TY - THES A1 - Diessner, Ernst Joachim T1 - Konstruktion eines Balanced lethal Systems für Salmonella typhi Ty21a T1 - Construction of a balanced lethal systems for Salmonella typhi Ty21a N2 - Ziel der Arbeit ist unter anderem die Entwicklung von Vakzinen gegen maligne Neoplasien auf der Basis von attenuierten Bakterien. Sie dienen hierbei als Träger von tumorspezifischen Antigenen. Diese können mit Hilfe des E. coli Hämolysin-a-Sekretionssystems von Salmonella-Bakterienstämmen sezerniert werden und eine spezifische Immunreaktion induzieren. Sowohl die Gene, die für das Sekretionssystem kodieren als auch die Gensequenzen des tumorspezifische Antigens sind bei dem Projekt auf dem detailliert beschriebenen Antigendelivery Plasmid pMO kodiert. Die bis dato angewandte Methode der pMO-Plasmidstabilisierung mit Hilfe von Antibiotikaresistenzgenen beinhaltet jedoch zahlreiche, beschriebene Probleme und wird seitens der Behörden in Impfstämmen zunehmend restriktiv gehandhabt. Im Rahmen der Entwicklung eines bakteriellen Tumorimpfstoffes war es daher das Ziel dieser Arbeit ein System zur Stabilisierung des Antigendelivery Plasmids pMO zu etablieren, das auf den Einsatz von Antibiotikaresistenzgenen verzichtet. N2 - Development of a system to stabilize plasmids in bacteria, by using a balanced lethal system, Development of tumor vaccines by using Salmonella bacteria KW - Salmonella KW - Balanced lethal Systeme KW - Stabilisierung von Plasmiden KW - Tumorvaccine KW - Immuntherapie KW - Balanced lethal Systeme KW - Salmonella typhi KW - Balanced lethal System KW - Salmonella typhi Ty21a KW - immunotherapy Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-51638 ER - TY - THES A1 - Götz, Andreas T1 - Replikation von enteroinvasiven Escherichia coli und Salmonella enterica Serovar Typhimurium Stämmen in Epithelzellen unter besonderer Betrachtung des Kohlenstoffmetabolismus T1 - Replication of enteroinvasive Escherichia coli and Salmonella enterica Serovar Typhimurium strains in epithelial cells with particular examination of the carbon metabolism N2 - Schlagwörter: Salmonella , Salmonella enterica , Salmonella typhimurium , Salmonellose , Escherichia coli , Shigella , Infektion , Bakterielle Infektion , Zellkultur , HeLa-Zelle , Apoptosis , Metabolismus , Stoffwechsel , Glucose , Glucosetransport , Glucosestoffwechsel , Katabolismus , Kohlenstoff , Kohlenstoffbedarf , Kohlenstoffhaushalt , Kohlenstoffstoffwechsel , Kohlenstoff-13 , Kohlenstoffisotop Salmonella Typhimurium und enteroinvasive E. coli (EIEC) sind fakultativ intrazelluläre Bakterien aus der Familie der Enterobacteriaceae. Während erstere sich nach der Internalisierung durch eukaryotische Zellen normalerweise in einem spezialisierten Phagosom, der Salmonella-enthaltenden Vakuole (SCV), vermehren, replizieren EIEC im Zytoplasma der Wirtszellen. In der vorliegenden Arbeit wurde zunächst durch Mikroinjektion die Fähigkeit von S. Typhimurium 14028s untersucht, ebenfalls im Zytoplasma von Caco-2-Zellen replizieren zu können. Dabei wurde festgestellt, daß ein früher als S. Typhimurium 14028s WT bezeichneter Stamm eine Insertion eines Desoxythymidins an Position 76 des offenen Leserasters von rfbP trägt, einem Gen, dessen Protein an der LPS-Synthese beteiligt ist. Weiterhin synthetisierte dieser Stamm ein rauhes LPS. Aufgrund von Agglutination konnte der Rauh-Stamm nur mit geringem Erfolg mikroinjiziert werden. Hingegen lag 5 h nach der Mikroinjektion einer nicht invasiven Mutante von Salmonella mit vollständigem LPS der Anteil an Caco-2-Zellen, die mehr als 32 Bakterien enthielten, bei etwa 30 %. Der Anteil war 2-3 mal höher als bei früheren Mikroinjektionen in HeLa-Zellen. Daher wurde das Verhalten von HeLa-Zellen nach einer Infektion durch S. Typhimurium ΔsifA - einer Mutante, die aus der SCV ins Zytoplasma entkommt - untersucht. Dabei wurde festgestellt, daß die sifA-Mutante 10 h nach der Infektion die Aktivität der Caspasen 9 und 3 in HeLa-Zellen, aber nicht in Caco-2-Zellen induziert. In weiteren Versuchen wurde die Bedeutung von Glukose, Glukose-6-phosphat und Mannose als Kohlenstoffquellen für die extra- und intrazelluläre Replikation zweier Isolate enteroinvasiver E. coli und eines S. Typhimurium Stammes analysiert. Zu diesem Zweck wurden zunächst definierte Mutanten in den beiden wichtigsten Phosphoenolpyruvat-abhängigen Phosphotransferasesystemen (PTS) für die Aufnahme von Glukose und Mannose, ptsG und manXYZ, sowie im Antiporter für die Aufnahme von Glukose-6-phosphat, uhpT, konstruiert. Bei Wachstum im Minimalmedium mit Glukose als einziger C-Quelle waren die Generationszeiten aller ΔptsG- und ΔptsG, manXYZ-Mutanten im Vergleich zu den Wildstämmen deutlich verlängert. Ebenso wuchsen ΔmanXYZ-Mutanten bzw. ΔuhpT-Mutanten deutlich langsamer auf Mannose bzw. Glukose-6-phosphat. Jedoch ergaben sich hierbei Stamm-spezifische Unterschiede. So erreichte EIEC 4608-58 ΔuhpT in der stationären Phase eine ähnliche Zelldichte wie der Wildstamm in Gegenwart von Glukose-6-phosphat und eine ΔptsG, manXYZ-Mutante von S. Typhimurium 14028s konnte immer noch effizient mit Glukose wachsen. Infektionsversuche mit Caco-2-Zellen zeigten weiterhin, daß die Deletion von ptsG zu einer signifikanten Erhöhung der Adhärenz und Invasivität von EIEC 4608-58 führt, während sich die intrazellulären Generationszeiten aller hier untersuchten Mutanten kaum veränderten. Selbst die ΔptsG, manXYZ, uhpT-Dreifachmutanten der drei hier verwendeten Enterobakterien und die ΔptsG, manXYZ, glk-Mutante von S. Typhimurium 14028s konnten immer noch in Caco-2-Zellen replizieren, wenn auch mit Stamm-spezifisch verringerten Geschwindigkeiten. 13C-Markierungsexperimente mit [U-13C6]-Glukose als Substrat ergaben jedoch, daß in der Tat alle hier untersuchten enterobakteriellen Wildstämme Glukose während der Replikation in Caco-2-Zellen unter Zellkulturbedingungen verwerten. Glukose-6-phosphat, Glukonat oder Fettsäuren konnten dagegen als wichtigste Kohlenstoffquellen für das intrazelluläre Wachstum ausgeschlossen werden. EIEC 4608-58 metabolisierte Glukose jedoch weniger effizient als EIEC HN280 und schien zudem noch zusätzlich C3-Substrate aus der Wirtszelle aufzunehmen. Das Markierungsmuster zeigte einen Stamm-spezifischen Kohlenstofffluß durch Glykolyse und/oder Entner-Doudoroff-Weg, Pentosephosphatzyklus, Citratzyklus und den anaplerotischen Reaktionen zwischen PEP und Oxalacetat. Mutanten mit Deletionen in ptsG und manXYZ konnten auf alternative C3-Substrate wechseln und glichen dies durch eine erhöhte Aufnahme von Aminosäuren aus den Wirtszellen aus. N2 - Salmonella Typhimurium and enteroinvasive E. coli (EIEC) are facultative intracellular bacteria belonging to the family of Enterobacteriaceae. After internalisation by eukaryotic cells Salmonella normally resides inside a specialised phagosome called Salmonella-containing vacuole (SCV) whereas EIEC replicates inside the cytosol of host cells. In this study the ability of S. Typhimurium 14028s to replicate inside the cytosol of Caco-2 host cells was investigated by microinjection. It was thereby observed that a formerly used strain also called S. Typhimurium 14028s WT harboured an insertion of one deoxythymidin at position 76 of the rfbP open reading frame, a gene whose protein is involved in the LPS biosynthesis. Furthermore this strain expressed a rough LPS. Due to agglutination the microinjection procedure of the rough strain had only little success. But the percentage of Caco-2 cells that harboured more than 32 bacteria was about 30 % 5 h after injection of a non invasive mutant of Salmonella expressing full-length LPS chains. This was 2-3 times higher than the results observed before using HeLa cells. Therefore, the behaviour of HeLa cells infected by S. Typhimurium ΔsifA - a mutant that escapes from the SCV into the cytosol - was studied. The results showed that the sifA mutant strain induced the activity of caspases 9 and 3 in HeLa cells 10 h after infection but not in Caco-2 cells. In further experiments the contribution of glucose, glucose 6-phosphate and mannose as carbon sources for extra- and intracellular growth of two enteroinvasive E. coli isolates and one S. Typhimurium strain was analysed. Therefore, defined mutants of the most important phosphoenolpyruvate-dependent phosphotransferase systems (PTS) taking up glucose or mannose, i.e. ptsG and manXYZ, were constructed as well as mutants carrying a deletion of uhpT the antiporter for uptake of glucose 6-phosphate. During growth of the resulting ΔptsG and ΔptsG, manXYZ mutants in minimal medium with glucose as sole carbon source considerably longer generation times were observed. Likewise, ΔmanXYZ mutants and ΔuhpT mutants grew significantly slower on mannose or glucose 6-phosphate, respectively. But there were also strain specific differences. EIEC 4608-58 ΔuhpT reached a similar cell density as the wild-type strain during stationary phase when grown in the presence of glucose 6-phosphate and S. Typhimurium ΔptsG, manXYZ could still grow efficiently on glucose. Infections of Caco-2 cells showed that the deletion of ptsG increased the ability of EIEC 4608-58 significantly to adhere and invade these cells. But the intracellular generation times of all mutants under study were hardly changed. Even the triple mutants ΔptsG, manXYZ, uhpT of all three enterobacterial strains and the ΔptsG, manXYZ, glk mutant of S. Typhimurium 14028s were still able to replicate in Caco-2 cells, albeit at strain specific lower rates. 13C-Isotopologue profiling using [U-13C6]glucose as precursor revealed that in deed all analysed enterobacterial wild-type strains utilised glucose for their replication in Caco-2 cells under the applied conditions. Glucose 6-phosphate, gluconate and fatty acids could be ruled out as main carbon sources for intracellular growth. EIEC 4608-58 metabolised the applied glucose less efficiently than EIEC HN280 and seemed to take up C3-compounds from the host cells in addition to glucose. The labelling patterns reflected strain specific carbon fluxes via glycolysis and/or Entner-Doudoroff pathway, pentose phosphate pathway, citric acid cycle and the anaplerotic reactions between PEP and oxaloacetate. Mutants carrying deletions in ptsG and manXYZ switched to alternative C3-substrates and counterbalanced this by an increased uptake of amino acids from the host cells. KW - Escherichia coli KW - Intrazellulärraum KW - Salmonella typhimurium KW - Vermehrung KW - Kohlenstoffstoffwechsel KW - Salmonella KW - Salmonella enterica KW - Salmonella typhimurium KW - Salmonellose KW - Escherichia coli KW - Shigella KW - Infektion KW - Bakterielle Infektion KW - sifA KW - enteroinvasive KW - CaCo-2 cell KW - 13C-isotopologue profiling KW - microinjection Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-57292 ER - TY - JOUR A1 - Eulalio, Ana A1 - Fröhlich, Kathrin S. A1 - Mano, Miguel A1 - Giacca, Mauro A1 - Vogel, Jörg T1 - A Candidate Approach Implicates the Secreted Salmonella Effector Protein SpvB in P-Body Disassembly N2 - P-bodies are dynamic aggregates of RNA and proteins involved in several post-transcriptional regulation processes. Pbodies have been shown to play important roles in regulating viral infection, whereas their interplay with bacterial pathogens, specifically intracellular bacteria that extensively manipulate host cell pathways, remains unknown. Here, we report that Salmonella infection induces P-body disassembly in a cell type-specific manner, and independently of previously characterized pathways such as inhibition of host cell RNA synthesis or microRNA-mediated gene silencing. We show that the Salmonella-induced P-body disassembly depends on the activation of the SPI-2 encoded type 3 secretion system, and that the secreted effector protein SpvB plays a major role in this process. P-body disruption is also induced by the related pathogen, Shigella flexneri, arguing that this might be a new mechanism by which intracellular bacterial pathogens subvert host cell function. KW - Salmonella KW - RNS Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68928 ER - TY - THES A1 - Rechtenwald, Christian T1 - Charakterisierung und Weiterentwicklung eines Balanced Lethal Systems in \({Salmonella}\) \({spp}\) T1 - Characterization and further development of a balanced lethal system in \({salmonella}\) \({spp}\) N2 - Charakterisierung und Weiterentwicklung eines Systems zur antibiotikafreien Plasmidstabilisierung und Sekretion heterologer Antigene über das Hämolysin a-Sekretionssystem in attenuiereten Salmonella-Stämmen. Ziel ist die Entwicklung tumorspezifischer Vakzine. N2 - Characterization and further development of a system for antibiotic-free plasmid stabilization in attenuated salmonella strains and secretion-enabling of heterologous antigens via the hemolysin a-secretion system. Goal is the development of tumor-specific vaccines. KW - Salmonella KW - Balanced lethal Systeme KW - Stabilisierung von Plasmiden KW - Tumorvaccine KW - Immuntherapie KW - Balanced lethal Systeme KW - Salmonella typhi KW - Balanced lethal System KW - Salmonella typhi Ty21a KW - immunotherapy Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71092 ER - TY - THES A1 - Fröhlich, Kathrin T1 - Assigning functions to Hfq-dependent small RNAs in the model pathogen Salmonella Typhimurium T1 - Funktionelle Charakterisierung Hfq-abhängiger kleiner RNAs im Modellpathogen Salmonella Typhimurium N2 - Non-coding RNAs constitute a major class of regulators involved in bacterial gene expression. A group of riboregulators of heterogeneous size and shape referred to as small regulatory RNAs (sRNAs) control trans- or cis-encoded genes through direct base-pairing with their mRNAs. Although mostly inhibiting their target mRNAs, several sRNAs also induce gene expression. An important co-factor for sRNA activity is the RNA chaperone, Hfq, which is able to rearrange intramolecular secondary structures and to promote annealing of complementary RNA sequences. In addition, Hfq protects unpaired RNA from degradation by ribonucleases and thus increases sRNA stability. Co-immunoprecipitation of RNA with the Hfq protein, and further experimental as well as bioinformatical studies performed over the last decade suggested the presence of more than 150 different sRNAs in various Enterobacteria including Escherichia coli and Salmonellae. So-called core sRNAs are considered to fulfill central cellular activities as deduced from their high degree of conservation among different species. Approximately 25 core sRNAs have been implicated in gene regulation under a variety of environmental responses. However, for the majority of sRNAs, both the riboregulators’ individual biological roles as well as modes of action remain to be elucidated. The current study aimed to define the cellular functions of the two highly conserved, Hfq-dependent sRNAs, SdsR and RydC, in the model pathogen Salmonella Typhimurium. SdsR had been known as one of the most abundant sRNAs during stationary growth phase in E. coli. Examination of the conservation patterns in the sdsR promoter region in combination with classic genetic analyses revealed SdsR as the first sRNA under direct transcriptional control of the alternative σ factor σS. In Salmonella, over-expression of SdsR down-regulates the synthesis of the major porin OmpD, and the interaction site in the ompD mRNA coding sequence was mapped by a 3'RACE-based approach. At the post-transcriptional level, expression of ompD is controlled by three additional sRNAs, but SdsR plays a specific role in porin regulation during the stringent response. Similarly, RydC, the second sRNA adressed in this study, was initially discovered in E. coli but appeared to be conserved in many related γ-proteobacteria. An interesting aspect of this Hfq-dependent sRNAs is its secondary structure involving a pseudo-knot configuration, while the 5’ end remains single stranded. A transcriptomic approach combining RydC pulse-expression and scoring of global mRNA changes on microarrays was employed to identify the targets of this sRNA. RydC specifically activated expression of the longer of two versions of the cfa mRNA encoding for the phospholipid-modifying enzyme cyclopropane fatty acid synthase. Employing its conserved single-stranded 5' end, RydC acts as a positive regulator and masks a recognition site of the endoribonuclease, RNase E, in the cfa leader. N2 - Die bakterielle Genexpression wird unter anderem maßgeblich von nicht-kodierenden RNAs bestimmt. Kleine regulatorische RNAs (sRNAs) sind eine bezüglich Größe und Struktur heterogene Gruppe von Riboregulatoren, die ihre in cis oder in trans-kodierten Zielgene mittels direkter Basenpaarungen kontrollieren. Während der Großteil der sRNAs reprimierend wirkt, konnte für einige RNAs gezeigt werden, dass sie die Expression ihres Zieltranskripts verstärken. Ein wichtiger Kofaktor für die regulatorische Funktion der sRNAs ist das RNA-Chaperon Hfq, welches sowohl die Umfaltung intramolekularer Sekundärstrukturen ermöglicht, als auch die Ausbildung von Basenpaarungen zwischen komplementären RNA-Sequenzen steuert. Zusätzlich schützt Hfq nicht-gepaarte RNAs vor dem Abbau durch Ribonukleasen, und trägt damit zur Stabilität der Moleküle bei. Durch Ko-Immunopräzipitation mit Hfq sowie in weiteren experimentellen als auch bioinformatischen Studien konnten im letzten Jahrzehnt in diversen Enterobakterien, wie z.B. auch Escherichia coli und Salmonellae, mehr als 150 verschiedene sRNAs bestimmt werden. Von so genannten "core sRNAs" (Kern-sRNAs) wird aufgrund ihres hohen Grades an Konservierung in unterschiedlichen Spezies angenommen, dass sie zentrale Funktionen erfüllen. Etwa 25 core sRNAs agieren unter verschiedenen Umweltbedingungen als Regulatoren. Ihre exakte biologische Rolle, sowie ihre Funktionsweise sind jedoch größtenteils noch unbekannt. In der vorliegenden Arbeit wurden die beiden konservierten, Hfq-abhängigen sRNAs, SdsR und RydC, im Modellpathogen Salmonella Typhimurium charakterisiert. SdsR war als eine der abundantesten sRNAs der stationären Phase in E. coli beschrieben worden. Durch Auswertung der Konservierungsmuster der sdsR Promotorsequenz sowie klassische genetische Analyse konnte SdsR als erste sRNA unter direkter Kontrolle des alternativen σ Faktors σS bestimmt werden. In Salmonella führt die Überexpression von SdsR zur Reprimierung des Membranporins OmpD, und die Bindestelle von SdsR auf dem ompD Transkript wurde mittels einer auf 3'-RACE basierenden Methode ermittelt. Obwohl die Expression von ompD auf post-transkriptionaler Ebene von drei weiteren sRNAs kontrolliert wird, konnte eine spezische Regulation des Porins durch SdsR während Aminosäure-Hungerung gezeigt werden. Auch RydC, die zweite in dieser Studie analysierte sRNA, wurde zunächst in E. coli beschrieben und ist aber auch in weiteren γ-Proteobakterien konserviert. Interessanterweise enthält die Sekundärstruktur dieser Hfq-abhängigen sRNA einen Pseudoknoten, während das 5'-Ende ungepaart ist. Die Zielgene von RydC wurden mittels einer Transkriptomanalyse bestimmt, in der die Änderung der Häufigkeitsverteilung aller mRNAs nach kurzzeitiger Überexpression der sRNA auf Microarrays untersucht wurde. RydC bewirkte die spezifische Aktivierung des längeren von insgesamt zwei Versionen der cfa mRNA, die für eine Cyclopropan-fettsäuresynthase kodiert, ein Enzym das zur Modifikation von Phospholipiden dient. Eine Basenpaarung über das freie 5'-Ende der sRNA RydC führt zur Aktivierung der cfa-Expression, und maskiert eine Erkennungssequenz der Endoribonuklease, RNase E, innerhalb des Transkripts. KW - Small RNA KW - Genexpression KW - Hfq KW - Small RNA KW - Hfq KW - Salmonella KW - Salmonella typhimurium Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85488 ER - TY - JOUR A1 - Herweg, Jo-Ana A1 - Hansmeier, Nicole A1 - Otto, Andreas A1 - Geffken, Anna C. A1 - Subbarayal, Prema A1 - Prusty, Bhupesh K. A1 - Becher, Dörte A1 - Hensel, Michael A1 - Schaible, Ulrich E. A1 - Rudel, Thomas A1 - Hilbi, Hubert T1 - Purification and proteomics of pathogen-modified vacuoles and membranes JF - Frontiers in Cellular and Infection Microbiology N2 - Certain pathogenic bacteria adopt an intracellular lifestyle and proliferate in eukaryotic host cells. The intracellular niche protects the bacteria from cellular and humoral components of the mammalian immune system, and at the same time, allows the bacteria to gain access to otherwise restricted nutrient sources. Yet, intracellular protection and access to nutrients comes with a price, i.e., the bacteria need to overcome cell-autonomous defense mechanisms, such as the bactericidal endocytic pathway. While a few bacteria rupture the early phagosome and escape into the host cytoplasm, most intracellular pathogens form a distinct, degradation-resistant and replication-permissive membranous compartment. Intracellular bacteria that form unique pathogen vacuoles include Legionella, Mycobacterium, Chlamydia, Simkania, and Salmonella species. In order to understand the formation of these pathogen niches on a global scale and in a comprehensive and quantitative manner, an inventory of compartment-associated host factors is required. To this end, the intact pathogen compartments need to be isolated, purified and biochemically characterized. Here, we review recent progress on the isolation and purification of pathogen-modified vacuoles and membranes, as well as their proteomic characterization by mass spectrometry and different validation approaches. These studies provide the basis for further investigations on the specific mechanisms of pathogen-driven compartment formation. KW - spectrometry-based proteomics KW - Mycobacterium tuberculosis KW - Chlamydia KW - Salmonella KW - bacterium Legionella pneumophila KW - endocytic multivesicular bodies KW - phagosome maturation arrest KW - III secretion system KW - endoplasmic reticulum KW - Chlamydia trachomatis KW - Simkania negevensis KW - intracellular bacteria KW - host pathogen interactions KW - immuno-magnetic purification KW - Legionella KW - Mycobacterium KW - Simkania KW - pathogen vacuole Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151823 VL - 5 IS - 48 ER - TY - JOUR A1 - Westermann, Alexander J. A1 - Barquist, Lars A1 - Vogel, Jörg T1 - Resolving host-pathogen interactions by dual RNA-seq JF - PLoS Pathogens N2 - The transcriptome is a powerful proxy for the physiological state of a cell, healthy or diseased. As a result, transcriptome analysis has become a key tool in understanding the molecular changes that accompany bacterial infections of eukaryotic cells. Until recently, such transcriptomic studies have been technically limited to analyzing mRNA expression changes in either the bacterial pathogen or the infected eukaryotic host cell. However, the increasing sensitivity of high-throughput RNA sequencing now enables “dual RNA-seq” studies, simultaneously capturing all classes of coding and noncoding transcripts in both the pathogen and the host. In the five years since the concept of dual RNA-seq was introduced, the technique has been applied to a range of infection models. This has not only led to a better understanding of the physiological changes in pathogen and host during the course of an infection but has also revealed hidden molecular phenotypes of virulence-associated small noncoding RNAs that were not visible in standard infection assays. Here, we use the knowledge gained from these recent studies to suggest experimental and computational guidelines for the design of future dual RNA-seq studies. We conclude this review by discussing prospective applications of the technique. KW - Medicine KW - RNA sequencing KW - Salmonellosis KW - Transcriptome analysis KW - Gene expression KW - Bacterial pathogens KW - Salmonella KW - Host cells KW - Lysis (medicine) Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-171921 VL - 13 IS - 2 ER - TY - JOUR A1 - Schulte, Leon N. A1 - Schweinlin, Matthias A1 - Westermann, Alexander J. A1 - Janga, Harshavardhan A1 - Santos, Sara C. A1 - Appenzeller, Silke A1 - Walles, Heike A1 - Vogel, Jörg A1 - Metzger, Marco T1 - An Advanced Human Intestinal Coculture Model Reveals Compartmentalized Host and Pathogen Strategies during Salmonella Infection JF - mBio N2 - A major obstacle in infection biology is the limited ability to recapitulate human disease trajectories in traditional cell culture and animal models, which impedes the translation of basic research into clinics. Here, we introduce a three-dimensional (3D) intestinal tissue model to study human enteric infections at a level of detail that is not achieved by conventional two-dimensional monocultures. Our model comprises epithelial and endothelial layers, a primary intestinal collagen scaffold, and immune cells. Upon Salmonella infection, the model mimics human gastroenteritis, in that it restricts the pathogen to the epithelial compartment, an advantage over existing mouse models. Application of dual transcriptome sequencing to the Salmonella-infected model revealed the communication of epithelial, endothelial, monocytic, and natural killer cells among each other and with the pathogen. Our results suggest that Salmonella uses its type III secretion systems to manipulate STAT3-dependent inflammatory responses locally in the epithelium without accompanying alterations in the endothelial compartment. Our approach promises to reveal further human-specific infection strategies employed by Salmonella and other pathogens. IMPORTANCE Infection research routinely employs in vitro cell cultures or in vivo mouse models as surrogates of human hosts. Differences between murine and human immunity and the low level of complexity of traditional cell cultures, however, highlight the demand for alternative models that combine the in vivo-like properties of the human system with straightforward experimental perturbation. Here, we introduce a 3D tissue model comprising multiple cell types of the human intestinal barrier, a primary site of pathogen attack. During infection with the foodborne pathogen Salmonella enterica serovar Typhimurium, our model recapitulates human disease aspects, including pathogen restriction to the epithelial compartment, thereby deviating from the systemic infection in mice. Combination of our model with state-of-the-art genetics revealed Salmonella-mediated local manipulations of human immune responses, likely contributing to the establishment of the pathogen's infection niche. We propose the adoption of similar 3D tissue models to infection biology, to advance our understanding of molecular infection strategies employed by bacterial pathogens in their human host. KW - Salmonella KW - gene expression KW - infectious disease Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-229428 VL - 11, 2020 IS - 1 ER - TY - THES A1 - Santos, Sara F. C. T1 - Expanding the targetome of Salmonella small RNA PinT using MS2 affinity purification and RNA-Seq (MAPS) T1 - Erweiterung des Targetoms der kleinen RNA PinT von Salmonella mittels MS2-Affinitätsaufreinigung und RNA-seq (MAPS) N2 - Bacterial small RNAs are key mediators of post-transcriptional gene regulation. An increasing number of sRNAs have been implicated in the regulation of virulence programs of pathogenic bacteria. Recently, in the enteric pathogen Salmonella Typhimurium, the PinT sRNA has gained increased importance as it is the most upregulated sRNA as Salmonella infects mammalian host cells (Westermann et al., 2016). PinT acts as a temporal regulator of Salmonella‘s two major pathogenicity islands, SPI-1 and SPI-2 (Kim et al., 2019; Westermann et al., 2016). However, the complete set of PinT targets, its role in Salmonella infection and host response is not yet fully understood. Building on the MS2 affinity purification and RNA- seq (MAPS) method (Lalaouna et al., 2015), we here set out to globally identify direct RNA ligands of PinT, relevant to Salmonella infection. We transferred the classical MAPS technique, based on sRNA-bait overexpression, to more physiological conditions, using endogenous levels of the sRNA. Making the henceforth identified targets, less likely to represent artefacts of the overexpression. More importantly, we progressed the MAPS technique to in vivo settings and by doing so, we were able pull-down bacterial RNA transcripts bound by PinT during macrophage infection. While we validate previously known PinT targets, our integrated data revealed novel virulence relevant target. These included mRNAs for the SPI-2 effector SteC, the PhoQ activator UgtL and the 30S ribosomal protein S22 RpsV. Next, we follow up on SteC, the best characterized virulence relevant PinT target. Using genetic and biochemical assays, we demonstrate that PinT represses steC mRNA by direct base-pairing and translational interference. PinT-mediated regulation of SteC leads to alterations in the host response to Salmonella infection. This regulation impacts the cytokine response of infected macrophages, by altering IL10 production, and possibly driving the macrophages to an anti-inflammatory state, more permise to infection. SteC is responsible for F-actin meshwork rearrangements around the SCV (Poh et al., 2008). Here we demonstrate that PinT-mediated regulation of SteC, impacts the formation of this actin meshwork in infected cells. Our results demonstrate that SteC expression is very tightly regulated by PinT in two layers; indirectly, by repressing ssrB and crp; and directly by binding to steC 5’UTR. PinT contributes to post-transcriptional cross-talk between invasion and intracellular replication programs of Salmonella, by controlling the expression of both SPI-1 and SPI-2 genes (directly and indirectly). Together, our collective data makes PinT the first sRNA in Gram-negatives with a pervasive role in virulence, at the center of Salmonella virulence programs and provide molecular input that could help explain the attenuation of pinT-deficient Salmonella strains in whole animal models of infection. N2 - Kleine RNAs sind zentrale Stellschrauben der posttranskriptionellen Genregulation in Bakterien. Eine zunehmende Anzahl von sRNAs ist an der Regulation von Virulenzprogrammen pathogener Bakterien beteiligt. In jüngster Zeit hat beim enterischen Erreger Salmonella Typhimurium die PinT-sRNA an Bedeutung gewonnen, da sie die am stärksten hochregulierte sRNA während der Infektion von Säugetierwirtszellen ist (Westermann et al., 2016). PinT fungiert als zeitlicher Regulator der beiden wichtigsten Pathogenitätsinseln von Salmonella, SPI-1 und SPI-2 (Kim et al., 2019a; Westermann et al., 2016). Die vollständige Liste der Targets von PinT und die Rolle von PinT bei der Salmonella-Infektion sowie der Wirstantwort sind jedoch noch nicht vollständig aufgeklärt. Mit Hilfe der MS2 affinity purification and RNA-seq (MAPS)-Methode (Lalaouna et al., 2015) möchten wir hier direkte RNA-Liganden von PinT identifizieren, die für die Salmonella-Infektion relevant sind. Wir übertragen die klassische MAPS-Technik, die auf der Überexpression von sRNA-Baits basiert, auf physiologischere Bedingungen unter Verwendung endogener Mengen der sRNA. Dadurch wird die Wahrschienlichkeit, dass die identifizierten Targets Artefakte sind, verringert. Darüber hinaus sind wir in der Lage, die MAPS-Technik unter in vivo-Bedingungen durchzuführen. Auf diese Weise konnten wie bakterielle Transkripte, die während einer Makrophageninfektion an PinT gebunden wurden, isolieren. Während wir bereits bekannte PinT-Ziele validieren, identifizieren unsere integrierten Daten ein neues Target, das für Virulenz relevant ist. Dazu gehörten mRNAs für den SPI-2-Effektor SteC, den PhoQ-Aktivator UgtL und das ribosomale 30S-Protein S22 RpsV. Zunächst untersuchen wir SteC, das am besten charakterisierte virulenzrelevante PinT-Ziel. Anhand genetischer und biochemischer Assays zeigen wir, dass PinT die steC-mRNA durch direkte Basenpaarung und Translationsrepression reguliert. Die PinT-vermittelte Regulation von SteC führt zu einer veränderten Wirtsreaktion auf eine Salmonella-Infektion. Diese Regulation beeinflusst die Zytokinreaktion infizierter Makrophagen, indem sie die IL10-Produktion verändert und die Makrophagen möglicherweise in einen entzündungshemmenden Zustand versetzt, der sie anfälliger für eine Infektion macht. SteC ist verantwortlich für die Umlagerung von F-Actin-Netzen um die SCV (Poh et al., 2008). Hier zeigen wir, dass die PinT-vermittelte Regulation von SteC die Bildung dieses Aktin-Netzwerks in infizierten Zellen beeinflusst. Unsere Ergebnisse zeigen, dass die Regulation der SteC-Expression durch PinT auf zwei Ebenden stattfindet: indirekt durch Unterdrückung von ssrB und crp; und direkt durch Bindung an steC 5’UTR. PinT trägt zum posttranskriptionellen Crosstalk zwischen Invasions- und intrazellulären Replikationsprogrammen von Salmonella bei, indem die Expression von SPI-1- und SPI-2-Genen (direkt und indirekt) gesteuert wird. Insgesamt macht unterstreichen unsere Daten die zentrale Rolle von PinT in Virulenzprogrammen von Salmonella. PinT ist die erste sRNA in Gram-Negativen mit einer derart durchdringenden Rolle bei der Virulenz. Zudem liefern unsere Ergebnisse Einblick auf molekularer Ebene, die die Attenuation von PinT-defizienten Salmonella-Stämmen in Tiermodellen erklären könnte. KW - Salmonella KW - small RNA KW - PinT KW - MS2-affinity purification and RNA-seq KW - effector protein KW - SteC Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204926 ER - TY - THES A1 - Matera, Gianluca T1 - Global mapping of RNA-RNA interactions in \(Salmonella\) via RIL-seq T1 - Globale Analyse der RNA-RNA-Interaktionen in \(Salmonella\) mittels RIL-seq N2 - RNA represents one of the most abundant macromolecules in both eukaryotic and prokaryotic cells. Since the discovery that RNA could play important gene regulatory functions in the physiology of a cell, small regulatory RNAs (sRNAs) have been at the center of molecular biology studies. Functional sRNAs can be independently transcribed or derived from processing of mRNAs and other non-coding regions and they often associate with RNA-binding proteins (RBPs). Ever since the two major bacterial RBPs, Hfq and ProQ, were identified, the way we approach the identification and characterization of sRNAs has drastically changed. Initially, a single sRNA was annotated and its function studied with the use of low-throughput biochemical techniques. However, the development of RNA-seq techniques over the last decades allowed for a broader identification of sRNAs and their functions. The process of studying a sRNA mainly focuses on the characterization of its interacting RNA partner(s) and the consequences of this binding. By using RNA interaction by ligation and sequencing (RIL-seq), the present thesis aimed at a high-throughput mapping of the Hfq-mediated RNA-RNA network in the major human pathogen Salmonella enterica. RIL-seq was at first performed in early stationary phase growing bacteria, which enabled the identification of ~1,800 unique interactions. In- depth analysis of such complex network was performed with the aid of a newly implemented RIL-seq browser. The interactome revealed known and new interactions involving sRNAs and genes part of the envelope regulon. A deeper investigation led to the identification of a new RNA sponge of the MicF sRNA, namely OppX, involved in establishing a cross-talk between the permeability at the outer membrane and the transport capacity at the periplasm and the inner membrane. Additionally, RIL-seq was applied to Salmonella enterica grown in SPI-2 medium, a condition that mimicks the intracellular lifestyle of this pathogen, and finally extended to in vivo conditions during macrophage infection. Collectively, the results obtained in the present thesis helped unveiling the complexity of such RNA networks. This work set the basis for the discovery of new mechanisms of RNA-based regulation, for the identification of a new physiological role of RNA sponges and finally provided the first resource of RNA interactions during infection conditions in a major human pathogen. N2 - RNA ist eines der am häufigsten vorkommenden Makromoleküle sowohl in eukaryontischen als auch in prokaryontischen Zellen. Seit der Entdeckung, dass RNA wichtige genregulatorische Funktionen in der Physiologie einer Zelle spielen könnte, stehen kleine regulatorische RNAs (sRNAs) im Mittelpunkt molekularbiologischer Studien. Funktionelle sRNAs können alleinstehend von nicht-codierenden oder codierenden Bereichen des Genoms transkribiert werden, aber sie können auch durch die Prozessierung einer mRNA entstehen. Des Weiteren sind sRNAs häufig mit RNA- bindenden Proteinen (RBPs) assoziiert. Seitdem die beiden wichtigsten bakteriellen RBPs, Hfq und ProQ, identifiziert wurden, hat sich die Art und Weise, wie wir an die Identifizierung und Charakterisierung von sRNAs herangehen, drastisch verändert. Ursprünglich wurden sRNAs annotiert und anschließend für einzelne sRNAs die Funktion mit biochemischen Techniken untersucht. Die Entwicklung von RNA-seq-Techniken in den letzten Jahrzehnten ermöglichte nun jedoch eine globale Identifizierung von sRNAs und ihren Funktionen. Der Prozess der Untersuchung einer sRNA konzentriert sich hauptsächlich auf die Charakterisierung ihrer interagierenden RNA-Partner und die Folgen dieser Bindung. Mit Hilfe der RNA-Interaktion durch Ligation und Sequenzierung (RIL-seq) wurde in der vorliegenden Arbeit eine Hochdurchsatzkartierung des Hfq-vermittelten RNA-RNA-Netzwerks in dem wichtigen humanen Krankheitserreger Salmonella enterica durchgeführt. RIL-seq wurde zunächst in Bakterien in der frühen stationären Wachstumsphase durchgeführt, was die Identifizierung von ~1.800 einzigartigen Interaktionen ermöglichte. Mit Hilfe eines neu implementierten RIL-seq-Browsers wurde daraufhin eine eingehende Analyse dieses komplexen Netzwerks durchgeführt. Das Interaktom enthüllte bekannte und neue Interaktionen zwischen sRNAs und mRNAs, die Teil des Zellwand-Regulons sind. Eine tiefergehende Untersuchung führte zur Identifizierung eines neuen RNA-Schwammes, OppX, welcher mit der sRNA MicF bindet und so die Herstellung eines Cross-Talks zwischen der Permeabilität an der äußeren Membran und der Transportkapazität am Periplasma und der inneren Membran ermöglicht. Darüber hinaus wurde RIL-seq für Salmonella enterica angewandt, welche in SPI-2-Medium gewachsen waren, wobei diese Bedingung, die den intrazellulären Lebensstil dieses Erregers nachahmt. Durch die Infektion von Makrophagen mit dem Bakterium, wurde das RIL-seq Protokoll des Weiteren unter in vivo Bedingungen getestet. Insgesamt trugen die in dieser Arbeit erzielten Ergebnisse dazu bei, die Komplexität solcher RNA- Netzwerke zu enthüllen. Diese Arbeit bildete die Grundlage für die Entdeckung neuer Mechanismen der RNA-basierten Regulierung als auch für die Identifizierung einer neuen physiologischen Rolle von RNA- Schwämmen und lieferte letztendlich die erste Untersuchung für RNA- Interaktionen unter Infektionsbedingungen in einem wichtigen menschlichen Krankheitserreger. KW - Small RNA KW - RNA KW - infection biology KW - Salmonella KW - MicF Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-268776 ER - TY - THES A1 - Imdahl, Fabian Dominik T1 - Development of novel experimental approaches to decipher host-pathogen interaction at the single-cell level T1 - Entwicklung neuer experimenteller Ansätze zur Entschlüsselung von Wirt-Pathogen-Interaktion auf Einzelzellebene N2 - Abstract: COVID-19 has impressively shown how quickly an emerging pathogen can have a massive impact on our entire lives and show how infectious diseases spread regardless of national borders and economic stability. We find ourselves in a post-antibiotic era and have rested too long on the laurels of past research, so today more and more people are dying from infections with multi-resistant germs. Infections are highly plastic and heterogeneous processes that are strongly dependent on the individual, whether on the host or pathogen side. Improving our understanding of the pathogenicity of microorganisms and finding potential targets for a completely new class of drugs is a declared goal of current basic research. To tackle this challenge, single-cell RNA sequencing (scRNA-seq) is our most accurate tool. In this thesis we implemented different state of the art scRNA-seq technologies to better understand infectious diseases. Furthermore, we developed a new method which is capable to resolve the transcriptome of a single bacterium. Applying a poly(A)-independent scRNA-seq protocol to three different, infection relevant growth conditions we can report the faithful detection of growth-dependent gene expression patterns in individual Salmonella Typhimurium and Pseudomonas aeruginosa bacteria. The data analysis shows that this method not only allows the differentiation of various culture conditions but can also capture transcripts across different RNA species. Furthermore, using state of the art imaging and single-cell RNA sequencing technologies, we comprehensively characterized a human intestinal tissue model which in further course of the project was used as a Salmonella enterica serovar Typhimurium infection model. While most infection studies are conducted in mice, lacking a human intestinal physiology, the in vitro human tissue model allows us to directly infer in vivo pathogenesis. Combining immunofluorescent imaging, deep single-cell RNA sequencing and HCR-FISH, applied in time course experiments, allows an unseen resolution for studying heterogeneity and the dynamics of Salmonella infection which reveals details of pathogenicity contrary to the general scientific opinion. N2 - Zusammenfassung: COVID-19 hat eindrucksvoll gezeigt, wie schnell ein neu auftretender Erreger massive Auswirkungen auf unser aller Leben haben kann und wie sich Infektionskrankheiten unabhängig von Landesgrenzen und wirtschaftlicher Stabilität ausbreiten. Wir befinden uns in einer post-antibiotischen Ära und haben uns zu lange auf den Lorbeeren der vergangenen Forschung ausgeruht, so dass heute immer mehr Menschen an Infektionen mit multiresistenten Keimen sterben. Infektionen sind sehr plastische und variable Prozesse, die stark vom Individuum abhängen, sei es auf Seiten des Wirts oder des Erregers. Die Pathogenität von Mikroorganismen besser zu verstehen und potenzielle Angriffspunkte für eine völlig neue Klasse von Arzneimitteln zu finden ist ein erklärtes Ziel der aktuellen Grundlagenforschung. Um diese Herausforderung zu meistern, ist die Einzelzell-RNA-Sequenzierung (scRNA-seq) unser präzisestes Werkzeug. In dieser Arbeit haben wir verschiedene hochmoderne scRNA-seq-Technologien eingesetzt, um Infektionskrankheiten besser zu verstehen. Darüber hinaus haben wir eine neue Methode entwickelt, die in der Lage ist, das Transkriptom eines einzelnen Bakteriums aufzulösen. Durch die Anwendung eines poly(A)-unabhängigen scRNA-seq-Protokolls unter drei verschiedenen, infektionsrelevanten W achstumsbedingungen konnten wir die wachstumsabhängigen Genexpressionsmuster in einzelnen Salmonella Typhimurium- und Pseudomonas aeruginosa- Bakterien zuverlässig nachweisen. Die Datenanalyse zeigt, dass diese Methode nicht nur die Differenzierung verschiedener Kulturbedingungen ermöglicht, sondern auch Transkripte über verschiedene RNA-Spezies hinweg erfassen kann. Darüber hinaus haben wir unter Verwendung modernster Bildgebungs- und Einzelzell-RNA- Sequenzierungstechnologien ein menschliches Darmgewebemodell umfassend charakterisiert, das im weiteren Verlauf des Projekts als Salmonella Typhimurium-Infektionsmodell verwendet wurde. Während die meisten Infektionsstudien in Mäusen durchgeführt werden, denen die menschliche Darmphysiologie fehlt, ermöglicht uns das in vitro Modell des menschlichen Gewebes direkte Rückschlüsse auf die Pathogenese in vivo. Die Kombination aus immunfluoreszierender Bildgebung, deep single-cell RNA Sequenzierung und HCR-FISH, angewandt in Zeitverlaufsexperimenten, ermöglicht eine bisher ungesehene Auflösung zur Untersuchung von Heterogenität und Dynamik einer Salmonella Infektion, welche Details der Pathogenität entgegen der allgemeinen wissenschaftlichen Meinung offenbaren. KW - Salmonella KW - Einzelzellanalyse KW - Dünndarm KW - Gewebemodell KW - Single-cell RNA-sequencing KW - Infektionsmodell KW - Heterogenität von Mikroorganismen KW - Pathogenität Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-289435 ER -