TY - THES A1 - Klenk, Johann Christoph T1 - Effekte von Parathormon auf die Struktur und Komplexierung des Parathormonrezeptors 1 T1 - Effects of parathyroid hormone on the structure and complexation of parathyroid hormone receptor 1 N2 - Der Parathormonrezeptor Typ 1 (PTHR) ist ein G-Protein-gekoppelter Rezeptor der Gruppe 2 und wichtigster Regulator des Kalziumstoffwechsels. Im ersten Teil der Arbeit wurde eine neuartige posttranslationale Modifikation des PTHR in Form einer proteolytischen Spaltung der Ektodomäne identifiziert, charakterisiert und deren Regulation beschrieben. Nach langanhaltender Stimulation des Rezeptors mit Agonisten – aber nicht mit Antagonisten – wurde eine Massen- und Mengenzunahme des Rezeptorproteins beobachtet. Es konnte gezeigt werden, dass der Rezeptor unter basalen Bedingungen einer Spaltung unterliegt. Der Massenunterschied entsteht durch die proteolytische Spaltung der Ektodomäne des PTHR, was nachfolgend die Stabilität des Rezeptors beeinträchtigt. Die Spaltung erfolgte innerhalb einer unstrukturierten Schleife der Ektodomäne, welche die Bereiche für die Ligandenbindung miteinander verbindet. Hierbei handelt es sich um eine Region, die im Vergleich zu anderen Gruppe 2-Rezeptoren spezifisch für den PTHR ist. Das durch die Spaltung entstandene N-terminale Fragment bleibt durch eine Disulfidbrücke mit dem Transmembranteil des Rezeptors verbunden. Durch Versuche mit verschiedenen Proteaseinhibitoren konnte die verantwortliche Protease der Familie der zinkabhängigen extrazellulären Proteasen zugeordnet werden. Diese Ergebnisse beschreiben einen Mechanismus wie die Homoöstase des PTHR reguliert sein könnte. In einem zweiten Abschnitt wurde die Interaktion der Adapterproteine NHERF1 und beta-Arrestin2 mit dem PTHR untersucht. Beide Proteine interagierten unabhängig mit dem Rezeptor, wobei NHERF1 über eine PDZ-Domäne konstitutiv an den C-Terminus des Rezeptors bindet. beta-Arrestin2 hingegen bindet nach Aktivierung des Rezeptors und führt zur Desensitisierung des Rezeptors. Mittels biochemischer und mikroskopischer Methoden konnte gezeigt werden, dass beide Proteine gemeinsam einen ternären Komplex mit dem PTHR bilden, welcher durch die direkte Interaktion zwischen NHERF1 und beta-Arrestin2 vermittelt wird. Dies hat zur Folge, dass beta-Arrestin im basalen Zustand durch NHERF1 an den Rezeptor gekoppelt wird. Durch Analyse der Assoziationskinetik mittels Fluoreszenz-Resonanz-Energietransfer-Messungen zeigte sich, dass diese Kopplung zu einer zweifach erhöhten Rekrutierungsgeschwindigkeit von beta-Arrestin2 an den PTHR führt. Somit stellt unterstützt NHERF1 die beta-Arrestin2-vermittelte Desensitisierung des PTHR. N2 - The Parathyroid hormone receptor type 1 (PTHR) belongs to the class 2 of G-protein coupled receptors (GPCRs) and is the main regulator of calcium homeostasis of the body. The first part of the dissertation describes a novel mechanism of receptor regulation based on a proteolytic cleavage of the receptor’s extracellular domain. Prolonged stimulation with PTH led to an apparent increase in molecular mass and in stability of the PTHR. Biochemical analysis of the receptor protein revealed that the PTHR undergoes posttranslational cleavage. Agonistic but not antagonistic PTH-peptides prevented this cleavage, thereby stabilizing the molecular mass and also increasing the half life of the receptor. The cleavage was shown to occur within an unstructured stretch of the extracellular domain of the receptor, which connects two parts required for ligand binding and which is unique in the PTHR amongst all class 2 GPCRs. The cleaved N-terminal fragment was further connected by a disulfide bridge and could only be released by reducing agents. By testing a panel of different protease inhibitors, a protease belonging to the family of zinc-dependent metalloproteases could be identified to be responsible for the PTHR cleavage. Thus, these findings describe a new mechanism how PTHR homeostasis may be regulated. In the second part, the interaction between the adaptor proteins NHERF1 and beta-arrestin2 with the PTHR was assessed. Both proteins interacted independently with the receptor. While NHERF1 formed a constitutive interaction with the PTHR C-terminus, beta-arrestin2-binding required activation of the receptor. Using biochemical and microscopic methods it was shown that both proteins formed a ternary complex with the receptor. This complex was mediated by a direct interaction between NHERF1 and beta-arrestin2 which has been identified in this work. As a consequence, NHERF1 leads to a coupling of beta-arrestin2 close to the PTHR. Association kinetics of beta-arrestin2 with the PTHR measured by fluorescent resonance energy transfer were two-fold increased in the presence of NHERF, suggesting that the ternary complex facilitates the desensitization of the PTHR by beta-arrestin2. KW - Parathormon KW - Proteolyse KW - Endokrinologie KW - Calcium KW - Rezeptor KW - Retinales S-Antigen KW - GPCR KW - Matrix-Metalloprotease KW - NHERF KW - Signaltransduktion KW - G-Protein KW - GPCR KW - Matrix-Metalloproteinase KW - NHERF KW - signal transduction KW - G-protein Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47288 ER - TY - THES A1 - Emami-Nemini, Alexander Darius T1 - Differential parathyroid hormone receptor signaling directed by adaptor proteins T1 - Steuerung differenzieller Signalgebung des Parathormon Rezeptors durch Adapterproteine N2 - The superfamily of G protein-coupled receptors (GPCR) regulates numerous physiological and pathophysiological processes. Hence GPCRs are of significant interest for pharmacological therapy. Embedded into cytoplasmic membranes, GPCRs represent the core of large signaling complexes, which are critical for transduction of exogenous stimuli towards activation of downstream signaling pathways. As a member of the GPCR family B, the parathyroid hormone receptor (PTHR) activates adenylyl cyclases, phospholipases C β as well as mitogen-activated protein kinase-dependent signaling pathways, thereby mediating endocrine and paracrine effects of parathyroid hormone (PTH) and parathyroid hormone-related peptide (PTHrP), respectively. This regulates, calcium homeostasis, bone metabolism and bone development. Paradoxically, PTH is able to induce both catabolic and anabolic bone metabolism. The anabolic effect of PTH is successfully applied in the therapy of severe osteoporosis. Domination of anabolic or catabolic bone-metabolism is entailed by temporal and cell-type specific determinants. The molecular bases are presumably differential arrangements of adaptor proteins within large signaling complexes that may lead to differential activation of signaling pathways, thereby regulating physiological effects. The molecular mechanisms are largely unclear; thus, there is significant interest in revealing a better understanding of PTHR-related adaptor proteins. To identify novel adaptor proteins which direct PTHR signaling pathways, a proteomic screening approach was developed. In this screening, vav2, a guanine-nucleotide exchange factor (GEF) for small GTPases which regulates cytoskeleton reorganization, was found to interact with intracellular domains of PTHR. Evidence is provided that vav2 impairs PTH-mediated phospholipase C β (PLCβ) signaling pathways by competitive interactions with G protein αq subunits. Vice versa, PTH was shown to regulate phosphorylation and subsequent GEF activity of vav2. These findings may thus shed new light on the molecular mechanisms underlying the effects of PTH on bone metabolism by PLC-signaling, cell migration and cytoskeleton organization. In addition to the understanding of intracellular molecular signaling processes, screening for ligands is a fundamental and demanding prerequisite for modern drug development. To this end, ligand binding assays represent a fundamental technique. As a substitution for expensive and potentially harmful radioligand binding, fluorescence-based ligand-binding assays for PTHR were developed in this work. Based on time-resolved fluorescence, several assay variants were established to facilitate drug development for the PTHR. N2 - Die Superfamilie der G-Protein-gekoppelten Rezeptoren (GPCRs) reguliert eine Vielzahl von physiologischen und pathophysiologischen Prozessen, was sie bedeutend für die Pharmakotherapie macht. Eingebettet in die Zytoplasmamembran sind GPCRs das Zentrum von Signalkomplexen, die eine Transduktion äußerer Stimuli zur Aktivierung von nachgeschalteten Signalwegen ermöglichen. Der zur Familie B der GPCRs gehörige Parathormon-Rezeptor (PTHR) aktiviert Adenylyl-Zyklasen-, Phospholipasen Cβ- und Mitogen-aktivierte Proteinkinase (MAPK)-abhängige Signalwege, wodurch endokrine und parakrine Wirkungen des Parathormons (PTH) und des Parathormon-ähnlichen Peptides (PTHrP) vermittelt werden. Dies ermöglicht die Regulation der Calcium-Homöostase, des Knochenmetabolismus und der Knochenentwicklung. Paradoxerweise kann PTH sowohl katabole als auch anabole Effekte auf den Knochenstoffwechsel induzieren. Den anabolen Effekt von PTH nutzt man erfolgreich in der Therapie der schweren Osteoporose. Ob ein anaboler oder kataboler Knochenmetabolismus überwiegt, wird durch zeitliche und Zelltyp-spezifische Faktoren bestimmt. Dem zugrunde liegt vermutlich unter anderem eine differenzielle Anordnung verschiedener Adapterproteine innerhalb der Signalkomplexe, die zur differenziellen Aktivierung von Signalwegen führen und so eine Steuerung bestimmter physiologischer Effekte ermöglichen. Die molekularen Mechanismen sind jedoch noch weitgehend unklar, weshalb großes Interesse besteht, ein besseres Verständnis über die PTHR-assoziierten Adapterproteine zu entwickeln. Zur Identifizierung neuer Adapterproteine, die PTHR-Signalwege beeinflussen, wurde in dieser Arbeit ein auf dem Proteom-basierender Screening-Ansatz entwickelt. Dieser führte zur Entdeckung einer Interaktion von intrazellulären Domänen des PTHR mit vav2, einem Guanin-Nukleotid Austauschfaktor (GEF) für kleine GTPasen, der die Zytoskelett-Reorganisation steuert. Des Weiteren wurde nachgewiesen, dass vav2 über kompetitive Interaktionen mit G Protein αq Untereinheiten PTH-vermittelte Phospholipase Cβ (PLCβ)-abhängige Signalwege beeinflusst. Umgekehrt wurde gezeigt, dass PTH die Phosphorylierung und damit die GEF Aktivität von vav2 reguliert. Diese Befunde können Aufschluss über molekulare Mechanismen geben, die den Wirkungen von PTH auf den Knochenstoffwechsel durch PLC-Signalwege, Zellmigration und Zytoskelett-Reorganisation zugrunde liegen. Neben dem Verständnis über molekulare Prozesse der intrazellulären Signalgebung ist die Suche nach Liganden eine herausfordernde Grundvoraussetzung für die aktuelle Arzneistoffentwicklung. Liganden-Bindungs-Experimente stellen dafür elementare Techniken dar. Zur Substitution kostenintensiver und potentiell gesundheitsschädlicher Radioliganden-Bindungen, wurden in dieser Arbeit Fluoreszenz-basierte Liganden-Bindungs-Experimente für den PTHR entwickelt. Basierend auf Zeit-aufgelöster Fluoreszenz wurden mehrere Varianten dieser Experimente etabliert, um die Arzneistoffentwicklung am PTHR zu unterstützen. KW - G-Protein gekoppelte Rezeptoren KW - Parathormon KW - G-Protein gekoppelte Rezeptoren KW - Parathormon KW - vav2 KW - Guanin Nukleotid Austauschfaktor KW - G protein coupled receptor KW - parathyroid hormone KW - vav2 KW - guanine nucleotide exchange factor KW - Guaninnucleotid-Austauschfaktoren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72369 ER -