASK-3 wird durch alle drei Substanzen deutlich weniger inhibiert. Die maximale Inhibition durch WIN55,212-2 [10µM] beträgt 32,4% (± 9,7). Fünf µM Anandamid bzw. 80 µM Arachidonsäure verursachen eine Hemmung um 32,1% (± 5,4) bzw. um 20,3% (± 5,5). Bei beiden Kanalproteinen wurde außerdem untersucht, welche Bedeutung den Aminosäuren in Position 243-248, die bei TASK-1 und TASK-3 mit Ausnahme einer Aminosäure übereinstimmen, bei der Wirkung von Cannabinoiden zukommt. Dazu wurden Mutationsstudien im Bereich des C-Terminus von TASK-1 und TASK-3 durchgeführt. • Es wurden die sechs Aminosäuren in Position 243-248 aus TASK-1 bzw. TASK-3 entfernt (TASK-1 [243-248] bzw. TASK-3 [243-248]). Die inhibitorische Wirkung von WIN55,212-, Anandamid und Arachidonsäure war bei TASK-1 [243-248] deutlich vermindert, während es bei TASK-3 [243-248] zu unterschiedlichen Effekten kam. • Der gesamte C-Terminus des TASK-1 wurde entfernt, mit Ausnahme der sechs Aminosäuren in Position 243-248. Außerdem wurden die endständigen Aminosäuren RSSV an das Restprotein angefügt, da diese für einen gut funktionierenden Transport in die Membran notwendig sind (TASK-1 [249-390RSSV]. Die Wirkungen von WIN55,212-2, Anandamid und Arachidonsäure entsprachen bei dieser Mutante denen, die beim TASK-1 [Wildtyp] beobachtet wurden. • Durch Punktmutation wurde beim TASK-3 Leucin an Position 247 durch Methionin ersetzt (TASK-3 [L247M]. Diese Mutante besitzt dadurch in Position 243-248 das gleiche Sequenzmotiv wie der TASK-1. Im Vergleich zum TASK-3 [Wildtyp] waren die Wirkungen der Cannabinoide bei dieser Mutante jedoch unverändert. Diese Ergebnisse lassen den Schluss zu, dass die untersuchten Cannabinoide eine rezeptorunabhängige, spezifische und reversible inhibitorische Wirkung auf die Tandemporenkaliumkanäle TASK-1 und TASK-3 haben. Die Aminosäuren in Position 243-248 sind für diese Wirkung der Cannabinoide von wesentlicher Bedeutung. N2 - Effects of the fatty acid arachidonic acid, the endocannabinoid anandamide and the synthetic cannbinoid receptor agonist WIN55,212-2 on the two-pore-domain potassium channles TASK-1 and TASK-3 were examined using the Xenopus oocyte expression system. Electrophysiological recordings have been performed with the two-electrode-voltage-clamp technique. At first dose-response relationships between the channel-proteins and the cannabinoids have been performed. All three substances had inhibitory effects on both channels. On TASK-1 WIN55,212-2 showed the strongest inhibition (ca. 81%), followed by anandamide (ca. 71%) and arachidonic acid (ca.63%). The inhibitory effects of all three substances on TASK-3 have been low. Furthermore the C terminus was targeted for mutation in order to examine the importance of the six-residue sequence at position 243-248. TASK-1 and TASK-3 contain nearly the same sequence at this position except only one amino acid. The first mutations performed were TASK-1 [243-248] and TASK-3 [243-248], both lacking the amino acids in position 243-248. The lack of this sequence reduced inhibitory effects of the cannabinoids on TASK-1 [243-248] nearly completely. On TASK-3 [243-248] various effects could be observed. Deletion of the whole C terminus of TASK-1 except the amino-acids in position 243-248 and the terminal motif RSSV, crucial for membrane trafficing (TASK-1 [249-390RSSV], lead to very similar inhibitory effects of the cannabinoids as on TASK-1 [wild-type]. The amino acid leucin of TASK-3 at position 247 has been changed to methionin (TASK-3 [L247M]) in order to construct a mutation of TASK-3 containing the same sequence as TASK-1. The effects of the examined cannabinoids on TASK-3 [L247M] did not differ from those on TASK-3 [wild-type]. These results suggest, that anandamide, arachidonic acid and WIN55,212-2 inhibit the two-pore-domain potassium channels TASK-1 and TASK-3 specific and reversible, independently of receptors. The six-residue sequence at position 243-248 has a basic impact. KW - Kaliumkanal KW - Elektrophysiologie KW - Strommessung KW - Indischer Hanf KW - Arachidonsäure KW - Endocannabinoide KW - Xenopus Oozyten KW - Zwei-Elektroden-Spannungsklemme KW - Anandamid KW - WIN 55 KW - 212-2 KW - Xenopus oocytes KW - two-electrode-voltage clamp KW - anandamide KW - WIN 55 KW - 212-2 Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-27922 ER - TY - THES A1 - Dunkel, Marcel T1 - Untersuchungen zur Translokation und Funktion von Tandem-Poren Kaliumkanälen der TPK-Familie aus Arabidopsis thaliana T1 - Targeting and function of Arabidopsis thaliana tandem pore potassium channels belonging to the TPK family N2 - • Die Modellpflanze der Pflanzenphysiologen, Arabidopsis thaliana, besitzt mindestens 15 verschiedene kaliumselektive Kanäle, von denen 5 der Strukturklasse der Tandemporen-Kaliumkanäle angehören und daher TPK-Kanäle genannt werden. • Tandemporenkanäle findet man nur bei eukaryontischen Organismen. Die pflanzlichen Tandemporen Kaliumkanäle haben einen gemeinsamen phylogenetischen Ursprung und unterscheiden sich von den Tierischen und denen der Pilze und Einzeller. Die pflanzlichen TPK-Kanäle lassen sich wiederum in die TPK1-Unterfamilie und die TPK2-Unterfamilie unterteilen. Die weitere Evolution der TPK2-Unterfamilie von A. thaliana, TPK2, TPK3, TPK4 und TPK5, lässt sich eindeutig auf bestimmte Duplikationsereignisse im Genom von A. thaliana und dessen Ahnen zurückführen. Auch der Ein-Poren Kaliumkanal KCO3 geht sehr wahrscheinlich auf die Duplikation des TPK2 und einer anschließenden Deletion und nicht auf einen der prokaryontischen Ein-Poren-Kaliumkanal-Prototypen zurück. • Vier der A. thaliana TPK-Kanäle (TPK1, 2, 3 und 5) lokalisieren in der Vakuolenmembran, während einer, TPK4, zum großen Teil im ER, aber auch in der Plasmamembran zu finden ist. Die Translokation des TPK1 folgt dem sekretorischen Pfad vom ER, durch den Golgi und möglichen intermediären Kompartimenten hin zur Membran der lytischen Vakuole. Von entscheidender Bedeutung ist dabei der zytoplasmatische Carboxy-Terminus (CT) des TPK1. Deletionsmutanten des TPK1 CT zeigen, dass die Translokation mindestens zwei Sortierungsschritten, am Ausgang des ER und des Golgi, unterliegt. Fehlt der CT komplett bleibt der Kanal im ER. Die Sortierungssignale des TPK1 CT konnten auf die EF-Hand Domäne I eingegrenzt werden. Anschließende Punktmutationen in diesem Bereich konnten zeigen, dass TPK1 in der eigentlich für die Ca2+ Bindung zuständigen Domäne ein di-azidisches ER-Export Motiv bestehend aus Asparaginsäure, Leucin und Glutaminsäure enthält. Andere Arbeiten legen nahe, dass der Mechanismus des ER-exports von TPK1 auf der Interaktion mit COPII Vesikelhüllproteinen beruht; TPK1 also in Vesikel sortiert wird, die sich am ER abschnüren und mit dem cis-Golgi fusionieren. Der Vergleich mit anderen pflanzlichen TPK Kanälen lässt vermuten, dass TPK1 Orthologe, nicht aber die A. thaliana Homologen ein di-azidisches ER-Exportmotiv besitzen. Die Translokation des TPK3 erwies sich dementsprechend als unabhängig von dessen CT. Weitere Experimente schließen außerdem eine Beteiligung der 14-3-3 Bindung an der Translokation aus. • TPK4 ist der einzige TPK der heterolog in Xenopus Oozyten funktionell exprimiert werden kann. Wie Mutationen an einem essentiellen Aspartat (Asp86, Asp200) in der Pore zeigten, sind beide tandem repetierten Porendomänen einer Kanaluntereinheiten an der Porenbildung beteiligt. Somit formt sich TPK4 ähnlich wie die tierischen TPK-Kanäle voraussichtlich aus zwei Untereinheiten. Ein Austausch der zweiten Porendomäne von TPK4 konnte zeigen, dass TPK2, TPK3 und TPK5, mit ihrer zweiten Porendomäne und TPK4 mit seiner ersten Porendomäne den TPK4 zu einem funktionellen Kaliumkanal komplementieren können. Da keine der TPK4 Eigenschaften, außer geringfügig die relative Permeabilität für Rb+, verändert wurde, kann man absehen, dass die homologen TPK2, TPK3 und TPK5 als instantan aktivierte, spannungsunabhängige Kaliumkanäle der Vakuolenmembran fungieren. Dazu kommt wahrscheinlich ähnlich wie bei TPK1 ein 14-3-3 und Ca2+ abhängiges Öffnen und Schließen. • Weiterführende elektrophysiologische Untersuchungen am TPK4 zeigten eine Beteiligung einer transmembranen Asparaginsäure (Asp110) an der Kaliumpermeation und der schwachen Einwärtsgleichrichtung. Der Aspartatrest ist in die wassergefüllte Aussparung der zytoplasmatischen Porenhälfte orientiert. Damit kann er über ionische Wechselwirkungen sowohl Kalium in der Pore konzentrieren als auch potentielle Kanalblocker wie Mg2+ oder Polyamine binden. Die Konservierung des Aspartats unter anderem bei TPK2, TPK3 und TPK5 deutet daraufhin, dass auch die vakuolären TPK-Kanäle eine Einwärtsgleichrichtung vermitteln, die auf einem spannungsabhängigen Block von zytoplasmatischer Seite basiert. • Im Gegensatz zum zytoplasmatischen Block ist das Schließen des TPK4 durch zytoplasmatische Ansäuerung spannungsunabhängig und ist daher von einer Protonierungsreaktion abhängig. Über zahlreiche Deletionen und Chimären des TPK4 wurde der Bereich, in dem sich pH-Sensor und pH-Tor befinden, auf den Bereich zwischen transmembranen und zytoplasmatischen Domänen eingegrenzt. Darüber hinaus fungieren Histidine nicht als pH-Sensor. N2 - • The model plant Arabidopsis harbours 15 genes encoding potassium selective channels. Five of them belong to the structural class of tandem-pore K+ channels and are therefore called TPK channels. • Blast searches revealed the occurrence of TPK channels in many eucaryots, but not in procaryots. Plant TPK channels cluster in a phylogenetic analysis and branch into a TPK1- and a TPK2-subfamily. The evolution Arabidopsis TPK2-subfamily members (TPK2, TPK3, TPK4, and TPK5) can be attributed to distinct large-scale duplication events in ancestral genomes. Further more phylogenetic analysis showed the relatedness of the one-pore potassium channel KCO3 to TPK2. • The trafficking of the four vacuolar membrane intrinsic TPK channels (TPK1, TPK2, TPK3, and TPK5) utilizes the secretory path, from the endoplasmic reticulum (ER), via Golgi apparatus and maybe intermediate compartments to the lytic vacuole. The carboxy terminus (CT) of TPK1 was critically involved in both ER and Golgi sorting steps. The minimal requirement for vacuolar localisation was the proximal CT up to the Ca2+-binding EF-hand I. Due to mutational analyses one of several di-acidic motifs consisting of aspartate, leucin, and glutamate (aa 296-298) could be identified as the essential ER-export motif. By this TPK1 likely interacts with the coat of COPII vesicles, which adopt the ER to Golgi transport. Like TPK1 the orthologs of the TPK1-subfamily, but not the Arabidopsis homologs, exhibit the same di-acidic motif. In agreement vacuolar trafficking of TPK3 was independent of its CT. • TPK4 is the solely plasma membrane integral AtTPK channel and thus its currents can be recorded at the plasma membrane of Xenopus leavis oocytes. Mutation of in plant TPK channels perfectly conserved pore aspartates (D86N; D200N) knock-out TPK4 channel function and suggest a dimeric assembly similar to that of animal tandem-pore channels. Employing TPK4 as matrix for the expression of the pore domains of the vacuolar TPKs in Xenopus oocytes, I could show the capability of TPK2, TPK3 and TPK5 to complement TPK4. Therefore these channels probably form instantaneous, voltage-independent and potassium selective channels in the vacuolar membrane. Existence of one 14-3-3 binding motif each and one EF-hand (except TPK5) implicates Ca2+ and 14-3-3 dependent activation of those channels like seen for TPK1. • Further combination of structural, mutational and electrophysiological analyses led to the identification of another pore aspartat (Asp 110) essential for the potassium permeation and responsible for the inward rectification. The charged side chain of this Asp 110 faces the water cavity and thus could concentrate and coordinate potassium in the pore as well as interact with cationic blockers like e.g. Mg2+ or polyamine. Again, conservation among the Arabidopsis TPK2-subfamily members suggests that the vacuolar TPKs (except TPK1) are regulated by cytoplasmic blockers and exhibit weak inward rectifiying properties, too. • In contrast to inward rectification current reduction due to cytoplasmic acidification is voltage-independent and thus likely protonation dependent. Due to chimera and deletion mutants of TPK4 the possible sites of the pH-Sensor as well as the gate could be narrowed down to a few residues in the transition zone of transmembrane and cytoplasmic domains, but the essential residues remain elusive. KW - Vakuole KW - Translokation KW - Endoplasmatisches Retikulum KW - Kaliumkanal KW - TPK KW - KCO KW - ER-Export KW - diazidisches Motiv KW - DEVC KW - particle bombardment KW - double electrode voltage clamp KW - targeting Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-34743 ER - TY - JOUR A1 - Ehling, P. A1 - Bittner, S. A1 - Bobak, N. A1 - Schwarz, T. A1 - Wiendl, H. A1 - Budde, T. A1 - Kleinschnitz, Christoph A1 - Meuth, S. G. T1 - Two pore domain potassium channels in cerebral ischemia: a focus on K2p9.1 (TASK3, KCNK9) N2 - BACKGROUND: Recently, members of the two-pore domain potassium channel family (K2P channels) could be shown to be involved in mechanisms contributing to neuronal damage after cerebral ischemia. K2P3.1-/- animals showed larger infarct volumes and a worse functional outcome following experimentally induced ischemic stroke. Here, we question the role of the closely related K2P channel K2P9.1. METHODS: We combine electrophysiological recordings in brain-slice preparations of wildtype and K2P9.1-/- mice with an in vivo model of cerebral ischemia (transient middle cerebral artery occlusion (tMCAO)) to depict a functional impact of K2P9.1 in stroke formation. RESULTS: Patch-clamp recordings reveal that currents mediated through K2P9.1 can be obtained in slice preparations of the dorsal lateral geniculate nucleus (dLGN) as a model of central nervous relay neurons. Current characteristics are indicative of K2P9.1 as they display an increase upon removal of extracellular divalent cations, an outward rectification and a reversal potential close to the potassium equilibrium potential. Lowering extracellular pH values from 7.35 to 6.0 showed comparable current reductions in neurons from wildtype and K2P9.1-/- mice (68.31 +/- 9.80% and 69.92 +/- 11.65%, respectively). These results could be translated in an in vivo model of cerebral ischemia where infarct volumes and functional outcomes showed a none significant tendency towards smaller infarct volumes in K2P9.1-/- animals compared to wildtype mice 24 hours after 60 min of tMCAO induction (60.50 +/- 17.31 mm3 and 47.10 +/- 19.26 mm3, respectively). CONCLUSIONS: Together with findings from earlier studies on K2P2.1-/- and K2P3.1-/- mice, the results of the present study on K2P9.1-/- mice indicate a differential contribution of K2P channel subtypes to the diverse and complex in vivo effects in rodent models of cerebral ischemia. KW - Kaliumkanal KW - Ischemia Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68129 ER - TY - THES A1 - Dobler, Tina Melanie T1 - Tandemporenkaliumkanäle in der Amygdala T1 - Tandem Pore Potassium Channels in the Amygdala N2 - Die Neurone der medialen Amygdala spielen eine wichtige Rolle bei der Verarbeitung von unkonditionierter Angst und aggressivem Verhalten (Nelson and Trainor, 2007). Ihre Erregbarkeit wird höchstwahrscheinlich durch eine Hintergrundleitfähigkeit von K2P-Kanälen und ihrem molekularen Korrelat reguliert. Bisher sind 15 dieser K2P-Kanäle bekannt. In der hier vorliegenden Arbeit wurden die Expression und die physiologische Funktion des TASK-3, einem säure-sensitivem K2P-Kanal, in dieser Gehirnregion untersucht. Bisher konnte die TASK-3-Expression durch in situ-Hybridisierungen in erwachsenen Ratten gezeigt werden (Karschin et al., 2001). Entsprechend konnten wir einen, dem TASK-3 ähnlichen Strom, durch elektrophysiologische Ganzzellmessungen in akuten Hirnschnitten nachweisen. Um die Beteiligung des TASK-3 an diesem Gesamtstrom zu überprüfen, verwendeten wir den selektiven TASK-3 Antagonisten Ruthenium Rot oder veränderten den extrazellulären pH-Wert auf pH 6,4. Ruthenium-Rot- bzw. pH-sensitive Neurone zeigten ein negativeres Ruhemembranpotential (-56.31 mV ± 1.51; n = 17) als die Neurone, die nicht sensitive für Ruthenium-Rot oder pH-Veränderungen waren (-48.39 mV ± 1.55; n = 13; p = 0.001). Zusätzlich verstärkte Ruthenium Rot die Aktionspotenzialfrequenz und die Aktionspotenzialbreite bei Stromapplikation in den Zellen mit einem positiveren Ruhemembranpotenzial. Unsere in situ-Hybridisierungen in C57/Bl6 Mäusen zeigten eine starke Expression des TASK-3-Kanals in den Neuronen der medialen Amygdala. Darum wurde die Erregbarkeit von TASK-3 Wildtypneuronen mit denen von TASK-3-Knockoutneurone verglichen. Wir konnten einen säuresensitiven Kaliumstrom in den TASK-3 Wildtypzellen identifizieren, welche in den TASK-3 Knockoutzellen abwesend war. Überraschenderweise tauchten keine Unterschiede in der Aktionspotenzialform, dem Ruhemembranpotenzial oder des Rheobasestrom auf. Verhaltenstests zeigten, dass TASK-3 Wildtyp Mäuse auf die Präsentation von TMT, ein Duftstoff aus den Fäkalien von Füchsen, stärker freezen, als TASK-3 Knockoutmäuse. Dies zeigt, dass ein Fehlen des TASK-3 zu einer geringeren Furchtantwort beiträgt. Zusammengefasst zeigen diese Daten, dass TASK-3 bei der zellulären Erregbarkeit von Neuronen der medialen Amygdala von Ratten eine große Rolle spielt. Diese TASK-3-Kanäle sind in der medialen Amygdala von Mäusen ebenso exprimiert, wo sie zur Verarbeitung von Furchtverhalten beitragen. N2 - Neurones of the medial amygdala play an important role in processing unconditioned fear and aggressive behaviour (Nelson and Trainor, 2007). Their excitability is supposed to be regulated by a background conductance with two-pore domain potassium channels (K2P) as its molecular correlate. So far, there are 15 K2P channels known. In this thesis the expression and the physiological function of TASK-3, an acid-sensitive K2P-channel, in this brain region was investigated. Previously, there was a TASK-3 channel expression in the medial amygdala from adult rats demonstrated by in situ-hybridisation (Karschin et al., 2001). Correspondingly, we also detected a TASK-3-like current by electrophysiological whole-cell measurements in acute brain slices. To identify the contribution of TASK-3 to the standing outward current (IKso) upon depolarising pulses we used the selective TASK-3 antagonist ruthenium red (RR) or acidification to pH 6.4. RR- or pH-sensitive neurones showed a more hyperpolarised resting membrane potential (-56.31 mV ± 1.51; n = 17) compared to neurones lacking TASK-3-like currents (-48.39 mV ± 1.55; n = 13; p = 0.001). In addition, Ruthenium Red enhanced action potential frequency and action potential width during current injections in the more hyperpolarised cells. Our in situ-hybridizations in C57/Bl6 mice indicate that the same member of the K2P, acid sensitive TASK-3 channel, is also strongly expressed in neurones of the medial amygdala of mice. We therefore compared medial amygdaloid excitability in TASK-3 wildtype and TASK-3 knockout mice. We could detect an acid sensitive potassium current in the TASK-3 wildtype mice, which was absent in the TASK-3 knockout mice. Surprisingly, we could not detect significant differences in parameters defining the shape of an action potential, the resting membrane potential or the rheobase current. Behavioural tests analyzing the freezing behaviour showed that TASK-3 wildtype mice do react stronger to the frightful odour of TMT than TASK-3 knockout mice. Indicating, that TASK-3 knockout mice do have less fear response. Taken together, these data suggest that TASK-3 channels are very important in controlling cellular excitability of medial amygdaloid neurones in rats. These TASK-3 channels are also expressed in mice where they contribute to the fear behaviour of freezing. KW - Kaliumkanal KW - Corpus amygdaloideum KW - Schrecken KW - mediale Amygdala KW - Schreckstarre KW - TASK-3 KW - TMT KW - K2P KW - freezing Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-57043 ER - TY - THES A1 - Roos, Marcel Philipp T1 - Suche nach Interaktionspartnern mit dem ATP-abhängigen Kaliumkanal der Niere, ROMK, durch "Yeast-Two-Hybrid-Screening" T1 - Finding proteins that interact with a Renal ATP-dependent Potassium Channel by "Yeast-Two-Hybrid-Screening" N2 - Protein-Protein-Interaktionen haben eine wesentliche Bedeutung bei der Regulierung verschiedenster Zellfunktionen. Sie spielen u.a. bei der Funktionssteuerung von Kanälen, Transportern und Ionenpumpen eine wesentliche Rolle. Ein PDZ-Motiv am C- terminalen Ende des ATP-abhängigen Kaliumkanals ROMK ließ mögliche Inter-aktionen mit zellulären und membran-assoziierten Proteinen erhoffen. Nach Durch-führung dreier „Yeast-Two-Hybrid“-Screens zur Identifizierung möglicher Interakt-ionspartner von ROMK kamen 17, von ihrer Funktion schon bekannte, aussichtsreiche Proteine, in die enge Auswahl. Nach weiterer Charakterisierung und Autoaktivierungs-tests blieben 13 Proteine zur weiteren Abklärung übrig. GST-Pulldown-Experimente und Immunfluoreszenz brachten weitere Aufschlüsse und Erkenntnisse zur Interaktion zwischen ROMK und seinen Partnern. Folgende Erkenntnisse konnten aus den Versuchen gewonnen werden: *) 174 positive Klone interagierten bei drei „Yeast-Two-Hybrid“-Screens mit dem zytoplasmatischen Teil von ROMK. *) der zytoplasmatische Teil des ATP-abhängigen Kaliumkanals der Niere, ROMK, ist an Protein- Protein- Interaktionen beteiligt. *) Proteine des Aktin-Zytoskeletts und Tyrosinkinase-assoziierte Proteine binden an den zytoplasmatisch Teil von ROMK. Daher könnten beide in Punkt 1.5.4. erwähnten Theorien der Aktivitätsänderung ROMKs durch a) Stimulierung ruhender Kanäle bzw. b) Einbau von in Vesikel gespeicherten Kanälen in die Membran vertreten werden. *) Shank3a, Calponin2, NHERF2, NUMB2 und Antiquitin1 binden an den C-terminalen Teil von ROMK in den GST-Pull-Down-Experimenten. *) Shank3a und ArgBP2 verändern das Verteilungsmuster von ROMK in der Zelle. *) Shank3a scheint für eine Interaktion mit ROMK am bedeutungsvollsten zu sein. Hypothetische Modelle und Gedankenspiele über den möglichen Einfluss der Interaktionspartner auf ROMK wurden in der Diskussion erstellt und näher erläutert. Es ist davon auszugehen, dass einige dieser Proteine, speziell diese, die mit Tyrosinkinase und dem Aktin-Zytokeletts assoziiert sind, auf ROMK Einfluss nehmen. Weitere Studien werden hoffentlich bald Aufschlüsse über Aktivitätsänderungen des ATP-ab-hängigen K+-Kanal, ROMK, offenbaren. KW - Kaliumkanal KW - Niere KW - Protein-Protein-Interaktionen KW - PDZ-Domäne KW - Yeast-Two-Hybrid-Screening KW - Potassium Channel KW - Kidney KW - Protein-protein-interaction KW - PDZ-Domain KW - Yeast-Two-Hybrid-Screening Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-11424 ER - TY - THES A1 - Büchsenschütz, Kai T1 - Struktur und räumlich-zeitliches Expressionsverhalten von Kaliumkanälen bei Zea mays T1 - Structure and expressionpattern of potassium channels of Zea mays N2 - Bei Zea mays wurden neue Kaliumkanäle der Shaker-Familie isoliert, charakterisiert und zusammen mit bereits bekannten Vertretern dieser Familie hinsichtlich möglicher Aufgaben und Interaktionen untersucht. N2 - New potassium channels of Zea mays that belong to the Shaker-family were isolated and characterized. Their partial role and interaction with other channel members of the same family was focused on. KW - Mais KW - Kaliumkanal KW - Gen shaker KW - Genexpression KW - Kalium KW - Zea KW - Mais KW - Shaker KW - potassium KW - Zea KW - corn KW - Shaker Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-17522 ER - TY - THES A1 - Wulf, Andrea T1 - Regulierung eines kalziumempfindlichen Kaliumkanals durch Proteinkinase C T1 - Regulation of a Ca2+-sensitive K+ channel by protein kinase C N2 - Ca2+-empfindliche K+-Kanäle mittlerer Leitfähigkeit (IK1-Kanäle) übernehmen wichtige Funktionen bei vielen physiologischen Prozessen wie z.B. bei der Zell-Proliferation, der epithelialen Salz- und Wasser-Sekretion und der Zellmigration. Die Kanäle werden durch die intrazeluläre Ca2+-Konzentration reguliert, wobei ihre Ca2+-Sensitivität durch Phosphorylierungsreaktionen moduliert werden kann. Ziel dieser Arbeit war die funktionelle Charakterisierung des aus transformierten Nierenepithelzellen (MDCK-F-Zellen) klonierten Ca2+-sensitiven K+-Kanals mittlerer Leitfähigkeit (cIK1) und die Untersuchung seiner Regulierung durch die Proteinkinase C (PKC). Dazu wurde der Kanal heterolog in CHO- und HEK293-Zellen exprimiert. Seine biophysikalischen und pharmakologischen Eigenschaften sowie der Einfluß der Proteinkinase C auf die Kanalaktivität wurden mit Hilfe der Patch-Clamp-Technik untersucht. Die cIK1-Ströme sind schwach einwärtsrektifizierend, zeigen keine Aktivierungs- oder Inaktivierungskinetik und weisen im physiologischen Bereich keine Spannungsabhängigkeit auf. Der cIK1 ist K+-selektiv und wird durch einen Anstieg der intrazellulären Ca2+-Konzentration aktiviert. Der Kanal wird durch Barium, Charybdotoxin und Clotrimazol blockiert und durch 1-Ethyl-2-Benzimidazolon aktiviert. Die funktionellen und pharmakologischen Eigenschaften des klonierten cIK1 entsprechen damit denen des nativen Kanals aus MDCK-F-Zellen und stimmen mit denen anderer Mitglieder der IK1-Kanalfamilie überein. Neben der Regulierung durch die intrazelluläre Ca2+-Konzentration wird der cIK1 auch durch eine PKC-abhängige Phosphorylierung reguliert. Sowohl ATP als auch ATP?S stimulieren die Kanalaktivität. Die ATP-abhängige Aktivierung wird durch Inhibitoren der Proteinkinase C (Bisindolylmaleimid, Calphostin C) gehemmt, während die mit ATP?S induzierte Kanalaktivität weitgehend resistent gegen diese PKC-Inhibitoren ist. Eine Stimulierung der Proteinkinase C mit Phorbol 12-Myristat 13-Acetat (PMA) führt zu einer sofortigen Aktivierung des cIK1. Im Gegensatz dazu sind die cIK1-Kanäle nach fast vollständigem Abbau der Proteinkinase C durch eine langfristige Inkubierung der Zellen mit PMA nicht mehr aktiv. Um zu untersuchen, ob diese Regulierung eine direkte Interaktion der Proteinkinase C mit dem Kanalprotein erfordert, wurden die drei putativen PKC-Konsensussequenzen des cIK1 mittels zielgerichteter Mutagenese so verändert, daß eine Phosphorylierung an diesen Stellen nicht mehr möglich ist. Weder die einzelne Mutation der PKC-Konsensussequenzen (T101, S178, T329) noch die gleichzeitige Mutation aller drei Phosporylierungsstellen zu Alanin beeinflußt die akute Regulierung des cIK1 durch die Proteinkinase C. Die cIK1-Mutante T329A und die Dreifachmutante reagieren jedoch nach einem Abbau der Proteinkinase C mit einem extremen Anstieg der Kanalaktivität und demaskieren damit einen zweiten Weg der Kanalregulierung. Die Ergebnisse zeigen, daß der cIK1 durch zwei voneinander unabhängige Mechanismen reguliert wird. Eine PKC-abhängige Phosphorylierung erhöht die Aktivität der Kanäle, findet jedoch nicht an den bekannten PKC-Konsensusesquenzen des Kanalproteins statt. Dagegen werden die cIK1-Kanäle über einen zweiten ATP-abhängigen Mechanismus, der wahrschenlich eine direkte Interaktion mit dem Kanalprotein erfordert, gehemmt. N2 - Ca2+ sensitive K+ channels of intermediate conductance (IK1 channels) are required for many physiological functions such as cell proliferation, epithelial transport or cell migration. The intracellular Ca2+ concentration is the most important regulator of IK1 channels. Their Ca2+ sensitivity can be modified by phosphorylation-dependent reactions. The aim of this study was the functional characterisation of the canine isoform cIK1 cloned from transformed renal epithelial cells (MDCK-F cells) and the investigation of mechanisms by which it is regulated by protein kinase C (PKC). cIK1 channels were heterologously expressed in CHO and HEK293 cells and investigated by means of patch clamp technique. cIK1 channels elicit a K+ selective, inwardly rectifying, and Ca2+-dependent current. It is inhibited by barium, charybdotoxin, clotrimazole, and activated by 1-ethyl-2-benzimidazolone. The electrophysiological and pharmacological characteristics thereby correspond to those of native cIK1 channels from MDCK-F cells and those of other IK1 channel isoforms. CIK1 channel are regulated by the intracellular Ca2+ concentration and in addition by protein kinase C. They are activated by the intracellular application of ATP or ATP?S. ATP-dependent activation is reversed by protein kinase C inhibitors (bisindolylmaleimide, calphostin C), while stimulation with ATP?S resists protein kinase C inhibition. Stimulation of protein kinase C with phorbol 12-myristate 13-acetate (PMA) leads to the acute activation of cIK1 currents. In contrast, PKC depletion by overnight incubation with PMA prevents ATP-dependent cIK1 activation. To investigate whether this regulation requires a direct interaction with the channel protein, the three putative protein kinase C phosphorylation sites were mutated, so that the channel protein would no longer be phosphorylated at those residues. Neither single mutations nor the simultaneous mutation of all protein kinase C phosphorylation sites (T101, S178, T329) to alanine alter the acute regulation of cIK1 channels by protein kinase C. However, current amplitudes of the cIK1 mutant T329A and the triple mutant are dramatically increased upon logterm treatment with PMA. These mutations thereby disclose an inhibitory effect on cIK1 current of protein kinase C phosphorylation site at T329. Our results indicate that cIK1 activity is regulated in two ways. Protein kinase C dependent activation of cIK1 channels occurs indirectly, while the inhibitory effect probably requires a direct interaction with the channel protein. KW - Kaliumkanal KW - Calcium KW - Calciumion KW - Proteinkinase C KW - Kaliumkanäle KW - Proteinkinase C KW - patch-clamp KW - Mutagenese KW - Phosphorylierung KW - potassium channels KW - proteinkinase C KW - patch-clamp KW - mutagenesis KW - phosphorylation Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-1179144 ER - TY - THES A1 - Förster, Sabrina T1 - Regulation des Kaliumausstroms im ABA- und Jasmonatvermittelten Stomaschluss T1 - Regulation of Potassium Efflux in the ABA- and Jasmonate-controlled Stomatal Closure N2 - Stomata sind mikroskopisch kleine Poren in der Blattoberfläche der Landpflanzen, über die das Blattgewebe mit CO2 versorgt wird. Als Schutz vor Austrocknung oder einer Infektion durch Pathogene entwickelte sich ein Mechanismus, um die Porenweite durch Bewegung der sie umgebenden Schließzellen an die Bedürfnisse der Pflanze anzupassen. Ein eng geknüpftes Signalnetzwerk kontrolliert diese Bewegungen und ist in der Lage, externe wie interne Stimuli zu verarbeiten. Der Schließvorgang wird osmotisch durch den Turgorverlust in den Schließzellen angetrieben, der durch den Efflux von Ionen wie K+ ausgelöst wird. In dieser Arbeit wurde die Regulation durch Phosphorylierung des wichtigsten K+-Effluxkanals für den Stomaschluss, GORK, untersucht. Folgende Erkenntnisse wurden durch elektrophysiologische Untersuchungen mit der DEVC-Methode gewonnen: GORK wird durch OST1 auf Ca2+- unabhängige und durch CBL1/9-CIPK5 und CBL1-CIPK23 auf Ca2+-abhängige Weise phosphoryliert und damit aktiviert. CBL1 muss CIPK5 an der Plasmamembran verankern und Ca2+ binden. CIPK5 benötigt ATP und eine Konformationsänderung, um GORK zu phosphorylieren. Im Rahmen dieser Arbeit wurde auch zum ersten Mal gezeigt, dass die PP2CPhosphatase ABI2 direkt mit einem Kanal interagiert und dessen Aktivität hemmt. ABI2 interagiert auch mit den Kinasen OST1, CIPK5 und CIPK23, sodass die Kontrolle der Kanalaktivität auf multiple Weise stattfinden kann. OST1 und ABI2 verbinden die GORKRegulation mit dem ABA-Signalweg. Schließzellen von gork1-2, cbl1/cbl9 und cipk5-2 sind insensitiv auf MeJA, nicht aber auf ABA. Dies stellt eine direkte Verbindung zwischen dem Jasmonatsignalweg und der Ca2+-Signalgebung dar. Im Rahmen dieser Arbeit konnten weitere Hinweise für das komplexe Zusammenspiel der Phytohormone ABA, JA und des Pseudomonas- Effektors Coronatin gefunden werden. Hier konnte zum ersten Mal gezeigt werden, dass Schließzellen je nach Inkubationszeit unterschiedlich auf MeJA und das Phytotoxin Coronatin reagieren. ABA und Coronatin verhalten sich dabei antagonistisch zueinander, wobei der Effekt der Stimuli auf die Stomaweite von der zeitlichen Abfolge der Perzeption abhängt. Der Jasmonat-Signalweg in Schließzellen löst eine geringe ABA-Synthese sowie den Proteinabbau durch das Ubiquitin/26S-Proteasom-System aus und benötigt ABA-Rezeptoren (PYR/PYLs), um einen Stomaschluss einzuleiten. Durch diese Arbeit konnte somit die JA-gesteuerte Regulation des Kaliumefflux-Kanals GORK entschlüsselt sowie einige Unterschiede zwischen den ABA, JA und Coronatin-vermittelten Schließzellbewegungen aufgedeckt werden. N2 - Stomata are microscopically small pores in the leaf surface of land plants, through which the leaf tissue is supplied with CO2. To protect the plant from both desiccation and infection by pathogens, a mechanism evolved to adjust the pore width to the plant’s needs by movement of the surrounding guard cells. A dense signaling network controls these movements and is able to integrate external as well as internal stimuli. Stomatal closure is osmotically driven by the loss of turgor in guard cells caused by efflux of ions such as K+. In this work, we investigated the regulation by phosphorylation of the main K+ efflux channel for stomatal closure, GORK. The following results were obtained with electrophysiological measurements via the DEVC- technique: GORK is phosphorylated by OST1 in a Ca2+- independent and by CBL1/9-CIPK5 as well as CBL1-CIPK23 in a Ca2+-dependent manner. CBL1 anchors CIPK5 at the plasma membrane and must bind Ca2+ for activation of CIPK5. CIPK5 requires both ATP binding and a conformational change for phosphorylation of GORK. For the first time it was shown that the PP2C phosphatase ABI2 interacts directly with an ion channel and inhibits its activity. ABI2 also interacts with the kinases OST1, CIPK5 and CIPK23, implying a control by ABI2 over channel activity in multiple ways. OST1 and ABI2 link GORK regulation with the ABA signaling pathway. Guard cells of gork1-2, cbl1/cbl9 and cipk5-2 are insensitive to MeJA, but not to ABA. This represents a direct connection between JA signal transduction and Ca2+ signaling. In this work, further hints could be found for the complex interplay of the phytohormones ABA, JA and the effector Coronatine of Pseudomonas. Here it was shown for the first time that guard cells respond differently to MeJA and the phytotoxin Coronatine, based on incubation time. Depending on the temporal sequence of perception, ABA and Coronatine act antagonistically on the pore width. Jasmonate signal transduction in guard cells leads to a minor synthesis of ABA as well as protein degradation via the ubiquitin/ 26S proteasome system and initiates stomatal closure requiring ABA receptors (PYR/PYLs). This work describes the JA-controlled regulation of the potassium efflux channel GORK as well as some differential aspects of ABA, JA and Coronatine triggered stomatal movements. KW - Ackerschmalwand KW - Stomata KW - Arabidopsis thaliana KW - Phophorylierung KW - Phytohormon KW - Spaltöffnung KW - Kaliumkanal KW - Abscisinsäure KW - Jasmonsäure KW - Pflanzenhormon Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115455 ER - TY - THES A1 - Kopic, Eva T1 - On the physiological role of post-translational regulation of the \(Arabidopsis\) guard cell outward rectifying potassium channel GORK T1 - Die physiologische Rolle der posttranslationalen Regulation des auswärtsgleichrichtenden Kaliumkanals GORK in \(Arabidopsis\)-Schließzellen N2 - Das streng regulierte Gleichgewicht zwischen CO2-Aufnahme und Transpiration ist für Pflanzen essentiell und hängt von kontrollierten Turgoränderungen ab, die durch die Aktivität verschiedener Anionen- und Kationenkanäle verursacht werden. Diese Kanäle sind Teil von Signalkaskaden, die z. B. durch Phytohormone wie ABA (Abscisinsäure) und JA (Jasmonat) ausgelöst werden, die beide bei Trockenstress in den Schließzellen wirken. Darüber hinaus ist bekannt, dass JA an der Reaktion der Pflanze auf Pathogenbefall oder Verwundung beteiligt ist. GORK (guard cell outward rectifying K+ channel) ist der einzige bekannte, auswärts gleichrichtende K+-Kanal in Schließzellen und somit für den K+-Efflux beim Schließen der Stomata verantwortlich. Im Rahmen dieser Arbeit konnte nachgewiesen werden, dass GORK ein wesentlicher Bestandteil des JA-induzierten Stomatschlusses ist. Dies gilt für beide Auslöser, sowohl die Blattverwundung als auch die direkte Anwendung von JA. Patch-Clamp-Experimente an Protoplasten von Schließzellen untermauerten dieses Ergebnis, indem sie GORK-K+-Auswärtsströme als direktes Ziel von JA-Signalen entlarvten. Da bekannt ist, dass zytosolische Ca2+-Signale sowohl bei ABA- als auch bei JA-Signalen eine Rolle spielen, wurde die Interaktion von GORK mit Ca2+-abhängigen Kinasen untersucht. Eine antagonistische Regulation von GORK durch CIPK5-CBL1/9-Komplexe und ABI2 konnte durch DEVC (double electrode voltage clamp) sowie Protein-Protein-Interaktions-Experimente identifiziert und durch in-vitro Kinase-Assays untermauert werden. Patch-Clamp-Aufzeichnungen an Protoplasten von Schließzellen der cipk5-2 Funktions-Verlust-Mutante zeigten die Bedeutung von CIPK5 für den JA-induzierten Stomaschluss via Aktivierung von GORK. Die Interaktion verschiedener CDPKs (Ca2+-abhängige Proteinkinasen) mit GORK wurde ebenfalls untersucht. Neben der Ca2+-Signalübertragung ist auch die Produktion von ROS (reaktive Sauerstoffspezies) für die ABA- und MeJA-Signalübertragung von Bedeutung. In DEVC-Experimenten konnte ein reversibler Effekt von ROS auf die GORK-Kanalaktivität nachgewiesen werden, was ein Teil der Erklärung für diese ROS-Effekte bei ABA- und MeJA-Signalen sein könnte. N2 - Maintaining the balance between CO2 uptake and transpiration is important for plants and depends on tightly controlled turgor changes caused by the activity of various anion and cation channels. These channels are part of signaling cascades triggered, for example, by phytohormones such as ABA (abscisic acid) and JA (jasmonate), both of which act during drought stress in guard cells. In addition, JA is known to be involved in the plant's response to pathogen attack or wounding. GORK (guard cell outward rectifying K+ channel) is the only known outward rectifying K+ channel in guard cells and therefore responsible for K+ efflux during stomatal closure. In the course of this work it could be demonstrated by stomatal aperture assays, that GORK is an essential part of JA-induced stomatal closure. This is true for both triggers, leaf wounding as well as direct MeJA (methyl jasmonate) application. Patch clamp experiments on guard cell protoplasts backed this finding by revealing GORK K+ outward currents as a target of JA signaling in guard cells. As cytosolic Ca2+ signals are known to be involved in both ABA as well as JA signaling, the interaction of GORK with Ca2+-dependent kinases was examined consequently. An antagonistic regulation of GORK by CIPK5-CBL1/9 complexes and ABI2 was identified by DEVC (double electrode voltage clamp) and protein-protein interaction experiments and backed up by in vitro kinase assays. Patch-clamp recordings on guard cell protoplasts of cipk5-2 kinase loss-of-function mutant revealed the importance of CIPK5 for JA-triggered stomatal closure via activation of GORK. The interaction of different CDPKs (Ca2+-dependent protein kinases) with GORK was also investigated. Besides Ca2+ signaling also ROS (reactive oxygen species) production is essential in ABA and MeJA signaling. In DEVC experiments a reversible effect of ROS on GORK channel activity could be demonstrated, which could be one piece in the explanation of those ROS effects in ABA and MeJA signaling. KW - Spaltöffnung KW - Patch-Clamp-Methode KW - Kaliumkanal KW - Posttranslationale Änderung KW - Stomaschluss KW - Jasmonate info Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-348806 ER - TY - THES A1 - Latz, Andreas T1 - Lokalisation, Funktion und Regulation pflanzlicher Tandem-Poren-Kaliumkanäle in Arabidopsis thaliana T1 - Localization, function and regulation of plant tandem-pore potassium-channels in Arabidopsis thaliana N2 - Lokalisation - Alle TPKs bis auf TPK4, der in der Plasmamembran lokalisiert ist, sind im Tonoplasten lokalisiert. - Das 14-3-3-Bindemotiv bzw. der komplette N-Terminus spielt im Gegensatz zu den tierischen TPK´s keine Rolle beim Targeting (und evtl. auch beim Assembly), da ein Austausch der N-Termini bzw. Mutationen im 14-3-3- Bindemotiv keinen Einfluss auf die subzelluläre Lokalisation hat. - Im C-Terminus ist möglicherweise ein strukturelles Motiv bzw. eine Erkennungssequenz für das Targeting in unterschiedliche Zielmembranen lokalisiert. Eventuell ist hier auch eine Assembly-Domäne für den Zusammenbau der unterschiedlichen Kanaluntereinheiten vorhanden. TPK4 - Der Kaliumkanal TPK4 wird nach Agro-Infiltration in dem pflanzlichen Expressionssystem Nicotiana benthamiana exprimiert. - TPK4 ist auch in diesem Expressionssystem in der Plasmamembran der Zelle lokalisiert. - Die Ströme, welche aus Mesophyllzellen von TPK4 infiltrierten Blättern abgeleitet wurden, gleichen denen, von TPK4 exprimierenden Oocyten von Xenopus laevis. Somit hat TPK4 in beiden Expressionssystemen die gleichen elektrophysiologischen Eigenschaften. TPK1 - TPK1 bindet über die C-terminalen EF-Hände Calcium und wird durch diese Interaktion aktiviert. - TPK1 interagiert phosphospezifisch und isotypspezifisch mit dem 14-3-3- Protein GRF6. Diese Interaktion führt zur Aktivierung des Kanals. - Die Kinasen CPK3 und CPK29, welche das 14-3-3-Bindemotiv von TPK1 phosphorylieren um eine Interaktion mit 14-3-3-Proteinen zu ermöglichen, gehören zur Familie der CDPKs - Diese Kinasen sind selbst Calcium aktiviert und aller Wahrscheinlichkeit nach unter physiologischen Bedingungen inaktiv. Erst ein Anstieg der freien Calciumkonzentration führt zur Aktivierung der Kinase in der Zelle und damit zur Aktivierung des Kanals. - Das 14-3-3-Bindemotiv ist das einzige Target der CDPK´s im N-Terminus von TPK1 - Die Phosphatase, welche das 14-3-3-Bindemotiv von TPK1 dephosphoryliert gehört zur Familie der PP2A-Proteinphosphatasen. - Es ist möglich, dass die Kinase und damit auch der Kanal durch Salzstress und durch Kaliumunterversorgung aktiviert werden und somit die Signalkaskade für die Aktivierung von TPK1 über Kinasen/14-3-3/Calcium in einen stressphysiologischen Kontext involviert ist. - tpk1.3- und cpk3.1-Verlustmutanten zeigen eine Reduktion in der Keimungsrate unter Salzstress und limitierten Kaliumangebot. Es kann über einen funktionalen Komplex bestehend aus TPK1 und TPC1 zur Aufrechterhaltung der Na+/K+-Homeostase und der elektroneutralen Aufnahme von Na+ in die Vakuole unter Salzstressbedingungen spekuliert werden. N2 - Localization - All TPK´s with the exception of TPK4 are located in the tonoplast. TPK4 however is localized in the plasmamembrane. - The 14-3-3 binding motif and the whole N-terminus does not play a role in the targeting process because swapping the N-termini has no effect on the targeting - The C-terminus might harbour a targeting motif as well as an assembly domain TPK4 - TPK4 is expressed in Nicotiana benthamiana after agro-infiltration and is localized in the plasmamembrane. - The electrophysiological properties of TPK4 expressed in tobacco are similar to TPK4 expressed in oocytes of Xenopus laevis. TPK1 - TPK1 interacts with the 14-3-3 protein GRF6 in a phosphospecific and isotypspecific manner. - Interaction of TPK1 with GRF6 leads to channel activation. - The kinases CPK3 and CPK29 are able to phosphorylate the 14-3-3 binding motif of TPK1 in vitro. - These kinases are activated by elevated levels of free cytosolic calcium. - The phosphatase responsible for the dephosphorylation of the 14-3-3 binding domain of TPK1 belongs to the family of the PP2A proteinphosphatases. - It is possible that the kinases are activated under salt stress conditions and thereby phosphorylate the 14-3-3 binding domain of TPK1 leading to the interaction with GRF1 and activation of TPK1. - Germination is reduced under salt stress conditions and limited K+ supply in tpk1.3 and cpk3.1 knockout plants. KW - Ackerschmalwand KW - Signaltransduktion KW - Vakuole KW - Kaliumkanal KW - Salzstress KW - 14-3-3 KW - Calcium KW - Proteinkinase KW - 14-3-3 . calcium KW - protein kinase Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-24915 ER - TY - THES A1 - Kollert, Sina T1 - Kaliumkanäle der K2P-Familie kontrollieren die Aktivität neuronaler Zellen - TRESK als Regulator inflammatorischer Hyperalgesie T1 - Potassium channels of the K2P-family control the activity of neuronal cells - TRESK as regulator of inflammatory hyperalgesia N2 - Das Empfinden von Schmerz ist für uns überlebenswichtig. Chronischer Schmerz hingegen hat seine physiologische Bedeutung verloren und wird als eigenes Krankheitsbild angesehen. Schmerzempfindung beginnt mit der Nozizeption. Die Zellkörper nozizeptiver Neurone befinden sich in den Spinalganglien (Hinterwurzelganglion, dorsal root ganglion DRG) und Trigeminalganglien (TG). In den DRG-Neuronen macht der Zwei-Poren-Kaliumkanal (K2P) TRESK die Hauptkomponente eines Kaliumstromes, des „standing outward currents“ IKSO, aus. Die physiologische Hauptaufgabe der TRESK-Kanäle liegt in der Regulation der zellulären Erregbarkeit nozizeptiver Neurone. Während einer Entzündungsreaktion werden Entzündungsmediatoren wie Histamin, Bradykinin, Serotonin und Lysophosphatidsäure (LPA) ausgeschüttet und können durch die Aktivierung ihrer G-Protein gekoppelten Rezeptoren (GPCR) oder direkte Interaktion mit Ionenkanälen die nozizeptive Erregung beeinflussen. Durch Anwendung von RT-PCR und eines neu entwickelten Antikörpers wurde die Ko-Expression von TRESK-Kanälen zusammen mit Kanälen der Transient-Receptor-Potential-Kationenkanalfamilie (TRP) und LPA-Rezeptoren in DRG-Neuronen nachgewiesen. Durch rekombinante Ko-Expression von TRESK-Kanälen und LPA2-Rezeptoren in Xenopus Oozyten konnte durch Zugabe von LPA eine fast 10-fache Aktivierung des basalen K+-Stromes erzielt werden. Die Auswertung der Dosis-Wirkungskurve ergab einen EC50-Wert von 0,2 µM LPA. Die LPA-induzierte TRESK-Stromaktivierung konnte durch die Verwendung des mutierten Kanals TRESK[PQAVAD] oder durch die Zugabe des Phospholipase C (PLC) Inhibitors U73122 verhindert werden. Dies zeigt die Beteiligung des PLC-Signalwegs und die Bindung von Calcineurin an den TRESK-Kanal bei der Stromaktivierung. TRESK ist das einzige Mitglied der K2P-Familie, das eine LPA-induzierte Aktivierung des Stromes zeigt. TREK- und TASK-1-Ströme werden durch LPA inhibiert. In DRG-Neuronen mit kleinem Durchmesser wird Nozizeption durch die Aktivierung von TRPV1-Kanälen durch Hitze oder Capsaicin, dem Inhaltsstoff des Chilis, und zusätzlich durch die Substanz LPA verursacht. Ein weiteres Mitglied der TRP-Familie, der TRPA1-Kanal, ist bei der verstärkten Nozizeption während einer Entzündung involviert. Werden TRESK- und TRP-Kanäle in Xenopus Oozyten ko-exprimiert, verursacht LPA gleichzeitig einen Kationeneinwärts- wie auch -auswärtsstrom. Unter diesen Bedingungen verschob sich das Umkehrpotenzial in einen Bereich zwischen den Umkehrpotenzialen von Oozyten, die nur den K+-Kanal exprimieren und von Oozyten, die nur den unspezifischen Kationenkanal exprimieren. Durch diese Experimente konnte gezeigt werden, dass die LPA-induzierte Ko-Aktivierung von TRP-Kanälen und TRESK zu einer Begrenzung des exzitatorischen Effekts führen kann. Die DRG-ähnlichen F11-Zellen exprimieren keine TRESK-Kanäle. Sie sind in der Lage durch Strompulse Aktionspotenziale zu generieren. Mit TRESK transfizierte F11-Zellen zeigten eine Verschiebung des Umkehrpotenzials in negative Richtung, einen größeren Auswärtsstrom und den Verlust von spannungsgesteuerten Natriumkanälen. Auch hohe Strompulse konnten keine Aktionspotenziale mehr auslösen. Bei Spannungs-Klemme-Messungen von primären DRG-Neuronen von TRESK[wt]-Mäusen erhöhte sich der IKSO nach Zugabe von LPA um über 20 %. Im Gegensatz dazu zeigten DRG-Neurone von TRESK[ko]-Mäusen unter diesen Bedingungen eine leichte Hemmung des IKSO von etwa 10 %. In Neuronen, die TRPV1 exprimieren, führte LPA nicht nur zum Anstieg des IKSO, sondern auch zur Aktivierung eines Einwärtsstromes (TRPV1). Im Vergleich dazu wurde in TRESK[ko]-Neuronen durch LPA nur der Einwärtsstrom aktiviert. In Strom-Klemme-Experimenten führte LPA-Applikation zur Entstehung von Aktionspotenzialen mit höherer Frequenz in Zellen von TRESK[ko]-Mäusen im Vergleich zu Zellen von TRESK[wt]-Mäusen. Zusätzlich wurde die Erregung, die durch Strompulse von 100 pA ausgelöst wurde, in den beiden Genotypen durch LPA unterschiedlich moduliert. Die Aktionspotenzialfrequenz in TRESK[wt]-Neuronen wurde gesenkt, in TRESK[ko]-Neuronen wurde sie erhöht. Die vorliegende Arbeit zeigt, dass die Erregung nozizeptiver Neurone durch LPA aufgrund der Ko-Aktivierung der TRESK-Kanäle abgeschwächt werden kann. Die Erregbarkeit von sensorischen Neuronen wird strak durch die Aktivität und Expression der TRESK-Kanäle kontrolliert. Deswegen sind TRESK-Kanäle gute Kandidaten für die pharmakologische Behandlung von Schmerzkrankheiten. N2 - Pain sensation is essential for survival. Chronic pain lost its physiological function and is categorized as a disease. Pain sensation is initiated by nociception. The cell bodies of nociceptive neurons are located in dorsal root ganglia (DRG) and trigeminal ganglia (TG). In DRG neurons TRESK two-pore-domain potassium channels (K2P) constitute the major current component of the standing outward current IKSO. A prominent physiological role of TRESK channels has been attributed to the regulation of pain sensation. During inflammation mediators of pain e.g. histamine, bradykinin, serotonin and lysophosphatidic acid (LPA) are released and modulate nociceptive signaling by activation of their G-protein coupled receptors (GPCR) or ionic channels. By means of RT-PCR and a newly developed antibody the co-expression of TRESK channels, channels of the transient-receptor-potential (TRP) cation channel family and LPA receptors in DRG neurons were demonstrated. Recombinant co-expression of TRESK channels and LPA2 receptors in Xenopus oocytes revealed an almost 10 fold activation of basal K+ currents upon LPA application with an EC50 of 0.2 µM LPA. Using mutant TRESK[PQAVAD] or application of the phospholipase C (PLC) inhibitor U73122 blocked current augmentation by LPA indicating cellular signaling via PLC pathway and calcineurin binding to TRESK channels. TRESK was the only member of the K2P family that showed a LPA induced activation of current. TREK- und TASK-1 currents were inhibited through LPA. In small diameter DRG neurons nociception results from TRPV1 channel activation by painful stimuli including the inflammatory substance LPA or activation of TRPA1 channels during inflammation. When TRESK and TRP channels are co-expressed in Xenopus oocytes cationic inward and outward currents were simultaneously activated by LPA. Under these conditions the reversal potential of ramp recordings was intermediate to recordings from oocytes expressing only the K+ or the unspecific cation channel. Principally this finding demonstrates that TRESK activation by an inflammatory substance dampens noxious excitation induced by the same agent. DRG-like F11 cells lacking endogenous TRESK channels generate action potential upon current stimulation. However when TRESK channels were recombinantly expressed in F11 cells, they exhibit a shift of the reversal potential to more negative values, a larger outward current and a loss of voltage-gated sodium currents. Accordingly, depolarizing pulses failed to elicit action potentials. In patch-clamp recordings from primary cultured DRG neurons of TRESK[wt] mice IKSO currents increased after application of LPA by over 20 % whereas under these conditions IKSO currents of neurons from TRESK[ko] mice decreased moderately by about 10 %. In TRPV1 positive neurons LPA application induced in TRESK[wt] neurons not only an activation of the IKSO but also an increase of the inward (TRPV1) current. In contrast, in TRESK[ko] neurons LPA only activated an inward (TRPV1) current. Under current-clamp conditions LPA application elicited spike trains in DRG neurons, with higher frequency in cells of TRESK[ko] mice than in cells of TRESK[wt] animals. In addition, upon depolarizing pulses (100 pA) excitability was differentially modulated by LPA in these genotypes. Spike frequency was attenuated in TRESK[wt] neurons and augmented in TRESK[ko] neurons. Accordingly, excitation of nociceptive neurons by LPA is balanced by co-activation of TRESK channels. It is evident that the output of sensory neurons is strongly controlled by the activity and the expression of TRESK channels, which therefore are good candidates for the pharmacological treatment of pain disorders. KW - Kaliumkanal KW - Schmerz KW - Entzündungschmerz KW - Nozizeptor KW - Entzündung Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119077 ER - TY - THES A1 - Fuchs, Lorenz T1 - Interaktion von Kir2-Kanälen mit 7-Helix-Rezeptoren T1 - Regulation of Kir2 channels by seven-helix-receptors N2 - Einwärtsgleichrichtende Kaliumkanäle (Kir), aktuell in die 7 Unterfamilien Kir1-Kir7 eingeteilt, sind an der Regulation einer Vielzahl von Körperfunktionen, beispielsweise Herzfrequenz, Erregbarkeit von Nervenzellen, Tonus von Gefäßmuskelzellen, Hormonsekretion oder Aktivierung von Immunzellen, beteiligt. Für die Kontrolle dieser Funktionen ist es von entscheidender Bedeutung, dass die Leitfähigkeit dieser Kanäle beeinflusst werden kann. Die Kir3-Unterfamilie (früher GIRK für G-protein-activated-K+-channels) wird beispielsweise obligat durch die direkte Bindung der beta/gamma-Untereinheit des trimeren Gi/0-Proteins aktiviert (Karschin, 1999). Es gibt Hinweise in der Literatur, dass auch die stark einwärts gleichrichtenden Kanäle der Kir2-Familie durch G-Proteine der Gq-Familie reguliert sein können. Dabei widersprechen sich insbesondere zwei Untersuchungen zur Spezifität der Interaktion (Jones, 1996; Chuang et al., 1997). Ebenso ist der intrazelluläre Signalweg bislang nicht hinreichend geklärt. Um dies genauer zu untersuchen, wurden in dieser Arbeit die Kir-Kanäle Kir2.1-Kir2.4 jeweils mit 5 verschiedenen Gq-gekoppelten Rezeptoren in Xenopus-Oozyten koexprimiert und mit der Technik der „Zwei-Elektroden-Spannungsklemme“ der Strom über die Kir-Kanäle vor und nach Rezeptoraktivierung mit dem jeweils physiologischen Rezeptoragonisten gemessen. Es zeigte sich, dass ausschließlich Kir2.3 nach Aktivierung des M1-Acetylcholinrezeptors inhibiert wird. Eine Sequenzanalyse zeigte in der Extrazellulärregion von Kir2.3 eine zu den anderen Kir2-Kanälen abweichende Aminosäuresequenz, welche durch Mutation aber als potentielle Bindestelle zur Vermittlung des inhibitorischen Effektes ausgeschlossen werden konnte. Nachdem bereits gezeigt werden konnte, dass die Koexpression von Kir2.3 und M1-Acetylcholinrezeptor in bestimmten Gehirnregionen der Kontrolle neuronaler Erregbarkeit dient (Shen et al., 2007), ist es wahrscheinlich, dass derselbe Mechanismus auch in ventrikulären Kardiomyozyten existiert und dort als Schutzmechanismus vor vagaler Überstimulation fungiert. N2 - Inwardly rectifying K+ (Kir) channels, which can be classified into the subfamilies Kir1-Kir7, participate in the regulation of many functions of the human organism, e.g. heart rate, excitability of neurons or hormone release. In order to control these functions it is important that the conductance of these channels can be modulated. Channels of the Kir2 subfamily are regulated by Gi/o-coupled as well as Gq/11-coupled receptors. So far, it is still under debate whether these receptors selectively target to different members of the Kir2 subfamily. In order to investigate this issue rat Kir2.1-2.4 and Gq-coupled seven-helix receptors were coexpressed in Xenopus laevis oocytes and two electrode voltage-clamp measurements were performed recording the inwardly rectifying potassium currents before and after receptor activation. We showed that Kir2.3 is selectively inhibited by activation of the acetylcholine M1 receptor, whereas Kir2.1, 2.2 and 2.4 are not affected by activation of the M1 receptor. All other Gq-coupled receptors tested have no influence on Kir2 currents. Furthermore, mutation of a putative binding site within the extracellular loop between transmembrane region M1 and the pore region of rat Kir2.3 has no influence on M1 receptor induced inhibition. As it has been demonstrated that the cholinergic modulation of Kir2.3 channels selectively elevates dendritic excitability in certain brain areas (Shen et al., 2007), we postulate that the same mechanism also exists in cardiomyocytes in order to protect the heart function against an overwhelming parasympathetic stimulation. KW - Ionenkanal KW - Kaliumkanal KW - Muscarinrezeptor KW - Kir-Kanäle KW - G-Protein-gekoppelte Rezeptoren KW - inward rectifier KW - seven-helix receptor KW - acetylcholine M1 receptor Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-39000 ER - TY - THES A1 - Eckert, Michaela Brigitte T1 - Die Wirkung von Antidepressiva auf neuronale und kardiale Tandemporen-Kaliumkanäle T1 - Effects of antidepressants on K2P-channels in neuronal and cardiac cells N2 - Die vorliegende Arbeit beschäftigte sich mit der Wirkung von Antidepressiva auf K2P-Kanäle. Sie stellen wie spannungsabhängige Ca2+, Na+ und K+-Kanäle als neuronale Ionenkanäle aufgrund ihrer Expressionsmuster und physiologischen Eigenschaften potentielle Zielproteine für Antidepressiva dar. Darum werden K2P-Kanäle in heterologen Expressionssystemen von klinisch verabreichten Antidepressiva inhibiert. Die K2P-Kanäle TREK-1, TASK-1 und THIK-1 zeigten sich in dieser Arbeit alle sensitiv auf das Antidepressivum Fluoxetin, welches die Kaliumströme der Kanäle unterschiedlich stark inhibierte. Hierbei lieferten die vorliegenden Untersuchungen den Nachweis, dass TREK-1 auf Fluoxetin am meisten, THIK-1 am wenigsten sensitiv reagiert. Der humane TREK-1 wird durch Fluoxetin in den Expressionssystemen Oozyten und HEK-Zellen zu fast 80% inhibiert, wobei bei der humanen Zelllinie nur ein Zehntel der vorher eingesetzten Antidepressivakonzentration für die gleiche Inhibition des Auswärtsstroms notwendig war. Die vorliegende Arbeit weist Inhibitionen des Kanals bei einer Fluoxetinkonzentration von 1 µM nach, was der Serumkonzentration von depressiven Patienten entspricht. Zudem wird TREK-1 durch die Antidepressiva Maprotilin, Mirtazapin, Citalopram, Doxepin und Venlafaxin inhibiert, wobei letzteres kaum eine Wirkung zeigt. Alle verwendeten Antidepressiva nutzen die gleichen Angriffspunkte am Kanalprotein, da es bei einer Koapplikation mit einem weiteren Antidepressivum oder Benzodiazepin zu keiner Inhibitionsverstärkung kommt. Die Interaktion zwischen Antidepressivum und Kanalprotein verläuft mit großer Wahrscheinlichkeit direkt und ohne „second-messenger-Wege“. Hierbei konnten die porenformende Region und der C-Terminus des Kanals als Interaktionspartner ausgeschlossen werden. Der Mechanismus der alternativen Translations-Initiaton generiert zwei unterschiedliche Proteinprodukte aus einem TREK-1 Transkript, eine lange Version des Proteins mit 426 Aminosäuren und zusätzlich eine kurze Version mit 374 Aminosäuren, welcher die ersten 52 N-terminalen Aminosäuren fehlen. Die Fluoxetin-Sensitivität von TREK-1 [N52] verringert sich um 70%. Dies verdeutlicht, dass die ersten 52 Aminosäuren essentiell zur TREK-1 Interaktion mit Antidepressiva beitragen. N2 - The study at hand is about the effect of antidepressants on K2P-channels. As neuronal ion-channels like voltage-gated Ca2+, Na+ and K+-channels, the K2P-channels constitute a potential target for antidepressants because of their tissue expression and physiological characteristics. Clinically prescribed antidepressants inhibit the K2P-channels in heterologous expression systems for that reason. In our experiments the K2P-channels TREK-1, TASK-1 and THIK-1 were sensitive to the antidepressant Fluoxetine, which inhibited the potassium current in different ways. The study provides evidence that TREK-1 reacts to Fluoxetine most sensitively whereas THIK-1 reacts least. The humane TREK-1 is inhibited up to 80% by Fluoxetine in expression systems oocytes and HEK-cells, in which only a tenth of the antidepressant concentration induced the same current inhibition. Our experiments showed already a channel block already at 1 µM Fluoxetine concentration, which is conform to the antidepressant serum concentration of depressive patients. Furthermore TREK-1 is inhibited by the antidepressants Maprotiline, Mirtazapine, Citalopram, Doxepin and Venlafaxine, whereas the last one showed least effects. The used antidepressants occupy the same targets at the channel protein, because a coapplication with a further antidepressant or benzodiazepine didn´t increase the maximum channel block. The interaction between antidepressant and channel protein is working directly without second messenger pathway. The pore forming region and the C-terminus of the channels could be excluded as interaction partner. Alternative translation initiation (ATI) generates two different protein products from a single transcript of TREK-1, a long version of the protein with 426 amino acids and in addition a short version with 374 amino acids, lacking the first 52 amino acids at the N-terminus. The sensitivity of TREK-1[N52] to fluoxetine declined by 70% indicating that the first 52 amino acids essentially contribute to the interaction of TREK-1 with the antidepressant. KW - Kaliumkanal KW - Antidepressivum KW - Kaliumstrom KW - Fluoxetin KW - Venlafaxin KW - potassium-channel KW - antidepressant KW - potassium KW - Fluoxetine KW - Venlafaxine Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-65804 ER - TY - THES A1 - Fuchs, Ines T1 - Die Rolle von Kaliumkanälen der AKT1-Unterfamilie für Kaliumaufnahme und gerichtetes Wachstum T1 - The role of potassium channels of the AKT1-subfamily for potassium uptake and directional growth N2 - In vorausgegangenen Experimenten unseres Labors war bereits gezeigt worden, dass die Transkription des Kaliumaufnahmekanals ZMK1 durch IAA stimuliert wird und dass dieser eine wichtige Rolle für das differentielle Zellstreckungswachstum während der gravitropen Krümmung spielt. Dieser Annahme folgend wurde in der vorliegenden Arbeit untersucht, ob ZMK1 auch in phototrop stimulierten Maiskeimlingen am differentiellen Wachstum der Koleoptile beteiligt ist. Im Hinblick auf diese Fragestellung wurden folgende Erkenntnisse gewonnen: i. Auch in photostimulierten Keimlingen folgt die Transkription von ZMK1 dem endogenen IAA-Gradienten. Vor allem in der Koleoptilenspitze, wo die Umverteilung der freien IAA in die unbelichtete Flanke stattfindet, wurde der größte ZMK1-mRNA Gradient gemessen. ii. Der Krümmungswinkel photostimulierter Koleoptilen war erheblich kleiner als der ebenso lange gravitrop gereizter Keimlinge. Pflanzen, die auf einem Klinostaten einseitig mit Blaulicht bestrahlt worden waren, zeigten jedoch eine ähnlich starke Krümmung wie gravistimulierte Pflanzen. Der Einfluss der Schwerkraft verhinderte demzufolge eine stärkere Krümmung photostimulierter Koleoptilen. iii. Die ausgeprägtere Krümmungsreaktion von auf dem Klinostaten photostimulierten Maiskeimlingen war mit einer drastischen Auxinverschiebung in der Koleoptilenspitze und einer länger anhaltenden differentiellen Expression von ZMK1 verbunden. Die Wachstumsantwort der Keimlinge konnte daher direkt mit der Verteilung freier IAA und der daraus resultierenden Regulation von ZMK1 korreliert werden. iv. Die Wahrnehmung zweier verschiedener Reize (Schwerkraft, Blaulicht) mündet in einen gemeinsamen Signalweg, welcher zur Umverteilung endogenen Auxins innerhalb der Koleoptile und zur differentiellen Kaliumaufnahme über ZMK1 in den gegenüberliegenden Flanken führt. Die hierdurch bedingte stärker ausgeprägte Zellstreckung in der unbelichteten Koleoptilenhälfte hat schließlich die Krümmung des Keimlings zur Folge. Mit dem Ziel, auch den ZMK1-orthologen Kaliumkanal in einer der wichtigsten Nutzpflanzen, Reis, zu charakterisieren, wurden molekularbiologische und biophysikalische Analysen durchgeführt. Im Bezug auf die verfolgten Ziele dieser Arbeit lassen sich die gewonnenen Ergebnisse wie folgt zusammenfassen: v. Aus Oryza sativa-Keimlingsgewebe konnte das cDNA-Molekül OsAKT1 isoliert und anhand der abgeleiteten Aminosäuresequenz der AKT1-Unterfamilie des Shaker- Typs pflanzlicher Kaliumkanäle zugeordnet werden. vi. Die Transkripte von OsAKT1 wurden in Koleoptile und Wurzel 5 Tage alter Reiskeimlinge lokalisiert. Im Gegensatz zur Expression des AKT1-orthologen Kanals in Mais ZMK1 blieb die Transkription von OsAKT1 durch die Erhöhung exogenen Auxins in Koleoptilsegmenten unbeeinflusst. Demzufolge ist es unwahrscheinlich, dass OsAKT1 ähnlich wie ZMK1 eine wichtige Rolle während des auxininduzierten Streckungswachstums spielt. vii. Nach heterologer Expression in HEK293-Zellen wurde OsAKT1 als spannungsabhängiger, kaliumselektiver Einwärtsgleichrichter charakterisiert, der durch Ca2+ und Cs+ geblockt und durch extrazelluläre Protonen aktiviert wird. Ähnliche Eigenschaften konnten in Protoplasten beobachtet werden, die aus Keimlingswurzeln isoliert worden waren. Diese Ergebnisse legten den Schluss nahe, dass OsAKT1 der dominante Kaliumaufnahmekanal in Reiswurzeln ist. Keimlinge des verwendeten Reiskultivars waren in Reaktion auf Salzstress im Vergleich zu Kontrollpflanzen erheblich im Wachstum verzögert und wiesen einen geringeren Kaliumgehalt auf. Dieser Phänotyp wurde von einer Abnahme der OsAKT1-Transkripte und der Verringerung der durch OsAKT1 getragenen Kaliumströme in Wurzelprotoplasten salzbehandelter Keimlinge begleitet. Dieser Zusammenhang deutet darauf hin, dass die OsAKT1-vermittelte Aufnahme von Kalium über die Wurzel essentiell für das pflanzliche Wachstum und die Ionenhomöostase salzgestresster Pflanzen ist. N2 - Previous experiments from our lab had already demonstrated that the inward-rectifying K+ channel ZMK1 plays an important role for potassium uptake during cell elongation growth of gravistimulated maize coleoptiles. To investigate if this channel is involved in other auxin-regulated processes as well, the current work focused on the role of ZMK1 for phototropic bending. i. Alike with gravistimulated plants, ZMK1 expression also follows the IAA-redistribution in photostimulated maize seedlings. The gradient in ZMK1-mRNA was most pronounced in the coleoptile tip, where free IAA is translocated into the shaded coleoptile half. ii. The bending angle of photostimulated maize seedlings was much smaller than that reached after gravistimulation. Plants photostimulated on a clinostat, however, displayed a similar bending angle as seedlings responding to a gravistimulus, indicating that gravity restricts further bending of the coleoptile. iii. Stronger phototropic bending of plants illuminated on a clinostat was accompanied by dramatic translocation of free IAA in the coleoptile tip and prolonged differential expression of ZMK1. Thus, the growth response of maize seedlings could be directly correlated with IAA-redistribution in the coleoptile and the resulting differential regulation of ZMK1 transcription. iv. The perception of two different stimuli (gravity, blue light) thus merges into a common signaling pathway, leading to IAA-redistribution and differential K+ uptake in the two flanks of the coleoptile. As a consequence, enhanced cell elongation growth in one half of the organ gives rise to gravi- or phototropic bending. To investigate the role of the ZMK1-ortholog in one of the most important food crops, rice, the respective gene was isolated. Based on molecular and biophysical approaches the gene activity and the function of the gene product were analyzed. v. The cDNA of OsAKT1 was isolated from rice seedlings. Based on the derived amino acid-sequence, OsAKT1 could be grouped into the AKT1-family of plant Shaker-K+-channels. vi. Transcripts of OsAKT1 were localized in root and coleoptile of 5-days-old rice seedlings. In contrast to ZMK1, OsAKT1-expression was not affected by changes in IAA concentration. OsAKT1 therefore does not seem to play a major role in auxin-induced cell elongation processes. vii. Following heterologous expression in HEK293 cells, OsAKT1 was characterized as a voltage-dependent, K+-selective inward rectifier activated by extracellular protons and blocked by Ca2+ and Cs+. The K+ uptake channel measured in protoplast of root epidermal cells showed almost the same functional properties, indicating that OsAKT1 represents the dominant K+-uptake channel in rice roots. viii. Rice seedlings subjected to salt stress displayed severe growth reduction and reduced K+-concentrations both in roots and shoots. This phenotype was accompanied by decreased OsAKT1-expression and diminished K+in currents in root protoplasts. Therefore, OsAKT1-mediated K+-uptake of root cells seems to be essential for plant growth and ion homeostasis during salt stress. KW - Mais KW - Reis KW - Kaliumkanal KW - Salzstress KW - Tropismus KW - Kaliumkanäle KW - Mais KW - Reis KW - Tropismen KW - Salzstress KW - potassium channels KW - maize KW - rice KW - tropisms KW - salt stress Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-15875 ER - TY - THES A1 - Drescher [geb. Knievel], Eva T1 - Das KCNJ6-Gen als Kandidatengen für Persönlichkeitsstörungen T1 - The KCNJ6 gene as a candidate gene for personality disorders N2 - Persönlichkeit wird zum einen durch genetische Einflüsse, zum anderen durch Erziehung und Umweltfaktoren geprägt. In heutigen Tagen ist es weitestgehend akzeptiert, dass das menschliche Naturell und die Persönlichkeit durch vielfältige genetische Faktoren beeinflusst werden. In der vorliegenden Arbeit wurde eine Genotypisierung an einer Patientenstichprobe, bestehend aus Patienten der Universitätsklinik Würzburg, mit der gesicherten Diagnose einer Persönlichkeitsstörung, und einem Kollektiv aus gesunden Probanden (Bevölkerungskollektiv) durchgeführt. Es wurden zwei verschiedene Gen-Polymorphismen (rs7275707 und rs722557) des Kandidatengens KCNJ6 hinsichtlich ihrer Beteiligung an Persönlichkeitsstörungen untersucht. Das von diesem Gen codierte Protein ist ein G-protein aktivierter einwärtsgleichrichtender Kaliumkanal (GIRK2). Es konnte zwar ein signifikanter Zusammenhang zwischen einem Single-Nukleotid-Polymorphismus (SNP) in dem Kandidatengen KCNJ6 und der antisozialen sowie Borderline-Persönlichkeitsstörung nachgewiesen werden, die molekulargenetischen Entstehungswege bis hin zur phänotypischen Ausprägung der Persönlichkeitsstörung sind allerdings multifaktoriell und an viele Rezeptor- und Neurotransmittersysteme gekoppelt. Der Ursprung kann auf den Austausch bzw. die Variation einer einzelnen Base im DNA-Strang zurückgeführt werden, im Ganzen betrachtet bleiben die Entstehung der Persönlichkeit und die daran gekoppelten Störungen aber ein multidimensionaler Prozess. N2 - Personality of a human beiing is based on the one hand on genetic conditions, on the other hand on education and social environment. Nowadays it is broadly accepted, that human disposition and personality is influenced by a variety of genentic factors. In this study we compared patients with a diagnosis of a personality disorder in comparison to healthy candidates via genotyping. We focused on the role of the two gene polymorphisms (rs 7275707 and rs 722557) of the candidate gene KCNJ6. This gene encodes for an inwardly rectifying potassium channel (GIRK2). Though an association between one single nucleotide polymorphism(SNP) of our candidate gene and the antisocial personality disorder and the Borderline-Disorder was found, the molecular genetic pathways from the origin to the expression of the phenotype is multifactorial and linked to many systems of receptors and neurotransmitters. The origin of a disorder can be explained by the exchange of one base in the DNS, but in total the development of personality and the linked disorders are a multidimensional process. KW - Kaliumkanal KW - Borderline-Persönlichkeitsstörung KW - Dissoziale Persönlichkeitsstörung KW - KCNJ6 KW - GIRK 2 KW - G-protein inwardly rectifying potassium channel Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162231 ER - TY - THES A1 - Kerl, Hans Ulrich T1 - Charakterisierung interagierender Proteine des renalen ATP-abhängigen Kaliumkanals ROMK T1 - Characterisation of interacting proteins of the renal ATP- dependent potassium channel ROMK N2 - ROMK ist ein einwärts-gleichrichtender Kaliumkanal, der hauptsächlich in der Niere exprimiert wird. Er wird dabei vor allem in der apikalen Membran des aufsteigenden Astes der Henleschen Schleife, dem distalen Tubulus und dem Sammelrohr exprimiert. Die Hauptaufgaben von ROMK bestehen in der Rezirkulation von Kalium im dicken aufsteigenden Ast der Henleschen Schleife und der Kaliumsekretion im kortikalen Sammelrohr. ROMK wurde kloniert und in Oozyten exprimiert. Die Expression sowie Struktur- und Funktionsstudien haben viele Informationen über die Biophysik und die Regulation dieses Kanals gebracht. Dennoch ist bisher wenig über die für den Transport zur apikalen Membran von Epithelzellen verantwortlichen Mechanismen des Kanals bekannt. Der C- Terminus von ROMK ist aufgrund einer sehr hohen Homologie zu einem PDZ-Motiv ein möglicher Teilnehmer an Protein- Protein Interaktionen. In einem Hefe-zwei-Hybrid Screen wurden verschiedene mögliche Interaktionspartner gefunden. Im Rahmen dieser Arbeit wurde versucht, die Interaktion zwischen einigen im Hefe-System gefundenen Proteinen und dem Kanalprotein zu identifizieren, verifizieren und charakterisieren. In dem in vitro HIS- Pulldown Assay konnten die im Hefe-zwei-Hybrid System gefundenen Interaktionen zwischen ROMK und HEF1, Antiquitin1 sowie Calponin2 bestätigt werden. Ebenso war es möglich, durch Kolokalisationsstudien mittels indirekter Immunfluoreszenz weitere Anhaltspunkte für eine mögliche Interaktion von ROMK und Antiquitin1, Calponin2, Shank und ArgBP2 zu liefern. Diese Ergebnisse legen die Vermutung nahe, dass die gefundenen Interaktionspartner zum einen für den Einbau und die Stabilität von ROMK in der Membran zuständig sein und zum anderen durch Verbindung zu möglichen Signalkomplexen, z.B. durch ArgBP2, ein Rolle in der Aktivitätssteuerung von ROMK spielen könnten. KW - Kaliumkanal KW - Niere KW - Protein-Protein-Interaktion KW - PDZ-Domäne KW - GST KW - HIS KW - Immunfluoreszenz KW - Potassium Channel KW - Kidney KW - Protein-Protein Interaction KW - PDZ-Domain KW - GST KW - HIS KW - Immunfluorescence Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-13506 ER - TY - THES A1 - Erxleben, Franziska T1 - cDNA-Microarray-Analyse von ZNS-Kaliumkanal defizienten Mäusen T1 - cDNA-Microarry-Analysis of CNS-potassium channel deficient mice N2 - Ziel der Arbeit war die Erstellung eines „Kaliumkanal-Chips“, die Entwicklung einer geeigneten Messmethode und Auswertungsstrategie, die Durchführung von Testmessungen und die Untersuchung eines Knockout-Mausstammes auf den Genexpressionsstatus und die auftretenden Kompensationsmechanismen. Am Beginn der Arbeit stand vor allem die Auswahl der zu untersuchenden Kaliumkanal-Gene und die Sammlung von Sequenz-Informationen. Ausgehend davon konnte die cDNAMicroarray-Technologie als Methode der Wahl bestimmt werden und die entsprechenden Vorbereitungen für die Umsetzung getroffen werden. Die ersten Messungen im Zuge der Methodenentwicklungen zeigten vor allem, dass jeder Microarray seine individuellen Probleme mit sich bringt, ließen jedoch auch schon erahnen, welche umfangreichen Möglichkeiten diese Technologie bietet. Dann folgten Versuchsmessreihen, wie die Untersuchung der lterspezifischen Expression und der Vergleich von bestimmten Gehirnabschnitten mit dem Gesamtgehirn. Den Abschluss bildete die Messung der TRESK-Knockout-Mauslinie im Vergleich zu ihrem Wildtyp. Hier stand die Frage nach möglichen Kompensationsmechanismen im Vordergrund. Mit kcnk16 haben die Messungen einen interessanten Kandidaten aus der gleichen Genfamilie geliefert, dessen Funktion und Kompensationsvermögen nun in weiteren Tests zu untersuchen ist. Die Arbeit hat gezeigt, dass der Einsatz der Microarray-Technologie zur Untersuchung von Genexpressionsdaten bei Ionenkanalfamilien geeignet ist. Das Fundament der Microarrayanalyse von Kaliumkanälen mit einem individuell entwickelten Microarray ist zum einen das Wissen um Genetik und Funktion der Kaliumkanäle und zum anderen die Technologie, die eine solche Analyse möglich macht. Die Tatsache, dass Säugerorganismen wie Maus und Mensch eine solch hohe Zahl an Kaliumkanälen entwickelt haben und im ständigen Zellstoffwechsel in umfassender Form einsetzen, zeigt die Bedeutung dieser Ionenkanalfamilie und macht die Forschung an diesen Kanälen so interessant und wichtig für die medizinische Grundlagenforschung. Eine Vielzahl von Krankheiten kann schon jetzt direkt oder indirekt auf Gendefekte bei Kaliumkanal-Genen zurückgeführt werden. Mit der Microarray-Analyse steht nun eine Technologie zu Verfügung, die es ermöglicht, die Expression dieser Gene direkt zu untersuchen und mögliche Kompensationsvorgänge aufzudecken. Damit können Zusammenhänge ermittelt werden, die die Grundlage für weitere Forschungen sein können, mit deren Hilfe wir Krankheiten wie Depression eines Tages wirklich verstehen und behandeln können. N2 - The aims of this dissertation were the creation of a „potassium channel chip“, the development of adequate measurement method and strategy of analysis, the performance of developmental experiments and the analysis of the status of genexpression and the occurring mechanisms of compensation in a knockout mouse stem. In beginning the selection of the potassium channel genes to be considered as interesting part of the microarray and the compilation of the sequence information was the main part of the work. Starting from this the choice of the adequate cDNA-microarray-technology and the preparation of the implementation was possible. The first experiments performed in the course of the method development have given a hint on the problems connected with every microarray. However they also have shown the great possibilities of the microarray technology. In the ollowing series of measurements like the investigation of variation of expression during the juvenile development and the comparison of different parts of the brain with the whole brain were performed. The studies were completed by the investigation of the TRESK-Knockout mouse stem in comparison to its wild type. The centre of these studies was the question for possible mechanisms of compensation. As a result kcnk16 - being part of the same gene family as TRESK - can be named as an interesting candidate to be investigated for its function and capacity of compensation in the future. In my dissertation I was able to show that the microarray technology is an adequate method for the comparison of genexpression between members of ion channel families. The bases of the microarray analysis of potassium channels with a individually designed microarray are on the one side the knowledge of the genetics and function of the potassium channels and on the other side the technology which allows this kind of analysis. The fact that mammalian organism like mouse and human have developed such a great number of potassium channels and are using these in the regular cell metabolism in a comprehensive way shows the importance of this ion channel family and makes the research on these channels so interesting and important for fundamental research. A multiplicity of diseases can be attributed indirectly or directly to gene malfunctions in potassium channels. With microarray a technology is available, which permits to investigate the expression of these genes directly and to discover possible ways of compensation. By this coherences can be identified being the basis for continuative research which one day will make it possible to really understand and treat diseases like depression. KW - Maus KW - Knockout KW - Kaliumkanal KW - Zentralnervensystem KW - Microarray KW - DNS-Chip KW - Knock-out Maus KW - TRESK KW - Zentralnervensystem KW - Hirnzelle KW - Ionenkanal KW - Spannungskontrollierter Ionenkanal KW - Differentielle Genexpression KW - Potassium channel KW - Microarray KW - CNS KW - Genexpression KW - Knock out Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-65640 ER - TY - THES A1 - Geiger, Dietmar T1 - Biophysikalische Untersuchung von Phloem-lokalisierten Carriern und Kaliumkanälen und deren Interaktion im Modellsystem der Xenopus Oozyte T1 - Biophysical studies of phloem-localized carriers and potassium channels and their interaction in the model system of Xenopus oocytes N2 - Das Phloem stellt ein Netzwerk zur Assimilat- und Nährstofftranslokation sowie zur elektrischen Kommunikation innerhalb der Pflanze dar. In apoplastisch beladenden Pflanzen werden die funktionellen Eigenschaften des Phloems im Wesentlichen vom Zusammenspiel eines Transportmoduls, bestehend aus Carriern, Kaliumkanälen und Protonen-ATPasen, bestimmt. Ausgangspunkt für die biophysikalische Charakterisierung dieses Phloem-Transportmoduls waren Arbeiten zum Saccharosetransport in der Arabidopsis akt2/3-1 Mutante. Das AKT2/3 Gen kodiert für einen Phloem-spezifischen Kaliumkanal vom Shaker-Typ. Die Tatsache, dass der Saccharosegehalt im Phloem dieser Mutante um 50% im Vergleich zum Wildtyp reduziert war, ließ eine enge Kopplung von Kalium- und Zuckerflüssen vermuten. Um diesen Phänotyp aufklären zu können und ein Modell für die Beladungsprozesse an der Phloemmembran zu entwickeln, wurde das heterologe Expressionssystem der Xenopus Oozyten gewählt. So konnte in Coexpressionsstudien die Interaktion von Phloem-lokalisierten Kaliumkanälen und Transportern sowie die Kopplung des Kalium- und Zuckertransports mit Hilfe biophysikalischer Methoden untersucht werden. N2 - In plants the phloem tissue constitutes a network providing for assimilate and nutrient translocation as well as electrical communication. A transport module, consisting of carriers, channels and pumps plays a pivotal role in apoplasmically loading plant species and determines the specific transport properties of phloem cells. The AKT2/3 channel represents a phloem-specific Shaker-like K+ channel of the model plant Arabidopsis thaliana. Based on the observation, that sucrose transport is severely impaired in the corresponding akt2/3-1 mutant, we hypothesised a tight coupling of potassium and sugar fluxes during phloem loading. In order to allow a biophysical characterisation of the transport processes at the phloem plasma membrane during sugar loading, we decided to employ Xenopus oocytes as a model system for the heterologous expression of phloem transport proteins. KW - Phloem KW - Glatter Krallenfrosch KW - Oozyte KW - Kaliumkanal KW - Zucker KW - Phloem KW - Kaliumkanal KW - Zuckertransport KW - Transporter KW - Xenopus KW - Phloem KW - Potassium channel KW - sugar transport KW - carrier KW - Xenopus Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-13108 ER -