TY - THES A1 - Wang, Tungte T1 - Anatomische und funktionelle Magnetresonanztomographie der menschlichen Lunge T1 - Anatomical and Functional 1H Magnetic Resonance Imaging of the Human Lung N2 - Zur Beurteilung der Lungenanatomie wurde das MT-STIR-Verfahren vorgestellt. Es wurde gezeigt, dass das MT-STIR-Verfahren das störende Signal des umgebenden Muskelgewebes effektiv unterdrückt und damit die Visualisierung des Lungenparenchyms verbessert. Im Vergleich zu konventionellen anatomischen 1H-MR-Verfahren wie IR- und MIR-Verfahren erhöht das MT-STIR-Verfahren das Signal-zu-Rausch-Verhältnis (SNR) des Lungenparenchyms signifikant und vermeidet den Signalausfall des Lungenparenchyms aufgrund der pathologischen Verkürzung der Lungen-T1-Relaxationszeit auf ca. 900 ms wie bei Patienten mit Mukoviszidose (CF), so dass sowohl große Lungenperfusionsdefekte in Patienten mit CF als auch kleine ungefährliche Lungenentzündungen in „gesunden“ Probanden durch das MT-STIR-Verfahren gut dargestellt werden können. Für die indirekte, aber quantitative Beurteilung der Lungenventilation wurde die oben genannte schnelle quantitative Lungen-T1-Mapping-Technik während der Inhalation eines Atemgasgemisches mit verschiedenen O2-Konzentrationen (21%, 40%, 60%, 80% und 100%) eingesetzt. Dabei ist im Blut physikalisch gelöster Sauerstoff leicht paramagnetisch und dient als Blut-T1-verkürzendes MR-Kontrastmittel (KM). In der Lunge ist das Blut die Hauptquelle des freien Wassers, so dass Lungen-T1-Werte nach dem Zwei-Kompartimente-Schnellaustausch-Modell der Lungen-T1-Relaxationszeit durch den Blut-T1-Wert beeinflusst werden. Die zugehörige Theorie, ein O2-gestütztes Lungen-T1-Modell, wurde aus der Lungenphysiologie und den T1-Relaxationsmechanismen hergeleitet und zeigt, dass bei Probanden die Lungen-T1-Verkürzung von 21% O2 zu 100% O2 ca. 11% beträgt und die Beziehung zwischen dem Lungen-R1 (= 1/T1)-Wert und der inhalierten O2-Konzentration linear mit einer Steigung von 0,12 1/s und einem R1-Achsenabschnitt von 0,70 1/s ist. Die Steigung wurde im Rahmen dieser Doktorarbeit als oxygen transfer function (OTF) definiert und ist vom gasaustauschbestimmenden Ventilations-Perfusions- und Diffusions-Perfusions-Verhältnis abhängig, so dass sie praktisch ein Maß für den pulmonalen Gasaustausch darstellt. Experimentell wurde gezeigt, dass Lungen-T1-Werte bei 100% O2 um 10% kürzer als bei 21% O2 sind, was gut mit dem O2-gestützten Lungen-T1-Modell übereinstimmt. Weiterhin wurde die OTF dadurch bestimmt, dass die gemessenen Lungen-R1-Werte gegen die inhalierte O2-Konzentration aufgetragen wurden und eine Gerade an die Messpunkte angepasst wurde. Gesundes Lungenparenchym von Probanden und gut perfundiertes Lungenparenchym von Patienten mit CF zeigten OTF-Werte zwischen 0,10 und 0,14 1/s, R1-Achsenabschnitte zwischen 0,70 und 0,80 1/s und ausgezeichnete Korrelationskoeffizienten von annähernd 1,00, was mit dem O2-gestützten Lungen-T1-Modell übereinstimmt. Schlecht perfundiertes Lungenparenchym von Patienten mit CF zeigte eindeutig erniedrigte OTF-Werte, erhöhte R1-Achsenabschnitte und schlechte Korrelationskoeffizienten. Das O2-gestützte Lungen-T1-Mapping-Verfahren zeigt eine hohe Reproduzierbarkeit. Zur Beurteilung der Lungenperfusion wurde eine quantitative Perfusionsmapping-Technik mittels Protonen-Spin-Labeling, ohne Verwendung eines intravenösen Kontrastmittels wie Gadolinium (Gd)-DTPA, vorgestellt. Aus einer nicht-schichtselektiven (globalen) T1-Map und einer schichtselektiven T1-Map derselben Lungenschicht, die jeweils mit der oben genannten schnellen quantitativen Lungen-T1-Mapping-Technik akquiriert wurde, wurde eine Perfusionamap berechnet, wobei jedes Pixel in der Perfusionsmap eine Perfusionsrate in Einheiten von m/100g/min hat. Es wurde demonstriert, dass die hintere coronale Lungenschicht eine höhere Perfusionsrate als die vordere coronale Lungenschicht desselben Probanden hatte, als er in Rückenlage gemessen wurde, was den Gravitationseffekt auf die Lungenperfusion bestätigt. Die berechneten Perfusionsraten des gut perfundierten Lungenparenchyms von Probanden und von Patienten mit CF lagen zwischen 400 und 600 m/100g/min, die gut mit dem Literaturwert übereinstimmen. Die berechneten Perfusionsraten des schlecht perfundierten Lungenparenchyms von Patienten mit CF waren niedriger als 200 m/100g/min. Die Spin-Labeling-Technik zeigte eine hohe Reproduzierbarkeit und niedrige relative Fehler der berechneten Perfusionsraten. N2 - The purpose of this doctoral thesis is to develop noninvasive and clinically feasible methods for assessment of pulmonary anatomy, pulmonary function and cardiac shunts in the human using proton magnetic resonance imaging (1H MRI). All imaging experiments were performed on a commercial 1.5-T whole-body MR scanner. In Chapter 2, an efficient tissue suppression technique is presented which allows one to significantly enhance lung parenchyma visibility. A short inversion time inversion recovery (STIR) experiment combined with a magnetization transfer (MT) experiment was used for magnetization preparation in order to suppress the signal from muscle. A half-Fourier single-shot turbo spin-echo (HASTE) sequence was used as an acquisition module. This approach was used to perform lung anatomical imaging in healthy volunteers and patients with cystic fibrosis (CF). The results obtained demonstrate that with MT-STIR approach high quality human lung images can be obtained and that this approach has the potential for the evaluation of lung pathologies. In Chapter 3, a rapid and robust technique for quantitative T1 mapping of the human lung using an IR SnapshotFLASH sequence is presented. Based on a series of SnapshotFLASH images acquired after a single inversion pulse, high quality and quantitative T1 parameter maps acquired were obtained in under five seconds from healthy volunteers and patients with CF. The measured T1 values of healthy lung parenchyma ranged from 1100 to 1400 ms and are in good agreement with previously reported literature values. The measured T1 values of diseased lung parenchyma in patients with CF ranged from 800 to 1000 ms and correlated with reduced regional pulmonary blood volume and blood flow as confirmed by qualitative gadolinium (Gd)-DTPA-enhanced MR pulmonary perfusion imaging. Indirect qualitative MRI of pulmonary ventilation is feasible using the paramagnetic effects of oxygen physically dissolved in blood. In Chapter 4, a more quantitative oxygen-enhanced pulmonary function test based on the slope of a plot of R1 vs. oxygen concentration  the oxygen transfer function (OTF)  was developed and tested in a pool of healthy volunteers and patients with CF. The lung T1 relaxation rate, R1, under normoxic conditions (room air, 21% O2) and the response to various hyperoxic conditions (40% – 100% O2) were studied. Lung T1 in healthy volunteers showed a relatively homogeneous distribution while they breathed room air and a homogeneous decrease under hyperoxic conditions. This T1 decrease from breathing room air to 100% O2 was statistically significant at P < 0.0001. Lung T1 in patients with CF showed an inhomogeneous distribution while they breathed room air and the observed lung T1 decrease under hyperoxia depended on the actual state of the diseased lung tissue. In the selected group of patients with CF, areas with reduced OTF also showed reduced perfusion, as confirmed by qualitative Gd-DTPA-enhanced MR pulmonary perfusion imaging. In Chapter 5, the feasibility and reproducibility of a noninvasive, rapid and quantitative pulmonary perfusion mapping method was evaluated using a two-compartment tissue model in combination with proton spin labeling within the imaging slice. Global and selective lung T1 maps were acquired from each subject. Quantitative perfusion maps were calculated from the global and selective T1 maps. The measured perfusion rates of the upper right lung in volunteers ranged from 400 to 600 m/100g/min. In patients with CF, perfusion defects detected using Gd-DTPA-enhanced MRI were also detected using the spin labeling method. The perfusion rates of diseased lung tissues were less than 200 m/100g/min. The proposed method showed a high intra-study reproducibility and low relative errors. In the first part of Chapter 6, a clinical protocol combining anatomical 1H MRI with the assessment of both OTF and pulmonary perfusion was established for the human lung and applied to patients with CF. In the selected group of patients with CF, areas with reduced oxygen enhancement showed reduced perfusion as confirmed by spin labeling perfusion imaging. These functional imaging results also correlated with anatomical MT-STIR-HASTE imaging results. The results demonstrate that this completely noninvasive clinical protocol has potential for clinical applications in the serial diagnosis of lung diseases such as CF. In the second part of Chapter 6, we compared pulmonary function before and after smoking by measuring arterial blood T1 and lung T1 using the clinical protocol. The results revealed that after smoking, both arterial blood and lung showed no significant changes in OTF, while arterial blood T1 was reduced and the pulmonary perfusion rate was increased. KW - Lungenfunktionsprüfung KW - NMR-Tomographie KW - 1H MRT KW - Lunge KW - Herzshuntdiagnostik KW - funktionell KW - anatomisch KW - 1H MRI KW - lung KW - cardiac shunt KW - functional KW - anatomical Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-14867 ER - TY - THES A1 - Freiwald, Matthias T1 - Therapeutisches Zielorgan Lunge : Pharmakokinetische Untersuchungen am humanen Lungenperfusionsmodell T1 - Therapeutic target site lung: Pharmacokinetic investigations at the isolated reperfused and ventilated human lung N2 - Die humane Lunge kann bei der Pharmakotherapie einer Erkrankung entweder als betroffenes Organ Ziel eines verabreichten Arzneistoffes sein oder aber auch als Portal für diesen in die systemische Zirkulation fungieren. Wird ein Arzneistoff inhaliert, ist für dessen Nutzen-Risiko-Profil von zentraler Bedeutung, in welchem Ausmaß und mit welcher Geschwindigkeit dieser resorbiert und anschließend in die systemische Zirkulation umverteilt wird. Wenn bei der Behandlung einer Lungenerkrankung dagegen ein Arzneistoff z.B. nach peroraler Gabe erst in der systemischen Zirkulation anflutet, müssen ausreichend hohe Wirkstoffkonzentrationen in den betroffenen Gewebearealen sichergestellt werden. Ziel der vorliegenden Arbeit war es daher, Möglichkeiten zu finden, diese beiden Vorgänge in vitro möglichst realitätsnah messen zu können. Für die Simulation der pulmonalen Absorption nach inhalativer Applikation eines Arzneistoffs diente Beclomethasondipropionat (BDP), freigesetzt aus den handelsüblichen FCKW-freien Dosieraerosolen Sanasthmax® und Ventolair®, als Modellsubstanz. Es wurde zunächst ein einfaches Dialysemodell als Screeningverfahren entwickelt. Hier wurden BDP-Partikel unter Verwendung der beiden Dosieraerosole auf humanem Lungenhomogenat deponiert und nachfolgend die kombinierten Prozesse aus Auflösung und Umverteilung der Substanz in eine Dialyseflüssigkeit, die sich entweder aus salinem Puffer oder humanem Blutplasma zusammensetzte, untersucht. Anschließend wurde erstmals ein etabliertes humanes Lungenperfusionsmodell dahingehend modifiziert, dass eine Inhalation von BDP nach Applikation eines handelsüblichen Dosieraerosols nachgestellt werden konnte. Auf diese Weise konnte an diesem realitätsnahen Modell die initiale Phase der pulmonalen Absorption von BDP in der Perfusionsflüssigkeit verfolgt werden. Beide Modelle zeigten Unterschiede in der Auflösungs- bzw. Umverteilungskinetik von BDP in Abhängigkeit von der verwendeten Applikationsform auf. So schienen sich von Ventolair® erzeugte BDP-Partikel schneller und in größerer Menge aufzulösen als diejenige bei den Versuchen mit Sanasthmax®, was eine vermehrte Umverteilung der Substanz sowohl in die Dialyseflüssigkeit als auch Perfusionslösung zur Folge hatte. Die am Lungenperfusionsmodell beobachteten Verläufe der initialen pulmonalen Absorption von BDP nach Freisetzung aus den Dosieraerosolen Sanasthmax® oder Ventolair® korrelierten dabei sehr gut mit Daten aus einer entsprechenden Humanstudie mit gesunden Probanden. Auch standen die ermittelten Unterschiede in sinnvoller Übereinstimmung mit Untersuchungen der in den von Sanasthmax® oder Ventolair® versprühten Aerosolen enthaltenen Partikel hinsichtlich Größenverteilung, Morphologie und Lösungsverhalten in Bronchialsekret. Um die Umverteilung eines Wirkstoffs von der systemischen Zirkulation in lungenspezifisches Gewebe am humanen Lungenperfusionsmodell zu simulieren, wurden die Gewebekonzentrationen von Thalidomid (THAL) in peripherem Lungengewebe im Vergleich zu den korrespondierenden Spiegeln in einem Bronchialkarzinom erstmals mittels Mikrodialyse verfolgt. Hierzu wurde im Vorfeld für diese Substanz unter Einsatz des Komplexbildners (2 Hydroxypropyl)-beta-cyclodextrin (HPCD) ein bezüglich der Sensitivität und der zeitlichen Auflösung optimiertes Mikrodialysesystem etabliert und dessen Eigenschaften systematisch untersucht. Am Lungenperfusionsmodell wurde dann eine an klinisch relevante Plasmaspiegel angelehnte THAL-Konzentration in der Perfusionslösung vorgelegt und anschließend das Anfluten in den oben genannten Geweben mit Hilfe des entwickelten Mikrodialysesystems beobachtet. Durch Zugabe von HPCD in das Mikrodialyseperfusat konnte eine signifikante Erhöhung der Wiederfindungsrate im Dialysat (Relative Recovery) erreicht und damit ein Mikrodialysesystem etabliert werden, das neben hoher zeitlicher Auflösung eine ausreichende analytische Sensitivität für THAL aufwies. Allerdings wurden aufgrund dieses Perfusatzusatzes die Diffusionsvorgänge während der Mikrodialyse derart beeinflusst, dass übliche Methoden zur Sondenkalibrierung wie z.B. die Retrodialyse nicht mehr angewendet werden konnten, und daher in Hinblick auf die Messungen am Lungenperfusionsmodell bestehende Kalibrierverfahren modifiziert werden mussten. Bei der Untersuchung der Gewebepenetration am Lungenperfusionsmodell flutete THAL in Tumorgewebe langsamer an als in peripherem Lungengewebe, wo schnell ähnliche Konzentrationen wie in der Perfusionslösung gefunden wurden. Auch lagen die Gewebespiegel im Tumorgewebe stets unter dem ermittelten Niveau im Lungengewebe. Die erhaltenen Konzentrationsverhältnisse zwischen Perfusionslösung, peripherem Lungengewebe und Tumorgewebe deckten sich dabei mit Kenntnissen aus Humanstudien, in denen analog Plasmakonzentrationen von antineoplastischen Substanzen ebenfalls mittels Mikrodialyse in Relation zu deren Spiegeln in gesundem Gewebe und Tumorgewebe verschiedenster Ätiologie bestimmt wurden. N2 - In pharmacotherapy the human lung may either represent the therapeutic target site of an applied drug or be used as portal for systemic drug delivery. In case of inhalation of a drug the rate and extent of pulmonary drug absorption and subsequent distribution into systemic circulation is essential for the benefit-risk ratio. Otherwise, when a drug is systemically administered, e.g. by intravenous or oral route, to treat a lung disease and therefore first appears in the systemic circulation, sufficient drug concentrations have to be achieved in the affected tissue areals. Thus, the aim of this thesis was to find methods that allow to describe these two processes in vitro as close to reality as possible. Beclomethasone dipropionate (BDP) was chosen for the simulation of pulmonary drug absorption after administration of the two commercially available HFA-propelled metered dose inhalers (pMDI) Sanasthmax® and Ventolair®. Initially a simple dialysis model was established for screening tests. In this setting BDP particles were applied to human lung homogenate using those two inhalers and subsequently the combined processes of drug dissolution and distribution of the drug into dialysis fluid consisting of either saline buffer or human blood plasma were monitored. Then an established isolated reperfused und ventilated human lung setting was used to monitor the initial pulmonary absorption of BDP by measuring drug concentrations in the reperfusion fluid. For this purpose BDP particles containing aerosols delivered by commercially available pMDI for the first time were applied to an isolated reperfused human lung. Both models revealed differences in the combined processes of dissolution and distribution of BDP delivered by the two pMDI Sanasthmax® and Ventolair®. BDP particles delivered by Ventolair® apparently dissolved faster and to a greater extent than particles delivered by Sanasthmax®, resulting in an enhanced distribution both into dialysis fluid and into reperfusion fluid. The time course of initial pulmonary absorption of BDP delivered by the pMDI Sanasthmax® or Ventolair® observed at the isolated reperfused human lung exhibited high correlation with data from a corresponding clinical study with healthy volunteers. Furthermore, the obtained differences were consistent with results from investigations on the particles found in the aerosols produced by Sanasthmax® or Ventolair® regarding their size distribution, topology and dissolution behaviour in brochial fluid. To mimic the distribution of a drug from the systemic circulation into lung specific tissue employing the isolated reperfused and ventilated human lung setting, time course of tissue concentrations of thalidomide (THAL) in peripheral lung tissue in comparison with those in tumour tissue was determined for the first time by microdialysis. Firstly a microdialysis method optimised regarding sensitivity and time resolution by utilising the complexing agent (2 hydroxypropyl)-beta-cyclodextrin (HPCD) was developed and systematically evaluated. A THAL concentration derived from clinically relevant plasma concentrations was used in the reperfusion fluid and subsequently drug influx into tissue was monitored. By adding HPCD to the microdialysis perfusate a significant increase in the relative recovery was achieved enabling the establishment of a microdialysis method that exhibited high time resolution and appropriate analytical sensitivity. However, this perfusate additive strongly affected the diffusion processes during microdialysis so that common methods for microdialysis probe calibration, particularly the retrodialysis method, did not give accurate results. Therefore, a new calibration method suitable for the lung reperfusion experiments had to be explored. Tissue penetration evaluated in the lung reperfusion experiments revealed a slower distribution of THAL into tumour tissue than into peripheral lung tissue. In the latter concentrations similar to those detected in the reperfusion fluid were rapidly observed. Additionally, THAL concentrations achieved in tumour tissue were always lower than the corresponding levels in peripheral lung tissue. The resulting relationship between reperfusion fluid concentrations, concentrations in peripheral lung tissue, and concentrations in tumour tissue was highly correlated with data from clinical studies investigating the concentrations of antineoplastic agents in healthy and tumour tissue of various etiologies by microdialysis in relation to plasma concentrations. In conclusion, methods enabling both characterisation of the distribution of inhaled drugs from lung tissue into systemic circulation and determination of tissue penetration kinetics of systemically administered drugs into lung specific tissue were successfully established. These techniques simulating pulmonary drug distribution very closely to reality may significantly contribute to the understanding of pharmacokinetic processes in the lung. KW - Lunge KW - Perfusion KW - Simulation KW - Pharmakokinetik KW - Pharmakokinetik KW - Lungenperfusionsmodell KW - Thalidomid KW - Beclomethason KW - Beclomethasondipropionat KW - Pharmacokinetics KW - isolated reperfused lung KW - thalidomide KW - beclomethasone Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-21551 ER - TY - THES A1 - Heilmann, Katrin Monika T1 - Pulmonale Strahlenreaktion und Tumoransprechen nach stereotaktischer Bestrahlung von Lungentumoren : Eine computertomographische Verlaufsbeobachtung T1 - Pulmonary injury and tumor response after stereotactic body radiation therapy. Results of a follow-up CT study N2 - Die hypofraktionierte stereotaktische Bestrahlung erlaubt eine präzise hochdosierte und kleinvolumige Radiotherapie umschriebender Raumforderungen mit Tumorkontrollen größer 90% bei peripheren Lungentumoren. Berichtet wird über 70 Patienten mit 86 pulmonalen Läsionen in der Lunge (35 Bronchialkarzinome NSCLC, 51 Metastasen), die zwischen 1997 und 2005 an der Klinik für Strahlentherapie (Universität Würzburg) stereotaktisch bestrahlt wurden. Die Patienten wurden hypofraktioniert mit 3 x 10-12,5 Gy oder mit 1 x 26 Gy (Einzeitbestrahlung) therapiert. Die Morpholgie der pulmonalen Strahlenreaktion sowie deren zeitlicher Verlauf wurden ebenso wie das Tumoransprechen anhand von 346 Verlauf-CTs qualitativ und semiquantitativ ausgewertet. In der Diskussion wurden diese Ergebnisse mit Publikationen zu diesem Thema nach konventioneller Bestrahlung verglichen. Es zeigte sich eine günstiges Verhältnis zwischen Tumorwirksamkeit und Strahlenpneumonitis. N2 - The purpose was to evaluate the CT morphological pattern of tumor response and pulmonary injury after stereotactic body radiotherapy (SBRT) for early stage non-small cell lung cancer (NSCLC) and pulmonary metastases. Seventy patients (lesions n = 86) with pulmonary metastases (n = 51) or primary early stage NSCLC (n = 35) were analyzed. Patients were treated with hypofractionated SBRT (3 x 10-12,5 Gy; n = 53) or with radiosurgery (1 x 26 Gy; n = 33). The pattern and sequence of pulmonary injury and of tumor response was evaluated in 346 follow-up CT studies, 4.7 on average. No pulmonary reaction was observed in most patients six weeks after treatment. Spotted-streaky condensations were characteristic between three and six months. Dense consolidation and retraction started after nine months. At twelve months complete response was seen in 43% and the differentiation of residual tumor from pulmonary reaction was not possible in 33%. KW - Strahlentherapie KW - Strahlentherapie KW - stereotaktische Bestrahlung KW - Lunge KW - Strahlenpneumonitis KW - Radiotherapy KW - stereotactic body radiation therapy KW - lung KW - radiation pneumonitis Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-26452 ER - TY - THES A1 - Arnold, Johannes F. T. T1 - Funktionelle Bildgebung der Lunge und des Bronchialkarzinoms mittels Magnetresonanztomographie T1 - Functional Magnetic Resonance Imaging of the Lung and Non-Small-Cell Lung Cancer N2 - Ziel dieser Arbeit war es, die Magnetresonanztomographie (MRT) an der Lunge als Alternative zur traditionellen Lungenbildgebung voranzutreiben. So sollten MRT-Verfahren zur regionalen und quantitativen Lungenfunktionsprüfung für die klinische Routine entwickelt werden. Im Hinblick auf die Strahlentherapie von Patienten mit Bronchialkarzinom sollen funktionelle Lungenareale erkannt werden, um diese während der Bestrahlung optimal schonen zu können. An den zahlreichen Luft-Gewebe-Grenzflächen in der Lunge entstehen Magnetfeldinhomogenitäten. Daraus resultiert ein schneller Zerfall des MRT-Signals in der Lunge. Es wurde in dieser Arbeit ein Ansatz aufgezeigt, um die Ursache für den raschen Signalzerfall, nämlich die unterschiedlichen magnetischen Suszeptibilitäten von Lufträumen und Lungengewebe, zu beseitigen. Durch die intravaskuläre Injektion von paramagnetischen Kontrastmitteln kann die Suszeptibilität des Blutes an die Suszeptibilität der Lufträume angeglichen werden. Durch die Entwicklung einer MR-kompatiblen aktiven Atemkontrolle (MR-ABC) wurde in dieser Arbeit ein weiteres fundamentales Problem der Lungen-MRT adressiert: Die Bewegung während der Datenakquisition. Die MR-ABC detektiert Herzschlag und Atemposition und ist in der Lage die Atembewegung in jeder beliebigen Atemphase reproduzierbar für eine definierte Zeit auszusetzen. Dies wird durch einen Verschluss der Atemluftzufuhr realisiert. Traditionelle Verfahren können zwar ebenfalls die Atemphase detektieren, gestatten jedoch nicht deren Konservierung. Es wurde demonstriert, dass mit der MR-ABC hochauflösende Bilder der Lunge in hoher Bildqualität und durch die Verwendung langer Akquisitionsfenster in relativ kurzer Messzeit erreicht werden können. Eine regionale Lungenfunktionsprüfung ist für die Diagnose und Evaluierung vieler Krankheitsbilder vorteilhaft. In diesem Sinne wird seit einigen Jahren das Potential der Sauerstoff-verstärkten Lungen-MRT erforscht, die auf den paramagnetischen Eigenschaften des molekularen Sauerstoffs basiert. Im Blut gelöster Sauerstoff führt zu einer Verkürzung der T1-Relaxationszeit. Statt diese T1-Verkürzung quantitativ zu bestimmen wird aus praktischen Gründen meist ein T1-gewichteter Ansatz gewählt. In dieser Arbeit wurde jedoch gezeigt, dass nicht-quantitative Verfahren ein erhebliches Risiko zur Falschinterpretation beinhalten. Um Fehldiagnosen zu vermeiden, sollten deshalb prinzipiell quantitative Methoden zur Messung der durch die Sauerstoff-Verstärkung bedingten T1-Verkürzung in der Lunge verwendet werden. Herkömmliche Techniken zur quantitativen T1-Messung benötigen allerdings längere Messzeiten. Deshalb war zur Vermeidung von Bewegungsartefakten bisher die Datenaufnahme im Atemanhaltezustand notwendig. Wiederholtes Atemanhalten von mehreren Sekunden Dauer ist allerdings für einige Patienten sehr belastend. Aus diesem Grund wurden in dieser Arbeit zwei Methoden entwickelt, die eine quantitative Lungenfunktionsprüfung mittels MRT bei freier Atmung der Patienten ermöglichen. Eine gute Sauerstoffversorgung des Tumors wirkt sich positiv auf den Erfolg der Bestrahlung aus. Ein Ansatz zur Verbesserung der Strahlentherapie des Bronchialkarzinoms könnte daher in der Beatmung der Patienten mit hyperoxischen hypercapnischen Atemgasen während der Bestrahlung bestehen. In diesem Zusammenhang könnte die quantitative Messung der T1-Veränderung im Tumor nach Carbogenatmung ein Selektionskriterium darstellen, um diejenigen Patienten zu identifizieren, die von einer Carbogenbeatmung während der Bestrahlung profitieren können. Die Differenzierung zwischen vitalem Tumorgewebe, Nekrosen und atelektatischem Lungengewebe ist von großer Bedeutung bei der Bestrahlungsplanung des Bronchialkarzinoms. Einen neuen Ansatz bildet die in dieser Arbeit vorgestellte Magnetiserungstransfer-MRT. Um einen Magnetisierungstransfer zu erzeugen, wurde ein speziell auf die Bildgebung an der Lunge optimiertes Präparationsmodul entworfen. In Verbindung mit einer schnellen Bildakquisitionstechnik konnte die Magnetisierungstransfer-Lungenbildgebung in einem kurzen Atemstopp durchgeführt werden. Diese Technik wurde an mehreren Patienten mit Bronchialkarzinom evaluiert und die Ergebnisse mit denen der Fluor-Deoxyglykose-Positronen-Emissions-Tomographie (FDG-PET) verglichen. Es wurde festgestellt, dass mit diesem MRT-Verfahren ähnliche diagnostische Erkenntnisse erzielt werden können. Allerdings besitzt die MRT Vorteile im Hinblick auf räumliche Auflösung, Messzeit, Bildqualität, Kosten und Strahlenbelastung. Das erhebliche Potential für die Bestrahlungsplanung des Bronchialkarzinoms durch eine Magnetisierungstransfer-Bildgebung wurde damit nachgewiesen. N2 - The purpose of this work was to advance magnetic resonance imaging (MRI) to become an additional beneficial modality for lung imaging. MRI techniques for regional and quantitative assessment of pulmonary function, capable for clinical routine use, should be developed. Areas of sound and functional lung should be detected especially in patients with bronchial carcinoma undergoing radiotherapy, to be able to achieve an optimal protection for this kind of tissue during the irradiation process. Magnetic field inhomogeneities emerge from the numerous air-tissue-interfaces of the lung, causing an accelerated MRI signal decay. Therefore, this work postulates a new approach to eliminate the source of this signal decay acceleration, namely the differences in magnetic susceptibility between air sacks and lung tissue. By intravascular injection of paramagnetic contrast agent, the susceptibility of blood can be matched with the susceptibility of the air spaces. Removing the susceptibility differences could prolong the effective transverse relaxation time T2* by many factors. The development of an MR-compatible active breathing control device (MR-ABC) addressed another fundamental obstacle of lung MRI: motion occurring during the data sampling process. MR-ABC allows for the detection of heart and respiratory phases and is able to reproducibly freeze the breathing motion in any desired respiratory phase for a predefined amount of time. This is performed by a shutter that closes the breathing gas delivery. It was demonstrated that using MR-ABC high-resolution high-quality images of the lung can be acquired in a comparably short amount of time due to prolonged acquisition intervals. Regional assessment of pulmonary function is beneficial for diagnosis and evaluation of many lung diseases. In this respect, in the last few years the potential of oxygen-enhanced lung MRI based upon the paramagnetic properties of the molecular oxygen, started to be explored. Dissolved oxygen in the blood leads to a decrease in T1 relaxation time. Due to practical reasons this drop in T1 relaxation time is commonly assessed by T1-weighted imaging approaches instead of quantitative T1 measurements. However, in this work it was demonstrated that non-quantitative approaches comprehend severe risks of misinterpretation. Therefore, to avoid misdiagnosis, quantitative measurements of the oxygen-based T1 decrement in the lung should always be used. On the other hand, common quantitative T1 measurement techniques require longer measurement times, and therefore require imaging during breath-holding to avoid motion artifacts. Repeated breath-holding of several seconds may be very demanding for some patients, especially for those with lung cancer. For this reason, in this work two methods were developed to allow for a quantitative assessment of regional lung function by MRI during free-breathing. These techniques were applied to investigate regional oxygen transfer in lung cancer patients. Local defects of lung function could be demonstrated in these patients. A good oxygen supply of the tumor tissue is positively correlated to the success of radiation therapy. Reoxygenation of former hypoxic areas can improve the sensitivity of the tumor to irradiation. Thus, one approach to improve radiotherapy of bronchogenic carcinoma could be to use hyperoxic, hypercapnic breathing gases such as carbogen during the irradiation. In this respect, the quantitative measurement of the T1 alteration in the tumor due to the switching of breathing gas to carbogen could provide a selection criterion for patients who can benefit from an ARCON approach. In a preliminary study, the T1 alteration in the tumor after switching of breathing gas to carbogen was assessed in a variety of lung cancer patients. Differentiation of vital tumor, necrotic tissue and atelectasis is of paramount importance in radiation therapy planning of bronchial carcinoma. Unfortunately, discrimination of these tissues by using computer tomography or positron emission tomography is usually problematic in the clinical routine. This work proposes a new approach based on magnetization transfer MRI. The extent of magnetization transfer is mainly dependent on the macromolecular environment of the protons, which is different in tumor tissue and atelectatic tissue. To produce magnetization transfer, a magnetization preparation module was developed and particularly optimized for application to lung imaging. In conjunction with a fast readout imaging sequence, magnetization transfer lung imaging could be performed in a single short breath-hold period. This technique was evaluated in several patients with bronchial carcinoma. The results of magnetization transfer imaging were compared to the results of a fluorodeoxyglucose positron emission tomography (FDG-PET) investigation. It was found that using the MRI technique, similar diagnostic information as with the FDG-PET could be obtained. KW - Magnetische Resonanz KW - Lunge KW - Nicht-kleinzelliges Bronchialkarzinom KW - MRI KW - Lung KW - NSCLC Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-26388 ER - TY - THES A1 - Brenner, Sophie Anna T1 - Optimierte Lungenbildgebung an einem offenen MRT bei Patienten mit Mukoviszidose - Darstellung der Morphologie und Funktion T1 - Optimized lung imaging at an open-design 0.2 T MR system in Cystic fibrosis: morphological and functional imaging N2 - Das Ziel dieser Arbeit war die Evaluierung von morphologischen und funktionellen Techniken zur Untersuchung der Lunge am Niederfeld MRT bei Patienten mit Mukoviszidose. Patienten mit Mukoviszidose und lungengesunde Probanden wurden an einem Niederfeld-MRT (0,2 Tesla) mittels coronaren TrueFISP, FLASH 2D und FLASH 3D Sequenzen untersucht. T1 und T2*-Messungen wurden während Atmung von Raumluft und Atmung von 100 % Sauerstoff durchgeführt und die Parameterkarten pixelweise berechnet. Die für die Lungenbildgebung am Niederfeld-MRT optimierten 2D und 3D FLASH Sequenzen zeigten ein signifikant besseres Signalverhalten als die Standardsequenz TrueFISP. Zur Beurteilung der Parenchymveränderungen wurde ein MR-Score in Anlehnung an den Chrispin-Norman-Score angewandt. Es zeigte sich eine gute Korrelation zwischen dem MR-Score der FLASH-Sequenzen und dem etablierten CN-Score der konventionellen Bildgebung mit einer geringen Interobservariabiliät für die 2D und 3D FLASH Sequenzen. Schließlich konnte eine O2-gestütze funktionelle Bildgebung der Lunge bei Patienten mit Mukoviszidose am offenen Niederfeld-MRT etabliert werden. Es zeigten sich gute Korrelationen zwischen der relativen Änderung der T1 Relaxationszeit und der spirometrisch bestimmten Lungenfunktion. Ein solcher Zusammenhang konnte für die T2*-Messungen nicht hergestellt werden. Aufgrund der Patientenfreundlichkeit ist diese Technik insbesondere für die Untersuchung von Kindern geeignet. N2 - The purpose of the present thesis was to evaluate the clinical relevance of morpholocical and functional MRI of the human lung using an open-designed magnet system for patients with cystic fibrosis. Such patients and healthy volunteers were investigated in a low-field (0,2 Tesla) MR-scanner by TrueFISP, FLASH 2D und FLASH 3D sequences (Magnetom Open 0,2 Tesla, Siemens Medical Solutions, Erlangen, Germany). For functional lung imaging the patients and volunteers alternately breathed room air and 100 % oxygen. All images were fitted pixel by pixel and T1 and T2* parameter maps were generated. The optimized FLASH 2D and 3D sequences demonstrated a significantly higher signal-to-noise ratio in comparison to TrueFISP sequence. The here proposed modified CN-Score for low-field MRI correlated well with the established score of Chrispin and Norman in CXR and showed a low interobserver variability for FLASH 2D und FLASH 3D sequences. Oxygen-enhanced T1 und T2* mapping of the human lung was successfully etablished at an open low field scanner in patients with cystic fibrosis. Observed relative changes of the average pulmonary relaxation times T1 and T2* were related to pulmonary function tests. The measured T1 values were in good agreement with the severity of disease in CF defined by the pulmonary function test. This was not the case for navigated T2* mapping. The open design provides superior patient comfort and relieves the examination of children. KW - MRT KW - Lunge KW - Mukoviszidose KW - Morphologie KW - Ventilation KW - Sauerstoff KW - 0 KW - 2 Tesla KW - mri KW - lung KW - cystic fibrosis KW - oxygen-enhanced Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71805 ER - TY - THES A1 - Oechsner, Markus T1 - Morphologische und funktionelle 1H-Magnetresonanztomographie der menschlichen Lunge bei 0.2 und 1.5 Tesla T1 - Morphological and functional 1H magnetic resonance tomography of the human lung at 0.2 and 1.5 tesla N2 - Das Ziel dieser Arbeit war es, Methoden und Techniken für die morphologische und funktionelle Bildgebung der menschlichen Lunge mittels Kernspintomographie bei Feldstärken von 0,2 Tesla und 1,5 Tesla zu entwickeln und zu optimieren. Bei 0,2 Tesla wurde mittels der gemessenen Relaxationszeiten T1 und T2* eine 2D und eine 3D FLASH Sequenz zur Untersuchung der Lungenmorphologie optimiert. Sauerstoffgestützte Messungen der Relaxationszeiten T1 und T2* sowie eine SpinLabeling Sequenz liefern funktionelle Informationen über den Sauerstofftransfer und die Perfusion der Lungen. Bei 1,5 Tesla wurde die Lungenperfusion mittels MR-Kontrastmittel mit einer 2D und einer 3D Sequenz unter Verwendung der Präbolus Technik quantifiziert. Zudem wurden zwei MR-Navigationstechniken entwickelt, die es ermöglichen Lungenuntersuchungen unter freier Atmung durchzuführen und aus den Daten artefaktfreie Bilder zu rekonstruieren. Diese Techniken können in verschiedenste Sequenzen für die Lungenbildgebung implementiert werden, ohne dass die Messzeit dadurch signifikant verlängert wird. N2 - The purpose of this thesis was to make a contribution to the development of lung MRI. While we developed and implemented new sequences and procedures both in the area of low-field MRI (0.2 Tesla) and 1.5 Tesla, we also took existing technologies into account by modifying and optimizing them for the working conditions at hand. In the process, we focused on techniques for both morphological and functional examination of the lung. Lung scans using an open 0.2 Tesla tomograph were an important component of this. Our first objective was to develop various methods for morphological and functional lung MRI, adapt them to altered conditions and further optimize them. The second objective was to contribute more in-depth research of contrast agent-based quantification of lung perfusion for the clinical standard of 1.5 Tesla. Additionally, we developed navigation methods which allow for scans of the lung under conditions of free breathing and without the use of external measurement devices. KW - NMR-Bildgebung KW - Lunge KW - 0.2 Tesla KW - Sauerstoff KW - Präbolus KW - Perfusion KW - freie Atmung KW - Navigator KW - Bilderzeugung KW - Bildgebendes Verfahren KW - oxygen-enhanced KW - spin labeling KW - contrast-enhanced KW - prebolus KW - free respiration Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-66942 ER - TY - THES A1 - Mertens, Christina T1 - Phänotypische und funktionelle Charakterisierung von Alveolarmakrophagen der Ratte T1 - Phenotypic and functional characterisation of alveolar macrophages of the rat N2 - Makrophagen spielen als Zellen der angeborenen Abwehr eine wichtige Rolle bei der Immunabwehr. Ziel dieser Arbeit war die phänotypische und funktionelle Charakterisierung von Alveolarmakrophagen der Ratte. Hierzu wurden die durch eine bronchoalveoläre Lavage gewonnenen Alveolarmakrophagen immunhistologisch und durchflusszytometrisch untersucht. Zusätzlich wurden sie in vitro mit LPS und IFN-g stimuliert. Die Produktion von Stickstoffmonoxid wurde mit dem Griess Reagenz bestimmt und die Expression von iNOS im Immunoblot nachgewiesen. Zudem wurde die Interaktion mit naiven T-Lymphozyten untersucht. Als Vergleichszellen wurden Peritonealmakrophagen verwendet. Bei den aus bronchoalveolären Lavagen gewonnenen Zellen handelte es sich eindeutig um CD68- und CD11b-positive Alveolarmakrophagen. Vollständig aktivierte Alveolarmakrophagen exprimierten zum Teil andere Oberflächenmoleküle als nicht-aktivierte. So stieg nach Stimulierung der Anteil der Makrophagen, die die kostimulatorischen Moleküle CD80 und CD86 exprimierten, auf ca. 80 Prozent an. Ebenso bildeten sie große Mengen an Stickstoffmonoxid (380 μmol/L NO nach 48 Stunden bei 1 μg/mL LPS) und exprimierten auch das Enzym iNOS. Die aktivierten Alveolarmakrophagen waren nicht in der Lage, naive T-Lymphozyten zu aktivieren. Die Stimulierung der Alveolarmakrophagen in vitro hat gezeigt, dass LPS und IFN-g in den getesteten Konzentrationen in der Lage waren, Makrophagen vollständig zu aktivieren. Die zweistufige Aktivierung von Makrophagen durch ein Priming mit IFN-g und eine darauf folgende vollständige Aktivierung mit LPS, ist bei hohen lokalen Konzentrationen auch nur mit LPS bzw. IFN- g möglich. Dies unterstreicht die besondere Bedeutung der beiden Mediatoren für die Aktivierung von Makrophagen. N2 - Macrophages play an important role as cells of the innate immune system. The functional and phenotypic characterisation of alveolar macrophages of the rat was the purpose of this dissertation. Alveolar macrophages, extracted by bronchoalveolar lavage, were studied with immunohistologic and flow cytometric methods. In addition they were stimulated in vitro with LPS and IFN-. The production of nitrogenmonoxid was measured using the Griess Reagent System and the expression of iNOS was shown by immunoblotting. Further examinations of the interaction between alveolar macrophages and naive T lymphocytes were also performed. Peritoneal macrophages were used to perform a comparative analysis. The cells extracted by bronchoalveolar lavage are clearly alveolar macrophages (CD68 and CD11b in immunohistology almost 100 percent positive). The expression of surface proteins differed between completely activated alveolar macrophages and non-activated ones. After stimulation the amount of macrophages expressing the co-stimulatory molecules CD80 and CD86 rose up to 80 percent. Furthermore they were producing large amounts of nitrogenmonoxid (380 µmol/L NO after 48 hours with 1 µg/mL LPS) (see pictures 4.16 and 4.17) and were expressing the enzyme iNOS (picture 4.19) all of which cannot be observed for non-activated macrophages. Activated macrophages were not able to stimulate naïve T lymphocytes; explaining the absence of proliferation of T lymphocytes in MLR measurements. The in vitro stimulation of alveolar macrophages showed that LPS (125, 250, 1000 ng/mL) and IFN-g(250 ng/mL) were able to stimulate alveolar macrophages completely. The two-stage activation of macrophages utilizing IFN-gfor priming and a subsequently complete activation using LPS, is also possible using high concentrations of LPS or IFN-g alone. This points out the importance of the two mediators for the activation of macrophages. KW - Makrophage KW - Lunge KW - Ratte KW - Alveolar KW - Stimulation KW - Interferon KW - Immuncytochemie KW - Durchflusscytometrie KW - Alveolarmakrophagen KW - LPS KW - Lipopolysaccharid KW - macrophages KW - alveolar macrophages . rat . lung KW - stimulation Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69309 ER - TY - THES A1 - Trammer, Beatrice T1 - Ex-vivo-Modelle zur Charakterisierung der Pharmakokinetik pulmonal applizierter Wirkstoffe: Dialyse- und humanes Lungenperfusionsmodell T1 - Ex-vivo models enabling the pharmacokinetic characterization of pulmonary applied drugs: dialysis model and isolated human lung perfusion model N2 - Aus pharmakokinetischer Sicht sind neben Parametern wie der oralen Bioverfügbarkeit und der systemischen Clearance, für die Effektivität und Sicherheit eines inhalativ angewendeten Wirkstoffes unter anderem das Ausmaß der pulmonalen Deposition und seine pulmonale Umverteilungskinetik entscheidend. Wird eine topische Wirkung des Arzneistoffes angestrebt, so trägt eine lange Verweilzeit des Arzneistoffes im Zielgewebe, verbunden mit einer langsamen Umverteilung in den systemischen Kreislauf zu einer Wirkungsoptimierung mit gleichzeitiger Minimierung systemischer Nebenwirkungen bei. In-vitro- und ex-vivo-Modelle eignen sich hervorragend zur isolierten Untersuchung solcher pharmakokinetischer Vorgänge ohne den Einfluss verschiedener in-vivo-Faktoren, wie der Verteilung in andere Gewebe, Metabolisierungs- oder Eliminationsprozessen. Das Ziel der vorliegenden Arbeit war es daher, Modelle der humanen Lunge zu etablieren bzw. weiterzuentwickeln, die möglichst realitätsnah die Untersuchung der Pharmakokinetik pulmonal applizierter Wirkstoffe ermöglichen. N2 - From a pharmacokinetic point of view, the extent of pulmonary deposition and the pulmonary redistribution are crucial for an inhaled drug’s effectiveness and safety besides parameters such as oral bioavailability and systemic clearance. Aiming at a local effect, a long residence time in the target tissue combined with a slow redistribution into systemic circulation contribute to a drug’s optimal potency while simultaneously minimizing systemic adverse effects. In-vitro and ex-vivo models are particularly suitable for examining single pharmacokinetic aspects without the influences occurring in-vivo such as distribution into other tissues and processes of metabolism or elimination. Therefore, the aim of the present thesis was to establish, respectively enhance models of the human lung, which were able to describe the pharmacokinetics of pulmonary applied drugs close to reality. KW - Pharmakokinetik KW - Lunge KW - Ex vivo KW - Wirkstoff KW - pharmacokinetic KW - lung KW - ex vivo Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-66119 ER - TY - THES A1 - Breuer [geb. Hemberger], Kathrin R. F. T1 - Effiziente 3D Magnetresonanzbildgebung schnell abfallender Signale T1 - Efficient 3D Magnetic Resonance Imaging of fast decaying signals N2 - In der vorliegenden Arbeit wird die Rotated-Cone-UTE-Sequenz (RC-UTE), eine 3D k-Raum-Auslesetechnik mit homogener Verteilung der Abtastdichte, vorgestellt. Diese 3D MR-Messtechnik ermöglicht die für die Detektion von schnell abfallenden Signalen notwendigen kurzen Echozeiten und weist eine höhere SNR-Effizienz als konventionelle radiale Pulssequenzen auf. Die Abtastdichte ist dabei in radialer und azimutaler Richtung angepasst. Simulationen und Messungen in vivo zeigen, dass die radiale Anpassung das T2-Blurring reduziert und die SNR-Effizienz erhöht. Die Drehung der Trajektorie in azimutale Richtung ermöglicht die Reduzierung der Unterabtastung bei gleicher Messzeit bzw. eine Reduzierung der Messzeit ohne Auflösungsverlust. Die RC-UTE-Sequenz wurde erfolgreich für die Bildgebung des Signals des kortikalen Knochens und der Lunge in vivo angewendet. Im Vergleich mit der grundlegenden UTE-Sequenz wurden die Vorteile von RC-UTE in allen Anwendungsbeispielen aufgezeigt. Die transversalen Relaxationszeit T2* des kortikalen Knochen bei einer Feldstärke von 3.0T und der Lunge bei 1.5T und 3.0T wurde in 3D isotroper Auflösung gemessen. Außerdem wurde die Kombination von RC-UTE-Sequenz mit Methoden der Magnetisierungspräparation zur besseren Kontrasterzeugung gezeigt. Dabei wurden die Doppel-Echo-Methode, die Unterdrückung von Komponenten mit langer Relaxationszeit T2 durch Inversionspulse und der Magnetisierungstransfer-Kontrast angewendet. Die Verwendung der RC-UTE-Sequenz für die 3D funktionelle Lungenbildgebung wird ebenfalls vorgestellt. Mit dem Ziel der umfassenden Charakterisierung der Lungenfunktion in 3D wurde die simultane Messung T1-gewichteter Bilder und quantitativer T2*-Karten für verschiedene Atemzustände an sechs Probanden durchgeführt. Mit der hier vorgestellten Methode kann die Lungenfunktion in 3D über T1-Wichtung, quantitative T2*-Messung und Rekonstruktion verschiedener Atemzustände durch Darstellung von Ventilation, Sauerstofftransport und Volumenänderung beurteilt werden. N2 - In this thesis the Rotated-Cone-UTE-sequence (RC-UTE), a 3D k- space sampling scheme with uniform sampling density, is presented. 3D RC-UTE provides short echo times enabling the detection of fast decaying signals with higher SNR-efficiency than conventional UTE sequences. In RC-UTE the sampling density is adapted in radial and azimuthal direction. It is shown in simulations and measurements that the density adaption along the radial dimension reduces T2-blurring. By twisting the trajectory along the azimuthal direction fewer projections are needed to fulfill the Nyquist criterion. Thereby, undersampling artefacts or the measurement time is reduced without loss of resolution. RC-UTE has been successfully applied in vivo in cortical bone and the lung. It was shown that the RC-UTE sequence outperforms the standard UTE sequence in all presented applications. In addition, the transversal relaxation time T2* of cortical bone at field strength of 3.0T and the human lung at 1.5T und 3.0T was measured in 3D isotropic resolution. Moreover, the combination of RC-UTE with magnetization preparation techniques for improved image contrast was shown. To this end strategies such as double-echo readout, long T2 suppression by inversion pulses and magnetization transfer contrast imaging were employed. Furthermore, the application of RC-UTE for 3D functional lung imaging is presented. In order to provide broad information about pulmonary function T1-weighted images and quantitative T2*-maps in different breathing states were simultaneously measured in six healthy volunteers. The presented methodology enables the assessment of pulmonary function in 3D by indicating ventilation, oxygen transfer and lung volume changes during free breathing. KW - Kernspintomografie KW - Relaxationszeit KW - Dreidimensionale Bildverarbeitung KW - T2* KW - Ulrakurze Echozeit KW - T1-Wichtung KW - dichteangepasste k-Raum Abtastung KW - Lunge KW - Relaxation KW - Lungenfunktion Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150750 ER - TY - THES A1 - Weick, Stefan T1 - Retrospektive Bewegungskorrektur zur hochaufgelösten Darstellung der menschlichen Lunge mittels Magnetresonanztomographie T1 - Retrospective Motion Correction for High Resolution Magnetic Resonance Imaging of the Human Lung N2 - Ziel dieser Arbeit war es, das gesamte Lungenvolumen in hoher dreidimensionaler Auflösung mittels der MRT darzustellen. Um trotz der niedrigen Protonendichte der Lunge und der geforderten hohen Auflösung ausreichend Signal für eine verlässliche Diagnostik zu erhalten, sind Aufnahmezeiten von einigen Minuten nötig. Um die Untersuchung für den Patienten angenehmer zu gestalten oder auf Grund der eingeschränkten Fähigkeit eines Atemstopps überhaupt erst zu ermöglichen, war eine Anforderung, die Aufnahmen in freier Atmung durchzuführen. Dadurch entstehen allerdings Bewegungsartefakte, die die Diagnostik stark beeinträchtigen und daher möglichst vermieden werden müssen. Für eine Bewegungskompensation der Daten muss die auftretende Atembewegung detektiert werden. Die Bewegungsdetektion kann durch externe Messgeräte (Atemgurt oder Spirometer) oder durch eine zusätzliche Anregungen erfolgen (konventionelle Navigatoren) erfolgen. Nachteile dieser Methoden bestehen darin, dass die Bewegung während der Atmung nicht direkt verfolgt wird, dass elektronische Messgeräte in die Nähe des Tomographen gebracht werden und das die Patienten zusätzlich vorbereitet und eingeschränkt werden. Des Weiteren erfordert eine zusätzliche Anregung extra Messzeit und kann unter Umständen die Magnetisierung auf unterwünschte Weise beeinflussen. Um die angesprochenen Schwierigkeiten der Bewegungsdetektion zu umgehen, wurden in dieser Arbeit innerhalb einer Anregung einer 3d FLASH-Sequenz sowohl Bilddaten- als auch Navigatordaten aufgenommen. Als Navigator diente dabei das nach der Rephasierung aller bildgebenden Gradienten entstehende Signal (DC Signal). Das DC Signal entspricht dabei der Summe aller Signale, die mit einem bestimmten Spulenelement detektiert werden können. Bewegt sich beispielsweise die Leber bedingt durch die Atmung in den Sensitivitätsbereich eines Spulenelementes, wird ein stärkeres DC Signal detektiert werden. Je nach Positionierung auf dem Körper kann so die Atembewegung mit einzelnen räumlich lokalisierten Spulenelementen nachverfolgt werden. Am DC Signalverlauf des für die Bewegungskorrektur ausgewählten Spulenelementes sind dann periodische Signalschwankungen zu erkennen. Zusätzlich können aus dem Verlauf Expirations- von Inspirationszuständen unterschieden werden, da sich Endexpirationszustände im Regelfall durch eine längere Verweildauer auszeichnen. Grundsätzlich kann das DC Signal vor oder nach der eigentlichen Datenaufnahme innerhalb einer Anregung aufgenommen werden. Auf Grund der kurzen Relaxationszeit T∗2 des Lungengewebes fällt das Signal nach der RF Anregung sehr schnell ab. Um möglichst viel Signal zu erhalten sollten, wie in dieser Arbeit gezeigt wurde, innerhalb einer Anregung zuerst die Bilddaten und danach die Navigatordaten aufgenommen werden. Dieser Ansatz führt zu einer Verkürzung der Echozeit TE um 0.3 ms und damit zu einem SNR Gewinn von etwa 20 %. Gleichzeitig ist das verbleibende Signal nach der Datenakquisition und Rephasierung der bildgebenden Gradienten noch ausreichend um die Atembewegung zu erfassen und somit eine Bewegungskorrektur der Daten (Navigation) zu ermöglichen. Um eine retrospektive Bewegungskorrektur durchführen zu können, müssen Akzeptanzbedingungen (Schwellenwerte) für die Datenauswahl festgelegt werden. Bei der Wahl des Schwellenwertes ist darauf zu achten, dass weder zu wenige noch zu viele Daten akzeptiert werden. Akzeptiert man sehr wenige Daten, zeichnen sich die Rekonstruktionen durch einen scharfen Übergang zwischen Lunge und Diaphragma aus, da man sehr wenig Bewegung in den Rekonstruktionen erlaubt. Gleichzeitig erhöht sich allerdings das Risiko, dass nach der Navigation Linien fehlen. Dies führt zu Einfaltungsartefakten, die in Form von gestörten Bildintensitäten in den Rekonstruktionen zu sehen sind und die diagnostische Aussagekraft einschränken. Um Einfaltungsartefakte zu vermeiden sollte der Schwellenwert so gewählt werden, dass nach der Datenauswahl keine Linien fehlen. Aus dieser Anforderung lässt sich ein maximaler Schwellenwert ableiten. Akzeptiert man dagegen sehr viele Daten, zeichnen sich die Rekonstruktionen durch erhöhtes Signal und das vermehrte Auftreten von Bewegungsartefakten aus. In diesem Fall müsste der Arzt entscheiden, ob Bewegungsartefakte die Diagnostik zu stark beeinflussen. Wählt man den Schwellenwert so, dass weder Linien fehlen noch zu viel Bewegung erlaubt wird, erhält man Rekonstruktionen die sich durch einen scharfen Diaphragmaübergang auszeichnen und in denen noch kleinste Gefäße auch in der Nähe des Diaphragmas deutlich zu erkennen sind. Hierfür haben sich Schwellenwerte, die zu einer Datenakzeptanz von ca. 40 % führen als günstig erwiesen. Um Einfaltungsartefakte auf Grund der retrospektiven Datenauswahl zu verhindern, muss das Bildgebungsvolumen mehrfach abgetastet werden. Dadurch wird gewährleistet, dass für die letztendliche Rekonstruktion ausreichend Daten zur Verfügung stehen, wobei mehrfach akzeptierte Daten gemittelt werden. Dies spielt auf Grund der niedrigen Protonendichte der Lunge eine wesentliche Rolle in der Rekonstruktion hochaufgelöster Lungendatensätze. Weiterhin führt das Mitteln von mehrfach akzeptierten Daten zu einer Unterdrückung der sogenannten Ghost Artefakte, was am Beispiel der Herzbewegung in der Arbeit gezeigt wird. Da die Messungen unter freier Atmung durchgeführt werden und keine zusätzlichen externen Messgeräte angeschlossen werden müssen, stellte die Untersuchung für die Patienten in dieser Arbeit kein Problem dar. Im ersten Teil dieser wurde Arbeit gezeigt, dass sich mit Hilfe des DC Signales als Navigator und einer retrospektiven Datenauswahl das gesamte Lungenvolumen in hoher dreidimensionaler Auflösung von beispielsweise 1.6 x 1.6 x 4 mm3 innerhalb von 13 min. darstellen lässt. Die Anwendbarkeit der vorgestellten Methode zur Bewegungskorrektur wurde neben Probanden auch an Patienten demonstriert. Da wie bereits beschrieben das Bildgebungsvolumen mehrfach abgetastet werden muss, wiederholt sich auch die Abfolge der für die Bildgebung verantwortlichen Gradienten periodisch. Da sich der Atemzyklus aber auch periodisch wiederholt, kann es zu Korrelationen zwischen der Atmung und den wiederholten Messungen kommen. Dies führt dazu, dass auch nach vielen wiederholten Messungen immer noch größere Bereiche fehlender Linien im k-Raum bleiben, was zu Artefakten in den Rekonstruktionen führt. Dies konnte im Falle der konventionellen Bewegungskorrektur in den Gatingmasken, die die Verteilung und Häufigkeit der einzelnen akzeptierten Phasenkodierschritte im k-Raum zeigen, beobachtet werden. Da eine vorsätzliche Unterbrechung der Atemperiodizität (der Patient wird dazu angehalten, seine Atemfrequenz während der Messung absichtlich zu variieren) zur Vermeidung der angesprochenen Korrelationen nicht in Frage kommt, musste die Periodizität in der Datenaufnahme unterbrochen werden. In dieser Arbeit wurde dies durch eine quasizufällige Auswahl von Phasen- und Partitionskodiergradienten erreicht, da Quasizufallszahlen so generiert werden, dass sie unabhängig von ihrer Anzahl einen Raum möglichst gleichförmig ausfüllen. Die quasizufällige Datenaufnahme führt deshalb dazu, das sowohl akzeptierte als auch fehlende Linien nach der Bewegungskorrektur homogen im k-Raum verteilt auftreten. Vergleicht man das auftreten von Ghosting zeichnen sich die quasizufälligen Rekonstruktionen im Vergleich zur konventionellen Datenaufnahme durch eine verbesserte Reduktion von Ghost Artefakten aus. Dies ist auf die homogene Verteilung mehrfach akzeptierter Linien im k-Raum zurückzuführen. Die homogenere Verteilung von fehlenden Linien im k-Raum führt weiterhin zu einer wesentlich stabileren Rekonstruktion fehlender Linien mit parallelen MRT-Verfahren (z.B. iterativem Grappa). Dies wird umso deutlicher je höher der Anteil fehlender Linien im k-Raum wird. Im Falle der konventionellen Datenaufnahme werden die zusammenhängenden Bereiche fehlender Linien immer größer, was eine erfolgreiche Rekonstruktion mit iterativem Grappa unmöglich macht. Im Falle der quasizufälligen Datenaufnahme dagegen können auch Datensätze in denen 40% der Linien fehlen einfaltungsartefaktfrei rekonstruiert werden. Im weiteren Verlauf der Arbeit wurde gezeigt, wie die Stabilität der iterativen Grappa Rekonstruktion im Falle der quasizufälligen Datenaufnahme für eine erhebliche Reduktion der gesamten Messzeit genutzt werden kann. So ist in einer Messzeit von nur 74s die Rekonstruktion eines artefaktfreien und bewegungskorrigierten dreidimensionalen Datensatzes der menschlichen Lunge mit einer Auflösung von 2 x 2 x 5 mm3 möglich. Des Weiteren erlaubt die quasizufällige Datenaufnahme in Kombination mit iterativem Grappa die Rekonstruktion von Datensätzen unterschiedlicher Atemphasen von Inspiration bis Expiration (4D Bildgebung). Nach einer Messzeit von 15min. wurden 19 unterschiedliche Atemzustände rekonstruiert, wobei sich der Anteil der fehlenden Linien zwischen 0 und 20 % lag. Im Falle der konventionellen Datenaufnahme wäre eine wesentlich längere Messzeit nötig gewesen, um ähnliche Ergebnisse zu erhalten. Zum Schluss soll noch ein Ausblick über mögliche Weiterentwicklungen und Anwendungsmöglichkeiten, die sich aus den Erkenntnissen dieser Arbeit ergeben haben, gegeben werden. So könnte das quasizufällige Aufnahmeschema um eine Dichtegewichtung erweitert werden. Hierbei würde der zentrale k-Raum Bereich etwas häufiger als die peripheren Bereiche akquiriert werden. Dadurch sollte die iterative Grappa Rekonstruktion noch stabiler funktionieren und Ghost Artefakte besser reduziert werden. Die Verteilung der Linien sollte allerdings nicht zu inhomogen werden, um größere Lücken im k-Raum zu vermeiden. Darüber hinaus könnte die vorgestellte Methode der Bewegungskompensation auch für die Untersuchung anderer Organe oder Körperteile verwendet werden. Voraussetzung wäre lediglich das Vorhandensein dezidierter Spulenanordnungen, mit denen die Bewegung nachverfolgt werden kann. So ist beispielsweise eine dynamische Bildgebung des frei und aktiv bewegten Knies möglich, wobei zwischen Beugung und Streckung durch die erste Ableitung des zentralen k-Raum Signales unterschieden werden kann. Dies kann zusätzliche Diagnoseinformationen liefern oder für Verlaufskontrollen nach Operationen benutzt werden [15]. Eine Weiterentwicklung mit hohem klinischen Potential könnte die Kombination der in dieser Arbeit vorgestellten retrospektiven Bewegungskorrektur mit einer Multi- Gradienten-Echo Sequenz darstellen. Hierzu musste die bestehende Sequenz lediglich um eine mehrfache Abfolge von Auslesegradienten innerhalb einer Anregung erweitert werden. Dies ermöglicht eine bewegungskorrigierte voxelweise Bestimmung der transversalen Relaxationszeit T∗2 in hoher räumlicher Auflösung. Unter zusätzlicher Sauerstoffgabe kann es zu einer Veränderung von T∗2 kommen, die auf den sogenannten BOLD Effekt (Blood Oxygen Level Dependent) zurückzuführen ist. Aus dieser Änderung könnten Rückschlüsse auf hypoxische Tumorareale gezogen werden. Da diese eine erhöhte Strahlenresistenz aufweisen, könnte auf diese Bereiche innerhalb des Tumors eine erhöhte Strahlendosis appliziert und so möglicherweise Behandlungsmisserfolge reduziert werden. Gleichzeitig kann durch die 4D Bildgebung eine mögliche Tumorbewegung durch die Atmung erfasst und diese Information ebenfalls in der Bestrahlungsplanung benutzt werden. Die Lungen MRT könnte somit um eine hochaufgelöste dreidimensionale funktionelle Bildgebung erweitert werden. N2 - The goal of this work was to depict the whole lung volume by MRI in high spatial resolution. To obtain sufficient signal for a reliable diagnosis despite the inherently low proton density of the lung and the requested high spatial resolution, total acquisition times of a few minutes are mandatory. Simultaneously, the measurements should be performed under free breathing conditions making patient examinations more comfortable or possible for patients with limited breath holding capabilities. However, free breathing leads to motion artifacts which can severely influence the diagnostic value of the images and hence have to be avoided. To compensate for motion the prevalent breathing pattern has to be detected. This can be achieved by external measurement devices such as a respiration belt or a spirometer or by conventional navigator echoes using an additional excitation pulse. Drawbacks of these methods are that the respiratory motion is detected only indirectly, that electronic devices have to be used near the MRI machine and the patients have to be prepared and are strongly restricted. Furthermore, additional excitation pulses will prolong the total acquisition time and may affect the magnetization adversely. To overcome these limitations of motion detection in the present work, the image as well as the navigator data was acquired within one excitation of a FLASH sequence. The resulting central k-space signal (DC signal) after rephasing of all imaging gradients was used as a navigator signal. The DC signal represents the sum of all signals that can be detected with a single receiver coil element. If the liver is for example moving in the sensitivity area of one coil element due to breathing, an increased DC signal will be detected. Depending on their local position on the body the locally confined coil elements are able to track respiratory motion. The time course of the DC signal of the selected coil element for respiratory motion compensation will depict periodic signal variations accordingly. Additionally, respiratory phases of expiration can be distinguished from inspiratory phases because the resting times in end-expiratory phases are usually longer compared to end-inspiratory phases. The DC signal can be acquired either before or after the actual image data acquisition within one excitation. The short T2* of the human lung tissue leads to a rapid signal decay after the excitation. As shown in this thesis, the DC signal should be acquired after the image data within one excitation. This approach allows for echo time (TE) reduction of 0.3 ms leading to a signal benefit of approximately 20 %. Simultaneously, the remaining signal after image data acquisition and rephasing of all imaging gradients is still sufficient to track respiratory motion and can therefore be used for motion compensation of the acquired data. In order to compensate for motion retrospectively, threshold values for data acceptance have to be defined. Setting the threshold value, neither too less nor too much data should be accepted. Accepting very few data leads to sharp transition between the lung and the diaphragm because not much motion is allowed in the reconstruction process. On the other hand, disturbed signal intensity can be observed because of under-sampling artifacts due to missing lines after gating. These artifacts can restrict the diagnostic value of the reconstructions. Therefore, the selected threshold value should lead to a fully sampled k-space after gating. This requirement can be used to define the maximum threshold value for data acceptance. On the contrary, accepting very much data leads to higher signal intensity but also to more distinctive motion artifacts. In this case, the physician has to decide whether the motion artifacts affect his diagnosis too much. A moderate threshold value leads to a fully sampled k-space as well as good motion artifact compensation. This results in reconstructions that are characterized by a sharp depiction of small vessels even near the diaphragm. For this, threshold values leading to a data acceptance of about 40 % turned out to be beneficial. To avoid under-sampling artifacts because of retrospective gating, the imaging volume has to be acquired several times. This ensures that enough data is available for the final reconstruction whereas multiple accepted data is averaged. Averaging is essential for the reconstruction of high resolution data sets because of the inherently low proton density of the lung. Furthermore it leads to the reduction of ghost artifacts as is shown using the example of heart motion in this work. As no external measurement devices were used and the data was acquired under free breathing conditions the examinations posed no problem for the patients within this work. It was shown so far that the DC signal in combination with retrospective gating can be used to reconstruct high resolution 3d lung data sets with a resolution of 1.6 x 1.6 x 4 mm3 within 13 min., for instance. The applicability of the presented method for motion compensation was shown for volunteers as well as patients. Since as already described the imaging volume must be acquired several times, the series of gradients for spatial encoding are repeated periodically. As the respiratory cycle is periodically as well, correlations between the repeated measurements and the breathing cycle can occur. Therefore, even after many repeated measurements large areas of missing k-space lines can remain, leading to artifacts in the reconstructions. This can be observed in the gating masks, showing the distribution of accepted and missing lines in k-space, in case of conventional motion compensation used in this work so far. To avoid the aforementioned correlations, the periodicity in the repeated acquisitions has to be interrupted because of suspending the periodic breathing pattern of patients deliberately would be a serious intervention and is therefore ineligible. This was accomplished by a quasi-random selection of the phase and partition encoding gradients as quasi-random numbers are generated to fill the space as uniformly as possible regardless of their number. Therefore, accepted lines as well as missing lines are uniformly distributed in k-space after retrospective gating. A more uniform distribution of multiple accepted k-space lines in case of quasirandom sampling leads to an improved reduction of Ghost-Artifacts compared to conventional sampling. Furthermore, the more uniform distribution of missing kspace lines leads a considerably more stable reconstruction of missing lines using parallel imaging techniques (as iterative Grappa for example). This is getting more distinct the higher the proportion of missing k-space lines is. The contiguous areas of missing k-space lines are becoming increasingly large in case of conventional sampling, making a successful reconstruction using iterative Grappa impossible. In contrast, quasi-random sampling enables for the successful reconstruction of artifact free images even when 40 % of the acquired lines were missing after retrospective gating. In addition, the stability of the iterative GRAPPA reconstructions in case of quasirandom sampling allows for a substantial reduction of the total acquisition time. Thus, an artifact free motion compensated data set of 2 x 2 x 5 mm3 resolution could be reconstructed for a measurement time of only 74s. Furthermore, quasi-random sampling in combination with iterative Grappa enables for the reconstruction of data sets of different respiratory phases from inspiration to expiration (4d imaging). Accordingly, 19 different respiratory phases could be reconstructed after 15min of data acquisition. The percentage of missing lines was between 0 and 20 %. Hence, in case of conventional sampling a considerably longer measurement time would have been required to achieve similar results. KW - Kernspintomografie KW - Retrospektive Bewegungskorrektur KW - Magnetresonanztomographie KW - Lungenbildbgebung KW - freie Atmung KW - Retrospective Motion Compensation KW - DC-Gating KW - Lung Imaging KW - free breathing KW - Lunge Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124084 ER - TY - THES A1 - Triphan, Simon T1 - T1 und T2*-Quantifizierung in der menschlichen Lunge T1 - T1 and T2* quantification in the human lung N2 - In dieser Arbeit werden für die Anwendung in der menschlichen Lunge optimierte Methoden zur Bestimmung von T1- und T2*-Karten diskutiert: Dc-Gating ermöglicht die Quantifizierung in freier Atmung, wobei für die T1-Quantifizierung mittels Inversion Recovery eine Korrektur des dc-Signals entwickelt wurde. Dies hat den Vorteil, dass Parameterkarten aus mehreren Messungen anhand ihrer dc-Signale passend überlagert werden können. Da T1 und T2* auf unterschiedliche Art und Weise von der Sauerstoffkonzentration abhängen, verbessert dies die Möglichkeit, ΔT1- und ΔT2*- Differenzkarten aus Messungen mit unterschiedlichen O2-Konzentrationen im Atemgas zu erstellen. Die Parameterquantifizierung ist in erster Linie für die Beobachtung von Krankheitsverläufen interessant, da T1 und T2* absolute, vergleichbare Zahlen sind. Da T2* deutlich vom Atemzustand abhängt, ist es auch hierfür sinnvoll, durch Gating identische Atemzustände abzubilden. Um die unterschiedlichen Einflüsse des Sauerstoffs auf T1 und T2* besser vergleichbar zu machen, wurde in dieser Arbeit weiterhin eine kombinierte Messung für beide Parameter implementiert: Da auch diese in freier Atmung stattfindet, profitieren nicht nur die Differenzkarten von der Überlagerung der Bilder, sondern auch der Vergleich der ΔT1- und ΔT2*-Karten untereinander. Messungen mit einer konventionellen kartesischen Methode an COPD-Patienten unter Raumluft- und 100% Sauerstoffatmung ergaben bei Verwendung identischer Atemmasken ein deutlich geringeres ΔT1 als in gesunden Probanden. Dass T1 in der Lunge nicht nur von der Sauerstoffkonzentration sondern auch von der Gewebezusammensetzung und insbesondere auch dem Blutvolumenanteil abhängt, zeigte sich hierbei aber auch an den bei COPD im Mittel sehr viel kürzeren T1-Zeiten bei Raumluft. Die aufgrund emphysematischer Veränderung noch zusätzlich reduzierte Protonendichte im Parenchym kranker Lungen macht diese Messungen allerdings besonders schwierig. Die oben erwähnten Optimierungen der T1-Quantifizierung zielen daher auch darauf ab, das Signal aus der Lunge zu maximieren, um Patientenmessungen einfacher zu machen: Messungen in freier Atmung sind für Patienten nicht nur einfacher, sondern erlauben effektiv auch längere Messzeiten. Insbesondere wurde aber durch die Entwicklung einer radialen Methode die Echozeit zur Messung reduziert, um die kurze T2*-Zeit in der Lunge auszugleichen. Schließlich wurde durch Implementation einer 2D UTE Sequenz die Messung bei der kürzesten vom Scanner erlaubten Echozeit ermöglicht. Die Messungen bei ultrakurzen Echozeiten in Probanden zeigten allerdings deutlich kürzere T1-Zeiten als die zuvor gefundenen oder in der Literatur dokumentierten. In weiteren Experimenten wurde das sichtbare T1 zu mehreren Echozeiten mit Hilfe der zur kombinierten Quantifizierung entwickelten Methode bestimmt. Dabei ergab sich eine Zunahme des gemessenen T1 mit der Echozeit. Aus diesem Verhalten sowie den gefundenen kürzesten und längsten T1 lässt sich schließen, dass das intra- und extravaskuläre Lungenwasser, also Blut bzw. das umgebende Gewebe, mit unterschiedlichen T1- und T2*-Zeiten zum Signal und damit auch dem effektiven T1 beitragen. Dass das TE der Messung die Gewichtung dieser Kompartimente bestimmt, hat dabei mehrere Auswirkungen: Einerseits bedeutet dies, dass beim Vergleich von T1-Messungen in der Lunge stets auch das TE mitbetrachtet werden muss, bei dem diese durchgeführt wurden. Andererseits lässt sich die Möglichkeit, die Messung auf die unterschiedlichen Kompartimente abzustimmen, potentiell ausnutzen, um zusätzliche diagnostische Informationen zu gewinnen: Da T1 vom Blutvolumenanteil und der Gewebezusammensetzung abhängt, könnte dieser Effekt helfen, diese beiden Einflüsse zu differenzieren. Während die in dieser Arbeit beschriebenen Experimente die TE-Abhängigkeit des sichtbaren T1 in Probanden aufzeigen, liefern sie allerdings noch keine genaue Erklärung für die möglichen Ursprünge dieses Effekts. Um diese weiter zu untersuchen, könnten allerdings gezielte Phantom- und in vivo-Experimente Aufschluss geben: Ein Aufbau, der die Feldverzerrung durch luftgefüllte Alveolen in Lösungen mit entsprechenden verschiedenen Suszeptibilitäten nachbildet, reduziert den Unterschied zwischen den Kompartimenten auf T1 und χ. Eine in vivo-Messung mit möglichst großer Differenz zwischen Ex- und Inspiration hingegen könnte den Einfluss der Abstände der Kompartimente vom Gasraum aufzeigen, da die Alveolarwände in tiefer Inspiration am weitesten gedehnt und daher am dünnsten sind. N2 - In this work, methods for the local measurement of T1 and T2* maps optimized for the application in the human lungs are discussed: Quantification during free breathing was enabled by applying dc-gating, where a correction for the dc-signal acquired during T1-quantification using a inversion recovery was introduced. This is especially useful to achieve parameter maps in identical breathing states from multiple measurements using their dc-signals. Since T1 and T2* depend on the oxygen concentration through different mechanisms, this is especially interesting to produce ΔT1- and ΔT2*-difference maps at varying O2-concentrations in the breathing gas. Parameter quantification is primarily interesting for the monitoring of the courses of disease or therapy since T1 and T2* are absolute, comparable numbers. As T2* depends significantly on the respiratory state, ensuring identical states via gating is relevant there as well. To further improve the comparison of oxygen influence on T1 and T2* a method for the combined measurement of both parameters was implemented: Since this is also employs gating, not only the difference maps benefit from image coregistration, but the comparison of the ΔT1 and ΔT2* maps to each other as well. Measurements using the conventional cartesian method on COPD patients under room air and pure oxygen conditions resulted in much lower ΔT1 than in healthy volunteers when using identical oxygen masks. The much lower average T1 times at room air found there demonstrate that T1 in the lungs not only depends on the oxygen concentration but also on tissue composition and especially the blood volume fraction. Proton densities that were reduced even further due to emphysematous destruction made these measurements additionally difficult. Accordingly, the optimizations for T1 quantification mentioned above are intended to maximize signal from the lung parenchyma to improve patient measurements: Measurements during free breathing are not only easier for patients but effectively also allow for longer acquisition times. In particular the developement of a radial method provides a shorter echo time to help compensate for the short T2* in the lungs. Finally, the implementation of a 2D UTE sequence enables the measurement at the shortest echo time available on the scanner hardware. However, the measurements at ultra short echo times in volunteers showed significantly shorter T1 times than those found previously and those reported in the literature. In further experiments, the observable T1 was determined at multiple echo times using the method developed for simultaneous quantification. This revealed a gradual increase of the measured T1 with the echo time. From this behaviour as well as the shortest and longest times found, it can be concluded that the intra- and extravascular compartments of lung water, essentially blood and the surrounding tissue, contribute with different T1 and T2* times to the MR signal and thus also the effective T1. That the echo time of the measurement determines the weighting of these compartments has multiple consequences: Firstly, this means that when comparing T1 measurements in the lungs, the echo time that was used to acquire them also has to be considered. Secondly, the possiblity to focus the measurement on these different compartments might be used to gain additional diagnostic information: Since T1 depends on blood volume content and tissue composition, this effect might help to differentiate these two influences. While the experiments described in this work demonstrate the echo time dependence of the observed T1 in volunteers, they do not yet provide an explanation for the exact origins of this effect. To examine these further, appropriate phantom and in vivo experiments could be insightful: A phantom design that simulates the field distortion caused by air-filled alveoli in solutions with suitable susceptibilites would reduce the difference between the compartments to T1 and χ. A in vivo measurement with an especially large difference between ex- and inspiration could help to show the influence of the distance of the compartments from the gas space, since the alveolar walls are most dilated and thus thinnest during deep inspiration. KW - Kernspintomografie KW - Lunge KW - T2*-Relaxation KW - T1-Relaxtion KW - funktionelle Lungenbildgebung KW - MRT der Lunge KW - Spin-Gitter-Relaxation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-139621 ER - TY - THES A1 - Vollmers, Frederic T1 - Charakterisierung der pulmonalen Pharmakokinetik von Salmeterol und Insulin-like Growth Factor-1 T1 - Characterisation of the pulmonary pharmacokinetics of salmeterol and insulin-like growth factor-1 N2 - Für inhalativ applizierte Arzneimittel spielt das Ausmaß der pulmonalen Absorption eine entscheidende Rolle. Für Substanzen, die lokal in der Lunge wirken sollen, sind für eine gute Wirksamkeit hohe lokale Wirkstoffkonzentrationen, und für eine geringe Nebenwirkungsrate niedrige systemische Plasmaspiegel wichtig. Sollen allerdings Substanzen das Lungenepithel überwinden und im systemischen Kreislauf wirken, ist eine hohe systemische Verfügbarkeit für eine gute Wirkung gewünscht. Das Ziel dieser Studie war es mit in vitro und ex vivo Methoden das Absorptions- und Permeationsverhalten von pulmonal applizierten Substanzen zu studieren. Der Transportmechanismus über das Lungenepithel des langwirksamen ß2-Agonisten Salmeterol wurde mithilfe des humanen ex vivo Lungenperfusionsmodells untersucht. Die Anwendung von L-Carnitin als Hemmstoff von organischen Kationen/Carnitin Transportern (OCT/N) bewirkte eine Verringerung der pulmonalen Absorption von Salmeterol von ca. 90 %, was auf eine Beteiligung von Transportern, möglicherweise des OCTN2 oder OTCN1, für den Transport von Salmeterol über das Lungenepithel hindeutete. Es wurde somit zum ersten Mal erfolgreich gezeigt, dass Salmeterol wahrscheinlich als Substrat der Transportproteine fungiert und der Übertritt über das Lungenepithel von organischen Kationen/Carnitin Transportern abhängig ist. Bisher wurde eine Interaktion von Salmeterol mit den OCT/N nur in in vitro Versuchen studiert und Salmeterol wurde nur als Hemmstoff und nicht als Substrat untersucht. Die Beteiligung eines Transporters für die pulmonale Absorption von Salmeterol steht außerdem im Einklang mit Untersuchungen über weitere ß2-Agonisten wie das kurzwirksame Salbutamol und das langwirksame GW597901. Somit scheinen sowohl lipophile als auch hydrophile ß2-Agonisten Substrate für die OCT/N zu sein. Die Fähigkeit von IGF-1, nach pulmonaler Applikation in den systemischen Kreislauf zu gelangen, wurde in der vorliegenden Studie mit Hilfe des Lungenperfusionsmodells untersucht. Das IGF-1 wurde gebunden an Trehalose oder an Fibroin als Pulver verabreicht. Die Trehalose sollte eine schnelle Abgabe des IGF 1 bewirken, und das Fibroin sollte zum einen ein Trägermaterial mit schützenden Eigenschaften für das IGF 1 darstellen, und zum anderen sollte eine mögliche verzögerte Freisetzung von IGF-1 aus Fibroin in einem ex vivo Modell untersucht werden, die in vorausgegangenen in vitro Versuchen über 3 h lang vorhanden war. Das Peptid wurde nach der Applikation sowohl der Trehalosepartikel als auch der Fibroinpartikel pulmonal absorbiert und folgte einer linearen Verteilungskinetik. Dieses lineare Absorptionsverhalten des IGF-1 war vergleichbar mit der Kinetik von inhalativem Insulin, die in in vivo Studien beobachtet wurde. Somit konnte gezeigt werden, dass das IGF-1 nach pulmonaler Applikation systemisch verfügbar sein könnte und eine vergleichbare pulmonale Pharmakokinetik wie das strukturell ähnliche Insulin besitzt. Außerdem unterschied sich das Absorptionsverhalten von IGF-1, gebunden an Trehalose, nicht signifikant von dem von IGF-1/Fibroin, was im Gegensatz zu in vitro Untersuchungen stand, in denen das IGF-1 verzögert aus Fibroin freigesetzt wurde. Somit wirkte sich die kontrollierte Abgabe in vitro nicht auf die Verteilungskinetik ex vivo aus. Daraus ergibt sich, dass sowohl Trehalose als auch Fibroin als Trägermaterial für IGF-1 zur pulmonalen Applikation geeignet wären, und dass IGF-1, gebunden an Fibroin eine Formulierung wäre, die zum einen das IGF 1 schützen kann und die zum anderen eine gleiche pulmonale Kinetik wie IGF 1, gebunden an schnell auflösende Trägersubstanzen, besitzt. Außerdem wurde dadurch die Wichtigkeit betont, die Pharmakokinetik von pulmonal verabreichten Substanzen am intakten Organ mit erhaltener Komplexität und Funktionalität zu untersuchen, und dass das Lungenperfusionsmodell hierfür eine geeignete Methode darstellt. Darüber hinaus wurde belegt, dass mithilfe des Lungenperfusionsmodells erfolgreich pharmakokinetische Daten für nieder- und höhermolekulare Substanzen gesammelt werden können, die als Aerosol oder als Pulver appliziert werden. Auch in den in der vorliegenden Arbeit durchgeführten in vitro Permeationsversuchen, die mit der Bronchialepithelzelllinie Calu-3 durchgeführt wurden, zeigte IGF-1 vergleichbare lineare Permeationseigenschaften wie das Insulin, mit einem apparenten Permeationskoeffizienten von 1,49 * 10-8 cm/sec für IGF-1 und 2,11 * 10-8 cm/sec für Insulin. Das IGF 1 schien durch die Calu-3 Zellen sowohl parazellulär als auch transzytotisch zu permeieren, wie es für Makromoleküle generell vermutet wird. Durch die Verwendung von Hemmstoffen der Transzytose bzw. bestimmter endozytotischer Mechanismen in den Permeationsstudien konnte gezeigt werden, dass, wie bereits genannt, der Transport durch die Zellen eine wichtige Rolle für den Übertritt von IGF-1 über Calu-3 Zellmonolayer spielte. Die Studien ergaben außerdem, dass die zelluläre Aufnahme des IGF-1 unabhängig von Clathrin und abhängig von Dynamin war. Der Einsatz einer humanen bronchioalveolären Lavage in den Permeationsversuchen bewirkte zum einen eine Erhöhung des Transportes von IGF 1 durch die Calu-3 Zellen, und zum anderen war die zelluläre Aufnahme in diesem Fall unabhängig von Dynamin und unterschied sich somit von den vorherigen Untersuchungen, in denen keine Lavage eingesetzt wurde. Das bedeutet, dass Faktoren in einer bronchioalveolaren Lavage enthalten waren, die sowohl das Ausmaß der Permeation als auch den Mechanismus der zellulären Aufnahme von IGF-1 in Calu-3 Zellen beeinflussten. Zusammenfassend konnten in der vorliegenden Arbeit erfolgreich weitere Hinweise für die Beteiligung von Transportern an der pulmonalen Absorption von ß2-Agonisten mithilfe des ex vivo Lungenperfusionsmodells gefunden werden, was somit eine wertvolle Ergänzung zu bisher vorhanden in vitro Studien darstellt. Daneben wurde zum ersten Mal gezeigt, dass das IGF-1 nach Applikation in die Lunge pulmonal absorbiert werden könnte. Das belegt den Nutzen der Lunge als Eintrittsort in den systemischen Kreislauf, was vor allem für peptidische Arzneistoffe von Bedeutung ist. N2 - The extent of the pulmonary absorption plays an important role for drugs applied via inhalation. For substances meant to exhibit local effects within the lung, high local concentrations are crucial for maximum efficacy, and for a low rate of systemic adverse effects low plasma levels are advantageous. But if substances are meant to pass the lung epithelia and act in the systemic circulation a high systemic availability is requested for good efficacy. The aim of this study was to investigate the absorption and permeation behavior of pulmonarily applied substances using in vitro and ex vivo methods. The transport mechanism of the long acting ß2-agonist salmeterol through lung epithelia was studied with the help of an ex vivo lung perfusion model. The organic cation/carnitine transporter inhibitor l-carnitine caused a decrease of the pulmonary absorption of salmeterol of about 90 %, indicating an involvement of transporters, possibly OCTN2 or OCTN1, for the uptake of salmeterol through the lung epithelia. For the first time it was successfully shown that salmeterol acts as a substrate for transport proteins and that its transport through the lung epithelia is dependent on the organic cation/carnitine transporters (OCT/N). So far the interaction of salmeterol with the OCT/N had been studied only in vitro and salmeterol had been solely described as an inhibitor and not as a substrate. Furthermore the results on the pulmonary absorption of salmeterol are in accordance with studies about other ß2-agonists like the short acting salbutamol and the long acting GW597901. Apparently, lipophilic and hydrophilic ß2-agonists are substrates for the OCT/N. The pulmonary absorption of IGF-1 was investigated in this study using the lung perfusion model. IGF-1 was applied bound to trehalose or fibroin. The trehalose was used for a fast release of IGF-1. The fibroin as a carrier was meant to provide a protection of IGF-1, and a possible sustained release that was shown in previous in vitro assays over about 3 h, was to be studied in an ex vivo model. The peptide was absorbed pulmonarily after application of the treahlose and fibroin microparticles and exhibited linear distribution kinetics. This linear absorption behavior of IGF-1 was comparable to the kinetics of inhaled insulin observed in in vivo studies. Therefore it was shown that IGF-1 might be systemically available after pulmonary application and that IGF 1 displays comparable pulmonary pharmacokinetics to the structurally similar insulin. Additionally, the absorption behavoir of IGF-1 bound to trehalose was not significantly different from IGF 1/fibroin, which was in contrast to in vitro studies showing a sustained release of IGF-1 bound to fibroin. Thus, the in vitro controlled release was not mirrored in the distribution kinetics ex vivo. This suggests that both trehalose and fibroin are suitable carriers for pulmonary application of IGF-1 and that IGF-1 bound to fibroin provides a formulation that is able to protect IGF-1 and possesses comparable pulmonary kinetics to IGF-1 bound to fast dissolving carriers. Additionally these data demonstrated the importance to study the pharmacokinetics of pulmonarily applied substances by using the intact organ with conserved complexity and functionality, and that the human isolated perfused lung is a suitable model. Furthermore it was proven, that pharmakokinetic data of low and high molecular compounds applied as aerosol or powder, can be successfully obtained using the lung perfusion model. The in vitro permeation experiments of the present study employing Calu-3 bronchial epithelial cells also showed a linear absorption behavior of IGF-1 comparable to that of insulin, with an apparent permeability coefficient of 1,49 * 10-8 cm/sec for IGF-1 and 2,11 * 10-8 cm/sec for insulin. IGF-1 apparently passed the Calu-3 cells via a paracellular and transcytotical mechanisms, which are thought to be the major routes of macromolecules. The use of inhibitors of transcytosis and certain endocytotic pathways showed that the transport through the cells was important for the passage of IGF-1 through Calu-3 cell monolayers, as mentioned before. Furthermore the studies revealed that the cellular uptake of IGF-1 was independent of clathrin and dependent on dynamin. Human broncheoalveolar lavage caused an increase of the IGF-1 transport through the Calu-3 cells and in contrast to former investigations without a lavage the cellular uptake was independent of dynamin in this case. That implies that the broncheoalveolar lavage contained factors influencing both the extent and the mechanism of the cellular IGF-1 uptake into Calu-3 cells. In conclusion, this work employing an ex vivo lung perfusion model provides additional evidence for the involvement of transporters in the pulmonary absorption of ß2-agonists. These data demonstrate a valuable extension of knowledge compared to previous in vitro studies. Furthermore, for the first time it has been shown that IGF 1 might be pulmonarily absorbed after application to the lung. This shows the suitability of the lung as point of entrance into the systemic circulation, which is especially interesting for peptide drugs. KW - Lunge KW - Insulin-like Growth Factor I KW - Salmeterol KW - Pharmakokinetik KW - IGF-1 KW - Lungenperfusion KW - pulmonal Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-118632 ER - TY - THES A1 - Carinci, Flavio T1 - Quantitative Characterization of Lung Tissue Using Proton MRI T1 - Quantitative Charakterisierung des Lungengewebes mithilfe von Proton-MRT N2 - The focus of the work concerned the development of a series of MRI techniques that were specifically designed and optimized to obtain quantitative and spatially resolved information about characteristic parameters of the lung. Three image acquisition techniques were developed. Each of them allows to quantify a different parameter of relevant diagnostic interest for the lung, as further described below: 1) The blood volume fraction, which represents the amount of lung water in the intravascular compartment expressed as a fraction of the total lung water. This parameter is related to lung perfusion. 2) The magnetization relaxation time T\(_2\) und T� *\(_2\) , which represents the component of T\(_2\) associated with the diffusion of water molecules through the internal magnetic field gradients of the lung. Because the amplitude of these internal gradients is related to the alveolar size, T\(_2\) und T� *\(_2\) can be used to obtain information about the microstructure of the lung. 3) The broadening of the NMR spectral line of the lung. This parameter depends on lung inflation and on the concentration of oxygen in the alveoli. For this reason, the spectral line broadening can be regarded as a fingerprint for lung inflation; furthermore, in combination with oxygen enhancement, it provides a measure for lung ventilation. N2 - Die Magnetresonanztomographie (MRT) stellt ein einzigartiges Verfahren im Bereich der diagnostischen Bildgebung dar, da sie es ermöglicht, eine Vielzahl an diagnostischen Informationen ohne die Verwendung von ionisierenden Strahlen zu erhalten. Die Anwendung von MRT in der Lunge erlaubt es, räumlich aufgelöste Bildinformationen über Morphologie, Funktionalität sowie über die Mikrostruktur des Lungengewebes zu erhalten und diese miteinander zu kombinieren. Für die Diagnose und Charakterisierung von Lungenkrankheiten sind diese Informationen von höchstem Interesse. Die Lungenbildgebung stellt jedoch einen herausfordernden Bereich der MRT dar. Dies liegt in der niedrigen Protondichte des Lungenparenchyms begründet sowie in den relativ kurzen Transversal- Relaxationszeiten T\(_2\) und T� *\(_2\) , die sowohl die Bildau� ösung als auch das Signal-zu-Rausch Verhältnis beeinträchtigen. Des Weiteren benötigen die vielfältigen Ursachen von physiologischer Bewegung, welche die Atmung, den Herzschlag und den Blut� uss in den Lungengefasen umfassen, die Anwendung von schnellen sowie relativ bewegungsunemp� ndlichen Aufnahmeverfahren, um Risiken von Bildartefakten zu verringern. Aus diesen Gründen werden Computertomographie (CT) und Nuklearmedizin nach wie vor als Goldstandardverfahren gehandhabt, um räumlich aufgelöste Bildinformationen sowohl über die Morphologie als auch die Funktionalität der Lunge zu erhalten. Dennoch stellt die Lungen- MRT aufgrund ihrer Flexibilität sowohl eine vielversprechende Alternative zu den anderen Bildgebungsverfahren als auch eine mögliche Quelle zusätzlicher diagnostischer Informationen dar. ... KW - Lung KW - MRI KW - Kernspintomografie KW - Lunge Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151189 ER - TY - THES A1 - Schaaf, Lisa T1 - Der Einfluss von Arzneistofftransportern auf die pulmonale Absorption inhalierter Arzneistoffe T1 - The role of drug transporters in the pulmunary absorbtion of inhaled drugs N2 - Arzneistofftransporter ermöglichen endogenen und exogenen Molekülen die Überwindung von Zellmembranen und tragen dadurch zur Aufnahme, Verteilung und Elimination von Arzneistoffen bei. Inhalativ applizierte Wirkstoffe, wie Vertreter aus der Gruppe der Beta-2-Sympathomimetika oder Anticholinergika, zählen zu den Substraten wichtiger, pulmonal exprimierter Arzneistofftransporter. Trotz intensivierter Forschung auf dem Gebiet der Transporter-Expression ist diese im humanen Lungengewebe bisher wenig untersucht und deren pharmakokinetische Auswirkungen auf pulmonal verabreichte Arzneistoffe sind kaum bekannt. Im Rahmen der vorliegenden Arbeit sollte der Einfluss von Arzneistofftransportern auf die pulmonale Absorption inhalierter Arzneistoffe untersucht und Erkenntnisse über deren Expressions-Profil im humanen Lungengewebe gewonnen werden. Pharmakokinetische Parameter des inhalativen Anticholinergikums Ipratropiumbromid wurden an einem ex vivo Modell der humanen Lunge untersucht. Nach vorheriger Applikation des kompetitiven OCTN1/2-Inhibitors L-Carnitin wurde keine signifikante Reduktion der absorbierten Wirkstoffmenge detektiert. Damit zeigten sich die beiden organischen Kationen/Carnitin-Transporter OCTN1 und OCTN2, anders als bisher vermutet, nicht als primär an der Absorption von Ipratropiumbromid beteiligte Transporter. Infolgedessen wurde die Beteiligung weiterer Transporter hypothetisiert. Erstmals wurden die am humanen Lungen-Perfusions-Modell gewonnenen pharmakokinetischen Daten zur pulmonalen Absorption in direkter Beziehung zur mRNA- und Protein-Expression von Arzneistofftransportern in den jeweiligen individuellen Gewebeproben betrachtet. Die pulmonale Genexpression des Multidrug Resistance-Related Protein MRP5 wies eine signifikante negative Korrelation mit der Area under the curve (AUC0 – 60 min) von Ipratropiumbromid auf (r = -0,699; p < 0,05), was die Beteiligung von MRP5 an den Umverteilungsprozessen von Ipratropiumbromid in der humanen Lunge nahelegte. Auf Protein-Ebene wurde eine positive Korrelation zwischen der Expression des organischen Kationentransporters OCT3 und der AUC0 – 60 min von Ipratropiumbromid ermittelt (r = 0,7499,p < 0,05), woraus sich eine potentielle Beteiligung von OCT3 an der Aufnahme von Ipratropiumbromid aus dem luminalen Lungenbereich ableiten ließ. Zur Untermauerung dieser Hypothese wurden Untersuchungen mit stabil transfizierten HEK293-Zellen durchgeführt. Sowohl der organische Kationentransporter OCT1 als auch OCT3 trugen dabei signifikant zu einer erhöhten zellulären Aufnahme der beiden Tritium-markierten Bronchodilatatoren Ipratropiumbromid und Salbutamol bei. Damit wurde für OCT3 zum ersten Mal eine Beteiligung an der zellulären Aufnahme dieser beiden Arzneistoffe nachgewiesen. Im Kontext der Gendermedizin sind geschlechtsspezifische Unterschiede in der Transporter-Expression von großem Interesse. Inwiefern die drei Sexualsteroidhormone Estradiol, Progesteron und Testosteron einen regulatorischen Effekt auf die mRNA-Expression von Membrantransportern haben, wurde erstmals durch in vitro Inkubationsversuche in physiologischen Hormonkonzentrationen mit der humanen Bronchialepithelzelllinie Calu-3 geprüft. Mittels intensiv optimierter und sorgfältig validierter RT-qPCR-Analytik konnten vor allem nach Inkubation mit weiblichen Sexualhormonen verglichen zu keiner Hormon-Zugabe statistisch signifikante Expressions-Unterschiede detektiert werden: Nach Behandlung mit Estradiol zeigten der Oligopeptid-Transporter PEPT2 (80,8 ± 15,6 %) und OCTN2 (82,8 ± 4,2 %) eine geringere Genexpression, das Multidrug Resistance-Related Protein MRP1 (111,6 ± 9,1 %) sowie OCTN1 (112,9 ± 10,1 %) waren nach Zugabe von Estradiol kombiniert mit Progesteron höher exprimiert als ohne Hormon-Zusatz. Da Estradiol überdies als Inhibitor des OCT1- und OCT3-vermittelten Transports gilt, wurde die Auswirkung des Hormons, unter anderem in physiologischer Konzentration, auf die Aufnahme von Tritium-markierten Ipratropiumbromid in stabil transfizierte HEK293-Zellen untersucht, wobei tatsächlich eine reduzierte zelluläre Ipratropiumbromid-Aufnahme beobachtet wurde. Somit könnte auch in vivo eine geschlechtsspezifische Inhibition der beiden Transporter stattfinden, wodurch deren Substrate einer geschlechtsspezifisch variierenden Pharmakokinetik unterliegen könnten. Darüber hinaus wurde in rund 80 humanen Lungengewebsproben die Genexpression von Arzneistofftransportern hinsichtlich geschlechts- und altersspezifischer Unterschiede überprüft. In unter 50-jährigen Männern war das Multidrug-Resistance Protein MDR1 signifikant höher exprimiert verglichen zu Männern von 50 - 60 Jahren. OCT1 war in Patienten von 50 - 60 Jahren signifikant geringer exprimiert als in über 60-Jährigen. Daneben lieferte die Analyse aller Gewebeproben das Genexpressions-Profil von Arzneistofftransportern im humanen Lungengewebe, wobei OCT3 das höchste und OCT2 das geringste mRNA-Expressions-Niveau unter den untersuchten Transportern aufwies. Eine wesentliche Beteiligung von OCT3 an Transportvorgängen im humanen Lungengewebe erschien damit wahrscheinlich. Resümierend konnte mit der vorliegenden Arbeit ein Beitrag zur Aufklärung des Einflusses von Arzneistofftransportern auf die pulmonale Absorption inhalativ verabreichter Arzneistoffe geleistet werden. Dabei konnte OCT3 erstmals als maßgeblich an der zellulären Aufnahme von Ipratropiumbromid beteiligter Transporter in der humanen Lunge identifiziert werden, womit einerseits die Beteiligung von Arzneistofftransportern an pharmakokinetischen Prozessen in vivo und andererseits die Bedeutung von Arzneistofftransportern für die inhalative Arzneimitteltherapie deutlich wurde. N2 - Drug transporters facilitate the transport of endogenous and exogenous compounds across cell membranes. Therefore they contribute to the absorption, distribution and elimination of drugs. Pulmonary administered drugs, such as members of the drug class of betamimetics or anticholinergics, are known substrates of relevant pulmonary expressed drug transporters. Despite intensified research in the field of transporter expression few data are available about their expression in the human lung and the pharmacokinetic implications on pulmonary administered drugs. The aim of this thesis was to investigate the impact of drug transporters on the absorption of inhaled drugs and to gain insights into their expression profiles in human lung tissue. Pharmacokinetic properties of the inhaled anticholinergic ipratropium bromide were explored using an ex vivo model of the human lung. After preceding application of the competitive OCTN1/2-inhibitor L-carnitine no significant decrease of the amount of absorbed active ingredient was detected. This contradicted previous assumptions regarding the contribution of the organic cation/carnitine transporters OCTN1 and OCTN2 to the absorption of ipratropium bromide. Consequently the involvement of additional transporters was hypothesized. For the first time pharmacokinetic data of the pulmonary absorption obtained by employing the human lung perfusion model were correlated with the mRNA and protein expression of drug transporters in respective individual tissue samples. The pulmonary gene expression of the multidrug resistance–related protein MRP5 showed a significant negative correlation with the area under the curve (AUC0 – 60 min) of ipratropium bromide (r = -0,699; p < 0,05). This might indicate that MRP5 contributes to the redistribution processes of ipratropium bromide in the human lung. A positive correlation between the protein expression of the organic cation transporter OCT3 and the AUC0 – 60 min of ipratropium bromide was detected (r = 0,7499, p < 0,05) suggesting a potential involvement of OCT3 in the absorption of ipratropium bromide in the luminal lung area. Uptake assays using stably transfected HEK293 cells were performed to substantiate this hypothesis. Both organic cation transporters, OCT1 and OCT3, contributed significantly to an increased cellular uptake of the tritium labeled bronchodilators ipratropium bromide and salbutamol. Thus, the contribution of OCT3 to the cellular uptake of both pharmaceutical substances was demonstrated for the first time. Gender-specific differences of drug transporter expression are of major interest in the context of gender medicine. In vitro incubation studies with the human bronchial epithelial cell line Calu-3 for the first time elucidated whether physiological concentrations of the three sex steroid hormones estradiol, progesterone and testosterone exert a regulatory effect upon the mRNA expression of membrane transporters. By thoroughly optimized and carefully validated RT-qPCR analytics statistically significant differences in gene expression were detected primarily after incubation with female sex hormones compared to no hormone exposure: After incubation with estradiol the peptide transporter PEPT2 (80,8 ± 15,6 %) and OCTN2 (82,8 ± 4,2 %) showed decreased expression whereas the multidrug resistance–related protein MRP1 (111,6 ± 9,1 %) as well as OCTN1 (112,9 ± 10,1 %) were upregulated after addition of both estradiol and progesterone compared to no treatment. Since estradiol is also a known inhibitor of the transport mediated by OCT1 and OCT3 its impact on the uptake of tritium labeled ipratropium bromide was investigated in stably transfected HEK293 cells. Indeed, a reduced cellular uptake of ipratropium bromide was observed after incubation with estradiol, also at physiological concentrations. Therefore, a gender-specific inhibition of both transporters in vivo is conceivable and could result in gender-specific pharmacokinetic characteristics for substrates of these transporters. Moreover, the gene expression of drug transporters in approximate 80 lung tissue samples was examined regarding gender and age related differences. The multidrug resistance protein MDR1 was significantly higher expressed in men younger than 50 years compared to 50 - 60 year old men. OCT1 was significantly less expressed in 50 - 60 years old patients compared to patients older than 60 years. Furthermore, the gene expression profile of drug transporters in the human lung was analyzed. In all tissue samples OCT3 showed the highest mRNA expression level whereas OCT2 was least expressed amongst the investigated transporters. This suggested a substantial involvement of OCT3 in transport processes in human lung tissue. In conclusion, the present research contributed to the elucidation of the role of drug transporters in the pulmonary absorption of inhaled drugs. For the first time OCT3 was identified to be substantially involved in the cellular absorption of ipratropium bromide in human lungs. Hence, the data supported the involvement of drug transporters in pharmacokinetic processes in vivo and emphasized the importance of drug transporters for inhaled pharmacotherapy. KW - Lunge KW - ABC-Transporter KW - Organischer Kationentransporter KW - Pharmakokinetik KW - Genexpression KW - Arzneistofftransporter KW - Lungengewebe KW - Lungenperfusionsmodell KW - Ipratropiumbromid Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151534 ER - TY - THES A1 - Mendes Pereira, Lenon T1 - Morphological and Functional Ultrashort Echo Time (UTE) Magnetic Resonance Imaging of the Human Lung T1 - Morphologische und funktionelle Magnetresonanztomographie der menschlichen Lunge mit ultrakurzen Echozeiten (UTE) N2 - In this thesis, a 3D Ultrashort echo time (3D-UTE) sequence was introduced in the Self-gated Non-Contrast-Enhanced Functional Lung Imaging (SENCEFUL) framework. The sequence was developed and implemented on a 3 Tesla MR scanner. The 3D-UTE technique consisted of a nonselective RF pulse followed by a koosh ball quasi-random sampling order of the k-space. Measurements in free-breathing and without contrast agent were performed in healthy subjects and a patient with lung cancer. A gating technique, using a combination of different coils with high signal correlation, was evaluated in-vivo and compared with a manual approach of coil selection. The gating signal offered an estimation of the breathing motion during measurement and was used as a reference to segment the acquired data into different breathing phases. Gradient delays and trajectory errors were corrected during post-processing using the Gradient Impulse Response Function. Iterative SENSE was then applied to determine the fully sampled data. In order to eliminate signal changes caused by motion, a 3D image registration was employed, and the results were compared to a 2D image registration method. Ventilation was assessed in 3D and regionally quantified by monitoring the signal changes in the lung parenchyma. Finally, image quality and quantitative ventilation values were compared to the standard 2D-SENCEFUL technique. 3D-UTE, combined with an automatic gating technique and SENCEFUL MRI, offered ventilation maps with high spatial resolution and SNR. Compared to the 2D method, UTE-SENCEFUL greatly improved the clinical quality of the structural images and the visualization of the lung parenchyma. Through‐plane motion, partial volume effects and ventilation artifacts were also reduced with a three-dimensional method for image registration. UTE-SENCEFUL was also able to quantify regional ventilation and presented similar results to previous studies. N2 - In dieser Arbeit wurde eine 3D-UTE (ultrashort echo time) Sequenz mit SENCEFUL-MRI kombiniert. Die Sequenz wurde für einen 3 T MR-Scanner entwickelt und implementiert. Die 3D-UTE-Technik bestand aus einem nichtselektiven HF- Impuls, gefolgt von einer quasi-zufälligen Abtastung des k-Raums. Messungen in freier Atmung und ohne Kontrastmittel wurden bei gesunden Probanden und einem Patienten mit Lungenkrebs durchgeführt. Zur Zuordnung der Daten zu verschiedene Atemphasen wurde eine Technik verwendet, die verschiedene Spulen mit hoher Signalkorrelation kombiniert. Die Ergebnisse wurden in einer in-vivo Messung bewertet und mit einem manuellen Ansatz der Spulenselektion verglichen. Die Technik ermöglichte eine Visualisierung der Atembewegung und wurde als Referenz verwendet, um die erfassten Daten in mehrere Atemphasen zu segmentieren. Gradientenverzögerungen und Trajektorienfehler wurden mit der "Gradient Impulse Response Function - GIRF" korrigiert. Bei der Bildrekonstruktion kam Iteratives SENSE zum Einsatz. Eine 3D-Bildregistrierung erlaubte es, Signaländerungen durch Bewegung zu eliminieren. Es erfolgte ein Vergleich der Ergebnisse mit einem 2D- Bildregistrierungsverfahren. Die Lungenventilation wurde in 3D gemessen und anhand der Signaländerungen im Lungenparenchym quantifiziert. Schließlich, wurden die Werte für die Bildqualität und Lungenventilation mit der Standard-2D-SENCEFUL-Technik verglichen. Die 3D-UTE-Sequenz in Kombination mit einer automatischen Gating-Technik und SENCEFUL-MRI, ermöglichte die Akquise von Ventilationskarten mit hoher räumlicher Auflösung und SNR. Im Vergleich zur 2D-Methode, verbesserte UTE- SENCEFUL die klinische Qualität der Morphologischen Bilder. Bewegung, Partialvolumeneffekte und Ventilationsartefakte wurden ebenfalls mit einer dreidimensionalen Methode zur Bildregistrierung reduziert. Insgesamt konnten mit der 3D-UTE Technik die Ergebnisse vorangegangener Studien reproduziert und die Bildqualität verbessert werden. KW - Kernspintomografie KW - Lunge KW - MRI KW - Ultrashort echo time - UTE KW - Magnetic Resonance Imaging KW - Lung Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-183176 ER - TY - THES A1 - Gasparyan, Artur T1 - Quantifizierung pulmonaler Blutflussgeschwindigkeit durch SENCEFUL Magnetresonanztomographie mit bewegter Schichtselektion T1 - Quantification of pulmonary blood flow velocity through SENCEFUL magnetic resonance imaging using moving slice selection N2 - Patienten mit chronischen Lungenerkrankungen leiden unter schwerwiegender Symptomatik und bedürfen regelmäßiger Verlaufskontrollen der Therapie. Dabei sollte zum Schutz der Patienten sowohl auf kanzerogene, ionisierende Strahlung verzichtet als auch der Einsatz potenziell nebenwirkungsreicher Kontrastmittel vermieden werden. Die pulmonale Blutflussgeschwindigkeit im Parenchym stellt einen quantitativen, bildgebenden Biomarker dar, mit dessen Hilfe die Dynamik des Krankheitsgeschehens untersucht werden kann. In dieser Arbeit wurde eine neue Auswertungsmethode vorgestellt, die mit Hilfe kontrastmittelfreier Magnetresonanztomographie die Blutflussgeschwindigkeit im Lungenparenchym quantifizieren kann. Die auf diese Weise bestimmten Ergebnisse entsprechen den Angaben zur Lungenperfusion, wie sie in der Literatur zu finden sind. N2 - Patients with chronic respiratory diseases suffer from severe symptoms and require regular follow ups during treatment. It is important to avoid the use of cancerogenic ionising radiation as well as potentially harmful contrast agents. The pulmonary blood flow velocity within the parenchyma can serve as a quantitative imaging biomarker, which can help analyse the course of the disease. In this work a new method for the quantification of pulmonary blood flow velocity is shown. The results correspond to physiological values in the human lung. KW - Kernspintomografie KW - Lunge KW - Blutflussgeschwindigkeit KW - Quantitativ Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-215693 ER - TY - THES A1 - Lehmann, Martin T1 - Postoperative Veränderungen der regionalen Ventilation unter Spontanatmung bei Patienten nach Lungenresektion T1 - Redistribution of pulmonary ventilation detected with electric impedance tomography after lung surgery in adults N2 - Hintergrund: Die pulmonale elektrische Impedanztomographie (EIT) stellt die regionale Ventilation der Lunge dar. Ziel dieser Studie war es, die postoperative Umverteilung der regionalen Ventilation nach lungenchirurgischen Eingriffen in Abhängigkeit von der Operationsseite und deren Zusammenhang mit der forcierten Vitalkapazität zu untersuchen. Methoden: In dieser Beobachtungsstudie wurden Patienten untersucht, die sich rechts- und linksseitig offenen und videothorakoskopischen Eingriffen unterzogen. Es wurden Messungen mit EIT und Spirometrie durchgeführt. Jeweils 13 links- und 13 rechtsseitig operierte erwachsene Patienten, wurden präoperativ, sowie am dritten postoperativen Tag untersucht. Der Center of Ventilation (COV) innerhalb einer 32 x 32 Matrix wurde aus den EIT-Daten berechnet. COVx (links/rechts) wurde zu COVx' (ipsilateral/kontralateral) mit invertiertem Vektor der perioperativen Veränderung bei rechtsseitiger Operation modifiziert, um den Effekt der Zeit und der Seite der Operation in beiden Gruppen mit Two-way ANOVA für wiederholte Messungen zu testen. Ergebnisse: Die perioperative Verschiebung von COVx' war abhängig von der Operationsseite (p=0,007) und war um -1,97 Matrixpunkte (p<0,001) bei rechtsseitiger und -0,61 Matrixpunkte (p=0,425) bei linksseitiger Operation von der Operationsseite weg gerichtet. Die forcierte Vitalkapazität (%vom Soll) verringerte sich von 94 (83-109) % [Median (Perzentile)] (linksseitig) und 89 (80-97) % (rechtsseitig) auf 61 (59-66) % bzw. 62 (40-72) % (p<0,05) und korrelierte mit COVx' für beide Gruppen. Schlussfolgerung: Nur nach rechtsseitiger Lungenoperation konnte die EIT eine reduzierte Ventilation auf der Seite der Operation zeigen, während die Vitalkapazität in beiden Gruppen deutlich reduziert war. N2 - Background: Pulmonary electric impedance tomography (EIT) shows the regional ventilation of the lung. The aim of this study was to examine postoperative redistribution of the regional ventilation after lung surgery dependent on the side of surgery and its association with forced vital capacity. Methods: This observational study investigated patients undergoing right and left sided open and video-thoracoscopic procedures. Measurements with EIT and spirometry were performed. Thirteen patients for each side of surgery with measurements at the preoperative and at the third postoperative day were recruited. The center of ventilation (COV) within a 32 x 32 matrix was calculated from the EIT data. COVx (left/right) was modified to COVx’ (ipsilateral/contralateral) with inverted vector of perioperative change in right sided surgery to enable testing the effect of time and side of surgery in both groups with Two-way ANOVA for repeated measurements. Results: The perioperative shift of COVx’ was dependent on the side of surgery (p=0.007) and was directed away from the side of surgery by -1.97 matrix points (p<0.001) in right sided and -0.61 matrix points (p=0.425) in left sided surgery. The forced vital capacity (%predicted) diminished from 94 (83–109) % [median (percentiles)] (left sided) and 89 (80–97) % (right sided surgery) to 61 (59–66) % and 62 (40–72) % (p<0.05), respectively and was correlated with COVx’ for both groups. Conclusion: Only after right sided lung surgery EIT was able to show reduced ventilation on the side of surgery while vital capacity was markedly reduced in both groups. KW - Impedanztomografie KW - Lunge KW - Chirurgie KW - Spirometrie KW - Ventilation KW - Thorax KW - Operation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-222214 ER - TY - THES A1 - Richter, Julian Alexander Jürgen T1 - Wave-CAIPI for Accelerated Dynamic MRI of the Thorax T1 - Beschleunigte Dynamische MR-Bildgebung des Thorax mit wave-CAIPI N2 - In summary, the wave-CAIPI k-space trajectory presents an efficient sampling strategy for accelerated MR acquisitions. Using wave-CAIPI in parallel imaging reconstructions leads to a reduced noise level in the reconstructed images, compared to the Cartesian standard trajectory. This effect could be quantified by means of noise and SNR calculations. An SNR gain can be traded for a reduced scan time, i.e., additional undersampling, or for an enhanced image quality, keeping scan time constant. Acceleration of MR imaging is especially important in dynamic applications, since these examinations are inherently time-consuming. The impact of wave-CAIPI sampling on image quality and its potential for scan time reduction was investigated for two dynamic applications: self-gated dynamic 3D lung MRI during free breathing and cardiac 4D flow MRI. Dynamic 3D Lung MRI By employing wave-CAIPI sampling in self-gated, free-breathing dynamic 3D lung MRI for the purpose of radiotherapy treatment planning, the image quality of accelerated scans could be enhanced. Volunteer examinations were used to quantify image quality by means of similarity between accelerated and reference images. To this end, the normalized mutual information and the root-mean-square error were chosen as quantitative image similarity measures. The wave-CAIPI sampling was shown to exhibit superior quality, especially for short scan times. The values of the normalized mutual information were (10.2 +- 7.3)% higher in the wave-CAIPI case -- the root-mean-square error was (18.9 +- 13.2)% lower on average. SNR calculations suggest an average SNR benefit of around 14% for the wave-CAIPI, compared to Cartesian sampling. Resolution of the lung in 8 breathing states can be achieved in only 2 minutes. By using the wave-CAIPI k-space trajectory, precise tumor delineation and assessment of respiration-induced displacement is facilitated. Cardiac 4D Flow MRI In 4D flow MRI, acceleration of the image acquisition is essential to incorporate the corresponding scan protocols into clinical routine. In this work, a retrospective 6-fold acceleration of the image acquisition was realized. Cartesian and wave-CAIPI 4D flow examinations of healthy volunteers were used to quantify uncertainties in flow parameters for the respective sampling schemes. By employing wave-CAIPI sampling, the estimated errors in flow parameters in 6-fold accelerated scans could be reduced by up to 55%. Noise calculations showed that the noise level in 6-fold accelerated 4D flow acquisitions with wave-CAIPI is 43% lower, compared to Cartesian sampling. Comparisons between Cartesian and wave-CAIPI 4D flow examinations with a prospective acceleration factor R=2 revealed small, but partly statistically significant discrepancies. Differences between 2-fold and 6-fold accelerated wave-CAIPI scans are comparable to the differences between Cartesian and wave-CAIPI examinations at R=2. Wave-CAIPI 4D flow acquisitions of the aorta could be performed with an average, simulated scan time of under 4 minutes, with reduced uncertainties in flow parameters. Important visualizations of hemodynamic flow patterns in the aorta were only slightly affected by undersampling in the wave-CAIPI case, whereas for Cartesian sampling, considerable discrepancies were observed. N2 - Die wave-CAIPI k-Raum Trajektorie stellt eine effiziente Methode für beschleunigte MRT Akquisitionen dar. Die Benutzung der wave-CAIPI Trajektorie anstelle der kartesischen Standardmethode in der parallelen Bildgebung führt zu einem reduzierten Rausch-Niveau in den rekonstruierten Bildern. Dieser Effekt kann durch Berechnungen des Rauschpegels und des Signal-zu-Rausch Verhältnisses (SNR) quantifiziert werden. Das höhere Signal-zu-Rausch Verhältnis kann genutzt werden, um entweder die Akquisition durch eine höhere Unterabtastung zu beschleunigen, oder um die Bildqualität zu verbessern. Die Beschleunigung von MRT Akquisitionen ist besonders in dynamischen Anwendungen wichtig, da diese Untersuchungen inhärent sehr zeitaufwendig sind. Der Einfluss der wave-CAIPI Methode auf die Bildqualität und das Beschleunigungspotenzial der Messung wurde in dieser Arbeit sowohl für selbst-navigierte, dynamische 3D Lungenbildgebung, als auch für 4D Fluss MRTs des Herzens untersucht Dynamische 3D Lungen MRT Durch die Verwendung der wave-CAIPI Samplingmethode konnte die Bildqualität von selbst-navigierten, dynamischen 3D Lungen MRTs bei freier Atmung verbessert werden. Eine wichtige Anwendung dieser Technik liegt im Bereich der Strahlentherapieplanung. Dabei wurde im Rahmen einer Probandenstudie die Bildqualität anhand der Ähnlichkeit zwischen beschleunigten Bildern und den jeweiligen Referenzen quantifiziert. Zu diesem Zweck wurden die normalized mutual information und der root-mean-square error als quantitative Maße gewählt. Es konnte gezeigt werden, dass -- besonders bei kurzen Akquisitionszeiten -- die wave-CAIPI Methode zu besserer Bildqualität führte, verglichen mit dem kartesischen Standard. Berechnungen der normalized mutual information ergaben im Mittel (10.2 +- 7.3)% höhere Werte für die wave-CAIPI Methode -- der root-mean-square error war (18.9 +- 13.2)% geringer. Darüber hinaus lieferte die wave-CAIPI ein um etwa 14% höheres mittleres SNR. In 2 Minuten konnte die Atembewegung der Lunge in 8 Atemzustände aufgelöst werden. Eine präzise Tumor-Abgrenzung und die Evaluierung von respirationsinduzierten Tumorbewegungen wird durch die Verwendung der wave-CAIPI Methode vereinfacht. 4D Fluss Herz MRT Die Beschleunigung von 4D Fluss MRTs ist essentiell, um solche Untersuchungen in die klinische Routine zu integrieren. In der präsentierten Arbeit wurde eine 6-fache retrospektive Beschleunigung realisiert. 4D Fluss Untersuchungen von gesunden Probanden mit der wave-CAIPI und mit der kartesischen Samplingmethode wurden verwendet, um Unsicherheiten in verschiedenen Flussparametern für die beiden Samplingmethoden zu berechnen. Dabei zeigte sich, dass die geschätzten Fehler in den Flussparametern der 6-fach beschleunigten wave-CAIPI Untersuchungen bis zu 55% geringer sind als die Fehler der kartesischen Messungen. Ferner zeigten Rausch-Analysen, dass die beschleunigten wave-CAIPI Aufnahmen ein um 43% geringeres Rausch-Niveau aufweisen. Vergleiche zwischen Flussparametern, die aus 2-fach beschleunigten wave-CAIPI und kartesischen Messungen berechnet wurden, zeigten kleine, aber teilweise statistisch signifikante Unterschiede zwischen den beiden Methoden. Unterschiede zwischen 2-fach und 6-fach beschleunigten wave-CAIPI Aufnahmen sind vergleichbar mit den Unterschieden zwischen der wave-CAIPI Methode und der kartesischen Methode bei R=2. Wave-CAIPI 4D Fluss Aufnahmen des Herzens konnten mit einer mittleren, simulierten Aufnahmezeit von unter 4 Minuten durchgeführt werden. Die effizientere Samplingmethode ermöglichte dabei erheblich reduzierte Unsicherheiten in den berechneten Flussparametern. Wichtige Visualisierungen des Blutflusses in der Aorta wurden im Falle der wave-CAIPI Methode kaum von der Unterabtastung beeinflusst. Hingegen wiesen die Visualisierungen der beschleunigten kartesischen Messungen erhebliche Diskrepanzen auf. KW - Magnetresonanztomographie KW - Lunge KW - Herz KW - Fluss KW - Lung KW - Heart KW - Flow Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-232071 ER - TY - THES A1 - Ladenburger, Andreas T1 - Der Einfluss intravenös applizierten Lipopolysaccharids auf die Lungenreifung im Modell des frühgeborenen Lammes T1 - The influence of intravenous lipopolysaccharide on lung maturation in the model of the fetal lamb N2 - Eine intrauterine Infektion ist eine ernstzunehmende Erkrankung mit möglicherweise schwerwiegenden Folgen für den Feten. Frühgeborene, die einer Chorioamnionitis ausgesetzt waren, haben jedoch eine geringere Mortalitätsrate mit biochemischen und strukturellen Veränderungen während der Lungenentwicklung. Vorhergehende experimentelle Arbeiten belegen die Initiierung einer Lungenreifung durch intraamniotisch verabreichtes Lipopolysaccharid. Hierbei wurde durch Aspiration der Amnionflüssigkeit eine fetale pulmonale Inflammationsreaktion in Gang gesetzt. Die Hypothese der vorliegenden Arbeit lautete, dass eine durch intravenös appliziertes Lipopolysaccharid induzierte fetale systemische Inflammation die intrauterine Lungenreifung ebenfalls beeinflusst. Die im Rahmen dieser Arbeit durchgeführten Versuche erfolgten an 21 fetalen Schafen mit einem Gestationsalter von 107 Tagen. Alle Tiere wurden zunächst mit intrauterinen Kathetern versehen. Nach einer Erholungsphase von 3 Tagen erhielten die Kontrolltiere (N=12) Kochsalzlösung und die Tiere der Versuchsgruppe (N=9) 100ng Lipopolysaccharid intravenös. Lungenstruktur und Lungenreifung der fetalen Schafe wurden mittels biochemischer und histologischer Untersuchungen nach 3 (N=5) und nach 7 (N=4) Tagen beurteilt. Die Infusion der Lipopolysaccharidlösung hatte zumindest innerhalb des Versuchszeitraums keinen Einfluss auf das Körpergewicht des Feten. Die systemische Entzündung trägt jedoch zu einer pränatalen Verletzung mit strukturellen pulmonalen Veränderungen bei. Sowohl eine Lungenreifung als auch eine gestörte strukturelle Lungenentwicklung traten nach einer kurzfristigen fetalen Inflammation ein. Die Konzentration an Interleukin-6 in der bronchoalveolären Lavage stieg 3 Tage nach Applikation des Lipopolysaccharids mehr als 40fach an. Sowohl die Prozessierung von Pro-Surfactant Protein (SP)-B zu reifem SP-B als auch erhöhte Konzentrationen an SP-B konnten nach 7 Tagen nachgewiesen werden. Ebenfalls war eine Steigerung des phosphorylierten STAT-3 im Lungengewebe zu erkennen. Die Ablagerung von Elastinfasern an Septierungsstellen der Alveolen wurde innerhalb von 3 Tagen nach Lipopolysaccharidapplikation negativ beeinflusst. Aus den Erkenntnissen dieser Arbeit könnten neue Therapieansätze sowohl für das Atemnotsyndrom des Frühgeborenen als auch der bronchopulmonalen Dysplasie resultieren, die eine Modulation der Entzündungsreaktion zum Ziel haben. Alle therapeutischen Ansätze werden einen Weg zwischen den positiven Effekten der Lungenreifung mit gesteigerter Compliance, reduzierter Alveolarwanddicke und vermehrtem prozessiertem SP-B und den schädlichen Einwirkungen auf die Lungenstruktur mit veränderter Elastinverteilung und kapillärer Leckage finden müssen. Bedauerlicherweise können die erhobenen Daten nicht klären, ob die einmalige Infusion von LPS eine anhaltende oder permanente Störung der alveolären Entwicklung hervorbringt. Die strukturellen Veränderungen des Lungengewebes, die denen einer BPD ähneln, lassen jedoch eine permanente Organschädigung befürchten. N2 - Intrauterine infection is a serious condition with potentially severe consequences for the fetus. However, preterm infants exposed to chorioamnionitis have a lower mortality rate associated with biochemical and structural changes during lung development. Previous studies demonstrated the initiation of lung maturation by intraamniotically administered lipopolysaccharide. The fetal pulmonary inflammatory response was initiated by aspiration of amniotic fluid. The hypothesis of the present study was that fetal systemic inflammation induced by intravenously applied lipopolysaccharide would also influence intrauterine lung maturation. The experiments were performed on 21 fetal sheep at a gestational age of 107 days. All animals were instrumented with intrauterine catheters. After a recovery period of 3 days, the control animals (N=12) received saline and the animals in the study group (N=9) received 100ng lipopolysaccharide intravenously. Lung structure and lung maturation were assessed by biochemical and histological examinations after 3 (N=5) and 7 (N=4) days. Fetal body weight was not affected, at least within the experimental period. However, the systemic inflammation contributed to prenatal injury with structural pulmonary changes. Both lung maturation and impaired structural lung development occurred after short-term fetal inflammation. The concentration of interleukin-6 in the bronchoalveolar lavage increased more than 40-fold 3 days after application of lipopolysaccharide. Both processing of pro-surfactant protein (SP)-B to mature SP-B and increased concentrations of SP-B were detected after 7 days. Furthermore, an increase of phosphorylated STAT-3 in lung tissue occurred. Elastin deposition was negatively affected within 3 days after lipopolysaccharide application. The findings of this study may result in new therapeutic approaches for both respiratory distress syndrome and bronchopulmonary dysplasia that aim to modulate the inflammatory response. All therapeutic approaches will have to find a way between the beneficial effects of lung maturation with increased compliance, reduced alveolar wall thickness, and increased processed SP-B and the deleterious effects on lung structure with altered elastin deposition and capillary leakage. Regrettably, the data collected cannot clarify whether the single infusion of LPS results in persistent or permanent disruption of alveolar development. However, structural changes in lung tissue similar to those seen in BPD indicate permanent organ damage. KW - Neonatologie KW - Surfactant KW - Lunge KW - Atemnot-Syndrom KW - Chorioamnionitis KW - Lungenreifung KW - Lipopolysaccharid KW - Intrauterine Inflammation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-271843 ER - TY - THES A1 - Englert, Nils T1 - Die Rolle der NO-sensitiven Guanylyl-Cyclase in der Lungenfibrose der Maus T1 - Role of NO-sensitive guanylyl cyclase in murine lung fibrosis N2 - Die idiopathische Lungenfibrose (IPF) stellt eine chronische Krankheit mit einer schlechten Prognose dar. Die Erkrankung zeichnet sich durch ein dysfunktionales Alveolarepithel, die Formation von α-smooth muscle actin (α-SMA)-positiven Myofibroblasten, eine starke Kollagendeposition sowie eine fehlgeleitete Inflammation aus. In der Vermittlung dieser pro-fibrotischen Effekte spielt das Zytokin transforming growth factor β (TGF-β) eine Schlüsselrolle. Aufgrund des tödlichen Verlaufs der IPF und der limitierten Therapieoptionen ist die Entdeckung neuer Behandlungsansätze erforderlich. Der NO/cGMP-Signalweg ist in der Modulation grundlegender physiologischer Vorgänge wie der Blutdruckregulation und der Peristaltik involviert. Hierbei spielt die NO-sensitive Guanylyl-Cyclase (NO-GC) als NO-Rezeptor eine fundamentale Rolle. In der Lunge wird die NO-GC in glatten Muskelzellen und Perizyten exprimiert. Während das Enzym in glatten Muskelzellen die Relaxation der glatten Muskulatur vermittelt, reguliert die NO-GC in Perizyten die Angiogenese, die Kapillardurchlässigkeit und den Blutfluss. Neben den physiologischen Aufgaben wurden anti-fibrotische sowie anti-inflammatorische Effekte der NO-GC in Herz, Leber, Niere und Haut beschrieben. Daher wurde im Rahmen dieser Arbeit die NO-GC auf eine anti-fibrotische und anti-inflammatorische Bedeutung in der Lungenfibrose der Maus überprüft. Hierzu wurden Wildtyp- (WT) und globale NO-GC-Knockout-Mäuse (GCKO) untersucht. Die Fibrose wurde durch einmalige, orotracheale Bleomycin-Gabe induziert und zu unterschiedlichen Zeitpunkten (Tag 7 und 21) untersucht. Unbehandelte (Tag 0) Tiere dienten als Kontrolle. Im ersten Teil dieser Arbeit wurde die NO-GC auf eine anti-fibrotische Wirkung untersucht. Mittels Immunfluoreszenz wurde das Verhalten der α-SMA-positiven Myofibroblasten in den platelet-derived growth factor receptor β (PDGFRβ)-positiven fibrotischen Regionen untersucht. Der Kollagengehalt wurde mithilfe eines Hydroxyprolin-Kollagenassays ermittelt. Die untersuchten Fibrose-Kriterien waren in beiden Genotypen an Tag 21 stärker ausgeprägt als an Tag 7. An Tag 21 konnten im GCKO mehr α-SMA-positive Myofibroblasten, ausgeprägtere PDGFRβ-positive fibrotische Areale und ein höherer Kollagengehalt als im WT festgestellt werden. Zudem zeigten die GCKO-Tiere ein schlechteres Überleben als WT-Mäuse. Diese Ergebnisse wiesen auf eine überschießende fibrotische Antwort im GCKO und somit auf eine anti-fibrotische Wirkung der NO-GC in der Bleomycin-induzierten Lungenfibrose hin. Dass an Tag 21 die Fibrose im GCKO stärker ausfiel als im WT, konnte mit dem signifikant höheren TGF-β-Gehalt in der bronchoalveolären Lavageflüssigkeit (BALF) im GCKO erklärt werden. Das Fehlen der NO-GC im GCKO könnte zu einem Wegfall der Inhibierung der TGF-β-vermittelten, pro-fibrotischen Effekte durch die NO-GC führen. Weitere Studien sind erforderlich, um die Hypothese zu belegen und zugrundeliegende Mechanismen aufzuklären. Die de novo Entstehung von Myofibroblasten, die maßgeblich an der Kollagensynthese beteiligt sind, stellt ein entscheidendes Fibrose-Merkmal dar. Umso bedeutender ist die Identifikation zweier Myofibroblasten-Subtypen, die sich in Lokalisation, NO-GC-Expression und Herkunft unterscheiden: (1) interstitielle, NO-GC-positive Myofibroblasten, die von Perizyten abstammen und Kollagen Typ I produzieren, und (2) intra-alveoläre, NO-GC-negative Myofibroblasten, deren Ursprung noch nicht abschließend geklärt ist. Die Anwesenheit beider Myofibroblasten-Typen konnte zu beiden untersuchten Zeitpunkten nach Bleomycin-Gabe bestätigt werden. Die NO-GC-Expression der Alveolarwand-ständigen Myofibroblasten, deren Abstammung von NO-GC-positiven Perizyten sowie deren dauerhafte Präsenz sprechen für eine relevante Rolle der NO-GC in der murinen Lungenfibrose. In weiteren Untersuchungen müssen die exakten Funktionen und spezifische Marker der Myofibroblasten-Subtypen identifiziert werden. Im zweiten Teil dieser Arbeit wurde die NO-GC auf anti-inflammatorische Effekte in der Bleomycin-induzierten Lungenfibrose untersucht. Mittels HE-Färbung und Immunfluoreszenz wurden lymphozytäre Infiltrate an Tag 21 im GCKO festgestellt, was auf einen modulatorischen Einfluss der NO-GC auf das Immunsystem hindeutete. An Tag 21 wurden in der BALF von GCKO-Tieren signifikant mehr Gesamtimmunzellen, Lymphozyten und neutrophile Granulozyten als im WT gezählt, was auf eine starke Einwanderung von Immunzellen und somit auf eine ausgeprägte Entzündung in GCKO-Lungen hinwies. Folglich könnte die NO-GC eine anti-inflammatorische Rolle über die Regulation der Immigration von Immunzellen in der Bleomycin-induzierten Lungenfibrose spielen. In der Literatur werden pro- und anti-fibrotische Effekte der Immunzellen in der murinen Lungenfibrose diskutiert. Durch Korrelationsanalysen wurde ein positiver Zusammenhang zwischen der Gesamtimmunzellzahl und der TGF-β-Konzentration an Tag 21 festgestellt. In verschiedenen Studien wurde ein pro-fibrotischer Einfluss der Immunzellen über die Aktivierung/Sekretion von TGF-β beschrieben. Die Abwesenheit der NO-GC im GCKO könnte also über die verstärkte Immigration von Immunzellen in einem erhöhten TGF-β-Gehalt resultieren und so zu einer überschießenden fibrotischen Reaktion an Tag 21 führen. Auf welche Weise die NO-GC die Einwanderung der Immunzellen in der Bleomycin-induzierten Lungenfibrose beeinflusst, muss in weiteren Studien untersucht werden. Zusammenfassend deuten die Daten dieser Arbeit auf eine anti-inflammatorische und anti-fibrotische Rolle der NO-GC in der Lungenfibrose der Maus hin. N2 - Idiopathic pulmonary fibrosis (IPF) is a chronic disease with poor prognosis. The illness is characterized by a dysfunctional alveolar epithelium, formation of α-smooth muscle actin (α-SMA)-positive myofibroblasts, exuberant deposition of collagen, and a dysregulated inflammation. The cytokine transforming growth factor β (TGF-β) is a key player in mediating these pro-fibrotic effects. Due to the fatal course and the limited therapeutic options, new therapeutic approaches must be researched. NO/cGMP signaling modulates fundamental physiological processes like the regulation of blood pressure and peristalsis. Here, NO-sensitive guanylyl cyclase (NO-GC) plays a decisive role as the receptor for NO. In the lung, smooth muscle cells and pericytes express NO-GC. Whereas the enzyme in smooth muscle cells mediates relaxation of smooth muscle, NO-GC in pericytes regulates angiogenesis, capillary permeability, and blood flow. Beside physiological tasks, anti-fibrotic and anti-inflammatory effects of NO-GC have been demonstrated in heart, liver, and skin. Therefore, as part of this work, NO-GC was tested for an anti-fibrotic and anti-inflammatory role in murine lung fibrosis. For this purpose, wild type (WT) and global NO-GC knockout mice (GCKO) were used. Fibrosis was induced by a single orotracheal dose of bleomycin and investigated at different time points (day 7 and 21). Untreated (day 0) animals served as controls. In the first part of this work, immunofluorescence was used to study the performance of α-SMA-positive myofibroblasts in platelet-derived growth factor receptor β (PDGFRβ)-positive fibrotic regions. Hydroxyproline assay was performed to quantify the collagen content. In both genotypes, the fibrosis criteria examined were more pronounced at day 21 than at day 7. At day 21, more α-SMA-positive myofibroblasts, more pronounced PDGFRβ-positive fibrotic areas and a higher collagen content could be detected in the GCKO compared to the WT. In addition, GCKO animals showed poorer survival than WT mice. These results indicated an exaggerated fibrotic response in the GCKO and, thus, an anti-fibrotic effect of NO-GC in bleomycin-induced lung fibrosis. At day 21, a significantly higher TGF-β content in bronchoalveolar lavage fluid (BALF) was determined in GCKO compared to WT. Thus, the more pronounced fibrosis in GCKO compared to WT could be explained at day 21. Consequently, the absence of NO-GC in GCKO could lead to an omission of the inhibition of TGF-β-mediated pro-fibrotic effects by NO-GC. Further studies are required to confirm this hypothesis and to clarify the underlying mechanisms. De novo formation of myofibroblasts, which are substantially involved in collagen synthesis, constitutes an essential fibrotic feature. Therefore, the identification of two myofibroblast subtypes, which differ in localization, expression of NO-GC and origin, is even more crucial: (1) interstitial, NO-GC-positive myofibroblasts, which derive from pericytes and produce collagen type I, and (2) intra-alveolar, NO-GC-negative myofibroblasts, whose lineage has not been finally clarified yet. Appearance of both types of myofibroblasts could be observed at both assessed time points after bleomycin treatment. NO-GC expression of intra-alveolar myofibroblasts, their descent from pericytes and permanent presence indicate a relevant role of NO-GC in murine lung fibrosis. In further studies, exact function and specific marker of myofibroblast subtypes need to be identified. In the second part of this work, NO-GC was investigated for anti-inflammatory effects in bleomycin-induced pulmonary fibrosis. Using HE staining and immunofluorescence, lymphocytic infiltrates were detected in GCKO at day 21, indicating a modulatory influence of NO-GC on the immune system. At day 21, significantly more total immune cells, lymphocytes and neutrophils were counted in the BALF of GCKO animals than in the WT. This suggests a strong immigration of immune cells and, thus, a pronounced inflammation in GCKO lungs. Consequently, NO-GC could play an anti-inflammatory role via regulation of immune cell immigration in bleomycin-induced pulmonary fibrosis. Pro- and anti-fibrotic effects of immune cells in murine pulmonary fibrosis are discussed in the literature. Performing correlation analyses, a positive correlation was found between total immune cell count and TGF-β concentration at day 21. Several studies, have described a pro-fibrotic influence of immune cells via activation/secretion of TGF-β. Thus, the absence of NO-GC in GCKO could result in elevated TGF-β levels via increased immune cell immigration, leading to an exaggerated fibrotic response at day 21. The way in which NO-GC influences immune cell immigration in bleomycin-induced pulmonary fibrosis needs to be investigated in further studies. In conclusion, the data of this work suggest an anti-inflammatory and anti-fibrotic role of NO-GC in murine pulmonary fibrosis. KW - Lunge KW - Fibrose KW - NO-GC KW - TGF-β KW - Guanylatcyclase KW - Maus Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-348054 ER -