TY - JOUR A1 - García-Martínez, Jorge A1 - Brunk, Michael A1 - Avalos, Javier A1 - Terpitz, Ulrich T1 - The CarO rhodopsin of the fungus Fusarium fujikuroi is a light-driven proton pump that retards spore germination JF - Scientific Reports N2 - Rhodopsins are membrane-embedded photoreceptors found in all major taxonomic kingdoms using retinal as their chromophore. They play well-known functions in different biological systems, but their roles in fungi remain unknown. The filamentous fungus Fusarium fujikuroi contains two putative rhodopsins, CarO and OpsA. The gene carO is light-regulated, and the predicted polypeptide contains all conserved residues required for proton pumping. We aimed to elucidate the expression and cellular location of the fungal rhodopsin CarO, its presumed proton-pumping activity and the possible effect of such function on F. fujikuroi growth. In electrophysiology experiments we confirmed that CarO is a green-light driven proton pump. Visualization of fluorescent CarO-YFP expressed in F. fujikuroi under control of its native promoter revealed higher accumulation in spores (conidia) produced by light-exposed mycelia. Germination analyses of conidia from carO\(^{-}\) mutant and carO\(^{+}\) control strains showed a faster development of light-exposed carO-germlings. In conclusion, CarO is an active proton pump, abundant in light-formed conidia, whose activity slows down early hyphal development under light. Interestingly, CarO-related rhodopsins are typically found in plant-associated fungi, where green light dominates the phyllosphere. Our data provide the first reliable clue on a possible biological role of a fungal rhodopsin. KW - microbial rhodopsins KW - intracellular pH KW - membrane proteins KW - mutants KW - virulence KW - channelrhodopsin-2 KW - growth KW - gene KW - expression KW - bacteriorhodopsin Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149049 VL - 5 IS - 7798 ER - TY - JOUR A1 - Feldbauer, Katrin A1 - Schlegel, Jan A1 - Weissbecker, Juliane A1 - Sauer, Frank A1 - Wood, Phillip G. A1 - Bamberg, Ernst A1 - Terpitz, Ulrich T1 - Optochemokine Tandem for Light-Control of Intracellular Ca\(^{2+}\) JF - PLoS ONE N2 - An optochemokine tandem was developed to control the release of calcium from endosomes into the cytosol by light and to analyze the internalization kinetics of G-protein coupled receptors (GPCRs) by electrophysiology. A previously constructed rhodopsin tandem was re-engineered to combine the light-gated Ca\(^{2+}\)-permeable cation channel Channelrhodopsin-2(L132C), CatCh, with the chemokine receptor CXCR4 in a functional tandem protein tCXCR4/CatCh. The GPCR was used as a shuttle protein to displace CatCh from the plasma membrane into intracellular areas. As shown by patch-clamp measurements and confocal laser scanning microscopy, heterologously expressed tCXCR4/CatCh was internalized via the endocytic SDF1/CXCR4 signaling pathway. The kinetics of internalization could be followed electrophysiologically via the amplitude of the CatCh signal. The light-induced release of Ca\(^{2+}\) by tandem endosomes into the cytosol via CatCh was visualized using the Ca\(^{2+}\)-sensitive dyes rhod2 and rhod2-AM showing an increase of intracellular Ca\(^{2+}\) in response to light. KW - capacitance KW - endosomes KW - cell membranes KW - membrane proteins KW - intracellular membranes KW - vesicles KW - confocal laser microscopy KW - cytosol Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178921 VL - 11 IS - 10 ER -