TY - THES A1 - Gutberlet, Marcel T1 - K-Raum-Symmetrie und dichtegewichtete Bildgebung: Optimierung der Magnet-Resonanz-Bildgebung hinsichtlich Signal-zu-Rauschverhältnis, Abbildungsqualität und Messzeit T1 - K-space symmetry and density weighted imaging:Optimization of magnetic resonance imaging with regard to signal-to-noise ratio, image quality and acquisition time N2 - Die Magnet-Resonanz (MR)-Bildgebung ist mit vielfältigen Anwendungen ein nicht mehr wegzudenkendes Instrument der klinischen Diagnostik geworden. Dennoch führt die stark limitierte Messzeit häufig zu einer Einschränkung der erzielbaren räumlichen Auflösung und Abdeckung, einer Beschränkung des Signal-zu-Rauschverhältnis (Signal-to-Noise Ratio) (SNR) sowie einer Signalkontamination durch benachbartes Gewebe. Bereits bestehende Methoden zur Reduktion der Akquisitionszeit sind die partielle Fourier (PF)-Bildgebung und die parallele Bildgebung (PPA). Diese unterscheiden sich zum einen im Schema zur Unterabtastung des k-Raums und zum anderen in der verwendeten Information zur Rekonstruktion der fehlenden k-Raum-Daten aufgrund der beschleunigten Akquisition. Während in der PPA die unterschiedlichen Sensitivitäten einer Mehrkanal-Empfangsspule zur Bildrekonstruktion verwendet werden, basiert die PF-Bildgebung auf der Annahme einer langsamen Variation der Bildphase. Im ersten Abschnitt dieser Arbeit wurde das Konzept der Virtuellen Spulendekonvolutions (Virtual Coil Deconvolution) (VIDE)-Technik vorgestellt, das das gleiche Schema der Unterabtastung des k-Raums wie die konventionelle PPA verwendet, aber anstelle der Spulensensitivität die Bildphase als zusätzliche Information zur Herstellung der fehlenden Daten der beschleunigten Bildgebung verwendet. Zur Minimierung der Rekonstruktionsfehler und der Rauschverstärkung in der VIDE-Technik wurde ein optimiertes Akquisitionsschema entwickelt. Die Kombination der PPA und PF-Bildgebung zur Beschleunigung der MR-Bildgebung wird durch das unterschiedliche Unterabtastschema erschwert. Wie Blaimer et al. in ihrer Arbeit gezeigt haben, kann das Prinzip der VIDE-Technik auf Mehrkanal-Spulen übertragen werden, sodass mit dieser Methode die PPA und die PF-Bildgebung optimal vereint werden können. Dadurch kann die Rauschverstärkung aufgrund der Spulengeometrie ohne zusätzliche Messungen deutlich reduziert werden. Obwohl die Abtastung des k-Raums in der MR-Bildgebung sehr variabel gestaltet werden kann, wird bis heute nahezu ausschließlich die regelmäßige k-Raum-Abtastung in der klinischen Bildgebung verwendet. Der Grund hierfür liegt, neben der schnellen Rekonstruktion und der einfachen Gestaltung der Variation des Bild-Kontrasts, in der Robustheit gegen Artefakte. Allerdings führt die regelmäßige k-Raum-Abtastung zu einer hohen Signalkontamination. Die Optimierung der SRF durch nachträgliches Filtern führt jedoch zu einem SNR-Verlust. Die dichtegewichtete (DW-) Bildgebung ermöglicht die Reduktion der Signal-Kontamination bei optimalem SNR, führt aber zur einer Reduktion des effektiven Gesichtsfelds (FOV) oder einer Erhöhung der Messzeit. Letzteres kann durch eine Kombination der PPA und DW-Bildgebung umgangen werden. Der zweite Teil dieser Arbeit befasste sich mit neuen Aufnahme- und Rekonstruktionsstrategien für die DW-Bildgebung, die eine Erhöhung des FOVs auch ohne Einsatz der PPA erlauben. Durch eine Limitierung der minimalen k-Raum-Abtastdichte konnte durch eine geringfügige Reduktion des SNR-Vorteils der DW-Bildgebung gegenüber der kartesischen, gefilterten Bildgebung eine deutliche Verringerung der Artefakte aufgrund der Unterabtastung in der DW-Bildgebung erreicht werden. Eine asymmetrische Abtastung kann unter der Voraussetzung einer homogenen Bildphase das Aliasing zusätzlich reduzieren. Durch die Rekonstruktion der DW-Daten mit der Virtuelle Spulendekonvolution für die effektive DW-Bildgebung (VIDED)-Bildgebung konnten die Artefakte aufgrund der Unterabtastung eliminiert werden. In der 3d-Bildgebung konnte durch Anwendung der modifizierten DW-Bildgebung eine Steigerung des FOVs in Schichtrichtung ohne Messzeitverlängerung erreicht werden. Die nicht-kartesische k-Raum-Abtastung führt im Fall einer Unterabtastung zu deutlich geringeren, inkohärenten Aliasingartefakten im Vergleich zur kartesischen Abtastung. Durch ein alternierendes DW-Abtastschema wurde eine an die in der MR-Mammografie verwendete Spulengeometrie angepasste k-Raum-Abtastung entwickelt, das bei gleicher Messzeit die räumliche Auflösung, das SNR und das FOV erhöht. Im dritten Teil dieser Arbeit wurde die Verallgemeinerung der DW-Bildgebung auf signalgewichtete Sequenzen, d.h. Sequenzen mit Magnetisierungspräparation (Inversion Recovery (IR), Saturation Recovery (SR)) sowie Sequenzen mit einer Relaxation während der Datenaufnahme (Multi-Gradienten-Echo, Multi-Spin-Echo) vorgestellt, was eine Steigerung der Bildqualität bei optimalem SNR erlaubt. Die Methode wurde auf die SR-Sequenz angewendet und deren praktischer Nutzen wurde in der Herz-Perfusions-Bildgebung gezeigt. Durch die Verwendung der in dieser Arbeit vorgestellten Technik konnte eine Reduktion der Kontamination bei einem SNR-Gewinn von 16% im Vergleich zur konventionellen, kartesischen Abtastung bei gleicher Messzeit erreicht werden. N2 - Magnetic resonance (MR) imaging has become a powerful tool in clinical diagnostics. However, long acquisition times used in MR imaging limit the available signal-to-noise Ratio (SNR), spatial resolution and coverage and cause signal contamination from neighboring tissue. Two established methods used to reduce the scan time of MR imaging are partial parallel acquisition (PPA) and partial fourier (PF) imaging. These methods use different schemes to undersample k-space and use a different kind of information to reconstruct the missing data resulting from the accelerated acquisition. While in PPA the varying sensitivities of a multi-channel receiver coil are used in the image reconstruction, PF imaging is based on the assumption of a smoothly varying image phase. In the first section of this work, the concept of virtual coil deconvolution (VIDE) imaging is proposed. This method uses the identical acquisition scheme for the accelerated measurement of k-space as PPA. However, in contrast to PPA, VIDE imaging uses the image phase instead of the varying coil sensitivities to recover the missing data of the accelerated acquisition. Reconstruction errors and noise amplification of VIDE imaging were minimized by an optimized acquisition scheme. VIDE imaging allows an acceleration of MR imaging by a factor of two. The different sampling schemes used in PF imaging and PPA are disadvantageous for the combination of PF imaging and PPA to increase the acceleration of MRI. Blaimer, Gutberlet et al. showed that the concept of VIDE imaging can be extended to multi-channel receiver coils. This allows an optimal combination of PF imaging and PPA. The noise amplification caused by the coil geometry could be significantly decreased without lengthening the scan time. Although k-space can be measured in a variety of sampling schemes, almost exclusively a Cartesian trajectory is used in clinical imaging. Reasons are the fast and simple reconstruction, the robustness against artifacts and the well-defined contrast of Cartesian imaging. However, the Cartesian acquisition results in increased signal contamination. Post-processing filtering allows reduction of contamination but at the expense of SNR. Density weighted (DW) imaging allows optimization of the spatial response function (SRF) at maximum SNR but results in a reduced effective field of view (FOV) or a lengthening of the scan time. This disadvantage of DW imaging can be eliminated by the application of PPA. In the second section new acquisition and reconstruction methods were presented allowing an increase of the effective FOV in DW imaging even without the use of PPA. The limitation of the minimum sampling density in DW imaging resulted in a significant reduction of aliasing. Moderate filtering to correct the k-space weighting resulted in low reduction of the SNR gain in comparison to Cartesian imaging with the identical scan time. On condition of a homogeneous image phase, the aliasing can be additionally reduced by using an asymmetric DW sampling. Using virtual coil deconvolution for effective density weighted (VIDED) imaging for reconstruction, aliasing could be eliminated. By applying the developed DW method, the spatial coverage of 3D imaging was increased even without a lengthening of the scan time. In case of undersampling k-space, DW acquisition results in significantly reduced incoherent aliasing in comparison to Cartesian imaging. Alternating DW sampling revealed an optimized sampling scheme for the coil geometry used in MR-mammography. In experiments the effective FOV or the spatial resolution in slice direction could be increased significantly. In the third section the extension of DW imaging to signal-weighted sequences, i.e. sequences with magnetization preparation (inversion recovery or saturation recovery) or with relaxation between the acquired echoes (multigradient echo, multi-spin echo), was presented. The method provided increased image quality at optimum SNR in comparison to Cartesian imaging. By applying the new technique to SR-sequences, its practical use could be shown in myocardial perfusion imaging. The method presented in this work allowed an optimization of the SRF with an SNR gain of 16% compared to conventional Cartesian sampling at identical scan time. KW - Kernspintomografie KW - Paralleler Prozess KW - Messprozess KW - Dichtegewichtete Bildgebung KW - Parallele Bildgebung KW - VIDE KW - VIDED KW - density weighted imaging KW - density weighting KW - parallel imaging KW - VIDE KW - VIDED KW - Optimierung KW - NMR-Bildgebung KW - NMR-Mammographie KW - Koronarperfusion Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71834 ER - TY - THES A1 - Weber, Daniel T1 - Morphologische und funktionelle MRT-Infarktcharakterisierung und Entwicklung einer diffusionsgewichteten MRT-Methode T1 - Morphological and functional MRI infarct characterization and development of a diffusion-weighted MRI method N2 - Diffusionstensorbildgebung im Vergleich zu anderen Parametermethoden für die Infarktcharakterisierung Ziel dieses Teils der Arbeit war die Klärung der Frage, welches Potential verschiedene MR-Parametersequenzen bei der Charakterisierung eines myokardialen Infarkts sowohl im akuten als auch im chronischen Fall haben. Dazu wurde eine Studie mit akut und chronisch infarzierten Rattenherzen durchgeführt. Untersucht wurden die Parameter T1, T2 und T2* sowie die aus der Diffusionstensorbildgebung berechneten Parameter ADC, FA, cs, cp und cl . Es zeigte sich, dass es kein Analogon zum bei einer cerebralen Ischämie bekannten Mismatch-Konzept gibt. Weder im akuten noch im chronischen war Fall eine ausgewiesene Differenz im diagnostizierten Infarktareal zwischen verschiedenen Sequenzen feststellbar. Alles in allem eignen sich zur detaillierten Charakterisierung der Infarktnarbe am besten eine T2*- oder eine Diffusionstensorsequenz. Die T2*-Sequenz liefert optisch das aufschlussreichere Bild, die aufwendigere Diffusionstensorsequenz dagegen bietet aufgrund der vielfachen Darstellungsmöglichkeiten im Postprocessing ein Mehr an Information und zeigt dazu eine Veränderung der Narbe im Zeitverlauf. Oxygenierungsmessung am Mäuseherz in vivo Die Charakterisierung einer Infarktnarbe kann auch über die Darstellung morphologischer Strukturen hinaus erfolgen. Die Oxygenierung ist ein komplexer Parameter, der funktionelle Auskunft über die Vaskularisierung und Viabilität des Gewebes geben kann. Zugang zu diesem Parameter erhält man über T2*-Messungen, da der Parameter T2* sensitiv auf chemisch gebundenen Sauerstoff reagiert. Hier wurden der Einfluss von reiner Sauerstoffatmung im Gegensatz zu normaler Raumluftatmung auf die Oxygenierung bei gesunden und infarzierten Mäusen untersucht. Die Messungen wurden trotz der Schwierigkeiten, die durch die Bewegung durch Atmung und Herzschlag entstehen, in vivo bei 17,6 Tesla implementiert und durchgeführt. Die Auflösung war ausreichend, um auch nach Infarkt extrem ausgedünnte Myokardwände gut auflösen und charakterisieren zu können. Der Effekt auf das Oxygenierungslevel ist stark unterschiedlich zwischen normalen und infarzierten Herzen, woraus auf eine noch nicht weit fortgeschrittene Revaskularisierung der Narbe eine Woche nach Infarzierung geschlossen werden kann. Die Methode wurde darüber hinaus an einem 7,0 Tesla-Magneten zur Verwendung an Ratten implementiert und auf das im Gegensatz zur Maus veränderte Atmungsverhalten der Ratte angepasst. Zum einen kann dadurch der Einfluss des hohen Magnetfeldes auf die Oxygenierungsmessung untersucht werden, zum anderen ist das Herz als zu untersuchendes Objekt bei der Ratte größer. Diffusionswichtung mittels Hole-Burning Die in dieser Arbeit zur Charakterisierung des Herzens verwendete Diffusionsmethode kann im Grenzfall von kurzen T2-Relaxationszeiten an ihre Grenzen stoßen: Bei den verwendeten starken Magnetfeldern klingt das messbare Signal aufgrund der Relaxationszeit T2 oft sehr schnell ab. Daher wurde eine Methode entwickelt, die einen völlig neuen Ansatz zur diffusionsgewichteten Bildgebung verfolgt, bei dem die Informationen über die Diffusion unabhängig von der limitierenden T2-Zeit gewonnen werden können. Die sog. Hole-Burning-Diffusionssequenz verwendet in einem Vorexperiment lediglich die Longitudinalmagnetisierung zur Diffusionswichtung. Das Signal wird dann mit einer schnellen Auslesesequenz akquiriert. Bei der Präparation werden zunächst auf Subvoxel-Niveau Streifen "gebrannt", d.h. die Magnetisierung wird dort gesättigt. Bis zur nächsten Sättigung ist das Verhalten der Magnetisierung abhängig von der T1-Relaxation in diesem Bereich und vom Diffusionsverhalten. Durch rasches Wiederholen des selektiven Pulszugs wird schließlich eine Gleichgewichtsmagnetisierung erreicht, die von der Diffusionskonstanten D und der T1-Relaxationszeit abhängt. Im Rahmen dieser Arbeit wurden die Abhängigkeiten verschiedener Sequenzparameter untersucht und diese mittels Simulationen optimiert. Außerdem wurde die Sequenz an einem Scanner implementiert und erste Experimente damit durchgeführt. Mit Hilfe von Simulationen konnten dazu Lookup-Tabellen generiert werden, mit denen in bestimmten Bereichen (insbesondere bei nicht zu kurzen T1-Relaxationszeiten) sowohl die Diffusionskonstante D als auch die T1-Relaxationszeit quantifiziert werden konnte. N2 - Diffusion tensor imaging for the characterization of myocardial infarction in comparison to other methods The aim of this part of this work was to evaluate the potential of different MR sequences for the characterization of myocardial infarction in both the acute and chronic case. Therefore a study of acute as well as chronic infarcted rat hearts was performed, and the parameters T1, T2, T2* and the parameters ADC, FA, cs, cp and cl calculated from the diffusion tensor images were investigated. It turned out that there is no equivalent to the ischemia. Neither in the acute nor in the chronic case, a notably difference inside the affected area was detectable between different sequences. All in all, for detailed characterization of the infarct scar a T2* or a diffusion tensor sequence are most suitable. The T2* sequence provides a more informative visual image, whereas the more time-consuming diffusion tensor sequence provides a surplus of information due to the multiple display options in post-processing and shows the remodelling of the scar tissue over time. Oxygen level measurements in mouse hearts in vivo The characterization of an infarct scar can also go beyond the representation of morphological structure. The oxygenation is a complex parameter that can provide functional information of the vascularization and viability of the tissue. Access to this parameter is obtained by T2*-measurements, as the parameter T2* is sensitive to chemically bound oxygen. The influence of pure oxygen breathing in contrast to normal room air breathing on the oxygenation level in healthy and infarcted mice have been explored. Despite the difficulties caused by the movement due to respiration and heartbeat the measurements were implemented and carried out at 17.6 Tesla in vivo. The resolution was sufficient to resolve and investigate extremely thinned heart walls after infarction. The effect on the oxygenation level varies considerably between normal and infarcted hearts; that may be caused by a not yet advanced revascularization of the scar. In addition, the method was implemented to a 7.0 Tesla magnet for use in rats and adapted to the respiration of rats, which is different to the respiration of mice. The first reason was that the influence of the higher magnetic field on the measurement of the oxygenation level could be examined. Second, the heart as the examined object is larger in rats. Diffusion weighting using hole burning The MR diffusion method used in this work for the characterization of myocardial infarctions could be limited by extremely short T2 relaxation times. With the strong magnetic fields used here the measurable signal decays very fast due to the relaxation time T2. Therefore, a method for a completely new approach to diffusion-weighted imaging was developed, where the diffusion weighting can be obainted without being limited by the time constant T2. The so-called hole-burning diffusion sequence uses only the longitudinal magnetization for the diffusion weighting in a preliminary experiment. The signal is then acquired with a fast read-out sequence. During the preparation stripes will be "burned" into the magnetization on a subvoxel level, i.e. the magnetization is saturated there. Until the next saturation pulse the behavior of the magnetization depends first on the T1 relaxation time in this area and second on the diffusion. By rapidly repeating the selective pulse train a steady state magnetization dependend on the diffusion constant D and the T1 relaxation time is reached. In this work the dependencies between different sequence parameters were investigated and optimized using simulations. In addition, the sequence was implemented on a MR scanner and first experiments were carried out. With simulated lookup-tables we were able to quantify both the diffusion coefficient D and the T1 relaxation time in the case of not too short relaxation times T1. KW - Kernspintomografie KW - Infarkt KW - MRI KW - infarct KW - characterization KW - diffusion KW - hole-burning KW - NMR-Tomographie KW - Anisotrope Diffusion KW - Diffusion KW - Spektrales Lochbrennen KW - Herzinfarkt Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71157 ER - TY - THES A1 - Ehses, Philipp T1 - Development of new Acquisition Strategies for fast Parameter Quantification in Magnetic Resonance Imaging T1 - Entwicklung neuer Aufnahmeverfahren zur schnellen Parameterbestimmung in der Magnetresonanztomographie N2 - Magnetic resonance imaging (MRI) is a medical imaging method that involves no ionizing radiation and can be used non-invasively. Another important - if not the most important - reason for the widespread and increasing use of MRI in clinical practice is its interesting and highly flexible image contrast, especially of biological tissue. The main disadvantages of MRI, compared to other widespread imaging modalities like computed tomography (CT), are long measurement times and the directly resulting high costs. In the first part of this work, a new technique for accelerated MRI parameter mapping using a radial IR TrueFISP sequence is presented. IR TrueFISP is a very fast method for the simultaneous quantification of proton density, the longitudinal relaxation time T1, and the transverse relaxation time T2. Chapter 2 presents speed improvements to the original IR TrueFISP method. Using a radial view-sharing technique, it was possible to obtain a full set of relaxometry data in under 6 s per slice. Furthermore, chapter 3 presents the investigation and correction of two major sources of error of the IR TrueFISP method, namely magnetization transfer and imperfect slice profiles. In the second part of this work, a new MRI thermometry method is presented that can be used in MRI-safety investigations of medical implants, e.g. cardiac pacemakers and implantable cardioverter-defibrillators (ICDs). One of the major safety risks associated with MRI examinations of pacemaker and ICD patients is RF induced heating of the pacing electrodes. The design of MRI-safe (or MRI-conditional) pacing electrodes requires elaborate testing. In a first step, many different electrode shapes, electrode positions and sequence parameters are tested in a gel phantom with its geometry and conductivity matched to a human body. The resulting temperature increase is typically observed using temperature probes that are placed at various positions in the gel phantom. An alternative to this local thermometry approach is to use MRI for the temperature measurement. Chapter 5 describes a new approach for MRI thermometry that allows MRI thermometry during RF heating caused by the MRI sequence itself. Specifically, a proton resonance frequency (PRF) shift MRI thermometry method was combined with an MR heating sequence. The method was validated in a gel phantom, with a copper wire serving as a simple model for a medical implant. N2 - Die Magnetresonanztomographie (MRT) zeichnet sich als medizinisches Bildgebungsverfahren dadurch aus, dass sie ohne ionisierende Strahlung auskommt und nicht-invasiv einsetzbar ist. Ein weiterer wichtiger - wenn nicht der wichtigste - Grund für die weite und wachsende Verbreitung der MRT in der klinischen Praxis ist ihr interessantes und hoch-flexibles Kontrastverhalten, und damit die gute Darstellbarkeit biologischen Gewebes. Die Hauptnachteile der MRT sind die, verglichen mit z.B. Computer-Tomographie (CT), langen Messzeiten und die damit direkt verbundenen hohen Untersuchungskosten. Der erste Teil dieser Arbeit beschreibt Verbesserungen der IR TrueFISP Methode zur MR-Parameterbestimmung. IR TrueFISP ist eine schnelle Methode zur gleichzeitigen Quantifizierung der Protonendichte, der longitudinalen Relaxationszeit T1, sowie der transversalen Relaxationszeit T2. In Kapitel 2 dieser Arbeit wird eine Methode zur Beschleunigung der IR TrueFISP Quantifizierung vorgestellt, die es erlaubt einen kompletten Relaxometrie-Datensatz in unter 6 s pro Schicht aufzunehmen. Weiterhin werden in Kapitel 3 zwei allgemeine Fehlerquellen der IR TrueFISP Methode untersucht und Korrekturverfahren vorgestellt. Im zweiten Teil dieser Arbeit werden neuartige MR-Thermometrie Methoden vorgestellt, die sich besonders zur Untersuchung der MR-Sicherheit von medizinischen Implanten, insbesondere Herzschrittmachern und implantierbaren Kardioverter-Defibrillatoren (ICDs), eignen. Momentan sind in den allermeisten Fällen MRT Untersuchungen an Herzschrittmacher- und ICD-Patienten aufgrund der damit verbundenen Risiken kontraindiziert. Das dabei am schwierigste in den Griff zu bekommende und damit größte Risiko ist die mögliche Schädigung des Myokards, hervorgerufen durch die von den geschalteten HF-Feldern induzierten Ströme in den Schrittmacherelektroden. Um eine MR-sichere Elektrode und/oder sichere Messprotokole zu entwickeln ist es notwendig viele verschiedene Elektroden, Elektrodenpositionen und Messparameter-Einstellungen in einem körperähnlichen Gel-Phantom untersucht. Die bei der jeweiligen Messung auftretenden Erhitzungen werden dabei meist mit Hilfe fiberoptischer Thermometer an verschiedenen Positionen im Gel gemessen. Eine Alternative ist die Aufnahme einer globalen Karte der Temperaturerhöhung mit Hilfe der MR-Thermometrie. In dieser Arbeit wird eine Messmethode vorgestellt, die MR-Thermometrie mit HF induziertem Heizen kombiniert. Diese Methode wurde an einem Kupferdraht im Gelphantom validiert und mit fiberoptisch gemessenen Temperaturanstiegen verglichen. KW - Kernspintomografie KW - Messprozess KW - Relaxometrie KW - Thermometrie KW - nicht-kartesische Bildgebung KW - Relaxometry KW - Thermometry KW - non-Cartesian imaging KW - Optimierung KW - MRI KW - NMR-Tomographie Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72531 ER - TY - THES A1 - Hölscher, Uvo Christoph T1 - Relaxations-Dispersions-Bildgebung in der Magnetresonanztomographie T1 - Relaxation Dispersion Magnetic Resonance Imaging N2 - Das Ziel dieser Promotion ist der Aufbau eines dreMR Setups für einen klinischen 1,5T Scanner, das die Relaxations-Dispersions-Bildgebung ermöglicht, und die anschließende Ergründung von möglichst vielen Anwendungsfeldern von dreMR. Zu der Aufgabe gehört die Bereitstellung der zugrunde liegenden Theorie, der Bau des experimentellen Setups (Offset-Spule und Stromversorgung) sowie die Programmierung der nötigen Software. Mit dem gebauten Setup konnten zwei große Anwendungsfelder — dreMR Messungen mit und ohne Kontrastmitteln — untersucht werden. N2 - The goal of this dissertation is the design of a dreMR setup for a clinical 1.5T whole body scanner and the subsequent exploration of possible application fields for the dreMR method. This task includes the investigation of the underlying theory, the design and construction of the dreMR setup (offset-coil and current driver) and the preparation of required software. Two major application fields have been demonstrated: dreMR with and without contrast agents. KW - Kernspintomografie KW - MRT KW - Dispersion KW - dreMR KW - MRI KW - dreMR KW - NMR-Tomographie KW - Kontrastmittel KW - Bilderzeugung Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-79554 ER - TY - THES A1 - Wichmann, Tobias T1 - Spulen-Arrays mit bis zu 32 Empfangselementen für den Einsatz an klinischen NMR-Geräten T1 - Coil-Arrays with up to 32 receive channels for the use on clinical NMR systems N2 - In dieser Arbeit wurden für spezielle Anwendungen an klinischen MR-Geräten optimierte Phased-Array-Spulen entwickelt. Das Ziel war, durch die Verwendung neuer Spulen entweder neue Anwendungsgebiete für klinische MR-Geräte zu eröffnen oder bei bestehenden Applikationen die Diagnosemöglichkeiten durch eine Kombination von höherem SNR und kleineren g-Faktoren im Vergleich zu bestehenden Spulen zu verbessern. In Kapitel 3 wurde untersucht, ob es durch den Einsatz neu entwickelter, dedizierter Kleintierspulen sinnvoll möglich ist, Untersuchungen an Kleintieren an klinischen MR-Geräten mit einer Feldstärke von 1,5T durchzuführen. Der Einsatz dieser Spulen verspricht dem klinischen Anwender Studien an Kleintieren durchführen zu können, bei denen er den gleichen Kontrast wie bei einer humanen Anwendung erhält und gleichzeitig Kontrastmittel sowie Sequenzen, die klinisch erprobt sind, einzusetzen. Durch die gewählten geometrischen Abmessungen der Spulen ist es möglich, Zubehör von dedizierten Tier-MR-Geräten, wie z. B. Tierliegen oder EKG- bzw. Atemtriggereinheiten, zu verwenden. Durch Vorversuche an für Ratten dimensionierten Spulen wurden grundlegende Zusammenhänge zwischen verwendetem Entkopplungsmechanismus und SNR bzw. Beschleunigungsfähigkeit erarbeitet. Für Ratten wurde gezeigt, dass in akzeptablen Messzeiten von unter fünf Minuten MR-Messungen des Abdomens in sehr guter Bildqualität möglich sind. Ebenfalls gezeigt wurde die Möglichkeit durch den Einsatz von paralleler Bildgebung sowie Kontrastmitteln hochaufgelöste Angiographien durchzuführen. Es stellte sich heraus, dass bei 1,5T dedizierte Mäusespulen bei Raumtemperatur von den SNR-Eigenschaften am Limit des sinnvoll Machbaren sind. Trotzdem war es möglich, auch für Mäuse ein 4-Kanal-Phased-Array zu entwickeln und den Einsatz bei kontrastmittelunterstützten Applikationen zu demonstrieren. Insgesamt wurde gezeigt, dass durch den Einsatz von speziellen, angepassten Kleintierspulen auch Tieruntersuchungen an klinischen MR-Geräten mit niedriger Feldstärke durchführbar sind. Obwohl sich die Bestimmung der Herzfunktion an MR-Geräten im klinischen Alltag zum Goldstandard entwickelt hat, ist die MR-Messung durch lange Atemanhaltezyklen für einen Herzpatienten sehr mühsam. In Kapitel 4 wurde deswegen die Entwicklung einer 32-Kanal-Herzspule beschrieben, welche den Komfort für Patienten deutlich erhöhen kann. Schon mit einem ersten Prototypen für 3T war es möglich, erstmals Echtzeitbildgebung mit leicht reduzierter zeitlicher Auflösung durchzuführen und damit auf das Atemanhalten komplett zu verzichten. Dies ermöglicht den Zugang neuer Patientengruppen, z. B. mit Arrythmien, zu MR-Untersuchungen. Durch eine weitere Optimierung des Designs wurde das SNR sowie das Beschleunigungsvermögen signifikant gesteigert. Bei einem Beschleunigungsfaktor R = 5 in einer Richtung erhält man z. B. gemittelt über das gesamte Herz ein ca. 60 % gesteigertes SNR zu dem Prototypen. Die Kombination dieser Spule zusammen mit neuentwicklelten Methoden wie z. B. Compressed- Sensing stellt es in Aussicht, die Herzfunktion zukünftig in der klinischen Routine in Echtzeit quantifizieren zu können. In Kapitel 5 wurde die Entwicklung einer optimierten Brustspulen für 3T beschrieben. Bei Vorversuchen bei 1,5T wurden Vergleiche zwischen der Standardspule der Firma Siemens Healthcare und einem 16-Kanal-Prototypen durchgeführt. Trotz größerem Spulenvolumen zeigt die Neuentwicklung sowohl hinsichtlich SNR als auch paralleler Bildgebungseigenschaften eine signifikante Verbesserung gegenüber der Standardspule. Durch die Einhaltung aller Kriterien für Medizinprodukte kann diese Spule auch für den klinischen Einsatz verwendet werden. Mit den verbesserten Eigenschaften ist es beispielsweise möglich, bei gleicher Messdauer eine höhere Auflösung zu erreichen. Aufgrund des intrinsischen SNR-Vorteils der 3 T-Spule gegenüber der 1,5 T-Spule ist es dort sogar möglich, bei höheren Beschleunigungsfaktoren klinisch verwertbare Schnittbilder zu erzeugen. Zusammenfassend wurden für alle drei Applikationen NMR-Empfangsspulen entwickelt, die im Vergleich zu den bisher verfügbaren Spulen, hinsichtlich SNR und Beschleunigungsvermögen optimiert sind und dem Anwender neue Möglichkeiten bieten. N2 - Purpose of this work was to develop optimized phased array coils for clinical magnetic resonance imaging (MRI) systems for applications were dedicated coils were not readily available. Chapter 3 evaluates the use of dedicated small animal coils on clinical MR scanners with a field strength of 1,5T instead of using special animal-systems with higher intrinsic signal-to-noise ratio. Advantage of the clinical system is the availability and the portability of the results of animal studies to human applications because sequences can easily be adopted. The available contrast is similar and clinically tested contrast agents can directly be used. Comparisons of different array decoupling methods with respect to SNR and parallel imaging performance have been conducted on coils with the standard size of rat-coils on animal scanners as part of this work. This geometry made it possible to directly use accessories of these systems like animal beds and monitoring systems. It showed that it is possible to acquire images of the abdomen of the rat in under five minutes in very good image quality with such setup. It was also used for high resolution angiographie in very short scanning time due to the use of parallel imaging techniques. However it has shown that the use of dedicated mouse coils is at the very limit of SNR at 1.5 T. Nevertheless a four channel phased array coil was built and tested. The results are described within this work. Another application which can benefit of novel dedicated coils is the assessment of cardiac function. Especially for heart patients it can be very exhausting to hold breath for a longer period of time, which is required by the current standard protocol for cardiac imaging. The combination of 3T and many available receive channels is a very promising combination to shorten the scan time. Chapter 4 describes the development of a 32 channel cardiac phased array coil for 3T to investigate this idea. Starting with an existing coil for 1.5T a first prototype was developed which was the first coil to demonstrate real-time cardiac imaging with only slightly reduced temporal resolution. A further optimization of this coil led to a completely new coil with higher SNR performance and better parallel imaging abilities and was a further step towards real-time imaging of the heart in clinical routine. Chapter 5 describes the development of an optimized 16 channel breast coil for 3T which can be used in clinical routine. Tests at 1.5T were conducted to find the best coil element layout . It was also possible to compare the prototypes at this field strength to an existing breast coil of Siemens Healthcare. Better SNR and parallel imaging performance could be achieved due to the possibility of adjusting the coil size to different breast sizes and therefore optimizing the filling factor. These improved qualities will allow to have higher resolution in the same scan time compared to the current standard in clinical routine. In conclusion it has been shown that these applications can benefit from dedicated array coils due to better SNR and parallel imaging performance. KW - Kernspintomografie KW - NMR-Tomographie KW - Spulen-Array KW - magnetic resonance imaging KW - coil-array KW - Magnetspule KW - Magnetische Kernresonanz Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-79358 ER - TY - THES A1 - Basse-Lüsebrink, Thomas Christian T1 - Application of 19F MRI for in vivo detection of biological processes T1 - Anwendung der 19F MRT zur in-vivo Detektion von biologischen Prozessen N2 - This thesis focuses on various aspects and techniques of 19F magnetic resonance (MR). The first chapters provide an overview of the basic physical properties, 19F MR and MR sequences related to this work. Chapter 5 focuses on the application of 19F MR to visualize biological processes in vivo using two different animal models. The dissimilar models underlined the wide applicability of 19F MR in preclinical research. A subsection of Chapter 6 shows the application of compressed sensing (CS) to 19F turbo-spin-echo chemical shift imaging (TSE-CSI), which leads to reduced measurement time. CS, however, can only be successfully applied when a sufficient signal-to-noise ratio (SNR) is available. When the SNR is low, so-called spike artifacts occur with the CS algorithm used in the present work. However, it was shown in an additional subsection that these artifacts can be reduced using a CS-based post processing algorithm. Thus, CS might help overcome limitations with time consuming 19F CSI experiments. Chapter 7 deals with a novel technique to quantify the B+1 profile of an MR coil. It was shown that, using a specific application scheme of off resonant pulses, Bloch-Siegert (BS)-based B+1 mapping can be enabled using a Carr Purcell Meiboom Gill (CPMG)-based TSE sequence. A fast acquisition of the data necessary for B+1 mapping was thus enabled. In the future, the application of BS-CPMG-TSE B+1 mapping to improve quantification using 19F MR could therefore be possible. N2 - Diese Arbeit handelt von verschiedenen Aspekten und Techniken der 19F Magnet Resonanz Tomographie (MRT). In den ersten Kapiteln wird auf grundlegenden physikalischen Eigenschaften der MRT, die 19F MRT und MRT Sequenzen eingegangen. Kapitel 5 behandelt die Anwendung von 19F MRT zur in vivo Visualisierung von biologischen Prozessen. Dazu wurden zwei verschiedene Tiermodelle benützt. Diese stark unterschiedlichen Modelle markieren die breite Anwendungsmöglichkeit der 19F MR Bildgebung in der präklinischen Forschung. In einem Unterabschnitt des Kapitels 6 wurde gezeigt, dass Compressed Sensing (CS) zur Beschleunigung von 19F Turbo-Spin-Echo Chemical Shift Imaging (TSE-CSI) Experimenten beitragen kann. Allerdings kann CS nur erfolgreich angewendet werden, wenn ein ausreichendes Signal-Rausch-Verhältnis (SNR) vorhanden ist. Denn ist das nicht der Fall und wird der CS Algorithmus dieser Arbeit verwendet, dann entstehen sogenannte spike Artefakte. In einem weiteren Unterabschnitt wurde aber gezeigt, dass diese Artefakte mit einem CS basierten Algorithmus in der Nachbearbeitung der Daten reduziert werden. Zusammenfassend lässt sich sagen, dass CS, die Beschränkungen durch zeitaufwändigen 19F CSI Experimenten überwinden kann. Kapitel 7 handelt von einer neuartigen Technik um das B+1 Profil einer MR Spule quantitativ auszumessen. Es wurde gezeigt, dass mit einem bestimmten Anwendungsschema von offresonanten Pulsen das Bloch-Siegert (BS)-basiertes B+1 Mapping mit Hilfe einer Carr Purcell Meiboom Gill (CPMG) basierten TSE Sequenz betrieben werden kann. Somit wurde eine schnelle Aufnahme der Daten, die für das B+1 Mapping benötigt werden, erreicht. In der Zukunft könnte das BS-CPMG-TSE B+1 Mapping möglicherweise dazu beitragen, die Quantifizierung mittels 19F MRI zu verbessern. KW - Kernspintomografie KW - Fluor-19 KW - Bloch-Siegert KW - Compressed Sensig KW - 19F-MR KW - Rekonstruktion KW - NMR-Tomographie KW - NMR-Bildgebung Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-77188 ER - TY - THES A1 - Schmitt, Peter T1 - MR imaging of tumors: Approaches for functional and fast morphological characterization T1 - MR-Bildgebung von Tumoren: Ansätze zur funktionellen und schnellen morphologischen Charakterisierung N2 - The subject of this work was to develop, implement, optimize and apply methods for quantitative MR imaging of tumors. In the context of functional and physiological characterization, this implied transferring techniques established in tumor model research to human subjects and assessing their feasibility for use in patients. In the context of the morphologic assessment and parameter imaging of tumors, novel concepts and techniques were developed, which facilitated the simultaneous quantification of multiple MR parameters, the generation of “synthetic” MR images with various contrasts, and the fast single-shot acquisition of purely T2-weighted images. N2 - Gegenstand dieser Arbeit war die Entwicklung, Implementierung, Optimierung und Anwendung von Methoden für die quantitative MR-Bildgebung an Tumoren. In Bezug auf eine funktionelle und physiologische Charakterisierung wurden in der Forschung an Tumormodellen etablierte Verfahren für den Einsatz am Menschen adaptiert und ihre Anwendbarkeit zur Untersuchung von Tumoren wurde an Patienten erforscht. Im Bereich der morphologischen Untersuchung und Parameterbildgebung an Tumoren wurden neue Konzepte und Verfahren entwickelt, welche die simultane Quantifizierung mehrerer MR-Parameter, die Generierung "synthetischer" MR-Bilder mit unterschiedlichen Kontrasten, sowie die schnelle "Single-Shot"-Akquisition rein T2-gewichteter Bilder ermöglichen. KW - Kernspintomografie KW - Tumor KW - MR imaging KW - Tumors KW - Relaxometry KW - IR-TrueFISP KW - synthetic MRI KW - TOSSI Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-135967 ER - TY - THES A1 - Lother, Steffen Reiner T1 - Entwicklung eines 3D MR-Tomographen zur Erdfeld- und multimodalen MR-MPI-Bildgebung T1 - Development of a 3D MRI-System for Earth Field MRI and the Combination MRI-MPI N2 - Das Ziel dieser Arbeit war die Entwicklung und die Anfertigung eines 3D Erdfeld-NMR Tomographen, um damit die benötigte Technik der MR eines MR-MPI-Tomographen am Lehrstuhl zu etablieren. Daraufhin wurden alle nötigen Komponenten für ein komplettes 3D Erdfeld-NMR-System entwickelt, gebaut und getestet. Mit diesem Wissen wurde in enger Zusammenarbeit mit der MPI-Arbeitsgruppe am Lehrstuhl ein multimodaler MR-MPI-Tomograph angefertigt und die prinzipielle Machbarkeit der technischen Kombination dieser zwei Modalitäten (MRT/MPI) in einer einzigen Apparatur gezeigt. Auf diesem Entwicklungsweg sind zusätzlich innovative Systemkomponenten entstanden, wie der Bau eines neuen Präpolarisationssystems, mit dem das Präpolarisationsfeld kontrolliert und optimiert abgeschaltet werden kann. Des Weiteren wurde ein neuartiges 3D Gradientensystem entwickelt, das parallel und senkrecht zum Erdmagnetfeld ausgerichtet werden kann, ohne die Bildgebungseigenschaften zu verlieren. Hierfür wurde ein 3D Standard-Gradientensystem mit nur einer weiteren Spule, auf insgesamt vier Gradientenspulen erweitert. Diese wurden entworfen, gefertigt und anhand von Magnetfeldkarten ausgemessen. Anschließend konnten diese Ergebnisse mit der hier präsentierten Theorie und den Simulationsergebnissen übereinstimmend verglichen werden. MPI (Magnetic Particle Imaging) ist eine neue Bildgebungstechnik mit der nur Kontrastmittel detektiert werden können. Das hat den Vorteil der direkten und eindeutigen Detektion von Kontrastmitteln, jedoch fehlt die Hintergrundinformation der Probe. Wissenschaftliche Arbeiten prognostizieren großes Potential, die Hintergrundinformationen der MRT mit den hochauflösenden Kontrastmittelinformationen mittels MPI zu kombinieren. Jedoch war es bis jetzt nicht möglich, diese beiden Techniken in einer einzigen Apparatur zu etablieren. Mit diesem Prototyp konnte erstmalig eine MR-MPI-Messung ohne Probentransfer durchgeführt und die empfindliche Lokalisation von Kontrastmittel mit der Überlagerung der notwendigen Hintergrundinformation der Probe gezeigt werden. Dies ist ein Meilenstein in der Entwicklung der Kombination von MRT und MPI und bringt die Vision eines zukünftigen, klinischen, multimodalen MR-MPI-Tomographen ein großes Stück näher. N2 - Developement of an 3D MRI System for Earth Field MRI and the Kombination with MPI KW - NMR-Spektroskopie KW - Erdmagnetismus KW - Kernspintomografie KW - 3D Erdfeld-NMR Tomograph KW - MR-MPI-Tomograph KW - Präpolarisationssystems KW - Gradientensystem KW - Magnetresonanztomographie KW - Systembau KW - Erdfeld KW - Magnetpartikelbildgebung Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-99181 ER - TY - THES A1 - Choli, Morwan T1 - Hybridmethoden zur Reduzierung der spezifischen Absorptionsrate für neuroradiologische MRT-Untersuchungen an Hochfeldsystemen T1 - Hybrid methods for reducing specific Absorption rate in neuroradiologic MRI-examinations at high-field MR-systems N2 - Die klinische Magnetresonanztomografie (MRT) operiert meist bei einer Magnetfeldstärke von 1,5 Tesla (T). Es halten jedoch immer mehr 3T MRT-Systeme Einzug im klinischen Alltag und seit kurzem auch 7T Ganzkörper-MRT-Systeme in die Grundlagenforschung. Höhere Magnetfeldstärken führen grundsätzlich zum einem verbesserten Signal-zu-Rausch- Verhältnis, welches sich gewinnbringend in eine erhöhte Ortsauflösung oder schnellere Bildaufnahme äußert. Ein Nachteil ist aber die dabei im Patienten deponierte Hochfrequenz-Energie (HF-Energie), welche quadratisch mit ansteigender Feldstärke zusammenhängt. Charakterisiert wird diese durch die spezifische Absorptionsrate (SAR) und ist durch vorgegebene gesetzliche Grenzwerte beschränkt. Moderne, SAR-intensive MRT-Techniken (z.B. Multispinecho-Verfahren) sind bereits bei 1,5T nahe den zulässigen SAR-Grenzwerten und somit nicht unverändert auf Hochfeld-Systeme übertragbar. In dieser Arbeit soll das Potential modularer Hybrid-MRT-Techniken genutzt werden, um das SAR bei besonders SAR-intensiven MRT-Verfahren ohne signifikante Einbußen in der Bildqualität erheblich zu verringern. Die Hybrid-Techniken sollen in Verbindung mit zusätzlichen Methoden der SAR-Reduzierung den breiteren Einsatz SAR-intensiver MRT-Techniken an hohen Magnetfeldern ermöglichen. Ziel dieser Arbeit ist es, routinefähige und SAR-reduzierte MRT-Standard-Protokolle für neuroanatomische Humanuntersuchungen mit räumlicher Höchstauflösung bei Magnetfeldern von 3T und 7T zu etablieren. N2 - Spin echo based MRI sequences builds one of the main priorities in the medical/-morphological MRI imaging. Especially T2-weighted spin-echo sequences and the multi-spin-echo RARE imaging sequence represents one of the basic methods, which allows to minimize measurement times down to minutes or seconds. Modern MRI systems usually have a magnetic field strength beyond 1.5T. In order to acquire high resolution images with acceptable acquisition times, high RF power is needed. In many cases the intrinsic safety limits of the radiated power are already exeeded at field strengths of 3T. This leads often to restrictions for the full performance. In research systems of 7T and more T2-weighted images are only feasible with significant amount of time. Especially in RARE imaging methods, which require a large number of refocusing pulses, this is a significant restriction factor. Therefore, in recent years there were further development of hybrid sequences which combines different acquisition methods together into one, to exploit their fully advantages of the basic methods and to minimize ... KW - Kernspintomografie KW - spezifische Absorptionsrate KW - Magnetresonanztomografie KW - Hybridbildgebung KW - Absorption Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-100023 ER - TY - THES A1 - Joseph, Arun Antony T1 - Real-time MRI of Moving Spins Using Undersampled Radial FLASH T1 - Echtzeit MRI von bewegten Spins mithilfe der unterabgetasteten radialen FLASH sequenz N2 - Nuclear spins in motion is an intrinsic component of any dynamic process when studied using magnetic resonance imaging (MRI). Moving spins define many functional characteristics of the human body such as diffusion, perfusion and blood flow. Quantitative MRI of moving spins can provide valuable information about the human physiology or of a technical system. In particular, phase-contrast MRI, which is based on two images with and without a flow-encoding gradient, has emerged as an important diagnostic tool in medicine to quantify human blood flow. Unfortunately, however, its clinical usage is hampered by long acquisition times which only provide mean data averaged across multiple cardiac cycles and therefore preclude Monitoring the immediate physiological responses to stress or exercise. These limitations are expected to be overcome by real-time imaging which constitutes a primary aim of this thesis. Short image acquisition times, as the core for real-time phase-contrast MRI, can be mainly realized through undersampling of the acquired data. Therefore the development focused on related technical aspects such as pulse sequence design, k-space encoding schemes and image reconstruction. A radial encoding scheme was experimentally found to be robust to motion and less sensitive to undersampling than Cartesian encoding. Radial encoding was combined with a FLASH acquisition technique for building an efficient real-time phase-contrast MRI sequence. The sequence was further optimized through overlapping of gradients to achieve the shortest possible echo time. Regularized nonlinear inverse reconstruction (NLINV), a technique which jointly estimates the image content and its corresponding coil sensitivities, was used for image reconstruction. NLINV was adapted specifically for phase-contrast MRI to produce both Magnitude images and phase-contrast maps. Real-time phase-contrast MRI therefore combined two highly undersampled (up to a factor of 30) radial gradient-echo acquisitions with and without a flow-encoding gradient with modified NLINV reconstructions. The developed method achieved real-time phase-contrast MRI at both high spatial (1.3 mm) and temporal resolution (40 ms). Applications to healthy human subjects as well as preliminary studies of patients demonstrated real-time phase-contrast MRI to offer improved patient compliance (e.g., free breathing) and immediate access to physiological variations of flow parameters (e.g., response to enhanced intrathoracic pressure). In most cases, quantitative blood flow was measured in the ascending aorta as an important blood vessel of the cardiovascular circulation system commonly studied in the clinic. The performance of real-time phase-contrast MRI was validated in comparison to standard Cine phase-contrast MRI using studies of flow phantoms as well as under in vivo conditions. The evaluations confirmed good agreement for comparable results. As a further extension to real-time phase-contrast MRI, this thesis implemented and explored a dual-echo phase-contrast MRI method which employs two sequential gradient echoes with and without flow encoding. The introduction of a flow-encoding gradient in between the two echoes aids in the further reduction of acquisition time. Although this technique was efficient under in vitro conditions, in vivo studies showed the influence of additional motion-induced Phase contributions. Due to these additional temporal phase information, the approach showed Little promise for quantitative flow MRI. As a further method three-dimensional real-time phase-contrast MRI was developed in this thesis to visualize and quantify multi-directional flow at about twice the measuring time of the standard real-time MRI method, i.e. at about 100 ms temporal resolution. This was achieved through velocity mapping along all three physical gradient directions. Although the method is still too slow to adequately cover cardiovascular blood flow, the preliminary results were found to be promising for future applications in tissues and organ systems outside the heart. Finally, future developments are expected to benefit from the adaptation of model-based reconstruction techniques to real-time phase-contrast MRI. N2 - Die Bewegung der Kernspins ist eine wesentliche Eigenschaft von dynamischen Vorgängen, die mit Hilfe der Magnetresonanztomographie (MRT) untersucht werden. Bewegte oder fließende Spins charakterisieren viele Funktionen des menschlichen Körpers, wie z.B. die Gewebeperfusion und den Blutfluss in den Gefäßen. Die quantitative MRT von bewegten Spins kann daher wertvolle Informationen über die menschliche Physiologie oder auch über ein technisches System geben. Insbesondere die Phasenkontrast-MRT, die auf der Aufnahme von zwei Bildern mit und ohne flusskodierenden Gradienten basiert, hat sich als ein wichtiges diagnostisches Werkzeug in der Medizin entwickelt, um den Blutfluss funktionell zu quantifizieren. Die klinische Nutzung ist jedoch durch die langen Messzeiten eingeschränkt, da die Daten über mehrere Herzzyklen gemittelt werden müssen und damit die Untersuchung unmittelbarer physiologischer Reaktionen auf Stress und/oder Muskelbelastung ausgeschlossen ist. Ein primäres Ziel dieser Arbeit war es, diese Einschränkungen durch die Entwicklung einer MRT-Flussmessung in Echtzeit zu überwinden. Entscheidende Grundlage jeder Echtzeit-MRT sind kurze Aufnahmezeiten, die vor allem durch eine Reduktion der aufgenommenen Daten (Unterabtastung) realisiert werden. Daher konzentrierte sich die hier vorgestellte Entwicklung auf die damit verbundenen technischen Aspekte wie die MRT-Sequenz zur Datenaufnahme, das räumliche Kodierungsschema, und die Bildrekonstruktion. Experimentell erwies sich ein radiales Kodierungsschema als robust gegenüber Bewegungen und relativ unempfindlich gegenüber milder Unterabtastung. Dieses Kodierungsschema wurde mit der FLASH Aufnahmetechnik für eine effiziente Phasenkontrast-Sequenz in Echtzeit kombiniert. Zusätzlich wurde die Sequenz durch Überlappung von Gradienten hinsichtlich einer kurzen Echozeit optimiert. Für die Bildrekonstruktion wurde die regularisierte nichtlineare inverse Rekonstruktion (NLINV) verwendet, bei der die Bildinformation und die entsprechenden pulensensitivitäten gleichzeitig geschätzt werden. NLINV wurde speziell für die Phasenkontrast-MRT angepasst, um sowohl Betragsbilder als auch robuste Phasenkontrast-Karten mit hoher raumzeitlicher Genauigkeit zu berechnen. Das erarbeitete Verfahren der Phasenkontrast-MRT in Echtzeit kombiniert daher zwei stark unterabgetastete (bis zu einem Faktor von 30) und unterschiedlich flusskodierte, radiale Gradientenecho-Aufnahmen mit einer modifizierten NLINV Rekonstruktion. Mit dieser Methode wurde sowohl eine gute räumliche Auflösung (1.3 mm), als auch eine hohe zeitliche Auflösung (40 ms) erreicht. Bei Anwendungen an gesunden Probanden sowie vorläufigen Untersuchungen von Patienten konnte nachgewiesen werden, dass die Phasenkontrast-MRT in Echtzeit einen verbesserten Komfort für die Patienten (z.B. freie Atmung) und unmittelbaren Zugang zu physiologischen Veränderungen der Flussparameter bietet (z.B. Reaktion auf erhöhten Druck im Brustraum). In den meisten Fällen wurden quantitative Blutflussmessungen in der aufsteigenden Aorta, einem klinisch wichtigen Gefäß des Herz-Kreislauf-Systems, vorgenommen. Die Messungen mit der Phasenkontrast-MRT in Echtzeit wurden mit der EKG-getriggerten Cine Phasenkontrast-MRT (klinischer Standard) an einem Flussphantom und unter in vivo Bedingungen verglichen. Die Ergebnisse zeigten unter vergleichbaren Bedingungen gute Übereinstimmung. Im Rahmen dieser Arbeit wurde zusätzlich eine Doppelecho-Variante der Phasenkontrast-MRT in Echtzeit implementiert. Das Einfügen eines flusskodierenden Gradienten zwischen den beiden Echos führte zu einer weiteren Reduzierung der Messzeit. Obwohl sich diese Technik unter in vitro Bedingungen als tauglich erwies, zeigten sich bei in vivo Studien störende Einflüsse durch bewegungsinduzierte Phasenbeiträge, die wenig Erfolg für quantitative Flussmessungen versprechen. Als weitere Methode wurde in dieser Arbeit eine dreifach kodierte Sequenz zur Phasenkontrast-MRT entwickelt, um multidirektionalen Fluss zu untersuchen. Die Geschwindigkeitskodierung entlang aller drei physikalischen Gradientenrichtungen führte zu einer verlängerten Messzeit (zeitliche Auflösung � 100 ms) gegenüber der Echtzeit-Flussmessung in nur einer Richtung. Obwohl das Verfahren noch zu langsam ist, um den kardiovaskulären Blutfluss adäquat zu beschreiben, waren vorläufige Ergebnisse in Körperregionen außerhalb des Herzens für zukünftige klinische Anwendungen sehr vielversprechend. Es ist zu erwarten, dass entsprechende Weiterentwicklungen von modellbasierten ekonstruktionsverfahren profitieren werden. KW - Kernspintomografie KW - Real-time MRI Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-94000 ER - TY - THES A1 - Neumann, Daniel T1 - Advances in Fast MRI Experiments T1 - Neue Methoden in der MR-Bildgebung N2 - Magnetic Resonance Imaging (MRI) is a non-invasive medical imaging technique, that is rou- tinely used in clinical practice for detection and diagnosis of a wide range of different diseases. In MRI, no ionizing radiation is used, making even repeated application unproblematic. This is an important advantage over other common imaging methods such as X-rays and Computer To- mography. One major drawback of MRI, however, are long acquisition times and associated high costs of experiments. Since the introduction of MRI, several important technical developments have been made to successfully reduce acquisition times. In this work, novel approaches were developed to increase the efficiency of MRI acquisitions. In Chapter 4, an improved radial turbo spin-echo (TSE) combined acquisition and reconstruction strategy was introduced. Cartesian turbo spin-echo sequences [3] are widely used especially for the detection and diagnosis of neurological pathologies, as they provide high SNR images with both clinically important proton density and T2 contrasts. TSE acquisitions combined with radial sampling are very efficient, since it is possible to obtain a number of ETL images with different contrasts from a single radial TSE measurement [56–58]. Conventionally, images with a particular contrast are obtained from both radial and Cartesian TSE acquisitions by combining data from different echo times into a single image. In the radial case, this can be achieved by employing k-space weighted image contrast (KWIC) reconstruction. In KWIC, the center region of k-space is filled exclusively with data belonging to the desired contrast while outer regions also are assembled with data acquired at other echo times. However, this data sharing leads to mixed contrast contributions to both Cartesian and radial TSE images. This is true especially for proton density weighted images and therefore may reduce their diagnostic value. In the proposed method, an adapted golden angle reordering scheme is introduced for radial TSE acquisitions, that allows a free choice of the echo train length and provides high flexibility in image reconstruction. Unwanted contrast contaminations are greatly reduced by employing a narrow-band KWIC filter, that restricts data sharing to a small temporal window around the de- sired echo time. This corresponds to using fewer data than required for fully sampled images and consequently leads to images exhibiting aliasing artifacts. In a second step, aliasing-free images are obtained using parallel imaging. In the neurological examples presented, the CG-SENSE algorithm [42] was chosen due to its stable convergence properties and its ability to reconstruct arbitrarily sampled data. In simulations as well as in different in vivo neurological applications, no unwanted contrast contributions could be observed in radial TSE images reconstructed with the proposed method. Since this novel approach is easy to implement on today’s scanners and requires low computational power, it might be valuable for the clinical breakthrough of radial TSE acquisitions. In Chapter 5, an auto-calibrating method was introduced to correct for stimulated echo contribu- tions to T2 estimates from a mono-exponential fit of multi spin-echo (MSE) data. Quantification of T2 is a useful tool in clinical routine for the detection and diagnosis of diseases as well as for tis- sue characterization. Due to technical imperfections, refocusing flip angles in a MSE acquisition deviate from the ideal value of 180○. This gives rise to significant stimulated echo contributions to the overall signal evolution. Therefore, T2 estimates obtained from MSE acquisitions typically are notably higher than the reference. To obtain accurate T2 estimates from MSE acquisitions, MSE signal amplitudes can be predicted using the extended phase graph (EPG, [23, 24]) algo- rithm. Subsequently, a correction factor can be obtained from the simulated EPG T2 value and applied to the MSE T2 estimates. However, EPG calculations require knowledge about refocus- ing pulse amplitudes, T2 and T1 values and the temporal spacing of subsequent echoes. While the echo spacing is known and, as shown in simulations, an approximate T1 value can be assumed for high ratios of T1/T2 without compromising accuracy of the results, the remaining two parameters are estimated from the data themselves. An estimate for the refocusing flip angle can be obtained from the signal intensity ratio of the second to the first echo using EPG. A conventional mono- exponential fit of the MSE data yields a first estimate for T2. The T2 correction is then obtained iteratively by updating the T2 value used for EPG calculations in each step. For all examples pre- sented, two iterations proved to be sufficient for convergence. In the proposed method, a mean flip angle is extracted across the slice. As shown in simulations, this assumption leads to greatly reduced deviations even for more inhomogeneous slice profiles. The accuracy of corrected T2 values was shown in experiments using a phantom consisting of bottles filled with liquids with a wide range of different T2 values. While T2 MSE estimates were shown to deviate significantly from the spin-echo reference values, this is not the case for corrected T2 values. Furthermore, applicability was demonstrated for in vivo neurological experiments. In Chapter 6, a new auto-calibrating parallel imaging method called iterative GROG was pre- sented for the reconstruction of non-Cartesian data. A wide range of different non-Cartesian schemes have been proposed for data acquisition in MRI, that present various advantages over conventional Cartesian sampling such as faster acquisitions, improved dynamic imaging and in- trinsic motion correction. However, one drawback of non-Cartesian data is the more complicated reconstruction, which is ever more problematic for non-Cartesian parallel imaging techniques. Iterative GROG uses Calibrationless Parallel Imaging by Structured Low-Rank Matrix Completion (CPI) for data reconstruction. Since CPI requires points on a Cartesian grid, it cannot be used to directly reconstruct non-Cartesian data. Instead, Grappa Operator Gridding (GROG) is employed in a first step to move the non-Cartesian points to the nearest Cartesian grid locations. However, GROG requires a fully sampled center region of k-space for calibration. Combining both methods in an iterative scheme, accurate GROG weights can be obtained even from highly undersampled non-Cartesian data. Subsequently, CPI can be used to reconstruct either full k- space or a calibration area of arbitrary size, which can then be employed for data reconstruction with conventional parallel imaging methods. In Chapter 7, a new 2D sampling scheme was introduced consisting of multiple oscillating effi- cient trajectories (MOET), that is optimized for Compressed Sensing (CS) reconstructions. For successful CS reconstruction of a particular data set, some requirements have to be met. First, ev- ery data sample has to carry information about the whole object, which is automatically fulfilled for the Fourier sampling employed in MRI. Additionally, the image to be reconstructed has to be sparse in an arbitrary domain, which is true for a number of different applications. Last, data sam- pling has to be performed in an incoherent fashion. For 2D imaging, this important requirement of CS is difficult to achieve with conventional Cartesian and non-Cartesian sampling schemes. Ra- dial sampling is often used for CS reconstructions of dynamic data despite the streaking present in undersampled images. To obtain incoherent aliasing artifacts in undersampled images while at the same time preserving the advantages of radial sampling for dynamic imaging, MOET com- bines radial spokes with oscillating gradients of varying amplitude and alternating orientation orthogonal to the readout direction. The advantage of MOET over radial sampling in CS re- constructions was demonstrated in simulations and in in vivo cardiac imaging. MOET provides superior results especially when used in CS reconstructions with a sparsity constraint directly in image space. Here, accurate results could be obtained even from few MOET projections, while the coherent streaking artifacts present in the case of radial sampling prevent image recovery even for smaller acceleration factors. For CS reconstructions of dynamic data with sparsity constraint in xf-space, the advantage of MOET is smaller since the temporal reordering is responsible for an important part of incoherency. However, as was shown in simulations of a moving phantom and in the reconstruction of ungated cardiac data, the additional spatial incoherency provided by MOET still leads to improved results with higher accuracy and may allow reconstructions with higher acceleration factors. N2 - Die Magnetresonanztomographie (MRT) ist ein wichtiges nicht-invasives medizinisches Bildge- bungsverfahren, das im klinischen Alltag zur Entdeckung und Diagnose einer Vielzahl von Krank- heiten verwendet wird. Im Gegensatz zu anderen Methoden wie Röntgen und Computertomo- graphie kommt die MRT ohne den Einsatz ionisierender Strahlung aus, was selbst häufige An- wendungen ohne gesundheitliche Risiken erlaubt. Einer der größten Nachteile der MRT sind lange Messzeiten, die in Kombination mit der teuren Technik hohe Untersuchungskosten bedin- gen. Obwohl in der Vergangenheit durch die Entwicklung von sowohl verbesserter Hardware als auch neuen Rekonstruktionsverfahren bereits bedeutende Fortschritte in Bezug auf die Akquisi- tionsdauer erzielt werden konnten, ist eine weitere Beschleunigung nach wie vor ein wichtiges Forschungsgebiet im Bereich der MRT. Ziel dieser Arbeit war daher die Entwicklung neuer An- sätze zur Steigerung der Effizienz von MRT Experimenten. In Kapitel 4 wurde eine kombinierte Akquisitions- und Rekonstruktionsstrategie für radiale Turbo Spin-Echo (TSE) Experimente vorgestellt. Im klinischen Alltag sind kartesische TSE Sequenzen zur Untersuchung diverser Krankheitsbilder weit verbreitet, da sie ein hohes SNR aufweisen und die Aufnahme der klinisch wichtigen Bilder mit Protonendichte- und T2-Kontrast erlauben. Im Gegensatz zu kartesischem Abtasten, wo aus einem Datensatz lediglich ein Bild mit bes- timmtem Kontrast erzeugt wird, sind radiale TSE Akquisitionen hocheffizient, da hier aus einem Datensatz mehrere Bilder mit verschiedenem Kontrast gewonnen werden können. In beiden Fällen wird in konventionellen Rekonstruktionsmethoden jedes Bild eines definierten Kontrasts durch das Zusammensetzen eines vollständig abgetasteten k-Raums mit Daten von verschiedenen Echozeiten erzeugt. Im radialen Fall geschieht dies durch die sogenannte "k-space weighted im age contrast" (KWIC) Rekonstruktion. Hierbei wird das Zentrum des k-Raums ausschließlich mit zum gewünschten Kontrast gehörigen Daten gefüllt, während die äußeren Bereiche des k-Raums auch Daten von anderen Echozeiten enthalten. Obwohl der Kontrast von MRT Bildern haupt- sächlich von den Daten im k-Raum Zentrum dominiert wird, führt die Kombination von Daten verschiedener Echozeiten in sowohl radialen als auch kartesischen TSE Bildern zu einem uner- wünschten Mischkontrast. Dieser Effekt wird vor allem in protonendichtegewichteten Bildern sichtbar und kann somit deren diagnostischen Wert deutlich verringern. Ein unerwünschter Mischkontrast kann verhindert werden, indem die Bandbreite des KWIC- Filters auf ein kleines zeitliches Fenster um die angestrebte Echozeit herum eingeschränkt wird. Um eine freie Wahl der Echozuglänge und hohe Flexibilität in der Bildrekonstruktion zu er- möglichen, wurde für die radiale TSE Akquisition ein angepasstes Abtastschema unter Verwen- dung des goldenen Winkels vorgestellt. Da bei einem KWIC-Filter mit reduzierter Bandbre- ite für jedes Bild weniger Daten zur Verfügung stehen als für einen voll abgetasteten k-Raum benötigt, weisen rekonstruierte Bildern Einfaltungsartefakte auf. Diese werden in einem zweiten Schritt durch die Anwendung paralleler Bildgebung beseitigt. In den gezeigten Beispielen wurde dazu der CG-SENSE Algorithmus verwendet, da er stabile Konvergenz aufweist und für die Rekonstruktion von Daten mit irregulären Abtastschema angewandt werden kann. Anschließend werden bestehende Korrelationen der Bilderserie zur Reduktion verbleibender Artefakte und zu einer Verbesserung des SNR ausgenutzt. Wie mittels Simulationen gezeigt und für neurologische Daten bestätigt, weisen radiale TSE Bilder, die mit dieser Methode rekonstruiert wurden, keinen sichtbaren Mischkontrast mehr auf. Die erreichte Bildqualität ist hierbar vergleichbar mit kon- ventionellen Rekonstruktionsmethoden. Da die vorgestellte Rekonstruktion einfach auf heutigen Scannern implementiert werden kann und lediglich niedrige Rechenkapazitäten benötigt, könnte sie einen wichtigen Beitrag für den klinischen Durchbruch radialer TSE Akquisitionen darstellen. In Kapitel 5 wurde eine selbstkalibrierende Methode zur Korrektur von aus Multi Spin-Echo (MSE) Bildern gewonnenen T2 Karten vorgestellt. In der klinischen Anwendung spielt die Quan- tifizierung von T2 unter anderem bei der Diagnose von Krankheiten sowie bei der Klassifizierung von Gewebe eine wichtige Rolle. Eine MSE Sequenz verwendet mehrere RF-Pulse, um ein einzelnes Spin-Echo wiederholt zu refokussieren. Idealerweise betragen die Flipwinkel der Re- fokussierungspulse hierbei exakt 180○, um einen exponentiellen Signalabfall zu erhalten. Auf- grund technischer Ungenauigkeiten weichen die Werte der Flipwinkel von Refokussierungspulsen jedoch grundsätzlich von 180○ ab. Niedrigere Flipwinkel führen zu stimulierten Echos, die wesentlich zu den einzelnen Echoamplituden beitragen und den Signalabfall entlang des Echozugs deutlich verlängern können. Somit weisen auch T2 Werte, die aus solchen Bilderserien berech- net werden, eine teilweise deutliche Erhöhung auf. Um exakte Werte zu erhalten, kann der MSE Signalverlauf mittels des "extended phase graph" (EPG) Algorithmus abgeschätzt und so ein Kor- rekturfaktor ermittelt werden. Hierzu müssen die Flipwinkel der Refokussierungspulse, T1 und T2 Werte sowie der zeitliche Abstand der Echos (ESP) bekannt sein. Wie in Simulationen gezeigt wurde, kann T1 für hohe Werte des Quotienten T1/T2 abgeschätzt werden, ohne an Genauigkeit der T2 Ergebnisse einzubüßen. Abschätzungen der verbleibenden benötigten Parameter können direkt aus den Daten selbst gewonnen werden. Während der Flipwinkel aus den Intensitäten der ersten beiden Echos berechnet wird, liefert ein mono-exponentieller Fit der MSE Bilderserie eine erste Näherung für T2. Die Korrektur für die T2 Werte kann anschließend aus den EPG Sig- nalverläufen berechnet werden. Durch Aktualisierung von T2 und erneuter Ausführung des EPG-Algorithmus wird die Genauigkeit der Korrektur iterativ erhöht, wobei schon eine sehr geringe Zahl von Iterationen zu Konvergenz führt. Wie in Simulationen und in Phantomexperimenten für verschiedenste T2-Werte gezeigt, weisen korrigierte T2 Werte eine hohe Genauigkeit auf. Dies gilt auch für niedrigere nominelle Flipwinkel als 180○ und ist somit von speziellem Interesse bei höheren Feldstärken B0, wo Grenzwerte der spezifischen Absorptionsrate die Einstrahlung einer Vielzahl von RF-Pulsen hoher Amplitude verbietet. In Kapitel 6 wurde iteratives GROG, eine neue selbstkalibrierende iterative parallele Bildge- bungsmethode für die Rekonstruktion von nichtkartesischen Daten vorgestellt. Es sind eine Vielzahl nichtkartesischer Trajektorien für MRT Messungen bekannt, die zahlreiche Vorteile gegenüber kartesischer Bildgebung bieten. Dazu gehören unter anderem eine schnellere Akquisi- tion, verbesserte dynamische Bildgebung sowie die Möglichkeit zur intrinischen Bewegungskor- rektur. Ein Nachteil nichtkartesischer Daten jedoch ist eine aufwendigere Rekonstruktion, sowohl bei voll abgetasteten Datensätzen als insbesondere auch in der parallelen Bildgebung. Itera- tives GROG verwendet Calibrationless Parallel Imaging by Structured Low-Rank Matrix Com- pletion (CPI) zur Rekonstruktion fehlender Daten. Diese Methode benötigt Daten auf karte- sischen Gitterpunkten und kann nicht direkt für nichtkartesische Experimente angewandt wer- den. Stattdessen werden die nichtkartesischen Daten zunächst mittels Grappa Operator Gridding (GROG) in einem ersten Schritt auf ein kartesisches Gitter verschoben. GROG basiert auf paral- leler Bildgebung und benötigt einen voll abgetasteten Teil des k-Raums zur Kalibrierung. Erste Kalibrationsdaten können gewonnen werden, indem die nichtkartesischen Punkte ohne Änderung auf die nächsten kartesischen Gitterpunkte verschoben werden und eine CPI-Rekonstruktion eines zentralen k-Raum Bereichs durchgeführt wird. Anschließend wird GROG angewandt um exakte Werte der kartesischen Gitterpunkte zu erhalten und der Prozess wird iteriert. Nach Kon- vergenz können entweder Kalibrationsdaten gewünschter Größe für eine konventionelle parallele Bildgebungsmethode erzeugt oder artefaktfreie Bilder mit CPI rekonstruiert werden. In Kapitel 7 wurde ein neues Abtastungsschema für die 2D Bildgebung vorgestellt, das aus Multiplen Oszillierenden Effizienten Trajektorien (MOET) besteht und optimierte Compressed Sensing (CS) Rekonstruktionen ermöglicht. Für eine erfolgreiche Anwendung von Compressed Sensing müssen einige Voraussetzungen erfüllt sein. Erstens muss jeder Datenpunkt Informa- tionen über das ganze Objekt enthalten, was bei der MRT aufgrund der Datenakquisition im Fourier-Raum automatisch erfüllt ist. Weiterhin muss das gemessene Objekt in einer beliebigen Basis sparse sein. Dies ist für viele verschiedene Anwendungen in der MRT der Fall. Drittens muss für CS Rekonstruktionen die Datenakquisition im k-Raum einem inkohärenten Muster fol- gen. Diese wichtige Voraussetzung ist in der zweidimensionalen Bildgebung mit konventionellen kartesischen und nicht-kartesischen Abtastschemata nur schwer zu erreichen. Deshalb wird für CS Rekonstruktionen häufig eine radiale Trajektorie eingesetzt, trotz der kohärenten streaking- Artefakte in unterabgetasteten Bildern. MOET verwendet daher eine Kombination von radialen Projektionen zusammen mit oszillierenden Gradienten auf der zur Ausleserichtung orthogonalen Achse. So erhält man inkohärente Aliasing-Artefakte und bewahrt gleichzeitig die Vorteile der radialen Bildgebung für die dynamische MRT. Die Überlegenheit von MOET gegenüber radi- aler Bildgebung für CS Rekonstruktionen konnte in Simulationen sowie in der Herzbildgebung aufgezeigt werden. Dies gilt insbesondere für CS Rekonstruktionen direkt im Bildraum, wo MOET gute Resultate liefert während die kohärenten Artefakte bei radialer Bildgebung eine genaue Bildwiederherstellung verhindert. Bei Rekonstruktionen dynamischer Daten, wo Sparsität im xf-Raum ausgenutzt wird, ist der Vorteil von MOET weniger ausgeprägt, da hier bere- its die zeitliche Anordnung der Projektionen einen wesentlichen Beitrag zur Charakteristik der Aliasingartefakte liefert. Wie in Simulationen und für die in vivo Herzbildgebung gezeigt werden konnte, erlaubt die zusätzliche räumliche Inkohärenz von MOET jedoch auch in diesem Fall eine höhere Genauigkeit sowie Rekonstruktionen von Daten höherer Beschleunigung. KW - Kernspintomografie KW - Parallele Bildgebung KW - nichtkarthesische Bildgebung KW - Turbo Spin-Echos KW - Compressed Sensing KW - Parallel Imaging KW - non-Cartesian Imaging KW - Compressed Sensing KW - MRI KW - MRT KW - NMR-Tomographie Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-108165 ER - TY - THES A1 - Breuer [geb. Hemberger], Kathrin R. F. T1 - Effiziente 3D Magnetresonanzbildgebung schnell abfallender Signale T1 - Efficient 3D Magnetic Resonance Imaging of fast decaying signals N2 - In der vorliegenden Arbeit wird die Rotated-Cone-UTE-Sequenz (RC-UTE), eine 3D k-Raum-Auslesetechnik mit homogener Verteilung der Abtastdichte, vorgestellt. Diese 3D MR-Messtechnik ermöglicht die für die Detektion von schnell abfallenden Signalen notwendigen kurzen Echozeiten und weist eine höhere SNR-Effizienz als konventionelle radiale Pulssequenzen auf. Die Abtastdichte ist dabei in radialer und azimutaler Richtung angepasst. Simulationen und Messungen in vivo zeigen, dass die radiale Anpassung das T2-Blurring reduziert und die SNR-Effizienz erhöht. Die Drehung der Trajektorie in azimutale Richtung ermöglicht die Reduzierung der Unterabtastung bei gleicher Messzeit bzw. eine Reduzierung der Messzeit ohne Auflösungsverlust. Die RC-UTE-Sequenz wurde erfolgreich für die Bildgebung des Signals des kortikalen Knochens und der Lunge in vivo angewendet. Im Vergleich mit der grundlegenden UTE-Sequenz wurden die Vorteile von RC-UTE in allen Anwendungsbeispielen aufgezeigt. Die transversalen Relaxationszeit T2* des kortikalen Knochen bei einer Feldstärke von 3.0T und der Lunge bei 1.5T und 3.0T wurde in 3D isotroper Auflösung gemessen. Außerdem wurde die Kombination von RC-UTE-Sequenz mit Methoden der Magnetisierungspräparation zur besseren Kontrasterzeugung gezeigt. Dabei wurden die Doppel-Echo-Methode, die Unterdrückung von Komponenten mit langer Relaxationszeit T2 durch Inversionspulse und der Magnetisierungstransfer-Kontrast angewendet. Die Verwendung der RC-UTE-Sequenz für die 3D funktionelle Lungenbildgebung wird ebenfalls vorgestellt. Mit dem Ziel der umfassenden Charakterisierung der Lungenfunktion in 3D wurde die simultane Messung T1-gewichteter Bilder und quantitativer T2*-Karten für verschiedene Atemzustände an sechs Probanden durchgeführt. Mit der hier vorgestellten Methode kann die Lungenfunktion in 3D über T1-Wichtung, quantitative T2*-Messung und Rekonstruktion verschiedener Atemzustände durch Darstellung von Ventilation, Sauerstofftransport und Volumenänderung beurteilt werden. N2 - In this thesis the Rotated-Cone-UTE-sequence (RC-UTE), a 3D k- space sampling scheme with uniform sampling density, is presented. 3D RC-UTE provides short echo times enabling the detection of fast decaying signals with higher SNR-efficiency than conventional UTE sequences. In RC-UTE the sampling density is adapted in radial and azimuthal direction. It is shown in simulations and measurements that the density adaption along the radial dimension reduces T2-blurring. By twisting the trajectory along the azimuthal direction fewer projections are needed to fulfill the Nyquist criterion. Thereby, undersampling artefacts or the measurement time is reduced without loss of resolution. RC-UTE has been successfully applied in vivo in cortical bone and the lung. It was shown that the RC-UTE sequence outperforms the standard UTE sequence in all presented applications. In addition, the transversal relaxation time T2* of cortical bone at field strength of 3.0T and the human lung at 1.5T und 3.0T was measured in 3D isotropic resolution. Moreover, the combination of RC-UTE with magnetization preparation techniques for improved image contrast was shown. To this end strategies such as double-echo readout, long T2 suppression by inversion pulses and magnetization transfer contrast imaging were employed. Furthermore, the application of RC-UTE for 3D functional lung imaging is presented. In order to provide broad information about pulmonary function T1-weighted images and quantitative T2*-maps in different breathing states were simultaneously measured in six healthy volunteers. The presented methodology enables the assessment of pulmonary function in 3D by indicating ventilation, oxygen transfer and lung volume changes during free breathing. KW - Kernspintomografie KW - Relaxationszeit KW - Dreidimensionale Bildverarbeitung KW - T2* KW - Ulrakurze Echozeit KW - T1-Wichtung KW - dichteangepasste k-Raum Abtastung KW - Lunge KW - Relaxation KW - Lungenfunktion Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150750 ER - TY - THES A1 - Sturm, Volker Jörg Friedrich T1 - \(^{19}F\) Magnetresonanztomographie zur Bildgebung von Infektionen im Zeitverlauf T1 - \(^{19}F\) magnetic resonance imaging to monitor the timecourse of bacterial infections in vivo N2 - Im Rahmen dieser Arbeit sollten die Möglichkeiten der MR Tomographie erkundet werden bakterielle Infektionen im Zeitverlauf darzustellen. Genauer gesagt sollte das Potential der MR Tomographie anhand eines durch eine Infektion induzierten lokalisierten Abszesses unter Verwendung dreier unterschiedlicher MRT Methoden untersucht werden: Mittels nativem \(T_2\) Kontrast; der Verwendung von superparamagnetischen Eisenoxid Partieln (USPIO) als \(T_2^*\) Kontrastmittel; und dem Einsatz von Perfluorkarbonen (PFC) als \(^{19}F\) MRT Marker (siehe Kapitel 3). Wie erwartet führte die durch die Infektion hervorgerufene Entzündung zu veränderten \(T_2\)-Zeiten, welche auf \(T_2\)-gewichteten MR Bildern eine Lokalisierung des Abszessbereiches erlauben. Jedoch eigneten sich diese Daten aufgrund der graduellen Änderung der \(T_2\)-Zeiten nicht, um eine klare Grenze zwischen Abszess und umliegendem Gewebe zu ziehen. Superparamagnetische Eisenoxidpartikel andererseit haben als MRT Kontrastmittel bereits in den letzten Jahren ihre Fähigkeit unter Beweis gestellt Entzündungen [53, 58, 64] darzustellen. Die Anreicherung dieser Partikel am Rande des Abszesses [53], wie sie auch in unseren MR Daten zu beobachten war, erlaubte eine relativ scharfe Abgrenzung gegenüber dem umgebenden Gewebe in der chronischen Phase der Infektion (Tag 9 p.i.). Hingegen genügte die nur sehr spärlichen Anreicherung von USPIO Partikeln in der akuten Phase der Infektion (Tag 3 p.i.) nicht für eine entsprechende Abgrenzung [58]. Aufgrund der sehr geringen biologischen Häufigkeit und den sehr kurzen Relaxationszeiten von endogenem Fluor eignen sich Perfluorkarbone als Markersubstanz in der MR Tomographie von biologischen Systemen. Insbesondere da PFC Emulsionen durch phagozytierende Zellen aufgenommen werden und im Bereich von Entzündungen akkumulieren [30, 59]. In dieser Arbeit konnte anhand der erhaltenen MRT Daten eine Akkumulation von Perfluorkarbonen nicht nur in der chronischen Phase, sondern auch in der akuten Phase nachgewiesen werden. Diese Daten erlauben somit zu allen untersuchten Zeitpunkten eine Abgrenzung zwischen Infektion und umliegenden Gewebe. Aufgrund der besagten Vorteile wurden die Perfluorkarbone gewählt, um die Möglichkeiten der MR Tomographie zu testen, quantitative Informationen über die schwere der Infektion zu liefern. Als Referenz für die Bakterienbelastung wurden die Biolumineszenzbildgebung (BLI) [49, 50] und die Standardmethode zur Bestimmung der Bakterienbelastung cfu (koloniebildenden Einheiten) herangezogen. Eine Gegenüberstellung der zeitlichen Verläufe der durch die Biolumineszenzbildgebung und durch die cfu erhaltenen Daten liefert eine qualitative Übereinstimmung mit den durch die 19F MR Tomographie erhaltenen Daten. Dies trifft hierbei sowohl auf die über den gesamten Infektionsbereich hinweg summierten Signalamplituden, als auch auf das Volumen zu, in dem Fluor am Ort der Infektion akkumuliert wurde. Im Gegensatz zur Methode der cfu Bestimmung sind die MR Tomographie und die Biolumineszenzbildgebung nicht invasiv und erlauben die Verfolgung des Infektionsverlaufes an einem einzelnen Individuum. Hierzu benötigt, im Gegensatz zur MR Tomographie, die Methode der Biolumineszenzbildgebung jedoch einen speziellen Pathogenstamm. Darüber hinaus ist hervorzuheben, dass die MR Tomographie zudem die Möglichkeit bietet auch morphologische Informationen über den Infektionsbereich und seine Umgebung zu akquirieren. Gerade weil jede dieser Methoden die mit der Infektion einhergehenden Prozesse aus einer leicht anderen Blickrichtung betrachtet, erscheint es sinnvoll diese etablierte Untersuchungsplattform bestehend aus MRT, BLI und cfu über die in dieser Arbeit bearbeitete Fragestellung hinaus näher zu untersuchen. Insbesondere der Aspekt inwieweit die drei Methoden sich gegenseitig ergänzen, könnte einen tieferen Einblick in die Wechselwirkung zwischen Pathogen und Wirt erlauben. Auch wenn für die betrachtete Fragestellung bereits der hierdurchgeführte semiquanitative Ansatz zur Bestimmung der relativen Fluormengen am Ort der Infektion ausreichte, so ist doch im Allgemeinen wünschenswert probenbezogen die Sensitivität der Spule und damit die Güte der Spulenabstimmung zu bestimmen. Hierzu ist jedoch die Aufnahme von \(B_1\)-Karten unabdingbar und wird entsprechend im Kapitel 4 \(Bloch-Siegert B_1^+-Mapping\) näher addressiert. Der Schwerpunkt liegt hierbei, wie der Kapitelname bereits andeutet, auf der Bloch-Siegert Methode, die insbesondere in der präsentierten Implementierung in einer Turbo/ Multi Spin Echo Sequenz eine effiziente Nutzung der relativ langen \(T_\)2-Zeiten der Perfluorkarbone erlaubt. Da zudem die Bloch-Siegert-Methode eine rein phasenbasierte Methode ist, kann neben der aus den Daten erzeugten \(B_1\)-Karte zugleich ein unverfälschtes Magnitudenbild generiert werden, wodurch eine sehr effiziente Nutzung der vorhandenen Messzeit ermöglicht wird. Diese Eigenschaft ist insbesondere für \(^{19}F\) Bildgebung von besonderem Interesse, da hier für jede Messung, aufgrund der üblicherweise relativ geringen Konzentration an Fluoratomen, lange Messzeiten benötigt werden. Zusammenfassend konnte anhand des untersuchten Tiermodells sowohl die Fähigkeit der MR Tomographie nachgewiesen werden Infektionen im Zeitverlauf darzustellen, als auch die Fähigkeit der MR Tomographie quantitative Informationen über den Verlauf der Infektion zu liefern. Desweiteren konnte eine Möglichkeit aufgezeigt werden, welche das Potential hat in vertretbarem Zeitrahmen auch in vivo B1+-Karten auf dem Fluorkanal zu erstellen und so einen zentralen Unsicherheitsfaktor, für Relaxometry und absolute Quantifizierung von \(^{19}F\) Daten in vivo, zu beseitigen. N2 - The main focus of this work is to investigate the potential of magnetic resonance imaging (MRI) to monitor the timecourse of bacterial infections in vivo. More specifically, it focuses on the ability to localize and assess an infection-induced localized bulky abscess using three different MRI methods: the utilization of native \(T_2\) contrast; the usage of super paramagnetic iron oxide nanoparticles (USPIO) as MRI \(T_2^*\) contrast agents; and the application of perfluorcarbons (PFC) as \(^{19}F\) MRI marker (see chapter 3). Study results demonstrated that, as expected the altered \(T_2\) values present in the abscess area permit localization of the infection when using \(T_2\) weighted data. The precise boundary of the abscess, however, could not be determined due to the gradual change of the \(T_2\) values in the area of the infection. Conforming to other studies [53, 58], the MR-detected accumulation of USPIO particles along the abscess rim allowed definition of a fairly exact demarcation line between the abscess and surrounding tissue during the chronic phase of the infection (day 9 p.i.). During the acute phase of the infection (day 3 p.i.), however, the particle accumulation at the abscess rim was too sparse for precise boundary definition [58]. Because of their extremely low biological abundance and the very short relaxation times of endogenous fluorine, PFCs can be imaged background-free in a biological system. Moreover, as emulsified PFCs were taken up by phagocytosing cells and accumulated at the site of inflammation [30, 59], the acquired MRI data showed PFC accumulation during both the chronic and acute phases of infection. It was thus possible to differentiate between the abscess and surrounding tissue at each examined time point. Due to the described advantages, PFCs were chosen to evaluate with MRI the infection severity. As a bacterial burden reference, colony forming units (cfu) and bioluminescence imaging (BLI) [49, 50] were selected. Observation of BLI, cfu and \(^{19}F\) MRI data showed qualitative correlation during the investigated time course. This was true for the accumulated \(^{19}F\) MR signal in the area of infection and for the \(^{19}F\) MR signal volume. Additionally, unlike the cfu method MRI and BLI are non-invasive and thus data can be gathered at multiple time points. However, contrary to BLI, MRI does not require a special pathogen strain. Moreover, it can provide morphological data from an abscess and the surrounding tissue. Because the data delivered by each of these three methods (MRI, BLI and cfu), are based on alternative approaches, additional examinations of the established platform are suggested. For example, the extent to which the methods supplement each other may provide deeper insight into the interaction between pathogen and host. Even though the chosen semi quantitative approach was sufficient in the context of the evaluated issues to estimate the relative fluorine amount at the site of infection, it is in general desirable for each quantification to determine the sensitivity of the coil per sample. To address this issue the Bloch Siegert (BS) based \(B_1\) mapping method implemented in a turbo/ multi spin echo (TSE/MSE) sequence is presented in Chapter 4 Bloch-Siegert \(B_1^+\)-Mapping. Such a sequence allows effective use of the relatively long PFC \(T_2\) times and encodes BS information solely into the phase data. Thus, a \(B_1\) map can be created in addition to the unaltered TSE/MSE magnitude image. In the context of \(^{19}F\) imaging, this is of special interest due to the usually low amounts of fluorine resulting in long measurement times. In conclusion, it was shown that MRI not only enables visualization of the temporal behavior of infections on the investigated animal model, but it can also provide quantitative information about the progress of the infection. Additionally, a method potentially allowing in vivo B1+ mapping was introduced. This is an important step to improve the reliability of relaxometry and absolute quantification of in vivo \(^{19}F\) MRI. KW - Kernspintomografie KW - Bakterielle Infektion KW - 19F MR KW - Perfluorkarbon KW - Infektionsbildgebung KW - Bloch Siegert KW - B1 Mapping KW - Kontrastmittel Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122851 ER - TY - THES A1 - Hopfgartner, Andreas T1 - Magnetresonanztomographie in der Zahnheilkunde - hochauflösende zahnmedizinische Anwendungen in der MRT mit einer Entwicklung zur Bewegungskorrektur T1 - Magnetic Resonance Imaging in Dentistry – high-resolution dental applications in MRI with development of a method for motion correction N2 - Die zahnmedizinische Behandlung von Erkrankungen der Zähne oder im Bereich der Mundhöhle erfolgt bei Weitem nicht immer aus optischen Gründen. Diese Erkrankungen werden auch mit ernsthaften Erkrankungen in Zusammenhang gebracht. Studien haben gezeigt, dass einige Erkrankungen im Mund- und Zahnbereich zu Herz- und Lungenkrankheiten oder Diabetes führen können. Oftmals erstreckt sich die Pathologie oder Symptomatik von Mund- und Zahnerkrankungen über einen weiten Bereich. In der zahnmedizinischen Klinik kommen daher viele verschiedene diagnostische Apparate zum Einsatz. Allerdings zählt die Magnetresonanztomographie, die sich in anderen Bereichen bereits zum wichtigsten bildgebenden Diagnosetool entwickelt hat, dort noch nicht zu den Standardverfahren. Dabei liegen ihre Vorteile auf der Hand: sie ist bekannt für sehr gute Bildkontraste vor allem zwischen verschiedenen Weichgewebsarten und kommt ohne gefährliche ionisierende Strahlung aus. Wahrscheinlich ist ersteres der Grund, warum die MRT in der Zahnmedizin noch nicht sonderlich vertreten ist, kommt es dort oft auf die kontrastreiche Darstellung von Hartgeweben an. Neueste Entwicklungen und Studien belegen jedoch die vielseitigen Vorteile der MRT auch in diesem Bereich. Ziel dieser Arbeit von der applikativen Seite betrachtet, war es, das enorme Potential der MRT in den vielseitigen Bereichen der Zahnmedizin weiterhin aufzuzeigen. Viele dieser Anwendungen stellen jedoch sehr hohe Anforderungen an die Systeme. Meist sind die darzustellenden Strukturen sehr klein und erfordern eine hohe Auflösung. Während man beim Röntgenverfahren beispielsweise die Energie des Strahles (Dosis) steigern kann, bedeutet dies in der MRT (ohne das Gerät zu wechseln) eine Verlängerung der Messzeit. Gerade im Bereich des Kopfes kommt es oft zu ungewollten Bewegungen, die das Ergebnis und die Reproduzierbarkeit der gewonnenen diagnostischen Informationen verschlechtern oder gänzlich unbrauchbar machen. Die grösste Herausforderung dabei ist die dreidimensionale Abformung von Zahnoberflächen in der Prothetik. Dieses Verfahren kann eine aufwändige und unangenehme manuelle Abformung der Zähne und die Herstellung eines Zwischengipsmodells ersetzen und ein direktes dreidimensionales Modell der Zahnoberflächen produzieren. Durch die moderne CAD-/CAM-Technik kann daraus vom Zahntechniker direkt eine Zahnrestauration erstellt werden. Daher war ein wichtiger Bestandteil des Projekts dentale MRT die Entwicklung einer Methode zur Erkennung und gleichzeitiger Korrektur von Bewegungen. Verschiedenste Anforderungen waren an die Methode gestellt. Zum einen muss die Methode bereits Bewegungen im Bereich von ~100 µm erkennen, um die Anforderungen an die finale Bildauflösung zu unterschreiten. Bei der dentalen Abformung wird eine 1-Kanal-Empfängerspule verwendet und je nach Messung kann der Patient dabei auf dem Bauch oder Rücken liegen. Weiterhin muss die Bewegungserkennung ohne zusätzliche externe Geräte wie Kameras, deren Sicht z.B. durch den Patienten verdeckt ist, durchführbar sein. Die vorliegende Arbeit deckt also zwei größere Themenblöcke ab. Zum einen wurden in der Arbeit neue Applikationen entwickelt oder weiterentwickelt, um verschiedenen Bereichen der Zahnmedizin den Zugang zu MRTUntersuchungen zu eröffnen. Kapitel 4 beschreibt die Möglichkeit, die Bewegung des Kiefergelenks dynamisch zu erfassen. Es stellte sich in der Arbeit heraus, dass sowohl die Bewegung von Weichgewebeanteilen darstellbar waren, als auch der intraartikuläre Abstand im Kiefergelenk unter Kaubelastung in Echtzeit vermessen werden konnte. Dabei wurde die Bildgebungssequenz und der zugehörige Rekonstruktionsalgorithmus so entwickelt, dass die Daten flexibel und ohne Vorwissen akquiriert und aufbereitet werden können. Hierbei konnten verschiedenen Pathologien anhand der dynamischen Bilder sichtbar gemacht werden und die dynamische MRT konnte Erkrankungen erkennen, die mit anderen Mitteln nicht sichtbar waren. Die vielen diagnostischen Möglichkeiten, die dadurch entstehen sind bisher noch nicht untersucht und sollten durch großangelegte Studien untersucht und belegt werden. Kapitel 5 beschreibt die Ergebnisse einer großangelegten Studie im Bereich der dentomaxillären Bildgebung . Die diagnostischen Möglichkeiten der MRT für die kieferorthopädische Anwendung liegen klar auf der Hand. Die typischen Patienten in der Kieferorthopädie sind Kinder und Jugendliche. Die Abwesenheit von gewebsschädigender Strahlung ist hier ein besonderer Vorteil der MRT. Eine Messung dauert zudem nach diversen Weiterentwicklungen der Methode nur noch 2 (bzw. 4) Minuten. Die Auflösung in den gerenderten Bildern beträgt 0.25x0.25x0.5 mm. Mit der Methode konnte unter anderem die Geminisierung einer Zahnwurzel und der Abstand des Zahnmarks zur Zahnoberfläche (Zahnschmelz) dargestellt und vermessen werden. Kapitel 6 stellt Neuentwicklungen im Bereich der dentalen Abformung von Zahnoberflächen dar. Hier wurde eine neue Methode entwickelt um den Patientenkomfort bei der Messung zu steigern und so Bewegungen im Vorhinein zu unterbinden. Bei der alten Methode liegt der Patient auf dem Bauch und ein großer Teil der Mundhöhle ist mit Kontrastmittel befüllt. Durch die Verwendung einer präparierten Tiefziehschiene kann das Kontrastmittel nun lokal appliziert werden und eine Messung in Rückenlage das Patienten ist somit problemlos möglich. Die damit verbundene Reproduzierbarkeit der Abformungsergebnisse wäre durch eine großangelegte Studie zu zeigen. Die Hauptaufgabe der vorliegenden Dissertation war es, eine Methode zur Bewegungskorrektur zu entwickeln, die es ohne eine große Anzahl an Zusatzgeräten ermöglicht, die Bewegung eines Subjekts während der Messung zu erfassen und dementsprechend zu korrigieren. Diese neue Methode, gestützt auf einer Messung eines MRT-aktiven Markers der am Subjekt angebracht wird, beruht außer der Verwendung des Markers nur auf MRT-Hardware. Die Methode wird in Kapitel 8 vorgestellt. Da es sich bei der Methode um eine Neuentwicklung handelt, war es in erster Linie wichtig, die Einflüsse der verschiedenen Parameter, die sich auf die Positionierungsgenauigkeit auswirken, abzuschätzen und letzten Endes festzulegen. Dies wurde in mehreren Vorstudien, Experimenten und Computersimulationen abgehandelt. In der Arbeit konnte durch Validierungsexperimente gezeigt werden dass sich mit dem bildbasierten Navigator Bewegungen im Genauigkeitsbereich von ~50 µm (Translation) und ~0.13◦(Rotation) detektieren lassen. Mit den Positionsinformationen lassen sich MRT-Daten retrospektiv korrigieren oder idealerweise das Bildgebungsvolumen in Echtzeit anpassen um Inkonsistenzen in den Daten im Vorhinein vorzubeugen. Durch Bewegung beeinträchtigte in-vivo Daten konnten so mit der Methode korrigiert werden und anhand eines geeigneten Phantoms konnte die Verbesserung der Erkennung von Kanten, wie sie beispielsweise bei der dentalen Abformung angewandt wird, gezeigt werden. Die kontinuierlichen Entwicklungen in den Bereichen Hard-, Software und Algorithmik ermöglichen weitere hochauflösende Anwendungen. In Kapitel 9 sind die Ergebnisse einer Studie gezeigt, die sich mit der Analyse der Handbewegungen während einer Messung beschäftigt. Für eine hochauflösenden Darstellung der Handanatomie bei 7 T ist eine Unterbindung der Handbewegung sehr wichtig. Um ein geeignetes Design für eine Empfängerspule zu entwerfen, die Bewegungen der Hand unterbindet, wurde eine qualitative Bewegungsanalyse der Hand in mehreren verschiedenen Positionen durchgeführt. Durch Vergleich der Ergebnisse konnte so auf geeignete Designs zurückgeschlossen werden. N2 - The treatment of the teeth or diseased of the oral cavity is by far not only administered for aesthetic reasons. These diseases are sometimes also associated with other serious diseases. Studies have shown that some diseases of the mouth, the gingiva or the surrounding area can lead to heart and lung disease or diabetes. Oftentimes the pathology or symptomatology of dental or oral diseases extends to a wide area. In the dental clinic many different diagnostic devices are used. However, magnetic resonance imaging, which has developed in other areas as the most important diagnostic imaging tool, is not frequently used in dentistry to the present day, although their advantages are obvious: it is known for excellent image contrast, mainly between different soft tissues and comes without hazardous ionizing radiation. The former is probably the reason why the MRI is not yet a standard method in dentistry: here in most cases the contrast of hard tissues is of relevance. However, recent developments and studies demonstrated the versatile advantages of MRI in this area. The aim of this work as seen from the perspective of application, was to continuously show the enormous potential of MRI in the diverse areas of dentistry. However, many of these applications put very high requirements on the systems. Usually structures to display are very small and require very high resolution. To improve the resolution while using the X-ray method, e.g., one can increase the beam energy (dose). In MRI (without changing the MRT scanner) this results in an extension of measurement time. Especially in the area of the head this oftentimes leads to unwanted movements during the measurement time that worsen the outcome and reproducibility of the obtained diagnostic information or making it completely useless. The biggest challenge is the measurement of a three-dimensional impression of the tooth surfaces in prosthetics. This process can replace a complex and unpleasant manual impression of the teeth and avoid the production of an intermediate plaster model. Using MRT techniques, a direct three- dimensional model of the tooth surfaces can be produced. By modern CAD/CAM technology, a dental restoration can be directly manufactured by the dental technician using the digital 3D model. Therefore, an important task of the project was the development of a dental MRT method for the detection and correction of movements. Various requirements were imposed on the method. Firstly, the method must be able to detect movements in the range of ~100 µm to fall below the requirements of the final image resolution. For the acquisition of the contrast agent’s signal, a 1-channel receiver coil is used and depending on the measurement, the patient can lie prone or supine. Furthermore, the motion detection system must work without extensive external devices such as cameras, whose direct vision may be obscured by the patient, e.g. This thesis covers two major subject areas. Firstly, new applications and methods have been developed and further developed in order to provide the various fields of dentistry access to MRT techniques. Chapter 4 describes the possibility to image the motion of the temporomandibular joint dynamically in real-time. In this work it turned out that both, the movement of the soft tissue components were represented, as well as the intra-articular distance in the TMJ could be measured during mastication (under load) in real-time. Here, the imaging sequence and the corresponding reconstruction algorithm were designed such that the data can be acquired without a prioiri knowledge and processed flexibly. MRT showed different pathologies in the images and dynamic MRT could detect some diseases that could not be diagnosed by other means. The emerging diagnostic possibilities should be investigated and the results verified by large-scale studies. Chapter 5 describes the results of dento-maxillary MRT imaging, supported by a large-scale study. The diagnostic capabilities of MRI for orthodontic applications are obvious. The typical patient in orthodontics are children and adolescents. The absence of tissue-damaging radiation is a particular advantage of MRI here. After various developments, the acquisition time of a measurement lasted depending on the method only 2 (4) minutes. The resolution in the rendered images was 0.25x0.25x0.50 mm3. Using the proposed method, among other things a geminisation of a tooth root could be shown and the distance of the dental pulp to the tooth surface (enamel) measured. Chapter 6 presents new developments in the field of digital impressions of tooth surfaces. Here, a new method was developed in order to increase patient comfort during the measurement. This approach helps to prevent movements of the subject in advance. With the old method, the patient lies prone and a large part of the oral cavity is filled with contrast agent. By using a prepared dental cast, the contrast agent can be applied locally and hence the patient may lay supine during the measurement. The associated reproducibility of dental impressions should be shown through a large-scale study. The main task of this thesis was to develop a method for motion correction that allows to detect the movement of a subject during the measurement without a large number of additional devices and correct the acquired data accordingly. This new navigator method, based on the measurement of a MRT-active marker attached to the subject, makes use of MRT hardware only, except for the additional marker. The method is described in chapter 8. Since this is a new development, it was important to primarily estimate the effects of the various parameters and their impact on the positioning accuracy. This has been evaluated in several preliminary studies, experiments and computer simulations. By validation experiments it was shown in the studies that the image-based navigator detects movements with an accuracy of ~50 µm(translation) and ~0.13◦ (rotation). With the position information obtained from the navigator, the MRT data can be corrected retrospectively or the volume of interest can be adjusted in real-time during the imaging process to prevent inconsistencies in the data in advance. In-vivo MRT data impaired by motion of a subject during the measurement could be corrected using the MoCoLoCo method. By using an appropriate phantom and simulation a movement, it could be shown that using the proposed method, the quality of edge detection (as used in dental impressions, e.g.) could be restored. Various new high-resolution applications emerged due to the continuous development in hardware, software and algorithms. In chapter 9, the results of a study are presented, which deals with the analysis of shivering movements of the hand during a measurement. For a high-resolution depiction of hand anatomy at 7 T, a suppression of the hand movement is very important. In order to develop an optimal design for a hand receiver coil, a qualitative analysis of the hand movement in several different positions was performed. By comparison of the results, a suitable coil design could be developed. KW - Kernspintomografie KW - Kernspintomografie KW - Zahnmedizin Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122557 ER - TY - THES A1 - Weick, Stefan T1 - Retrospektive Bewegungskorrektur zur hochaufgelösten Darstellung der menschlichen Lunge mittels Magnetresonanztomographie T1 - Retrospective Motion Correction for High Resolution Magnetic Resonance Imaging of the Human Lung N2 - Ziel dieser Arbeit war es, das gesamte Lungenvolumen in hoher dreidimensionaler Auflösung mittels der MRT darzustellen. Um trotz der niedrigen Protonendichte der Lunge und der geforderten hohen Auflösung ausreichend Signal für eine verlässliche Diagnostik zu erhalten, sind Aufnahmezeiten von einigen Minuten nötig. Um die Untersuchung für den Patienten angenehmer zu gestalten oder auf Grund der eingeschränkten Fähigkeit eines Atemstopps überhaupt erst zu ermöglichen, war eine Anforderung, die Aufnahmen in freier Atmung durchzuführen. Dadurch entstehen allerdings Bewegungsartefakte, die die Diagnostik stark beeinträchtigen und daher möglichst vermieden werden müssen. Für eine Bewegungskompensation der Daten muss die auftretende Atembewegung detektiert werden. Die Bewegungsdetektion kann durch externe Messgeräte (Atemgurt oder Spirometer) oder durch eine zusätzliche Anregungen erfolgen (konventionelle Navigatoren) erfolgen. Nachteile dieser Methoden bestehen darin, dass die Bewegung während der Atmung nicht direkt verfolgt wird, dass elektronische Messgeräte in die Nähe des Tomographen gebracht werden und das die Patienten zusätzlich vorbereitet und eingeschränkt werden. Des Weiteren erfordert eine zusätzliche Anregung extra Messzeit und kann unter Umständen die Magnetisierung auf unterwünschte Weise beeinflussen. Um die angesprochenen Schwierigkeiten der Bewegungsdetektion zu umgehen, wurden in dieser Arbeit innerhalb einer Anregung einer 3d FLASH-Sequenz sowohl Bilddaten- als auch Navigatordaten aufgenommen. Als Navigator diente dabei das nach der Rephasierung aller bildgebenden Gradienten entstehende Signal (DC Signal). Das DC Signal entspricht dabei der Summe aller Signale, die mit einem bestimmten Spulenelement detektiert werden können. Bewegt sich beispielsweise die Leber bedingt durch die Atmung in den Sensitivitätsbereich eines Spulenelementes, wird ein stärkeres DC Signal detektiert werden. Je nach Positionierung auf dem Körper kann so die Atembewegung mit einzelnen räumlich lokalisierten Spulenelementen nachverfolgt werden. Am DC Signalverlauf des für die Bewegungskorrektur ausgewählten Spulenelementes sind dann periodische Signalschwankungen zu erkennen. Zusätzlich können aus dem Verlauf Expirations- von Inspirationszuständen unterschieden werden, da sich Endexpirationszustände im Regelfall durch eine längere Verweildauer auszeichnen. Grundsätzlich kann das DC Signal vor oder nach der eigentlichen Datenaufnahme innerhalb einer Anregung aufgenommen werden. Auf Grund der kurzen Relaxationszeit T∗2 des Lungengewebes fällt das Signal nach der RF Anregung sehr schnell ab. Um möglichst viel Signal zu erhalten sollten, wie in dieser Arbeit gezeigt wurde, innerhalb einer Anregung zuerst die Bilddaten und danach die Navigatordaten aufgenommen werden. Dieser Ansatz führt zu einer Verkürzung der Echozeit TE um 0.3 ms und damit zu einem SNR Gewinn von etwa 20 %. Gleichzeitig ist das verbleibende Signal nach der Datenakquisition und Rephasierung der bildgebenden Gradienten noch ausreichend um die Atembewegung zu erfassen und somit eine Bewegungskorrektur der Daten (Navigation) zu ermöglichen. Um eine retrospektive Bewegungskorrektur durchführen zu können, müssen Akzeptanzbedingungen (Schwellenwerte) für die Datenauswahl festgelegt werden. Bei der Wahl des Schwellenwertes ist darauf zu achten, dass weder zu wenige noch zu viele Daten akzeptiert werden. Akzeptiert man sehr wenige Daten, zeichnen sich die Rekonstruktionen durch einen scharfen Übergang zwischen Lunge und Diaphragma aus, da man sehr wenig Bewegung in den Rekonstruktionen erlaubt. Gleichzeitig erhöht sich allerdings das Risiko, dass nach der Navigation Linien fehlen. Dies führt zu Einfaltungsartefakten, die in Form von gestörten Bildintensitäten in den Rekonstruktionen zu sehen sind und die diagnostische Aussagekraft einschränken. Um Einfaltungsartefakte zu vermeiden sollte der Schwellenwert so gewählt werden, dass nach der Datenauswahl keine Linien fehlen. Aus dieser Anforderung lässt sich ein maximaler Schwellenwert ableiten. Akzeptiert man dagegen sehr viele Daten, zeichnen sich die Rekonstruktionen durch erhöhtes Signal und das vermehrte Auftreten von Bewegungsartefakten aus. In diesem Fall müsste der Arzt entscheiden, ob Bewegungsartefakte die Diagnostik zu stark beeinflussen. Wählt man den Schwellenwert so, dass weder Linien fehlen noch zu viel Bewegung erlaubt wird, erhält man Rekonstruktionen die sich durch einen scharfen Diaphragmaübergang auszeichnen und in denen noch kleinste Gefäße auch in der Nähe des Diaphragmas deutlich zu erkennen sind. Hierfür haben sich Schwellenwerte, die zu einer Datenakzeptanz von ca. 40 % führen als günstig erwiesen. Um Einfaltungsartefakte auf Grund der retrospektiven Datenauswahl zu verhindern, muss das Bildgebungsvolumen mehrfach abgetastet werden. Dadurch wird gewährleistet, dass für die letztendliche Rekonstruktion ausreichend Daten zur Verfügung stehen, wobei mehrfach akzeptierte Daten gemittelt werden. Dies spielt auf Grund der niedrigen Protonendichte der Lunge eine wesentliche Rolle in der Rekonstruktion hochaufgelöster Lungendatensätze. Weiterhin führt das Mitteln von mehrfach akzeptierten Daten zu einer Unterdrückung der sogenannten Ghost Artefakte, was am Beispiel der Herzbewegung in der Arbeit gezeigt wird. Da die Messungen unter freier Atmung durchgeführt werden und keine zusätzlichen externen Messgeräte angeschlossen werden müssen, stellte die Untersuchung für die Patienten in dieser Arbeit kein Problem dar. Im ersten Teil dieser wurde Arbeit gezeigt, dass sich mit Hilfe des DC Signales als Navigator und einer retrospektiven Datenauswahl das gesamte Lungenvolumen in hoher dreidimensionaler Auflösung von beispielsweise 1.6 x 1.6 x 4 mm3 innerhalb von 13 min. darstellen lässt. Die Anwendbarkeit der vorgestellten Methode zur Bewegungskorrektur wurde neben Probanden auch an Patienten demonstriert. Da wie bereits beschrieben das Bildgebungsvolumen mehrfach abgetastet werden muss, wiederholt sich auch die Abfolge der für die Bildgebung verantwortlichen Gradienten periodisch. Da sich der Atemzyklus aber auch periodisch wiederholt, kann es zu Korrelationen zwischen der Atmung und den wiederholten Messungen kommen. Dies führt dazu, dass auch nach vielen wiederholten Messungen immer noch größere Bereiche fehlender Linien im k-Raum bleiben, was zu Artefakten in den Rekonstruktionen führt. Dies konnte im Falle der konventionellen Bewegungskorrektur in den Gatingmasken, die die Verteilung und Häufigkeit der einzelnen akzeptierten Phasenkodierschritte im k-Raum zeigen, beobachtet werden. Da eine vorsätzliche Unterbrechung der Atemperiodizität (der Patient wird dazu angehalten, seine Atemfrequenz während der Messung absichtlich zu variieren) zur Vermeidung der angesprochenen Korrelationen nicht in Frage kommt, musste die Periodizität in der Datenaufnahme unterbrochen werden. In dieser Arbeit wurde dies durch eine quasizufällige Auswahl von Phasen- und Partitionskodiergradienten erreicht, da Quasizufallszahlen so generiert werden, dass sie unabhängig von ihrer Anzahl einen Raum möglichst gleichförmig ausfüllen. Die quasizufällige Datenaufnahme führt deshalb dazu, das sowohl akzeptierte als auch fehlende Linien nach der Bewegungskorrektur homogen im k-Raum verteilt auftreten. Vergleicht man das auftreten von Ghosting zeichnen sich die quasizufälligen Rekonstruktionen im Vergleich zur konventionellen Datenaufnahme durch eine verbesserte Reduktion von Ghost Artefakten aus. Dies ist auf die homogene Verteilung mehrfach akzeptierter Linien im k-Raum zurückzuführen. Die homogenere Verteilung von fehlenden Linien im k-Raum führt weiterhin zu einer wesentlich stabileren Rekonstruktion fehlender Linien mit parallelen MRT-Verfahren (z.B. iterativem Grappa). Dies wird umso deutlicher je höher der Anteil fehlender Linien im k-Raum wird. Im Falle der konventionellen Datenaufnahme werden die zusammenhängenden Bereiche fehlender Linien immer größer, was eine erfolgreiche Rekonstruktion mit iterativem Grappa unmöglich macht. Im Falle der quasizufälligen Datenaufnahme dagegen können auch Datensätze in denen 40% der Linien fehlen einfaltungsartefaktfrei rekonstruiert werden. Im weiteren Verlauf der Arbeit wurde gezeigt, wie die Stabilität der iterativen Grappa Rekonstruktion im Falle der quasizufälligen Datenaufnahme für eine erhebliche Reduktion der gesamten Messzeit genutzt werden kann. So ist in einer Messzeit von nur 74s die Rekonstruktion eines artefaktfreien und bewegungskorrigierten dreidimensionalen Datensatzes der menschlichen Lunge mit einer Auflösung von 2 x 2 x 5 mm3 möglich. Des Weiteren erlaubt die quasizufällige Datenaufnahme in Kombination mit iterativem Grappa die Rekonstruktion von Datensätzen unterschiedlicher Atemphasen von Inspiration bis Expiration (4D Bildgebung). Nach einer Messzeit von 15min. wurden 19 unterschiedliche Atemzustände rekonstruiert, wobei sich der Anteil der fehlenden Linien zwischen 0 und 20 % lag. Im Falle der konventionellen Datenaufnahme wäre eine wesentlich längere Messzeit nötig gewesen, um ähnliche Ergebnisse zu erhalten. Zum Schluss soll noch ein Ausblick über mögliche Weiterentwicklungen und Anwendungsmöglichkeiten, die sich aus den Erkenntnissen dieser Arbeit ergeben haben, gegeben werden. So könnte das quasizufällige Aufnahmeschema um eine Dichtegewichtung erweitert werden. Hierbei würde der zentrale k-Raum Bereich etwas häufiger als die peripheren Bereiche akquiriert werden. Dadurch sollte die iterative Grappa Rekonstruktion noch stabiler funktionieren und Ghost Artefakte besser reduziert werden. Die Verteilung der Linien sollte allerdings nicht zu inhomogen werden, um größere Lücken im k-Raum zu vermeiden. Darüber hinaus könnte die vorgestellte Methode der Bewegungskompensation auch für die Untersuchung anderer Organe oder Körperteile verwendet werden. Voraussetzung wäre lediglich das Vorhandensein dezidierter Spulenanordnungen, mit denen die Bewegung nachverfolgt werden kann. So ist beispielsweise eine dynamische Bildgebung des frei und aktiv bewegten Knies möglich, wobei zwischen Beugung und Streckung durch die erste Ableitung des zentralen k-Raum Signales unterschieden werden kann. Dies kann zusätzliche Diagnoseinformationen liefern oder für Verlaufskontrollen nach Operationen benutzt werden [15]. Eine Weiterentwicklung mit hohem klinischen Potential könnte die Kombination der in dieser Arbeit vorgestellten retrospektiven Bewegungskorrektur mit einer Multi- Gradienten-Echo Sequenz darstellen. Hierzu musste die bestehende Sequenz lediglich um eine mehrfache Abfolge von Auslesegradienten innerhalb einer Anregung erweitert werden. Dies ermöglicht eine bewegungskorrigierte voxelweise Bestimmung der transversalen Relaxationszeit T∗2 in hoher räumlicher Auflösung. Unter zusätzlicher Sauerstoffgabe kann es zu einer Veränderung von T∗2 kommen, die auf den sogenannten BOLD Effekt (Blood Oxygen Level Dependent) zurückzuführen ist. Aus dieser Änderung könnten Rückschlüsse auf hypoxische Tumorareale gezogen werden. Da diese eine erhöhte Strahlenresistenz aufweisen, könnte auf diese Bereiche innerhalb des Tumors eine erhöhte Strahlendosis appliziert und so möglicherweise Behandlungsmisserfolge reduziert werden. Gleichzeitig kann durch die 4D Bildgebung eine mögliche Tumorbewegung durch die Atmung erfasst und diese Information ebenfalls in der Bestrahlungsplanung benutzt werden. Die Lungen MRT könnte somit um eine hochaufgelöste dreidimensionale funktionelle Bildgebung erweitert werden. N2 - The goal of this work was to depict the whole lung volume by MRI in high spatial resolution. To obtain sufficient signal for a reliable diagnosis despite the inherently low proton density of the lung and the requested high spatial resolution, total acquisition times of a few minutes are mandatory. Simultaneously, the measurements should be performed under free breathing conditions making patient examinations more comfortable or possible for patients with limited breath holding capabilities. However, free breathing leads to motion artifacts which can severely influence the diagnostic value of the images and hence have to be avoided. To compensate for motion the prevalent breathing pattern has to be detected. This can be achieved by external measurement devices such as a respiration belt or a spirometer or by conventional navigator echoes using an additional excitation pulse. Drawbacks of these methods are that the respiratory motion is detected only indirectly, that electronic devices have to be used near the MRI machine and the patients have to be prepared and are strongly restricted. Furthermore, additional excitation pulses will prolong the total acquisition time and may affect the magnetization adversely. To overcome these limitations of motion detection in the present work, the image as well as the navigator data was acquired within one excitation of a FLASH sequence. The resulting central k-space signal (DC signal) after rephasing of all imaging gradients was used as a navigator signal. The DC signal represents the sum of all signals that can be detected with a single receiver coil element. If the liver is for example moving in the sensitivity area of one coil element due to breathing, an increased DC signal will be detected. Depending on their local position on the body the locally confined coil elements are able to track respiratory motion. The time course of the DC signal of the selected coil element for respiratory motion compensation will depict periodic signal variations accordingly. Additionally, respiratory phases of expiration can be distinguished from inspiratory phases because the resting times in end-expiratory phases are usually longer compared to end-inspiratory phases. The DC signal can be acquired either before or after the actual image data acquisition within one excitation. The short T2* of the human lung tissue leads to a rapid signal decay after the excitation. As shown in this thesis, the DC signal should be acquired after the image data within one excitation. This approach allows for echo time (TE) reduction of 0.3 ms leading to a signal benefit of approximately 20 %. Simultaneously, the remaining signal after image data acquisition and rephasing of all imaging gradients is still sufficient to track respiratory motion and can therefore be used for motion compensation of the acquired data. In order to compensate for motion retrospectively, threshold values for data acceptance have to be defined. Setting the threshold value, neither too less nor too much data should be accepted. Accepting very few data leads to sharp transition between the lung and the diaphragm because not much motion is allowed in the reconstruction process. On the other hand, disturbed signal intensity can be observed because of under-sampling artifacts due to missing lines after gating. These artifacts can restrict the diagnostic value of the reconstructions. Therefore, the selected threshold value should lead to a fully sampled k-space after gating. This requirement can be used to define the maximum threshold value for data acceptance. On the contrary, accepting very much data leads to higher signal intensity but also to more distinctive motion artifacts. In this case, the physician has to decide whether the motion artifacts affect his diagnosis too much. A moderate threshold value leads to a fully sampled k-space as well as good motion artifact compensation. This results in reconstructions that are characterized by a sharp depiction of small vessels even near the diaphragm. For this, threshold values leading to a data acceptance of about 40 % turned out to be beneficial. To avoid under-sampling artifacts because of retrospective gating, the imaging volume has to be acquired several times. This ensures that enough data is available for the final reconstruction whereas multiple accepted data is averaged. Averaging is essential for the reconstruction of high resolution data sets because of the inherently low proton density of the lung. Furthermore it leads to the reduction of ghost artifacts as is shown using the example of heart motion in this work. As no external measurement devices were used and the data was acquired under free breathing conditions the examinations posed no problem for the patients within this work. It was shown so far that the DC signal in combination with retrospective gating can be used to reconstruct high resolution 3d lung data sets with a resolution of 1.6 x 1.6 x 4 mm3 within 13 min., for instance. The applicability of the presented method for motion compensation was shown for volunteers as well as patients. Since as already described the imaging volume must be acquired several times, the series of gradients for spatial encoding are repeated periodically. As the respiratory cycle is periodically as well, correlations between the repeated measurements and the breathing cycle can occur. Therefore, even after many repeated measurements large areas of missing k-space lines can remain, leading to artifacts in the reconstructions. This can be observed in the gating masks, showing the distribution of accepted and missing lines in k-space, in case of conventional motion compensation used in this work so far. To avoid the aforementioned correlations, the periodicity in the repeated acquisitions has to be interrupted because of suspending the periodic breathing pattern of patients deliberately would be a serious intervention and is therefore ineligible. This was accomplished by a quasi-random selection of the phase and partition encoding gradients as quasi-random numbers are generated to fill the space as uniformly as possible regardless of their number. Therefore, accepted lines as well as missing lines are uniformly distributed in k-space after retrospective gating. A more uniform distribution of multiple accepted k-space lines in case of quasirandom sampling leads to an improved reduction of Ghost-Artifacts compared to conventional sampling. Furthermore, the more uniform distribution of missing kspace lines leads a considerably more stable reconstruction of missing lines using parallel imaging techniques (as iterative Grappa for example). This is getting more distinct the higher the proportion of missing k-space lines is. The contiguous areas of missing k-space lines are becoming increasingly large in case of conventional sampling, making a successful reconstruction using iterative Grappa impossible. In contrast, quasi-random sampling enables for the successful reconstruction of artifact free images even when 40 % of the acquired lines were missing after retrospective gating. In addition, the stability of the iterative GRAPPA reconstructions in case of quasirandom sampling allows for a substantial reduction of the total acquisition time. Thus, an artifact free motion compensated data set of 2 x 2 x 5 mm3 resolution could be reconstructed for a measurement time of only 74s. Furthermore, quasi-random sampling in combination with iterative Grappa enables for the reconstruction of data sets of different respiratory phases from inspiration to expiration (4d imaging). Accordingly, 19 different respiratory phases could be reconstructed after 15min of data acquisition. The percentage of missing lines was between 0 and 20 %. Hence, in case of conventional sampling a considerably longer measurement time would have been required to achieve similar results. KW - Kernspintomografie KW - Retrospektive Bewegungskorrektur KW - Magnetresonanztomographie KW - Lungenbildbgebung KW - freie Atmung KW - Retrospective Motion Compensation KW - DC-Gating KW - Lung Imaging KW - free breathing KW - Lunge Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124084 ER - TY - THES A1 - Kartäusch, Ralf T1 - Spektroskopische Flussmessung an Pflanzen mittels mobilem Magnetresonanztomographen T1 - Spectroscopic flow measurements in plants using a mobile magnetic resonance system N2 - The main objective of this dissertation was the development of a flow sensor which is specialized on flow measurements of plants. Hence, an accessible mobile magnet and the receiver/transfer hardware have been developed. Additionally, software to control the MR-console has been written. The AC-method was advanced to acquire slow flow profiles. This enables acquiring flow in plants. Additionally, in cooperation with the working group “Lipid Motobolism” of the IPK-Gatersleben studies have been carried out to measure the influence of the ear of wheat on the water transport mechanism. Furthermore, a new technique based on the Bloch-Siegert-effect has been developed which reduces the influence of eddy currents. This simplifies flow measurements that suffer heavily from eddy currents. Hardware development An accessible mobile magnet with a field strength of 0.42 T has been build. The field homogeneity is 0.5 ppm in 1 cm³. In comparison to the existing closed magnet system at the chair EP5 this is an improvement of a factor 40. Those enhancements have been achieved by an adjusted design of the magnet which has been optimized by computer simulations. The implementation of ferrite pole shoes reduced the eddy currents by a factor 7 in comparison to the usually used iron pole shoes. Therefore, phase sensitive flow measurements using fast switching magnet field gradients could be carried out. A foldable coil has been refined to achieve an accessible receiver system. This coil has been used as a transmit/receiver unit. Furthermore, the SNR of measurements in thin plant stalks was enhanced by a constructed system that could be directly wrapped around the stalk. Additionally, two systems to reduce noise in plant measurements have been developed. Those systems can reduce the noise by a factor 92. This was necessary because the longish plant stems guides electric noise from outside of the case into the receiver coil. Both noise reduction systems, the electromagnetic shielding and the common mode rejection, removed the noise to the same level. Flow measurement In the present work a refinement of the AC-method [36] enabled for the first time acquiring quantitative flow profiles. Hence, it was possible to measure slow velocity in the range of 200 µm/s. The precondition was the replacement of the sinusoidal gradient profile by a trapezoid gradient shape. Those allowed increasing the slew rate of the gradients and therefore shorten the total duration of the ramp which finally allows higher encoding strengths. Additionally, due to intervals without applied gradients, more efficient RF-pulses can be used and more data points can be acquired in an echo. The measured flow profiles correlated to the simulation results. The accurate flow profiles have been achieved by a new evaluation technique and a phase correction mechanism. The newly developed extension to imaging enabled spatially encoded spectral flow measurements. Therefore, the location of xylem and phloem can be spatially separated. In the measurement of the black alder this becomes apparent. Here the shape of dicotyledonous plants, which is described in chapter 5.1, is visible. Additionally, due to the spatial separation of the flow directions (up/down) qualitative flow measurements are possible. In pixels where opposite flow directions can spatially be resolved the difference between the left and the right side of the flow spectra yields the total flow without static water. Due to the phase corrections technique in combination with the automatically frequency calibration, long term flow measurements were possible. Therefore, the response of plants on influences like changes in the illumination have been observed in measurements over a duration of nine days. Here flow changes below 200 µm/s can be detected. Bloch-Siegert phase encoding In this work a new spatial phase encoding technique (BS-SET) using a B1-gradient in combination with far off-resonant radio frequency pulses has been demonstrated. Based on the Bloch-Siegert Shift an eddy current free B1-gradient was used to encode images and apply flow encoding. The BS-gradient induces a phase shift which depends on B1² using a constant gradient. Therefore, adapted reconstructions have been developed that provide undistorted images using this nonlinear encoding. Alternatively, a B1-gradient has been developed where the profile of the B1-field follows a square root shape. This supplies a linear phase encoding removing the need for an adapted reconstruction and enables using this technique for flow encoding. N2 - Das Ziel der Promotion war die Entwicklung eines Flusssensors mit dem Fokus auf Flussmessungen an Pflanzen. Dazu musste zunächst die Hardware in Form eines räumlich zugänglichen Magneten und einer Sende- und Empfangseinheit entworfen werden. Um die MR-Konsole ansteuern zu können, musste eine Software entwickelt werden. Die AC-Methode wurde für Flussmessungen mit niedrigen Geschwindigkeiten angepasst und die entsprechende Theorie dazu erweitert. Mit dieser weiterentwickelten AC-Methode wurde die Flussmessung an Pflanzen demonstriert. Dafür wurden im Rahmen einer Kooperation mit der Arbeitsgruppe „Lipid Motobolism“ der IPK-Gatersleben Flussstudien an Weizenpflanzen durchgeführt. Darüber hinaus wurde in dieser Arbeit eine neue Technik zur Wirbelstromvermeidung bei Permanentmagneten entwickelt, um Problemen mit diesen bei Flussmessungen entgegenzuwirken. Sensorbau Es wurde ein zugänglicher, mobiler Magnet mit einer Feldstärke von 0,42 T gebaut. Die Feldhomogenität beträgt 0,5 ppm in 1 cm³. Im Vergleich zu dem am Lehrstuhl der EP5 bestehenden, geschlossenen, mobilen Magnetsystem erreicht das in dieser Arbeit gebaute System ein 40fach homogeneres Magnetfeld. Erzielt wurden diese Verbesserungen durch ein spezielles Design, welches durch Computersimulationen sukzessiv optimiert wurde. Durch angepasste Polschuhe konnte darüber hinaus die Induktion von Wirbelströmen im Mittel um einen Faktor 7 reduziert werden, wodurch phasensensitive Flussmessungen ermöglicht wurden. Um die Zugänglichkeit zu dem Innenraum der HF-Spulen zu gewährleisten, wurde eine Klappspule weiterentwickelt und als Sende- und Empfangseinheit für den Tomographen gebaut. Ferner wurde ein System gebaut, dass direkt um die Pflanze gewickelt werden kann und sich somit für besonders dünne Pflanzenstängel eignet. Weiterhin wurden zwei Systeme zur Rauschunterdrückung für die Messungen an Pflanzen entwickelt. Dadurch konnte das Rauschen um einen Faktor 92 gesenkt werden. Dies war notwendig, weil die länglichen Pflanzen durch ihre Ausdehnung über das Gehäuse hinweg ein Rauschen in die Empfangsspule induziert haben. Die beiden Rauschunterdrückungssysteme, die elektrische Schirmung und die Gleichtaktunterdrückung, entfernten das Rauschen dabei gleichermaßen. Flussmessung Die im Rahmen der Arbeit erfolgte Weiterentwicklung der AC-Methode [102] erlaubte es erstmals mit der Methode quantitative Flussprofile aufzunehmen. In Folge dessen war es außerdem möglich Geschwindigkeiten unter 200 µm/s zu messen. Die Vorrausetzung dafür war die Implementierung von trapezförmigen Gradienten, welche kürzere Rampzeiten und eine stärkere Kodierung zulassen. Dadurch sind außerdem Intervalle ohne Gradienten realisierbar, die effizientere Refokussierungspulse und die Aufnahme mehrerer Datenpunkte ermöglichen. Die zu erwartenden und simulierten Flussprofile entsprachen den gemessenen Profilen durch die Verwendung einer neuen Auswertungstechnik. Die neu entwickelte Erweiterung zur Bildgebung ermöglicht die ortsaufgelöste, spektroskopische Flussmessung und so können die Bereiche von Xylem und Phloem voneinander getrennt werden. Dies wurde durch Messungen einer Schwarzerle gezeigt, bei der die im Abschnitt 5.1 beschriebene Struktur dikotyler Pflanzen aufgelöst werden konnte. Zusätzlich können qualitativ genauere Aussagen über die Flussgeschwindigkeit getroffen werden. Bei Messungen an Pflanzen konnte mit der optimierten AC-Methode die Flussänderungen aufgrund äußerer Einflüsse, wie der Beleuchtung, beobachtet werden. Langzeitmessungen über 9 Tage zeigten einen der Beleuchtung folgenden Flussverlauf - auch bei sehr geringen mittleren Flussänderungen von unter 200 µm/s. Bloch-Siegert Phasenkodierung Um eine Phasenkodierung ohne die Induktion von Wirbelströmen zu erhalten, wurde im Rahmen der Arbeit die ortsabhängige Phasenkodierung mittels B1-Gradienten entwickelt. Diese Technik basiert auf HF-Wechselfeldern und benutzt den sogenannten BS-Shift um einen B1-feldabhängigen Frequenzshift zu induzieren. Zwei Rekonstruktionstechniken wurden entwickelt, um die Rekonstruktion von entzerrten Bildern zu ermöglichen. Dies war notwendig, da die Kodierung mittels BS-Shift von B1² abhängt. Infolgedessen wird bei der Verwendung von konstanten HF-Gradienten eine vom Quadrat des Ortes abhängige Phasenkodierung induziert. Als Alternative zu diesem Verfahren wurde ein Gradient entwickelt, der einen wurzelförmigen Feldverlauf hat und somit die lineare Kodierung ohne angepasste Rekonstruktionstechniken ermöglicht. KW - Kernspintomografie KW - Wassertransport KW - Spektroskopische Flussmessung KW - AC Gradients KW - Pflanzen Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125820 ER - TY - THES A1 - Triphan, Simon T1 - T1 und T2*-Quantifizierung in der menschlichen Lunge T1 - T1 and T2* quantification in the human lung N2 - In dieser Arbeit werden für die Anwendung in der menschlichen Lunge optimierte Methoden zur Bestimmung von T1- und T2*-Karten diskutiert: Dc-Gating ermöglicht die Quantifizierung in freier Atmung, wobei für die T1-Quantifizierung mittels Inversion Recovery eine Korrektur des dc-Signals entwickelt wurde. Dies hat den Vorteil, dass Parameterkarten aus mehreren Messungen anhand ihrer dc-Signale passend überlagert werden können. Da T1 und T2* auf unterschiedliche Art und Weise von der Sauerstoffkonzentration abhängen, verbessert dies die Möglichkeit, ΔT1- und ΔT2*- Differenzkarten aus Messungen mit unterschiedlichen O2-Konzentrationen im Atemgas zu erstellen. Die Parameterquantifizierung ist in erster Linie für die Beobachtung von Krankheitsverläufen interessant, da T1 und T2* absolute, vergleichbare Zahlen sind. Da T2* deutlich vom Atemzustand abhängt, ist es auch hierfür sinnvoll, durch Gating identische Atemzustände abzubilden. Um die unterschiedlichen Einflüsse des Sauerstoffs auf T1 und T2* besser vergleichbar zu machen, wurde in dieser Arbeit weiterhin eine kombinierte Messung für beide Parameter implementiert: Da auch diese in freier Atmung stattfindet, profitieren nicht nur die Differenzkarten von der Überlagerung der Bilder, sondern auch der Vergleich der ΔT1- und ΔT2*-Karten untereinander. Messungen mit einer konventionellen kartesischen Methode an COPD-Patienten unter Raumluft- und 100% Sauerstoffatmung ergaben bei Verwendung identischer Atemmasken ein deutlich geringeres ΔT1 als in gesunden Probanden. Dass T1 in der Lunge nicht nur von der Sauerstoffkonzentration sondern auch von der Gewebezusammensetzung und insbesondere auch dem Blutvolumenanteil abhängt, zeigte sich hierbei aber auch an den bei COPD im Mittel sehr viel kürzeren T1-Zeiten bei Raumluft. Die aufgrund emphysematischer Veränderung noch zusätzlich reduzierte Protonendichte im Parenchym kranker Lungen macht diese Messungen allerdings besonders schwierig. Die oben erwähnten Optimierungen der T1-Quantifizierung zielen daher auch darauf ab, das Signal aus der Lunge zu maximieren, um Patientenmessungen einfacher zu machen: Messungen in freier Atmung sind für Patienten nicht nur einfacher, sondern erlauben effektiv auch längere Messzeiten. Insbesondere wurde aber durch die Entwicklung einer radialen Methode die Echozeit zur Messung reduziert, um die kurze T2*-Zeit in der Lunge auszugleichen. Schließlich wurde durch Implementation einer 2D UTE Sequenz die Messung bei der kürzesten vom Scanner erlaubten Echozeit ermöglicht. Die Messungen bei ultrakurzen Echozeiten in Probanden zeigten allerdings deutlich kürzere T1-Zeiten als die zuvor gefundenen oder in der Literatur dokumentierten. In weiteren Experimenten wurde das sichtbare T1 zu mehreren Echozeiten mit Hilfe der zur kombinierten Quantifizierung entwickelten Methode bestimmt. Dabei ergab sich eine Zunahme des gemessenen T1 mit der Echozeit. Aus diesem Verhalten sowie den gefundenen kürzesten und längsten T1 lässt sich schließen, dass das intra- und extravaskuläre Lungenwasser, also Blut bzw. das umgebende Gewebe, mit unterschiedlichen T1- und T2*-Zeiten zum Signal und damit auch dem effektiven T1 beitragen. Dass das TE der Messung die Gewichtung dieser Kompartimente bestimmt, hat dabei mehrere Auswirkungen: Einerseits bedeutet dies, dass beim Vergleich von T1-Messungen in der Lunge stets auch das TE mitbetrachtet werden muss, bei dem diese durchgeführt wurden. Andererseits lässt sich die Möglichkeit, die Messung auf die unterschiedlichen Kompartimente abzustimmen, potentiell ausnutzen, um zusätzliche diagnostische Informationen zu gewinnen: Da T1 vom Blutvolumenanteil und der Gewebezusammensetzung abhängt, könnte dieser Effekt helfen, diese beiden Einflüsse zu differenzieren. Während die in dieser Arbeit beschriebenen Experimente die TE-Abhängigkeit des sichtbaren T1 in Probanden aufzeigen, liefern sie allerdings noch keine genaue Erklärung für die möglichen Ursprünge dieses Effekts. Um diese weiter zu untersuchen, könnten allerdings gezielte Phantom- und in vivo-Experimente Aufschluss geben: Ein Aufbau, der die Feldverzerrung durch luftgefüllte Alveolen in Lösungen mit entsprechenden verschiedenen Suszeptibilitäten nachbildet, reduziert den Unterschied zwischen den Kompartimenten auf T1 und χ. Eine in vivo-Messung mit möglichst großer Differenz zwischen Ex- und Inspiration hingegen könnte den Einfluss der Abstände der Kompartimente vom Gasraum aufzeigen, da die Alveolarwände in tiefer Inspiration am weitesten gedehnt und daher am dünnsten sind. N2 - In this work, methods for the local measurement of T1 and T2* maps optimized for the application in the human lungs are discussed: Quantification during free breathing was enabled by applying dc-gating, where a correction for the dc-signal acquired during T1-quantification using a inversion recovery was introduced. This is especially useful to achieve parameter maps in identical breathing states from multiple measurements using their dc-signals. Since T1 and T2* depend on the oxygen concentration through different mechanisms, this is especially interesting to produce ΔT1- and ΔT2*-difference maps at varying O2-concentrations in the breathing gas. Parameter quantification is primarily interesting for the monitoring of the courses of disease or therapy since T1 and T2* are absolute, comparable numbers. As T2* depends significantly on the respiratory state, ensuring identical states via gating is relevant there as well. To further improve the comparison of oxygen influence on T1 and T2* a method for the combined measurement of both parameters was implemented: Since this is also employs gating, not only the difference maps benefit from image coregistration, but the comparison of the ΔT1 and ΔT2* maps to each other as well. Measurements using the conventional cartesian method on COPD patients under room air and pure oxygen conditions resulted in much lower ΔT1 than in healthy volunteers when using identical oxygen masks. The much lower average T1 times at room air found there demonstrate that T1 in the lungs not only depends on the oxygen concentration but also on tissue composition and especially the blood volume fraction. Proton densities that were reduced even further due to emphysematous destruction made these measurements additionally difficult. Accordingly, the optimizations for T1 quantification mentioned above are intended to maximize signal from the lung parenchyma to improve patient measurements: Measurements during free breathing are not only easier for patients but effectively also allow for longer acquisition times. In particular the developement of a radial method provides a shorter echo time to help compensate for the short T2* in the lungs. Finally, the implementation of a 2D UTE sequence enables the measurement at the shortest echo time available on the scanner hardware. However, the measurements at ultra short echo times in volunteers showed significantly shorter T1 times than those found previously and those reported in the literature. In further experiments, the observable T1 was determined at multiple echo times using the method developed for simultaneous quantification. This revealed a gradual increase of the measured T1 with the echo time. From this behaviour as well as the shortest and longest times found, it can be concluded that the intra- and extravascular compartments of lung water, essentially blood and the surrounding tissue, contribute with different T1 and T2* times to the MR signal and thus also the effective T1. That the echo time of the measurement determines the weighting of these compartments has multiple consequences: Firstly, this means that when comparing T1 measurements in the lungs, the echo time that was used to acquire them also has to be considered. Secondly, the possiblity to focus the measurement on these different compartments might be used to gain additional diagnostic information: Since T1 depends on blood volume content and tissue composition, this effect might help to differentiate these two influences. While the experiments described in this work demonstrate the echo time dependence of the observed T1 in volunteers, they do not yet provide an explanation for the exact origins of this effect. To examine these further, appropriate phantom and in vivo experiments could be insightful: A phantom design that simulates the field distortion caused by air-filled alveoli in solutions with suitable susceptibilites would reduce the difference between the compartments to T1 and χ. A in vivo measurement with an especially large difference between ex- and inspiration could help to show the influence of the distance of the compartments from the gas space, since the alveolar walls are most dilated and thus thinnest during deep inspiration. KW - Kernspintomografie KW - Lunge KW - T2*-Relaxation KW - T1-Relaxtion KW - funktionelle Lungenbildgebung KW - MRT der Lunge KW - Spin-Gitter-Relaxation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-139621 ER - TY - THES A1 - Bachschmidt, Theresa T1 - Magnetic Resonance Imaging in Proximity to Metal Implants at 3 Tesla T1 - Magnetresonanzbildgebung nahe metallischer Implantate bei 3 Tesla N2 - Magnetic resonance imaging is derogated by the presence of metal implants and image quality is impaired. Artifacts are categorized according to their sources, the differences in susceptibility between metal and tissue and the modulation of the magnetic radiofrequency (RF) transmit field. Generally, these artifacts are intensified at higher field strength. The purpose of this work is to analyze the efficiency of current methods used for metal artifact reduction at 3T and to investigate improvements. The impact of high-bandwidth RF pulses on susceptibility-induced artifacts is tested. In addition, the benefit of a two-channel transmit system with respect to shading close to total hip replacements and other elongated metal structures in parallel to the magnetic field is analyzed. Local transmit/receive coils feature a higher peak B1 amplitude than conventional body coils and thus enable high-bandwidth RF pulses. Susceptibility-induced through-plane distortion relates reciprocally to the RF bandwidth, which is evaluated in vitro for a total knee arthroplasty. Clinically relevant sequences (TSE and SEMAC) with conventional and high RF pulse bandwidths and different contrasts are tested on eight patients with different types of knee implants. Distortion is rated by two radiologists. An additional analysis assesses the capability of a local spine transmit coil. Furthermore, B1 effects close to elongated metal structures are described by an analytical model comprising a water cylinder and a metal rod, which is verified numerically and experimentally. The dependence of the optimal polarization of the transmit B1 field, creating minimum shading, on the position of the metal is analyzed. In addition, the optimal polarization is determined for two patients; its benefit compared to circular polarization is assessed. Phantom experiments confirm the relation of the RF bandwidth and the through-plane distortion, which can be reduced by up to 79% by exploitation of a commercial local transmit/receive knee coil at 3T. On average, artifacts are rated “hardly visible” for patients with joint arthroplasties, when high-bandwidth RF pulses and SEMAC are used, and for patients with titanium fixtures, when high-bandwidth RF pulses are used in combination with TSE. The benefits of the local spine transmit coil are less compared to the knee coil, but enable a bandwidth 3.9 times as high as the body coil. The modulation of B1 due to metal is approximated well by the model presented and the position of the metal has strong influence on this effect. The optimal polarization can mitigate shading substantially. In conclusion, through-plane distortion and related artifacts can be reduced significantly by the application of high-bandwidth RF pulses by local transmit coils at 3T. Parallel transmission offers an option to substantially reduce shading close to long metal structures aligned with the magnetic field. Effective techniques dedicated for metal implant imaging at 3T are introduced in this work. N2 - Metallimplantate beeinträchtigen die Funktionsweise der Magnetresonanztomographie und verschlechtern die Bildqualität. Die Artefakte werden entsprechend ihres Ursprungs kategorisiert, in einerseits Suszeptibilitätsunterschiede zwischen Metall und Gewebe und andererseits die Modulation des B1-Feldes. Im Allgemeinen verstärken sich diese Artefakte bei höheren Feldstärken. Das Ziel dieser Arbeit ist es, die Effizienz vorhandener Methoden zur Artefaktreduktion bei 3T zu bewerten und mögliche Verbesserungen herauszuarbeiten. Der Einfluss von breitbandigen Hochfrequenz-Pulsen (HF-Pulsen) auf Suszeptibilitätsartefakte wird untersucht. Zusätzlich wird der Einfluss eines Zwei-Kanal Sendesystems auf Abschattungen analysiert, die in der Nähe von Hüftimplantaten und anderen länglichen Implantaten auftreten, welche parallel zu B0 liegen. Im Gegensatz zu konventionellen Ganzkörper-Sendespulen erlauben lokale Sende-/Empfangsspulen eine höhere maximale B1-Amplitude, die breitbandigere HF-Pulse ermöglicht. Die reziproke Abhängigkeit der Suszeptibilitätsartefakte in Schichtrichtung zur HF-Bandbreite wird in vitro für eine Kniegelenkplastik evaluiert. An acht Patienten mit verschiedenen Knieimplantaten werden klinisch relevante Sequenzen (TSE und SEMAC) mit konventionellen und breitbandigen HF-Pulsen in verschiedenen Kontrasten getestet und die Verzerrungen werden von zwei Radiologen bewertet. Eine weitere Studie untersucht das Potenzial einer lokalen Sendespule für die Wirbelsäule. Darüberhinaus werden B1-Effekte nahe länglicher Metallstrukturen durch ein analytisches Modell beschrieben, das numerisch und experimentell überprüft wird. Des Weiteren wird die Abhängigkeit der optimalen Polarisation des B1-Feldes, die minimale Abschattung verursacht, von der Position des Metalls untersucht. Für zwei Patienten wird die optimale Polarisation bestimmt und deren Vorteil gegenüber der zirkularen Polarisation analysiert. Phantomversuche bestätigen die Abhängigkeit zwischen HF-Bandbreite und der Schichtverzerrung, die durch die Verwendung einer lokalen Kniespule mit Sende- und Empfangsfunktion bei 3T um 79% reduziert werden kann. Die Artefakte bei Patienten mit Vollimplantaten, bzw. Titanimplantaten, werden als "kaum sichtbar" bewertet, wenn SEMAC, bzw. TSE, mit breitbandigen HF-Pulsen kombiniert appliziert wird. Im Vergleich zur lokalen Kniespule fallen die Vorteile der lokalen Wirbelsäulen-Sendespule geringer aus; dennoch kann die 3,9-fache HF-Bandbreite der Ganzkörpersendespule erreicht werden. Die B1-Modulation aufgrund von Metall wird im dargestellten Modell gut wiedergegeben und die Position des Metalls im Objekt hat großen Einfluss auf den Effekt. Die Verwendung der optimalen Polarisation kann Abschattungen stark reduzieren. Zusammenfassend können Artefakte aufgrund von Schichtverzerrungen durch die Verwendung lokaler Sendespulen und breitbandiger HF-Pulse bei 3T stark abgeschwächt werden. Die individuelle Wahl der Polarisation des B1-Feldes bietet eine gute Möglichkeit, Abschattungen in der Nähe von länglichen Metallstrukturen zu reduzieren, soweit diese näherungsweise parallel zu B0 ausgerichtet sind. Somit werden in dieser Arbeit wirksame Methoden zur Metallbildgebung bei 3T eingeführt. KW - Kernspintomografie KW - Metallimplantat KW - Artefakt KW - 3 Tesla KW - Implantat KW - Verzerrung KW - Abschattung Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-135690 ER - TY - THES A1 - Ott, Martin T1 - Lautstärkereduzierte Magnetresonanztomographie T1 - Acoustic noise reduced MRI N2 - Messungen mit Magnetresonanztomographen sind seit jeher mit hohen Lautstärken verbunden. Deshalb wird das Gerät im Volksmund auch als „laute Röhre“ bezeichnet. Bisher wurde das Problem mit Kopfhörern, Ohrenstöpseln und akustischer Dämmung des MRT-Scanners angegangen. Auch in der Fachliteratur wird das Problem als gegeben angesehen und es werden kaum wissenschaftliche Lösungsansätze zur Lautstärkereduktion beschrieben. Das Ziel der vorliegenden Arbeit war es, Bildgebungs-Sequenzen für schwer‑optimierbare Bildkontraste und sogenannte Standard-Kontraste aus dem klinischen Umfeld hinsichtlich der Lautstärke zu optimieren. Viele dieser Kontraste können bereits mit einfachen Algorithmen wie dem Gradientenglättungsalgorithmus erfolgreich in Hinblick auf die Lautstärke optimiert werden. Allerdings existieren auch Sequenzen beziehungsweise Kontraste, die aufgrund ihrer Eigenschaften nicht von einem solchen Algorithmus profitieren können. Die Optimierungen und Änderungen sollten software-seitig erfolgen, das heißt durch Änderung der Gradientenformen und Datenakquisition. In der Arbeit wurden die grundlegenden Zusammenhänge zwischen den verwendeten Geräteparametern und der Lautstärke untersucht und zudem die physikalischen Ursachen der Lautstärkeentwicklung hergeleitet. Diese konnten anhand der Lorentz-Kräfte quantitativ beschrieben werden. Somit konnten die Hauptursachen der Lautstärkeentwicklung identifiziert werden. Diese sind abhängig von der Gradienten-Steig-Rate, aber auch von der Amplitude der Gradienten. Es konnte gezeigt werden, dass eine Minimierung dieser Gradientenparameter zu einer geringeren Lautstärkeentwicklung führt. Allerdings führt diese Minimierung in den meisten Fällen auch zu einer systematischen Verlangsamung des Sequenzablaufs, was das Erreichen bestimmter Echozeiten und Bildkontraste unmöglich macht. Zu den problematischen Kontrasten bezüglich der Lautstärkereduktion zählten der T1- und PD‑Kontrast einer Turbo-Spin-Echo-Sequenz. Durch die Kombination von mehreren Maßnahmen, wie der Adaption der k-Raum-Akquisition, der HF-Pulse-Parameter und den Gradientenformen, war es möglich, die Lautstärke in Beispielmessungen um bis zu 16,8 dB(A) zu reduzieren. Wie bei der kürzlich veröffentlichten Methode zur Reduktion für die T2‑gewichteten Kontraste, wurde dies zulasten einer Messzeitverlängerung von bis zu 50% erreicht. Die Endlautstärke betrug dabei circa 81 dB(A). Mit der Lautstärkeoptimierung der klinisch bedeutsamen T1- und PD‑Kontraste wurde die Palette an leisen, mit der Turbo-Spin-Echo‑Sequenz erzielbaren, Standard-Kontrasten (T1, T2 und PD) nun vervollständigt. In einem anderen Ansatz wurde die Anwendbarkeit des CAT-Konzepts auf die Lautstärkereduktion untersucht. Beim CAT-Konzept wird die Messung in Einzelmessungen mit verschiedenen Parametern unterteilt. Bisher wurde dieser Ansatz zur SAR-Reduktion verwendet. Das Zentrum des k-Raums wird mit einer SAR-intensiven, kontrastgebenden Messung aufgenommen. Der verbleibende Teil des k-Raums wird mit einer SAR-reduzierten, bildstrukturrelevanten Messung aufgenommen. In dieser Arbeit wurde die Übertragung des CAT-Konzepts auf die Lautstärkereduktion untersucht. Anstelle von SAR-intensiven und SAR‑reduzierten Messungen, wurde hier die Unterteilung in „laute“ und „leise“ Messungen untersucht. Dabei wurden Überlegungen angestellt, die es für eine Vielzahl an Messungen ermöglichen, einen großen Teil der Messung leise zu gestalten ohne die Bildqualität oder den Bildkontrast zu verändern. In einem weiteren Schritt wurden Überlegungen für die Lautstärkereduktion der lauten Messungen vorgestellt. Anschließend wurden für eine GRE- und TSE-Sequenz Optimierungsschritte evaluiert und die Lautstärke gemessen. Der hinsichtlich der Lautstärkeoptimierung herausforderndste Bildkontrast ist die diffusionsgewichtete Bildgebung. Diese besitzt eine Diffusions-Präparation zur Sichtbarmachung der Diffusivität, bei der die maximal mögliche Gradienten-Amplitude verwendet wird. Ebenso werden nach der Präparation die Daten mit einem EPI‑Akquisitionsmodul mit Blip-Gradienten akquiriert, das mit einem charakteristischem „Pfeifton“ einhergeht. Zum einen wurden die Gradientenformen konsequent angepasst. Zum anderen wurde eine Segmentierung der k-Raum-Akquisition in Auslese-Richtung verwendet, um die Gradienten‑Steig-Raten zu reduzieren. Auch hier konnte eine deutliche Lautstärkereduktion von bis zu 20,0 dB(A) erzielt werden. Dies wurde zulasten einer Messzeitverlängerung von 27% ‑ 34% im Vergleich zur Standard-Sequenz erreicht. Durch eine weitere Messzeitverlängerung um bis zu 23% kann die Lautstärke um weitere 0,9 dB(A) reduziert werden. Dabei hängt die genaue Messzeitverlängerung vom verwendeten GRAPPA-Faktor und der Anzahl der Auslese-Segmente ab. Die entstandene Sequenz wurde in mehreren Kliniken erfolgreich erprobt. Bisher mussten bei MRT-Messungen stets Kompromisse zwischen „hoher Auflösung“, „hohem SNR“ und „geringer Messzeit“ getroffen werden. Als Anschauung dafür wurde das „Bermuda‑Dreieck der MRT“ eingeführt. Da alle drei Größen sich gegenseitig ausschließen, muss stets ein Mittelweg gefunden werden. Einige der in dieser Arbeit erzielten Erfolge bei der Lautstärkereduktion wurden auf Kosten einer verlängerten Messzeit erreicht. Daher ist es naheliegend, das „Bermuda-Dreieck der MRT“ um die Dimension der „geringen Lautstärke“ zu einer „Bermuda-Pyramide der MRT“ zu erweitern. Damit muss die Lautstärkeentwicklung in die Mittelweg‑Findung miteinbezogen werden. Die in dieser Arbeit erzielten Lautstärken liegen in der Größenordnung zwischen 80 ‑ 85 dB(A). Somit können Messungen bei Verwendung von Gehörschutz angenehm für den Patienten durchgeführt werden. Durch neue Techniken der Zukunft wird es wahrscheinlich sein, höhere Auflösungen, höheres SNR oder kürzere Aufnahmedauern zu erzielen, beziehungsweise stattdessen diese in eine geringe Lautstärke „umzuwandeln“. Ebenso werden möglicherweise auf der hardware-technischen Seite Fortschritte erzielt werden, so dass in neueren MRT-Scannergenerationen mehr Wert auf die Lärmdämmung gelegt wird und somit der softwarebasierten Lautstärkereduktion einen Schritt entgegen gekommen wird. Damit könnten zukünftige Patienten-Messungen gänzlich ohne störenden Gehörschutz durchgeführt werden. N2 - Magnetic resonance imaging (MRI) measurements have always been related to high acoustic noise. Therefore, in common parlance MRI is referred to as the “loud tube”. Until now, the acoustic noise was mitigated by the use of headphones and ear plugs as well as acoustic dampening of the MR system. In literature, the problem is more or less acknowledged and solutions to the acoustic noise are rarely provided. The aim of this work was to optimize MR sequences, which generate so-called standard clinical MRI contrasts, for acoustic noise. Many of these contrasts could be optimized for acoustic noise by a gradient smoothing algorithm. Nevertheless, there are sequences and contrasts which cannot benefit from such algorithms and therefore need manual optimization. Software-based optimizations are performed by adapting the gradient waveforms and data acquisition. In this work, the main relationships between parameter settings of the MRI machine and acoustic noise were explored. The physical origin of acoustic noise in the form of Lorentz forces was derived from fundamental equations. The main acoustic noise sources are gradient slew rate and gradient amplitude. It was shown that minimization of these quantities leads to reduced acoustic noise. However, this is mostly accompanied by slowing down the sequence and thus certain echo times and contrasts cannot be reached. T1- and PD-weighted contrasts, acquired with a turbo spin-echo sequence, are problematic contrasts regarding acoustic noise reduction. This problem was tackled by a combination of several approaches such as an adaption of the k-space acquisition, changes to the RF-pulse parameters, and modifications of the gradient waveform. An acoustic noise reduction of up to 16.8 dB(A) was achieved. As for the previously published method for acoustic noise reduction in T2-weighted contrasts, this success came at the cost of an increase of measurement time by 50%. The target acoustic noise level was around 81 dB(A). With this optimization, the palette of quiet standard clinical contrasts, consisting of T1-, T2- and PD-weighted contrasts, can be realized with the turbo spin-echo sequence. In a different approach, the Combined-Acquisition (CAT) concept was applied to acoustic noise reduction. In implementing the CAT concept, each measurement is divided into two measurements with different parameters. This approach was previously used for SAR reduction. The center of k space is acquired using a high-SAR measurement in which contrast is relevant. The remaining k-space area is acquired using a low SAR, contrast-irrelevant measurement. In this work, the CAT concept was applied to acoustic noise reduction. Each measurement was divided into ‘quiet’ and ‘loud’ segments instead of dividing into high-SAR and low-SAR measurements. Considerations allowed for acoustic noise reduction without disrupting the image quality or contrast. In successive steps, the approach was applied to the remaining loud segment of the measurement. This process was executed for a GRE and a TSE sequence. Corresponding acoustic noise measurements were performed. One of the most challenging contrasts in terms of acoustic noise reduction is diffusion weighted imaging. It employs maximum gradient amplitudes in the preparation pulses which sensitize the MR signal to diffusivity. Data acquisition is performed by an EPI readout including blipped gradients. This readout is known for its whistling sound. Therefore, the gradient waveforms were consequently adapted. A k-space segmentation in the readout direction was employed to reduce the gradient slew rates. In this work, an acoustic noise reduction of up to 20.0 dB(A) could be achieved using an adapted readout segmented EPI sequence. This reduction in acoustic noise came at the cost of an increase of measurement time by 27% to 34% compared to the standard sequence. Spending additional 23% of acquisition time can further reduce the acoustic noise by 0.9 dB(A). The exact increase in measurement time depends on the employed GRAPPA factor and the number of readout segments. The optimized sequence was successfully validated in various clinical sites. Until now, compromises had to be made between high resolution, high SNR, and short acquisition time. This compromise can be described as the “Bermuda triangle of MRI”. Trade-offs exist between all three quantities. A compromise has to be chosen in all cases. In this work, some of the achieved acoustic noise reductions came at the cost of increased measurement time. Therefore, the dimensionality of the Bermuda triangle is extended with the addition of low acoustic noise. This yields the “Bermuda triangular pyramid of MRI”. Thus, acoustic noise has to be included in achieving a balance of desired properties in MR image acquisition. In this work, the obtained acoustic noise levels were on the order of 80–85 dB(A). Upon the use of ear protection, measurements became comfortable for the patients. As further advancements in imaging technology are made, it may be likely to achieve higher resolution, higher SNR, or shorter acquisition times, which could instead be traded for lower acoustic noise levels. In addition, it is possible that MRI machine manufacturers will put more effort into hardware based acoustic noise dampening of the devices in order to meet software-based acoustic noise reduction. Therefore, patient measurements could be possible without the need for additional acoustic noise protection in the future. KW - Kernspintomografie KW - Biophysik KW - Magnetische Kernresonanz KW - Lautstärkereduktion KW - Lärm KW - Krach KW - Patientenkomfort KW - Lärmbelastung KW - Geräuschminderung Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133921 ER - TY - THES A1 - Benkert, Thomas T1 - Neue Steady-State-Techniken in der Magnetresonanztomographie T1 - Novel Steady-State Techniques for Magnetic Resonance Imaging N2 - Die bSSFP-Sequenz kombiniert kurze Akquisitionszeiten mit einem hohen Signal-zu-Rausch-Verhältnis, was sie zu einer vielversprechenden Bildgebungsmethode macht. Im klinischen Alltag ist diese Technik jedoch bisher - abgesehen von vereinzelten Anwendungen - kaum etabliert. Die Hauptgründe hierfür sind Signalauslöschungen in Form von Bandingartefakten sowie der erzielte T2/T1-gewichtete Mischkontrast. Das Ziel dieser Dissertation war die Entwicklung von Methoden zur Lösung der beiden genannten Limitationen, um so eine umfassendere Verwendung von bSSFP für die MR-Diagnostik zu ermöglichen. Magnetfeldinhomogenitäten, die im Wesentlichen durch Suszeptibilitätsunterschiede oder Imperfektionen seitens der Scannerhardware hervorgerufen werden, äußern sich bei der bSSFP-Bildgebung in Form von Bandingartefakten. Mit DYPR-SSFP (DYnamically Phase-cycled Radial bSSFP) wurde ein Verfahren vorgestellt, um diese Signalauslöschungen effizient zu entfernen. Während für bereits existierende Methoden mehrere separate bSSFP-Bilder akquiriert und anschließend kombiniert werden müssen, ist für die Bandingentfernung mittels DYPR-SSFP lediglich die Aufnahme eines einzelnen Bildes notwendig. Dies wird durch die neuartige Kombination eines dynamischen Phasenzyklus mit einer radialen Trajektorie mit quasizufälligem Abtastschema ermöglicht. Die notwendigen Bestandteile können mit geringem Aufwand implementiert werden. Des Weiteren ist kein spezielles Rekonstruktionsschema notwendig, was die breite Anwendbarkeit des entwickelten Ansatzes ermöglicht. Konventionelle Methoden zur Entfernung von Bandingartefakten werden sowohl bezüglich ihrer Robustheit als auch bezüglich der notwendigen Messzeit übertroffen. Um die Anwendbarkeit von DYPR-SSFP auch jenseits der gewöhnlichen Bildgebung zu demonstrieren, wurde die Methode mit der Fett-Wasser-Separation kombiniert. Basierend auf der Dixon-Technik konnten so hochaufgelöste Fett- sowie Wasserbilder erzeugt werden. Aufgrund der Bewegungsinsensitivät der zugrunde liegenden radialen Trajektorie konnten die Messungen unter freier Atmung durchgeführt werden, ohne dass nennenswerte Beeinträchtigungen der Bildqualität auftraten. Die erzielten Ergebnisse am Abdomen zeigten weder Fehlzuordnungen von Fett- und Wasserpixeln noch verbleibende Bandingartefakte. Ein Nachteil der gewöhnlichen Dixon-basierten Fett-Wasser-Separation ist es, dass mehrere separate Bilder zu verschiedenen Echozeiten benötigt werden. Dies führt zu einer entsprechenden Verlängerung der zugehörigen Messzeit. Abhilfe schafft hier die Verwendung einer Multiecho-Sequenz. Wie gezeigt werden konnte, ermöglicht eine derartige Kombination die robuste, bandingfreie Fett-Wasser-Separation in klinisch akzeptablen Messzeiten. DYPR-SSFP erlaubt die Entfernung von Bandingartefakten selbst bei starken Magnetfeldinhomogenitäten. Dennoch ist es möglich, dass Signalauslöschungen aufgrund des Effekts der Intravoxeldephasierung verbleiben. Dieses Problem tritt primär bei der Bildgebung von Implantaten oder am Ultrahochfeld auf. Als Abhilfe hierfür wurde die Kombination von DYPR-SSFP mit der sogenannten z-Shim-Technik untersucht, was die Entfernung dieser Artefakte auf Kosten einer erhöhten Messzeit ermöglichte. Die mit DYPR-SSFP akquirierten radialen Projektionen weisen aufgrund des angewendeten dynamischen Phasenzyklus leicht verschiedene Signallevel und Phasen auf. Diese Tatsache zeigt sich durch inkohärente Bildartefakte, die sich jedoch durch eine Erhöhung der Projektionsanzahl effektiv reduzieren lassen. Folglich bietet es sich in diesem Kontext an, Anwendungen zu wählen, bei denen bereits intrinsisch eine verhältnismäßig hohe Anzahl von Projektionen benötigt wird. Hierbei hat sich gezeigt, dass neben der hochaufgelösten Bildgebung die Wahl einer 3D radialen Trajektorie eine aussichtsreiche Kombination darstellt. Die in der vorliegenden Arbeit vorgestellte 3D DYPR-SSFP-Technik erlaubte so die isotrope bandingfreie bSSFP-Bildgebung, wobei die Messzeit im Vergleich zu einer gewöhnlichen bSSFP-Akquisition konstant gehalten werden konnte. Verbleibende, durch den dynamischen Phasenzyklus hervorgerufene Artefakte konnten effektiv mit einem Rauschunterdrückungsalgorithmus reduziert werden. Anhand Probandenmessungen wurde gezeigt, dass 3D DYPR-SSFP einen aussichtsreichen Kandidaten für die Bildgebung von Hirnnerven sowie des Bewegungsapparats darstellt. Während die DYPR-SSFP-Methode sowie die darauf beruhenden Weiterentwicklungen effiziente Lösungen für das Problem der Bandingartefakte bei der bSSFP-Bildgebung darstellen, adressiert die vorgestellte RA-TOSSI-Technik (RAdial T-One sensitive and insensitive Steady-State Imaging) das Problem des bSSFP-Mischkontrasts. Die Möglichkeit der Generierung von T2-Kontrasten basierend auf der bSSFP-Sequenz konnte bereits in vorausgehenden Arbeiten gezeigt werden. Hierbei wurde die Tatsache ausgenutzt, dass der T1-Anteil des Signalverlaufs nach Beginn einer bSSFP-Akquisition durch das Einfügen von Inversionspulsen in ungleichmäßigen Abständen aufgehoben werden kann. Ein so akquiriertes Bild weist folglich einen reinen, klinisch relevanten T2-Kontrast auf. Die im Rahmen dieser Arbeit vorgestellte Methode basiert auf dem gleichen Prinzip, jedoch wurde anstelle einer gewöhnlichen kartesischen Trajektorie eine radiale Trajektorie in Kombination mit einer KWIC-Filter-Rekonstruktion verwendet. Somit können bei gleichbleibender oder sogar verbesserter Bildqualität aus einem einzelnen, mit RA-TOSSI akquirierten Datensatz verschiedene T2-Wichtungen als auch gewöhnliche T2/T1-Wichtungen generiert werden. Mittels Variation der Anzahl der eingefügten Inversionspulse konnte ferner gezeigt werden, dass es neben den besagten Wichtungen möglich ist, zusätzliche Kontraste zu generieren, bei denen verschiedene Substanzen im Bild ausgelöscht sind. Diese Substanzen können am Beispiel der Gehirnbildgebung Fett, graue Masse, weiße Masse oder CSF umfassen und zeichnen sich neben den reinen T2-Kontrasten durch eine ähnlich hohe klinische Relevanz aus. Die mögliche Bedeutung der vorgestellten Methode für die klinische Verwendung wurde durch Messungen an einer Gehirntumorpatientin demonstriert. Zusammenfassend lässt sich sagen, dass die im Rahmen dieser Dissertation entwickelten Techniken einen wertvollen Beitrag zur Lösung der eingangs beschriebenen Probleme der bSSFP-Bildgebung darstellen. Mit DYPR-SSFP akquirierte Bilder sind bereits mit bestehender, kommerzieller Rekonstruktionssoftware direkt am Scanner rekonstruierbar. Die Software für die Rekonstruktion von RA-TOSSI-Datensätzen wurde für Siemens Scanner implementiert. Folglich sind beide Methoden für klinische Studien einsetzbar, was gleichzeitig den Ausblick dieser Arbeit darstellt. N2 - The bSSFP sequence combines short acquisition times with a high signal-to-noise ratio, and is therefore a promising imaging technique. However, aside from a few applications, this method is hardly established in the clinical routine. The main reasons for this are signal voids that arise as banding artifacts and the obtained T2/T1-weighted mixed contrast. The goal of this dissertation was to develop strategies to overcome these limitations and allow for a more widespread use of bSSFP for MR diagnostics. In bSSFP imaging, magnetic field inhomogeneities, which are mainly caused by susceptibility differences and imperfections of the scanner hardware, manifest as banding artifacts. In order to efficiently remove these artifacts from the image, DYnamically Phase-cycled Radial bSSFP (DYPR-SSFP) was proposed. While existing methods rely on the acquisition and subsequent combination of several separate bSSFP images, banding removal with DYPR-SSFP requires the acquisition of only a single data set. This is achieved by combining a dynamic phase-cycle with a radial trajectory and a quasi-random acquisition scheme. The individual components of this method can be implemented with little effort. Furthermore, no specific reconstruction scheme is necessary, guaranteeing the broad applicability of the developed approach. DYPR-SSFP outperformed conventional methods for banding removal both in robustness and scan time. In order to demonstrate the applicability of DYPR-SSFP beyond conventional imaging, the method was also applied to fat-water separation. Based on the Dixon technique, fat and water images were generated with high resolution. Due to the motion robustness of the underlying radial trajectory, measurements could be performed during free-breathing, without notable degradation of image quality. Abdominal images showed neither regional fat-water flipping nor residual banding artifacts. A drawback of standard Dixon-based fat-water separation is the fact that several separate images with different echo times have to be acquired, therefore prolonging the respective scan time. This can be overcome by using a multiecho sequence. It was demonstrated that the combination of such multiecho sequence and Dixon DYPR-SSFP allows for robust, banding-free fat-water separation in clinically acceptable scan times. DYPR-SSFP guarantees removal of banding artifacts even for strong magnetic field inhomogeneities. However, signal voids may remain due to intravoxel dephasing. This problem primarily arises when imaging metallic implants or when moving to ultra-high field strengths. To address this issue, the combination of DYPR-SSFP with the so-called z-shim technique was investigated, allowing the removal of these artifacts at the expense of an increased measurement time. Due to the applied dynamic phase-increment, radial projections which are acquired with DYPR-SSFP exhibit slightly different signal levels and phases. This results in incoherent artifacts, that can be effectively reduced by increasing the number of acquired projections. Therefore, DYPR-SSFP should be preferably applied when many projections are intrinsically necessary. It has been demonstrated that, besides high resolution imaging, the choice of a 3D radial trajectory is a promising combination. The proposed 3D DYPR-SSFP technique allowed isotropic banding-free bSSFP imaging without any expense of additional scan time compared to a conventional bSSFP acquisition. Residual artifacts caused by the dynamic phase-cycle could be effectively mitigated by applying a denoising algorithm. Volunteer measurements showed that 3D DYPR-SSFP is a promising candidate for imaging of the cranial nerves and the musculoskeletal system. While DYPR-SSFP and all presented resulting methods constitute an efficient solution for banding artifacts in bSSFP imaging, the proposed RAdial T-One sensitive and insensitive Steady-State Imaging (RA-TOSSI) method addresses the problem of the mixed contrast in bSSFP imaging. The possibility to generate T2-contrast with bSSFP has been shown before. The previous approach is based on the fact that T1-relaxation during the transient phase of a bSSFP acquisition can be suppressed by inserting unequally spaced inversion pulses. Thus, the resulting image shows a clinically relevant T2-contrast. The method which was presented as part of this dissertation relies on the same principle. However, instead of the originally proposed Cartesian trajectory, a radial trajectory in combination with a KWIC-filter reconstruction was applied. This allows the generation of several T2-weighted images as well as T2/T1-weighted images from a single RA-TOSSI dataset, while image quality remains comparable or even improves compared with existing methods. It could further be shown that varying the number of inversion pulses allows the generation of additional contrasts, where different tissue types are attenuated in the image. In the case of brain imaging for instance, these tissues comprise fat, gray matter, white matter, and CSF and offer high clinical relevance similar to T2-weighted images. Measurements of a patient with a brain tumor demonstrate the possible impact of the proposed method. In conclusion, the techniques developed as part of this dissertation present a valuable contribution to the solution of various problems which are associated with bSSFP imaging. Images acquired with DYPR-SSFP can be reconstructed directly at the scanner using existing, commercial reconstruction software. The software for the reconstruction of RA-TOSSI data was implemented for Siemens scanners. Therefore, both methods can be directly employed for clinical studies which remain as future work. KW - Kernspintomografie KW - Radiale Bildgebung KW - Steady-State-Sequenzen KW - balanced SSFP KW - Nicht-kartesische Bildgebung KW - Radial Imaging KW - Steady-State Sequences KW - balanced SSFP KW - Non-Cartesian Imaging KW - Magnetische Kernresonanz KW - Biophysik Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115381 ER - TY - THES A1 - Carinci, Flavio T1 - Quantitative Characterization of Lung Tissue Using Proton MRI T1 - Quantitative Charakterisierung des Lungengewebes mithilfe von Proton-MRT N2 - The focus of the work concerned the development of a series of MRI techniques that were specifically designed and optimized to obtain quantitative and spatially resolved information about characteristic parameters of the lung. Three image acquisition techniques were developed. Each of them allows to quantify a different parameter of relevant diagnostic interest for the lung, as further described below: 1) The blood volume fraction, which represents the amount of lung water in the intravascular compartment expressed as a fraction of the total lung water. This parameter is related to lung perfusion. 2) The magnetization relaxation time T\(_2\) und T� *\(_2\) , which represents the component of T\(_2\) associated with the diffusion of water molecules through the internal magnetic field gradients of the lung. Because the amplitude of these internal gradients is related to the alveolar size, T\(_2\) und T� *\(_2\) can be used to obtain information about the microstructure of the lung. 3) The broadening of the NMR spectral line of the lung. This parameter depends on lung inflation and on the concentration of oxygen in the alveoli. For this reason, the spectral line broadening can be regarded as a fingerprint for lung inflation; furthermore, in combination with oxygen enhancement, it provides a measure for lung ventilation. N2 - Die Magnetresonanztomographie (MRT) stellt ein einzigartiges Verfahren im Bereich der diagnostischen Bildgebung dar, da sie es ermöglicht, eine Vielzahl an diagnostischen Informationen ohne die Verwendung von ionisierenden Strahlen zu erhalten. Die Anwendung von MRT in der Lunge erlaubt es, räumlich aufgelöste Bildinformationen über Morphologie, Funktionalität sowie über die Mikrostruktur des Lungengewebes zu erhalten und diese miteinander zu kombinieren. Für die Diagnose und Charakterisierung von Lungenkrankheiten sind diese Informationen von höchstem Interesse. Die Lungenbildgebung stellt jedoch einen herausfordernden Bereich der MRT dar. Dies liegt in der niedrigen Protondichte des Lungenparenchyms begründet sowie in den relativ kurzen Transversal- Relaxationszeiten T\(_2\) und T� *\(_2\) , die sowohl die Bildau� ösung als auch das Signal-zu-Rausch Verhältnis beeinträchtigen. Des Weiteren benötigen die vielfältigen Ursachen von physiologischer Bewegung, welche die Atmung, den Herzschlag und den Blut� uss in den Lungengefasen umfassen, die Anwendung von schnellen sowie relativ bewegungsunemp� ndlichen Aufnahmeverfahren, um Risiken von Bildartefakten zu verringern. Aus diesen Gründen werden Computertomographie (CT) und Nuklearmedizin nach wie vor als Goldstandardverfahren gehandhabt, um räumlich aufgelöste Bildinformationen sowohl über die Morphologie als auch die Funktionalität der Lunge zu erhalten. Dennoch stellt die Lungen- MRT aufgrund ihrer Flexibilität sowohl eine vielversprechende Alternative zu den anderen Bildgebungsverfahren als auch eine mögliche Quelle zusätzlicher diagnostischer Informationen dar. ... KW - Lung KW - MRI KW - Kernspintomografie KW - Lunge Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151189 ER - TY - THES A1 - Ponce Garcia, Irene Paola T1 - Strategies for optimizing dynamic MRI T1 - Strategien zur Optimierung der dynamischen MR Bildgebung N2 - In Magnetic Resonance Imaging (MRI), acquisition of dynamic data may be highly complex due to rapid changes occurred in the object to be imaged. For clinical diagnostic, dynamic MR images require both high spatial and temporal resolution. The speed in the acquisition is a crucial factor to capture optimally dynamics of the objects to obtain accurate diagnosis. In the 90’s, partially parallel MRI (pMRI) has been introduced to shorten scan times reducing the amount of acquired data. These approaches use multi-receiver coil arrays to acquire independently and simultaneously the data. Reduction in the amount of acquired data results in images with aliasing artifacts. Dedicated methods as such Sensitivity Encoding (SENSE) and Generalized Autocalibrating Partially Parallel Acquisition (GRAPPA) were the basis of a series of algorithms in pMRI. Nevertheless, pMRI methods require extra spatial or temporal information in order to optimally reconstruct the data. This information is typically obtained by an extra scan or embedded in the accelerated acquisition applying a variable density acquisition scheme. In this work, we were able to reduce or totally eliminate the acquisition of the training data for kt-SENSE and kt-PCA algorithms obtaining accurate reconstructions with high temporal fidelity. For dynamic data acquired in an interleaved fashion, the temporal average of accelerated data can generate an artifact-free image used to estimate the coil sensitivity maps avoiding the need of extra acquisitions. However, this temporal average contains errors from aliased components, which may lead to signal nulls along the spectra of reconstructions when methods like kt-SENSE are applied. The use of a GRAPPA filter applied to the temporal average reduces these errors and subsequently may reduce the null components in the reconstructed data. In this thesis the effect of using temporal averages from radial data was investigated. Non-periodic artifacts performed by undersampling radial data allow a more accurate estimation of the true temporal average and thereby avoiding undesirable temporal filtering in the reconstructed images. kt-SENSE exploits not only spatial coil sensitivity variations but also makes use of spatio-temporal correlations in order to separate the aliased signals. Spatio-temporal correlations in kt-SENSE are learnt using a training data set, which consists of several central k-space lines acquired in a separate scan. The scan of these extra lines results in longer acquisition times even for low resolution images. It was demonstrate that limited spatial resolution of training data set may lead to temporal filtering effects (or temporal blurring) in the reconstructed data. In this thesis, the auto-calibration for kt-SENSE was proposed and its feasibility was tested in order to completely eliminate the acquisition of training data. The application of a prior TSENSE reconstruction produces the training data set for the kt-SENSE algorithm. These training data have full spatial resolution. Furthermore, it was demonstrated that the proposed auto-calibrating method reduces significantly temporal filtering in the reconstructed images compared to conventional kt-SENSE reconstructions employing low resolution training images. However, the performance of auto-calibrating kt-SENSE is affected by the Signal-to-Noise Ratio (SNR) of the first pass reconstructions that propagates to the final reconstructions. Another dedicated method used in dynamic MRI applications is kt-PCA, that was first proposed for the reconstruction of MR cardiac data. In this thesis, kt-PCA was employed for the generation of spatially resolved M0, T1 and T2 maps from a single accelerated IRTrueFISP or IR-Snapshot FLASH measurement. In contrast to cardiac dynamic data, MR relaxometry experiments exhibit signal at all temporal frequencies, which makes their reconstruction more challenging. However, since relaxometry measurements can be represented by only few parameters, the use of few principal components (PC) in the kt-PCA algorithm can significantly simplify the reconstruction. Furthermore, it was found that due to high redundancy in relaxometry data, PCA can efficiently extract the required information from just a single line of training data. It has been demonstrated in this thesis that auto-calibrating kt-SENSE is able to obtain high temporal fidelity dynamic cardiac reconstructions from moderate accelerated data avoiding the extra acquisition of training data. Additionally, kt-PCA has been proved to be a suitable method for the reconstruction of highly accelerated MR relaxometry data. Furthermore, a single central training line is necessary to obtain accurate reconstructions. Both reconstruction methods are promising for the optimization of training data acquisition and seem to be feasible for several clinical applications. N2 - Dynamische Bildgebung mithilfe der Magnetresonanztomographie stellt eine besondere Herausforderung dar. Für klinische Anwendungen benötigt man Bilder mit hoher räumlicher und bei schnellen Bewegungen auch zeitlicher Auflösung. Technologische Fortschritte in den letzten Jahrzehnten konnten MRT-Experimente erheblich beschleunigen. Ein wichtiger Beitrag lieferte die parallele Bildgebung (pMRT), die durch die Entwicklung von Spulenarrays für den Empfang des MR-Signals ermöglicht wurde. In paralleler Bildgebung wird nur ein Teil der eigentlich benötigten Daten aufgenommen. Diese Unterabtastung des k-Raum führt zu Bildern mit Aliasing-Artefakten. Verschiedenste Algorithmen wurden entwickelt, um mittels der zusätzlichen räumlichen Informationen der Spulenarrays anschließend Bilder zu rekonstruieren. Heute spielen Sensitivity Encoding (SENSE) und Generalized Autocalibrating Partially Parallel Acquisition (GRAPPA) eine große und bilden eine Grundlage für eine Vielzahl anderer Algorithmen. Einen Großteil aller pMRT Methoden erfordern für optimale Ergebnisse zusätzliche räumliche oder zeitliche Informationen zur Kalibrierung. Diese Kalibrations- oder Trainingsdaten werden in der Regel durch einen zusätzlichen Scan erzeugt oder in die beschleunigte Messung eingebettet aufgenommen. Das ist eine unerwünschte Verlängerung der Messzeit die Folge. In dieser Arbeit konnten wir kt-SENSE und kt-PCA Rekonstruktionen dynamischer MRT Daten mit hoher zeitlicher Genauigkeit erzielen bei gleichzeitiger Reduktion bzw. sogar Beseitigung der benötigten Menge an Trainingsdaten. Um die in beiden Methoden benötigten Spulensensitivitäten zu berechnen, kann bei bestimmten Abtastschemata mit dem Mittelwert der dynamischen Daten ein weitgehend Artefakt-freies Bild erzeugt werden. Dieser zeitliche Mittelwert enthält jedoch kleine Fehler, die durch die Anwendung von Methoden wie kt-SENSE zu Signalauslöschungen im Spektrum der rekonstruierten Daten führen können. Es konnte gezeigt werden, dass die Anwendung eines GRAPPA Filter auf den zeitlichen Mittelwert die Fehler in den Spulensensitivitäten reduziert und die Rekonstruktion von Daten aller Frequenzen ermöglicht. Eine weitere aufgezeigte Möglichkeit ist die Verwendung einer radialen Akquisition, die dank der inkohärenten Aliasing-Artefakte ebenfalls zu einer erheblich genaueren Abschätzung des zeitlichen Mittelwerts führt. Dies verhindert zeitliche Ungenauigkeiten in den rekonstruierten Bildern. Zusätzliche zu Spulensensitivitäten verwenden Rekonstruktionsmethoden wie kt-SENSE Vorkenntnisse über räumlich-zeitliche Korrelationen, um Artefakte zu entfernen. Informationen darüber werden gewöhnlich aus voll aufgenommenen Trainingsdaten mit geringer Auflösung extrahiert. Die separate Akquisitions dieser Trainingsdaten verursacht eine unerwünschte Verlängerung der Messzeit. In dieser Arbeit wurde gezeigt, dass die niedrige Auflösung der Trainingsdaten zu zeitlichen Filterungseffekten in den rekonstruierten Daten führen kann. Um dies zu verhindern und um die zusätzliche Aufnahme von Trainingsdaten zu vermeiden, wurde eine Autokalibrierung für kt-SENSE vorgeschlagen und untersucht. Hierbei werden die benötigten Trainingsdaten in einem ersten Schritt durch eine TSENSE Rekonstruktion aus den unterabgetasteten Daten selbst erzeugt. Dank der vollen Auflösung dieser Trainingsdaten kann das Auftreten eines zeitlichen Filters verhindert werden. Die Leistung der Auto-kalibration wird lediglich durch einen Einfluss des SNRs der TSENSE Trainingsdaten auf die finalen Rekonstruktionen beeinträchtigt. Ein weiteres Verfahren für die dynamische MRT ist kt-PCA, das zunächst für die Rekonstruktion von MR-Herzdaten vorgeschlagen wurde. In dieser Arbeit wurde kt-PCA für die neurologische MR Relaxometrie verwendet. Hierbei konnten aus beschleunigten IRTrueFISP und IR-Snapshot-FLASH Messungen genaue M0, T1 und T2 Karten gewonnen werden. Im Gegensatz zur Herzbildgebung weisen MR Relaxometrie Datensätze Signal auf alles zeitlichen Frequenzen auf, was ihre Rekonstruktion mit konventionellen Methoden erschwert. Andererseits können die zeitlichen Signalverläufe mit einigen wenigen Parametern dargestellt werden und die Rekonstruktion mittels kt-PCA vereinfacht sich erheblich aufgrund der geringen Anzahl benötigter Hauptkomponenten (PC). Weiter wurde gezeigt, dass aufgrund der hohen Redundanz ein Trainingsdatensatz bestehend aus einer einzigen Zeile ausreicht, um alle relevanten Informationen zu erhalten. In dieser Thesis wurde demonstriert, dass mit dem Ansatz einer auto-kalibrierten kt-SENSE Rekonstruktion Bilder mit hoher zeitlicher Genauigkeit aus beschleunigten Datensätzen des Herzens gewonnen werden können. Dies vermeidet die gewöhnlich benötigte zusätzliche Aufnahme von Trainingsdaten. Weiterhin hat sich kt-PCA als geeignetes Verfahren zur Rekonstruktion hochbeschleunigter MR Relaxometrie Datensätze erwiesen. In diesem Fall war ein Trainingsdatensatz bestehend aus einer einzelnen Zeile ausreichend für Ergebnisse mit hoher Genauigkeit. KW - Kernspintomografie KW - Dynamische Messung KW - Magnetic resonance KW - Magnetische Resonanz KW - Dynamic magnetic resonance imaging KW - Dynamische MR Bildgebung KW - DNMR-Spektroskopie KW - Bildgebendes Verfahren Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162622 ER - TY - THES A1 - Munz, Eberhard T1 - Physiological and metabolical high-resolution MRI of plants T1 - Physiologische und metabolische hochaufgelöste Pflanzen-Magnetresonanzbildgebung N2 - The noninvasive magnetic resonance imaging technique allows for the investigation of functional processes in the living plant. For this purpose during this work, different NMR imaging methods were further developed and applied. For the localisation of the intrusion of water into the germinating rape seed with the simultaneous depiction of the lipid-rich tissue via a 3D rendering, in Chap. 5 the technique of interleaved chemical selective acquisition of water and lipid was used in the germinating seed. The utilization of high-resolution MR images of germinated seeds enabled the localization of a predetermined water gap in the lipid-rich aleurone layer, which resides directly under the seed coat. The for a long time in biology prevalent discussion, whether such a gap exists or the seed soaks up the water from all sides, rather like a sponge, could hereby, at least for the rapeseed seed, be answered clearly. Furthermore, the segmentation and 3D visualization of the vascular tissue in the rapeseed seeds was enabled by the high-resolution datasets, a multiply branched structure preconstructed in the seed could be shown. The water is directed by the vascular tissue and thus awakens the seed gradually to life. This re-awakening could as well be tracked by means of invasive imaging via an oxygen sensor. In the re-awakened seeds, the lipid degradation starts, other than expected, not in the lipid-rich cotyledons but in the residual endosperm remaining from seed development and in the aleurone layer which previously protected the embryo. Within this layer, the degradation could be verified in the high-resolution MR datasets. The method presented in Chap. 6 provides a further characteristic trait for phenotyping of seeds and lipid containing plants in general. The visualization of the compounds of fatty acids in plant seeds and fruits could be achieved by the distinct utilization of chemical shift-selective imaging techniques. Via the application of a CSI sequence the fatty acid compounds in an olive were localized in a 2D slice. In conjunction with an individually adjusted CHESS presaturation module Haa85 the high-resolution 3D visualization of saturated and unsaturated fatty acid compounds in different seeds was achieved. The ratio maps calculated from these datasets allow to draw conclusions from the developmental stage or the type of seed. Furthermore, it could be shown that the storage condition of two soybean seeds with different storage time durations lead to no degradation of the fatty acid content. Additional structural information from inside of dry seeds are now accessible via MRI. In this work the imaging of cereal seeds could be significantly improved by the application of the UTE sequence. The hitherto existing depictions of the lipid distribution, acquired with the spin echo sequence, were always sufficient for examinations of the lipid content, yet defects in the starchy endosperm or differences in the starch concentration within the seed remained constantly unseen with this technique. In a direct comparison of the datasets acquired with the previous imaging technique (spin echo) and with UTE imaging, the advantage of data acquisition with UTE could be shown. By investigating the potential seed compounds (starch, proteins, sugar) in pure form, the constituent parts contributing to the signal could be identified as bound water (residual moisture) and starch. The application of a bi-exponential fit on the datasets of the barley seed enabled the separate mapping of magnetization and of relaxation time of two components contributing to the NMR signal. The direct comparison with histological stainings verified the previous results, thus this technique can be used for the selective imaging of starch in dry seeds. Conclusions on the translocation characteristics in plants can be drawn by the technique proposed in Chap. 8. The associated translocation velocities can now, even in the range of several um/h, be determined in the living plant. Based on calculated concentrations of an MR contrast agent, which was taken up by the plant, these translocation velocities were estimated both in longitudinal direction, thus along the vascular bundle, and in horizontal direction, thus out of the bundle. The latter velocity is located below the contrast agent's velocity value of free diffusion. By adjusting a dynamic contrast-enhancing imaging technique (DCE-Imaging, Tof91) the acquisition duration of a T1-map was significantly reduced. By means of these maps, local concentrations of the contrast agent in plant stems and the siliques of the rapeseed plant could be determined. Numerous questions in plant science can only be answered by non-invasive techniques such as MRI. For this reason, besides the experimental results achieved in this work, further NMR methods were tested and provided for the investigation of plants. As an example, the study on the imaging of magnetic exchange processes are mentioned, which provided the groundwork for a possible transfer of CEST experiments (Chemical Exchange Saturation Transfer) to the plant. The results are presented in the bachelor thesis of A. Jäger Jae17, which was performed under my supervision, they find great interest under biologists. The development of new technologies, which extend the possibilities for the investigation of living organisms, is of great importance. For this reason, I have contributed to the development of the currently unpublished method RACETE (Refocused Acquisition of Chemical Exchange Transferred Excitations [Jak17, Reu17, Gut18a]). By rephasing the transferred magnetization the utilization of properties which have not been available in chemical "`exchange"' experiments is enabled. With this method a positive contrast is generated, thus a reference experiment is not mandatory. Furthermore, the image phase, which in classical experiments contains no information about the exchanged protons, can be used for the distinct identification of multiple substances which have been excited simultaneously. This recently at the Department of Experimental Physics V developed method can be used in particular for the identification of lipids and for the localization of sugars and amino acids, thus it can serve the enhancement and improvement of non-invasive analytical methods. N2 - Die nicht-invasive Bildgebungstechnik der Magnetresonanz ermöglicht es, funktionelle Prozesse in Pflanzen am lebenden Objekt zu untersuchen. Hierfür wurden im Rahmen dieser Arbeit verschiedene NMR-Bildgebungsmethoden weiterentwickelt und angewendet. Da Pflanzen ein magnetisch sehr inhomogenes Gewebe besitzen, bedingt durch Lufteinschlüsse und das Vorhandensein verschiedenster gelöster Stoffe im Pflanzengewebe, wurden daher hauptsächlich Spin-Echo-Methoden für die Bildgebung verwendet. Um das erste Eindringen des Wassers in den keimenden Raps-Samen bei gleichzeitiger Darstellung des lipid-reichen Gewebes mittels einer 3D-Visualisierung zu lokalisieren, wurde in Kapitel 5 die Technik der verschachtelten, chemisch selektiven Aufnahme von Wasser und Lipid im keimenden Samen verwendet. Durch Verwendung von hochausgelösten MR-Aufnahmen an gekeimten Samen konnte weiterhin in der lipid-reichen Aleuron-Schicht, die sich direkt unter der Samenschale befindet, ein gezielt angelegter Einlass für das Wasser verortet werden. Die in der Biologie lange Zeit verbreitete Diskussion, ob es einen solchen Einlass gibt oder der keimende Samen das Wasser eher wie ein Schwamm von allen Seiten aufsaugt, konnte hierdurch, zumindest für den Raps-Samen, eindeutig beantwortet werden. Weiterhin konnte durch die hoch-aufgelösten Aufnahmen das vaskuläre Gewebe in den Raps-Samen segmentiert und in 3D veranschaulicht werden, es zeigte sich eine mehrfach verzweigte Struktur, die bereits im Samen angelegt ist. Das Wasser folgt hierbei dem vaskulären Gewebe und erweckt hierdurch den Samen schrittweise zum Leben. Dieses Wieder-Erwachen konnte ebenfalls durch die invasive Bildgebung mittels eines Sauerstoff-Sensors nachverfolgt werden. Im nun erwachten Samen selbst beginnt der Lipid-Abbau, anders als zunächst angenommen, nicht in den lipid-haltigen Kotyledonen sondern im von der Samen-Entwicklung verbliebenden Endosperm und in der den Keimling vormals schützenden Aleuron-Schicht. In dieser konnte der Abbau an gekeimten Samen durch hochaufgelöste MR-Aufnahmen nachgewiesen werden. Die in Kapitel 6 vorgeschlagene Methode liefert ein weiteres Merkmal zur Phenotypisiserung von Samen und lipidhaltigen Pflanzenbestandteilen im Allgemeinen. Die Darstellung der Bestandteile ungesättigter Fettsäuren in Pflanzensamen und -Früchten konnte durch gezielte Verwendung von chemisch selektiven Bildgebungstechniken erreicht werden. Durch die Anwendung einer CSI-Sequenz konnten die Fettsäurebestandteile in Oliven in einer 2D-Schicht lokalisiert werden. In Verbindung mit einem jeweils angepassten CHESS-Vorsättigungsmodul Haa85 wurde die hochaufgelöste 3D-Darstellung von gesättigten und ungesättigten Fettsäurebestandteilen in unterschiedlichen Samen erreicht. Rückschlüsse über das Entwicklungsstadium sowie die Sorte der verwendeten Samen können aus den Verhältnis-Karten, die aus den jeweiligen Datensätzen berechnet wurden, gezogen werden. Dass in diesem Fall die Aufbewahrungsmethode zu keiner Degradation der Fettsäurezusammensetzung geführt hat, konnte weiterhin am Beispiel von zwei Sojasamen mit unterschiedlicher Lagerdauer gezeigt werden. Zusätzliche strukturelle Informationen aus dem Inneren trockener Samen sind nun mittels MRT zugänglich. In dieser Arbeit konnte durch die UTE-Sequenz die Bildgebung von Getreidesamen deutlich vorangebracht werden. Die bisherigen Darstellungen der Lipid-Verteilung, aufgenommen mit einer Spin-Echo Sequenz, waren zwar für die Betrachtung des Lipid-Gehalts stets ausreichend, Defekte im stärkehaltigen Endosperm oder Unterschiede in der Stärke-Konzentration innerhalb des Samen blieben mit dieser Technik jedoch stets verborgen. Im direkten Vergleich der mit der bisherigen Technik (Spin-Echo) und der UTE-Bildgebung aufgenommenen Datensätze konnte der Vorteil der Datenaufnahme mit UTE gezeigt werden. Durch die Untersuchung der möglichen Samenbestandteile (Stärke, Proteine, Zucker) in Reinform konnten die zum Signal beitragen Bestandteile als gebundenes Wasser (Restfeuchte) und Stärke identifiziert werden. Die Verwendung bi-exponentiellen Fits and die Messdaten ermöglichte es im Gersten-Samen, zwei zum Signal beitragende Komponenten in getrennten Karten bezüglich ihrer Magnetisierung und Relaxationszeit zu trennen. Der Vergleich mit histologischen Färbungen bestätigte die bisherigen Ergebnisse, somit kann diese Technik zur selektiven Darstellung von Stärke in trockenen Samen verwendet werden. Rückschlüsse auf das Transportverhalten in Pflanzen können durch die in Kapitel 8 vorgestellte Technik gezogen werden. Die zugehörigen Transportgeschwindigkeiten im lebenden Pflanzenobjekt können nun, selbst im Bereich von wenigen $\mu$m/h, bestimmt werden. Diese wurden anhand von berechneten Konzentrationen eines von der Pflanze aufgenommenen MR-Kontrastmittels sowohl in longitudinaler Richtung, also entlang des Leitgewebebündels, als auch in horizontaler Richtung, also aus dem Leitbündel heraus, abgeschätzt werden; Letztere Geschwindigkeit liegt deutlich unter dem Wert der freien Diffusionsgeschwindigkeit des Kontrastmittels. Hierfür wurden durch Anpassung einer dynamischen Kontrast-erhöhenden Bildgebungstechnik (DCE-Imaging, Tof91) die Aufnahmedauer einer für die weiteren Berechnungen benötigen T1-Karte deutlich reduziert. Mittels dieser Karten konnten die lokalen Konzentrationen des Kontrastmittels in Pflanzenstängeln und Schoten der Rapspflanze bestimmt werden. Zahlreiche Fragen in der Pflanzenforschung können nur durch nicht-invasive Techniken wie MRT beantwortet werden. Deswegen wurden, neben den experimentellen Ergebnissen, die mittels dieser Arbeit erreicht wurden, auch weitere NMR Methoden für die Untersuchung von Pflanzen getestet und zur Verfügung gestellt. Als Beispiel seien hier die Untersuchungen zur Bildgebung von magnetischen Austauschprozessen genannt, welche eine Vorarbeit zur möglichen Übertragung con CEST-Experimenten (Chemical Exchange Saturation Transfer) auf das Modell Pflanze liefern. Die Ergebnisse sind in der Bachelor-Arbeit von A. Jäger \cite{jaeger17}, an deren Durchführung ich als Betreuer maßgeblich beteiligt war, dargestellt und finden großes Interesse bei Biologen. Von besonderer Wichtigkeit sind auch die Entwicklungen neuer Technologien, die die Möglichkeiten zur Untersuchung von lebenden Organismen erweitern können. Deswegen habe ich zu der Entwicklung der bislang unveröffentlichten Methode RACETE (Refocused Acquisition of Chemical Exchange Transferred Excitations [Jak17, Reu17, Gut18a]) beigetragen. Durch das Rephasieren der transferierten Magnetisierung können Eigenschaften, die bislang in chemischen "`Austausch"'-Experimenten nicht zur Verfügung stehen, ausgenutzt werden. Mit dieser Methode wird ein positiver Kontrast erzeugt, sie ist deshalb nicht zwingend auf ein Referenz-Experiment angewiesen. Weiterhin kann die Bildphase, welche in klassichen CEST-Experimenten keine Information über die ausgetauschten Protonen enthält, zur eindeutigen Identifizierung mehrerer parallel angeregter Substanzen verwendet werden. KW - Kernspintomografie KW - Pflanzen KW - Pflanzenbildgebung Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172518 ER - TY - THES A1 - Winter, Patrick T1 - Neue Methoden zur Quantitativen Kardiovaskulären MR-Bildgebung T1 - New methods for quantitative cardiovascular magnetic resonance imaging N2 - Herzkreislauferkrankungen stellen die häufigsten Todesursachen in den Industrienationen dar. Die Entwicklung nichtinvasiver Bildgebungstechniken mit Hilfe der Magnetresonanz-Tomografie (MRT) ist daher von großer Bedeutung, um diese Erkrankungen frühzeitig zu erkennen und um die Entstehungsmechanismen zu erforschen. In den letzten Jahren erwiesen sich dabei genetisch modifzierte Mausmodelle als sehr wertvoll, da sich durch diese neue Bildgebungsmethoden entwickeln lassen und sich der Krankheitsverlauf im Zeitraffer beobachten lässt. Ein große Herausforderung der murinen MRT-Bildgebung sind die die hohen Herzraten und die schnelle Atmung. Diese erfordern eine Synchronisation der Messung mit dem Herzschlag und der Atmung des Tieres mit Hilfe von Herz- und Atemsignalen. Konventionelle Bildgebungstechniken verwenden zur Synchronisation mit dem Herzschlag EKG Sonden, diese sind jedoch insbesondere bei hohen Feldstärken (>3 T) sehr störanfällig. In dieser Arbeit wurden daher neue Bildgebungsmethoden entwickelt, die keine externen Herz- und Atemsonden benötigen, sondern das MRT-Signal selbst zur Bewegungssynychronisation verwenden. Mit Hilfe dieser Technik gelang die Entwicklung neuer Methoden zur Flussbildgebung und der 3D-Bildgebung, mit denen sich das arterielle System der Maus qualitativ und quantitativ erfassen lässt, sowie einer neuen Methode zur Quantisierung der longitudinalen Relaxationszeit T1 im murinen Herzen. Die in dieser Arbeit entwickelten Methoden ermöglichen robustere Messungen des Herzkreislaufsystems. Im letzten Kapitel konnte darüber hinaus gezeigt werden dass sich die entwickelten Bildgebungstechniken in der Maus auch auf die humane Bildgebung übertragen lassen. N2 - Cardiovascular diseases are one of the main causes of death in western countries. Hence, the development of non-invasive imaging techniques using Magnetic Resonance Imaging (MRI) is very important for early detection of these illnesses and for examination of the biological mechanisms. In the past years genetically modified mouse models have proven to be great assets, since they allow the development of new imaging techniques and to investigate the progress of cardiovascular diseases in time lapse. The main challenge of murine MRI is the high heart rate und the fast respiration. Hence, synchronization of the measurement with cardiac motion and breathing by using cardiac and respiration signals is required. Most imaging techniques use ECG leads for synchronization with the heartbeat, however, these probes are prone to disturbances at high magnetic field strengths (>3 T). In this work new imaging techniques were developed that do not use external cardiac and respiration signals but the MRI signal itself for motion synchronization. With these techniques new methods for flow quantification und 3D imaging could be developed for qualitative and quantitative measurements in the murine arteries. Furthermore, a new method for quantification of the longitudinal relaxation time T1 in the murine heart could be developed. The methods presented in this work enable more robust measurements of the cardiovascular system. In the last chapter it could be shown that the imaging techniques developed in the mouse can also be transferred to human MRI. KW - Kernspintomografie KW - Kardiovaskuläres System KW - Flussbildgebung KW - 3D-Bildgebung KW - Selbstnavigation KW - T1 KW - UTE KW - Maus KW - Aorta KW - Herzmuskel KW - Herzschlag Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-174023 ER - TY - THES A1 - Kreutner, Jakob T1 - Charakterisierung des Knochens und seiner Mikrostruktur mit hochauflösender 3D-MRT T1 - Characterization of Bone and its Microstructure using High-resolution 3D-MRI N2 - Neue Therapieansätze durch Tissue Engineering erfordern gleichzeitig angepasste Diagnosemöglichkeiten und nicht-invasive Erfolgskontrollen. Speziell die 3D-MR-Bildgebung ist ein vielversprechendes Instrument, um Parameter mit hoher räumlicher Präzision zu quantifizieren. Vor diesem Hintergrund wurden im Rahmen dieser Arbeit neue Ansätze für die hochauflösende 3D-MRT in vivo entwickelt und deren Eignung im Bereich des Tissue Engineerings gezeigt. Welchen Vorteil die Quantifizierung von Parametern bietet, konnte im Rahmen einer prä-klinischen Studie an einem Modell der Hüftkopfnekrose gezeigt werden. Der Therapieverlauf wurde zu verschiedenen Zeitpunkten kontrolliert. Trotz der niedrigen räumlichen Auflösung, konnten durch eine systematische Auswertung der Signalintensitäten von T1- und T2-FS-gewichteten Aufnahmen Rückschlüsse über Veränderungen in der Mikrostruktur gezogen werden, die darüber hinaus in guter Übereinstimmung mit Ergebnissen von ex vivo µCT-Aufnahmen waren. Dort konnte eine Verdickung der Trabekelstruktur nachgewiesen werden, welche sehr gut mit einer Signalabnahme in den T1-gewichteten Aufnahmen korrelierte. Die radiale Auswertung der Daten erlaubte dabei eine komprimierte Darstellung der Ergebnisse. Dadurch wurde eine effiziente Auswertung der umfangreichen Daten (verschiedene Tiere an mehreren Zeitpunkten mit einer Vielzahl an Einzelaufnahmen) ermöglicht und eine unabhängige Bewertung erreicht. Um die Limitationen der begrenzten Auflösung von 2D-Multi-Schichtaufnahmen aufzuheben, wurden neue Ansätze für eine hochaufgelöste 3D-Aufnahme entwickelt. Hierfür wurden Spin-Echo-basierte Sequenzen gewählt, da diese eine genauere Abbildung der Knochenmikrostruktur erlauben als Gradienten-Echo-basierte Methoden. Zum einen wurde eine eigene 3D-FLASE-Sequenz entwickelt und zum anderen eine modifizierte 3D-TSE-Sequenz. Damit an Patienten Aufnahmen bei klinischer Feldstärke von 1,5 T mit einer hohen räumlichen Auflösung innerhalb einer vertretbaren Zeit erzielt werden können, muss eine schnelle und signalstarke Sequenz verwendet werden. Eine theoretische Betrachtung bescheinigte der TSE-Sequenz eine um 25 % höhere Signaleffizienz verglichen mit einer FLASE-Sequenz mit identischer Messzeit. Dieser Unterschied konnte auch im Experiment nachgewiesen werden. Ein in vivo Vergleich der beiden Sequenzen am Schienbein zeigte eine vergleichbare Darstellung der Spongiosa mit einer Auflösung von 160 × 160 × 400 µm. Für die Bildgebung des Hüftkopfs mit der neuen Sequenz waren jedoch aufgrund der unterschiedlichen Anatomie weitere Modifikationen notwendig. Um längere Messzeiten durch ein unnötig großes Field-of-View zu vermeiden, mussten Einfaltungsartefakte unterdrückt werden. Dies wurde durch die orthogonale Anwendung der Anregungs- und Refokussierungspulse in der TSE-Sequenz effizient gelöst. Technisch bedingt konnte jedoch nicht eine vergleichbare Auflösung wie am Schienbein realisiert werden. Der Vorteil der 3D-Bildgebung, dass Schichtdicken von deutlich weniger als 1 mm erreicht werden können, konnte jedoch erfolgreich auf den Unterkiefer übertragen werden. Der dort verlaufende Nervus Mandibularis ist dabei eine wichtige Struktur, deren Verlauf im Vorfeld von verschiedenen operativen Eingriffen bekannt sein muss. Er ist durch eine dünne knöcherne Wand vom umgebenden Gewebe getrennt. Im Vergleich mit einer 3D-VIBE-Sequenz zeigte die entwickelte 3D-TSE-Sequenz mit integrierter Unterdrückung von Einfaltungsartefakten eine ähnlich gute Lokalisierung des Nervenkanals über die gesamte Länge der Struktur. Dies konnte in einer Studie an gesunden Probanden mit verschiedenen Beobachtern nachgewiesen werden. Durch die neue Aufnahmetechnik konnte darüber hinaus die Auflösung im Vergleich zu bisherigen Studien deutlich erhöht werden, was insgesamt eine präzisere Lokalisierung des Nervenkanals erlaubt. Ein Baustein des Tissue Engineerings sind bio-resorbierbare Materialien, deren Abbau- und Einwachsverhalten noch untersucht werden muss, bevor diese für die klinische Anwendung zugelassen werden. Die durchgeführten in vitro µMR-Untersuchungen an Polymerscaffolds zeigten die reproduzierbare Quantifizierung der Porengröße und Wandstärke. Darüber hinaus wurde eine inhomogene Verteilung der Strukturparameter beobachtet. Die Ergebnisse waren in guter Übereinstimmung mit µCT-Aufnahmen als Goldstandard. Unterschiedliche Varianten der Scaffolds konnten identifiziert werden. Dabei bewies sich die MR-Bildgebung als zuverlässige Alternative. Insgesamt zeigen die Ergebnisse dieser Arbeit, welche Vorteile und Anwendungsmöglichkeiten die 3D-MRT-Bildgebung bietet, und dass auch mit klinischer Feldstärke in vivo Voxelgrößen im Submillimeterbereich für alle Raumrichtungen erreichbar sind. Die erzielten Verbesserungen in der räumlichen Auflösung erhöhen die Genauigkeit der verschiedenen Anwendungen und ermöglichen eine bessere Identifikation von kleinen Abweichungen, was eine frühere und zuverlässigere Diagnose für Patienten verspricht. N2 - New tissue engineering based therapies require adjusted diagnostic methods as well as non-invasive therapy monitoring. Especially 3D MR imaging is a promising tool for parameter quantification at high spatial precision. To serve that need new approaches for high resolution in vivo 3D MRI were developed and their applications in combination with tissue engineering have been demonstrated. The advantages of parameter quantification have been demonstrated in a preclinical study of a femoral heck necrosis model in a large animal. Therapy progress has been monitored at different time points. Despite a commonly used 2D imaging protocol a systematic evaluation of signal intensities from T1 and T2-FS weighted images allowed to draw conclusions about changes in bone microstructure. These results were in good agreement with ex vivo µCT images. The observed increase of trabecular thickness were highly correlated with a signal decrease in the T1 weighted images. The radial evaluation of the data allowed a compressed representation of the results. This lead to an efficient evaluation of numerous data (different animals at various time points with huge number of images each) and allowed an observer independent evaluation. To overcome the limitations from the limited spatial resolution in 2D multi slice images, new approaches for a high-resolution 3D imaging were developed. The focus was on spin echo based sequences due to their better representation of bone microstructure compared to gradient echo based sequences. On one hand a 3D FLASE sequence was developed and on the other hand a modified 3D TSE sequence. To achieve a high resolution in vivo at clinical field strength of 1.5 T within a reasonable scan time, a fast and signal intense sequence is strongly required. A theoretical evaluation of signal equations attributed an increase of 25 % to the TSE sequence compared to the FLASE sequence at identical scan time and resolution. This difference was also observed in experimental results. An in vivo comparison of both sequences at the distal tibia showed a comparable depiction of bone microstructure at a resolution of 160 × 160 × 400 µm. To apply this sequence for high resolution imaging of the femoral head, further modifications were necessary due to the different anatomy. A large field of view had to be avoided to reduce the overall scan time, thus aliasing artifacts had to be suppressed. This was achieved by orthogonal application of excitation and refocusing pulses in the TSE sequence. However, due to technical limitations the achievable resolution was lower than at the distal tibia. A slice thickness much smaller than 1 mm is one of the biggest advantages of 3D MRI and this sequence was successfully applied to imaging of the mandible. The course of the mandibular canal must be known before many surgeries, in order to avoid damaging this structure. The canal is separated from the surrounding only by a small bony wall. In comparison to a 3D VIBE sequence the developed 3D TSE sequence with incorporated aliasing suppression showed a comparable good localization of the canal across the full length of the structure. This was demonstrated in a study with various healthy volunteers and different observers. In comparison to previous results the new imaging technique allowed an increase of spatial resolution to a isotropic voxel size of 0.5 mm, which in total provides a higher precision for localizing the nerve canal. One important element in tissue engineering are bio resorbable materials. Their degradation and ingrowth process must be evaluated before they can be approved for clinical application. The performed in vitro µMRstudies at polymer scaffolds showed a reproducible quantification of pore size and wall thickness for different samples. Additionally, an inhomogeneous distribution of parameters in some samples was observed. The results were in good agreement with data based on µCT images, which are considered to be gold standard for this evaluation and showed significant differences between different groups of scaffolds. The results of this work demonstrate the advantages and possible applications of 3D MRI in clinical applications. Even at clinical field strength it is possible to achieve submillimeter resolution for all three spatial dimension within reasonable scan time. The achieved improvements in spatial resolution allow for an improved precision of the different applications as well as a better identification of small local deviations, which promises an earlier and more reliable diagnosis for patients. KW - Kernspintomografie KW - Mikrostruktur KW - Knochen KW - hochauflösende Bildgebung KW - 3D-Bildgebung KW - Knochenstruktur KW - Spin-Echo KW - Trabekel KW - Hüftkopfnekrose KW - Tissue Engineering Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-168858 ER - TY - THES A1 - Lykowsky, Gunthard T1 - Hardware- und Methodenentwicklung für die 23Na- und 19F-Magnetresonanztomographie T1 - Hardware and method development for 23Na and 19F magnetic resonance imaging N2 - Neben dem Wasserstoffkern 1H können auch andere Kerne für die Magnetresonanztomographie (MRT) genutzt werden. Diese sogenannten X-Kerne können komplementäre Informationen zur klassischen 1H-MRT liefern und so das Anwendungsspektrum der MRT erweitern. Die Herausforderung bei der X-Kern-Bildgebung liegt zum großen Teil in dem intrinsisch niedrigen Signal-zu-Rauschen-Verhältnis (SNR), aber auch in den spezifischen Kerneigenschaften. Um X-Kern-Bildgebung optimal betreiben zu können, müssen daher Sende-/Empfangsspulen, Messsequenzen und -methoden auf den jeweiligen Kern angepasst werden. Im Fokus dieser Dissertation standen die beiden Kerne Natrium (23Na) und Fluor (19F), für die optimierte Hardware und Methoden entwickelt wurden. 23Na spielte in dieser Arbeit vor allem wegen seiner Funktion als Biomarker für Arthrose, einer degenerativen Gelenkserkrankung, eine Rolle. Hierbei ist insbesondere die quantitative Natriumbildgebung von Bedeutung, da sich mit ihr der Knorpelzustand auch im Zeitverlauf charakterisieren lässt. Für die quantitative Messung mittels MRT ist die Kenntnis des B1-Feldes der eingesetzten MR-Spule entscheidend, denn dieses kann die relative Signalintensität stark beeinflussen und so zu Fehlern in der Quantifizierung führen. Daher wurde eine Methode zur Bestimmung des B1-Feldes untersucht und entwickelt. Dies stellte aufgrund des niedrigen SNR und der kurzen sowie biexponentiellen T2-Relaxationszeit von 23Na eine Herausforderung dar. Mit einer retrospektiven Korrekturmethode konnte eine genaue und zugleich schnelle Korrekturmethode gefunden werden. Für die 1H- und 23Na-Bildgebung am menschlichen Knieknorpel wurden zwei praxistaugliche, doppelresonante Quadratur-Birdcage-Resonatoren entwickelt, gebaut und charakterisiert. Der Vergleich der beiden Spulen bezüglich Sensitivität und Feldhomogenität zeigte, dass der Vier-Ring-Birdcage dem Alternating-Rungs-Birdcage für den vorliegenden Anwendungsfall überlegen ist. Die in vivo erzielte Auflösung und das SNR der 23Na-Bilder waren bei beiden Spulen für die Quantifizierung der Natriumkonzentration im Knieknorpel ausreichend. Hochauflösende anatomische 1H-Bilder konnten ohne Mittelungen aufgenommen werden. In einer umfangreichen Multiparameter-MR-Tierstudie an Ziegen wurde der Verlauf einer chirurgisch induzierten Arthrose mittels 23Na- und 1H-Bildgebungsmethoden untersucht. Hierbei kamen dGEMRIC, T1ρ-Messung und quantitative Natrium-MRT zum Einsatz. Trotz des im Vergleich zum Menschen dünneren Ziegenknorpels, der niedrigen Feldstärke von 1,5 T und den auftretenden Ödemen konnten erstmals diese MR-Parameter über den Studienverlauf hinweg an den gleichen Versuchstieren und zu den gleichen Zeitpunkten ermittelt werden. Die Ergebnisse wurden verglichen und die ermittelten Korrelationen entsprechen den zugrundeliegenden biochemischen Mechanismen. Die im Rahmen dieser Studie entwickelten Methoden, Bildgebungsprotokolle und Auswertungen lassen sich auf zukünftige Humanstudien übertragen. Die mit klinischen Bildgebungssequenzen nicht zugängliche kurze Komponente der biexponentiellen T2*-Relaxationszeit von 23Na konnte mittels einer radialen Ultra-Short-Echo-Time-Sequenz bestimmt werden. Hierzu wurde eine Multi-Echo-Sequenz mit einem quasizufälligen Abtastschema kombiniert. Hierdurch gelang es, die kurze und lange T2*-Komponente des patellaren Knorpels in vivo zu bestimmen. 19F wird in der MRT wegen seiner hohen relativen Sensitivität und seines minimalen, körpereigenen Hintergrundsignals als Marker eingesetzt. Zur Detektion der niedrigen in-vivo-Konzentrationen der Markersubstanzen werden hochsensitive Messspulen benötigt. Für die 19F-Bildgebung an Mäusen wurde eine Birdcage-Volumenspule entwickelt, die sowohl für 19F als auch 1H in Quadratur betrieben werden kann, ohne Kompromisse in Sensitivität oder Feldhomogenität gegenüber einer monoresonanten Spule eingehen zu müssen. Dies gelang durch eine verschiebbare Hochfrequenzabschirmung, mit der die Resonanzfrequenz des Birdcage verändert werden kann. Es konnte weiterhin gezeigt werden, dass die Feldverteilungen bei 1H und 19F im Rahmen der Messgenauigkeit identisch sind und so der 1H-Kanal für die Pulskalibrierung und die Erstellung von B1-Karten für die 19F-Bildgebung genutzt werden kann. Hierdurch kann die Messzeit deutlich reduziert werden. Ein grundsätzliches Problemfeld stellt die Korrelation unterschiedlicher Bildgebungsmodalitäten dar. In der MRT betrifft das häufig die Korrelation von in-/ex-vivo-MR-Daten und den dazugehörigen Lichtbildaufnahmen an histologischen Schnitten. In dieser Arbeit wurde erstmals erfolgreich eine 1H- und 19F-MR-Messung an einem histologischen Schnitt vorgenommen. Durch die Verwendung einer optimierten 1H/19F-Oberflächenspule konnte die 19F-Signalverteilung in einer dünnen Tumorscheibe in akzeptabler Messzeit aufgenommen werden. Da der gleiche Schnitt sowohl mit Fluoreszenzmikroskopie als auch mit MRT gemessen wurde, konnten Histologie und MR-Ergebnisse exakt korreliert werden. Zusammenfassend konnten in dieser Arbeit durch Hardware- und Methodenentwicklung zahlreiche neue Aspekte der 19F- und 23Na-MRT beleuchtet werden und so zukünftige Anwendungsfelder erschlossen werden. N2 - In addition to the hydrogen nucleus 1H, other nuclei can also be used for magnetic resonance imaging (MRI). These so-called X-nuclei can provide complementary information on classical 1H MRI and thus expand the range of applications of MRI. The challenge in X-nucleus imaging is largely due to the intrinsically low signal-to-noise ratio (SNR), but also to the specific properties of the nucleus. In order to optimally perform X-nuclei imaging, transmit/receive coils, imaging sequences and methods must be adapted to the respective nucleus. The two nuclei sodium (23Na) and fluorine (19F) were in the focus of this dissertation and thus optimized hardware and methods were developed for these nuclei. 23Na played a major role in this work, mainly because of its function as a biomarker of osteoarthritis, a degenerative joint disease. In particular, the quantitative sodium imaging is of importance, as it can characterize the cartilage state over time. For quantitative measurements by MRI, the knowledge of the B1 field of the MR coil used is crucial, because this can strongly influence the signal intensity and thus lead to errors in the quantification. Therefore, a method for the determination of the B1 field was developed. This presented a challenge due to the low SNR and the short and biexponential T2 relaxation time of 23Na. Using a retrospective correction method, a precise and at the same time rapid correction method could be found. Two practicable double resonant quadrature birdcage resonators have been developed, constructed and characterized for 1H/23Na imaging on human knee cartilage. The comparison of the two coils in terms of sensitivity and field homogeneity showed that the four-ring birdcage is superior to the alternating-rungs birdcage for the present application. The in vivo resolution and SNR of the 23Na images were sufficient for both coils to quantify the sodium concentration in the knee cartilage. High-resolution 1H anatomical images could be acquired without averaging. In a large multiparameter MRI animal study on goats, the progression of surgically induced osteoarthritis was studied using 23Na and 1H imaging techniques. DGEMRIC, T1ρ and quantitative sodium MRI were used. Despite thinner goat cartilage compared to humans, low field strength of 1.5 T and the occurring edema, it was possible for the first time to determine these MR parameters over the course of the study on the same experimental animals and at the same time points. The correlations of the MR parameters correspond to the underlying biochemical mechanisms. The methods, imaging protocols and evaluations developed in this study can be applied to future human studies. The short component of the biexponential T2* relaxation time of 23Na, which is not accessible with clinical imaging sequences, could be determined by means of a radial ultra-short echo time sequence. For this purpose, a multi-echo sequence was combined with a quasi-random sampling scheme. This enabled the determination of the short and long T2* component of patellar cartilage in vivo. 19F is used as a marker in MRI because of its high relative sensitivity and minimal body’s own background signal. To detect the low in vivo concentrations of the marker substances, highly sensitive measuring coils are required. For 19F imaging of mice, a birdcage volume coil was developed that can be operated in quadrature for both 19F and 1H without compromising sensitivity or field homogeneity compared to monoresonant coils. This is due to a slidable RF shield, which is used to change the resonance frequency of the birdcage. It has also been shown that field distributions at 1H and 19F are identical allowing the 1H channel to be used for pulse calibration and B1 mapping for 19F imaging. This can significantly reduce the acquisition time. A fundamental challenge is the correlation of different imaging modalities. In MRI, this often affects the correlation of in and ex vivo MR data and the associated images of histological sections. In this work, 1H and 19F MR measurements of a histological section were successfully performed for the first time. By using an optimized 1H/19F surface coil, the 19F signal distribution in a thin tumor slice was acquired within an acceptable acquisition time. Since the same section was measured by fluorescence microscopy as well as by MRI, histology and MR results could be correlated exactly. In summary, hardware and method development in this work has highlighted numerous new aspects of 19F and 23Na MRI, opening up future fields of application. KW - Kernspintomografie KW - Fluor-19 KW - Natrium-23 KW - 19F-MRT KW - 23Na-MRT Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-188710 ER - TY - THES A1 - Gutjahr, Fabian Tobias T1 - Neue Methoden der physiologischen Magnet-Resonanz-Tomographie: Modellbasierte T1-Messungen und Darstellung von chemischem Austausch mit positivem Kontrast T1 - Novell Methods for Physiological MRI: Model based T1-Quantification and Positive Contrast Chemical Exchange Measurements N2 - Ziel dieser Arbeit war es, neue quantitative Messmethoden am Kleintier, insbesondere die Perfusionsmessung am Mäuseherz, zu etablieren. Hierfür wurde eine retrospektiv getriggerte T1-Messmethode entwickelt. Da bei retrospektiven Methoden keine vollständige Abtastung garantiert werden kann, wurde ein Verfahren gefunden, das mit Hilfe von Vorwissen über das gemessene Modell sehr effizient die fehlenden Daten interpolieren kann. Mit Hilfe dieser Technik werden dynamische T1-Messungen mit hoher räumlicher und zeitlicher Auflösung möglich. Dank der hohen Genauigkeit der T1-Messmethode lässt sich diese für die nichtinvasive Perfusionsmessung am Mäuseherz mittels der FAIR-ASL-Technik nutzen. Da auf Grund der retrospektiven Triggerung Daten an allen Positionen im Herzzyklus akquiriert werden, konnten T1- und Perfusionskarten nach der Messung zu beliebigen Punkten im Herzzyklus rekonstruiert werden. Es bietet sich an, Techniken, die für die myokardiale Perfusion angewandt werden, auch für die Nierenperfusionsmessung zu verwenden, da die Niere in ihrer Rinde (Cortex) eine ähnlich hohe Perfusion aufweist wie das Myokard. Gleichzeitig führen Nierenerkrankungen oftmals zu schlechter Kontrastmittelverträglichkeit, da diese bei Niereninsuffizienz u.U. zu lange im Körper verweilen und die Niere weiter schädigen. Auch deshalb sind die kontrastmittelfreien Spin-Labeling-Methoden hier interessant. Die FAIR-ASL-Technik ist jedoch an Mäusen in koronaler Ansicht für die Niere schlecht geeignet auf Grund des geringen Unterschieds zwischen dem markierten und dem Vergleichsexperiment. Als Lösung für dieses Problem wurde vorgeschlagen, die Markierungsschicht senkrecht zur Messschicht zu orientieren. Hiermit konnte die Sensitivität gesteigert und gleichzeitig die Variabilität der Methode deutlich verringert werden. Mit Hilfe von kontrastmittelgestützten Messungen konnten auch das regionale Blutvolumen und das Extrazellularvolumen bestimmt werden. In den letzten Jahren hat das Interesse an Extrazellularvolumenmessungen zugenommen, da das Extrazellularvolumen stellvertretend für diffuse Fibrose gemessen werden kann, die bis dahin nichtinvasiven Methoden nicht zugänglich war. Die bisher in der Literatur verwendeten Quantifizierungsmethoden missachten den Einfluss, den das Hämatokrit auf den ECV-Wert hat. Es wurde eine neue Korrektur vorgeschlagen, die allerdings zusätzlich zur ECV-Messung auch eine RBV-Messung benötigt. Durch gleichzeitige Messung beider Volumenanteile konnte auch erstmals das Extrazellulare-Extravaskuläre-Volumen bestimmt werden. Eine gänzlich andere kontrastmittelbasierte Methode in der MRT ist die Messung des chemischen Austauschs. Hierbei wirkt das Kontrastmittel nicht direkt beschleunigend auf die Relaxation, sondern der Effekt des Kontrastmittels wird gezielt durch HF-Pulse an- und ausgeschaltet. Durch den chemischen Austausch kann die Auswirkung der HF-Pulse akkumuliert werden. Bislang wurde bei solchen Messungen ein negativer Kontrast erzeugt, der ohne zusätzliche Vergleichsmessungen schwer detektierbar war. Im letzten Teil dieser Arbeit konnte eine neue Methode zur Messung des chemischen Austauschs gezeigt werden, die entgegen der aus der Literatur bekannten Methoden nicht Sättigung, sondern Anregung überträgt. Diese Änderung erlaubt es, einen echten positiven chemischen Austausch-Kontrast zu erzeugen, der nicht zwingend ein Vergleichsbild benötigt. Gleichzeitig ermöglicht die Technik, dadurch dass Anregung übertragen wird, die Phase der Anregung zu kontrollieren und nutzen. Eine mögliche Anwendung ist die Unterscheidung verschiedener Substanzen in einer Messung. In der Summe wurden im Rahmen dieser Arbeit verschiedene robuste Methoden eta- bliert, die die Möglichkeiten der quantitativen physiologischen MRT erweitern. N2 - The objective of this dissertation was to develop new methods for physiological magnetic resonance imaging. A new retrospectively triggered T1-method was developed. Due to the retrospectivity, full sampling of k-space can not be warranted. Therefore a model- based interpolation method was developed to reconstruct missing data efficiently. Using this technique, dynamic T1-measurements with high temporal and spatial resolution could be acquired. Due to the high precision of the developed T1-method, perfusion could be quantified using Arterial Spin Labeling. In comparison to the method established previously in our laboratory, the resolution could be doubled. Retrospective triggering enables reconstruc- tion of parameter maps on arbitrary positions in the heart cycle, as data are acquired continuously over several heart cycles. The perfusion measurement benefits from recon- struction on the end systole, as partial volume effects are decreased, due to the increased myocardial wall thickness. This serves as an effective increase in resolution. Furthermore, the data distributed over the whole heart cycle could be used to accelerate and stabilize the measurement. Cardiac and renal diseases can be directly related, as deficiency in one of the organs affects the other one. Additionally several diseases like hypertension or diabetes affect both organs. Moreover, kidneys are highly perfused, similar to the myocardium. Renal insufficiency can also lead to contrast agent intolerance, as clearance rates can be redu- ced. Therefore the FAIR-ASL technique lends itself to kidney perfusion measurements. It can, however, be problematic in small animals in coronal view, as the control-experiment inadvertently labels much of the same tissue and blood, as the labeling experiment. A modified FAIR-ASL measurement could be shown to increase sensitivity and reduce in- ter-measurement-variability by repositioning the inversion slice of the control experiment orthogonally to the measurement slice. The T1-method was used in combination with contrast agent based measurements to quantify the regional blood volume and the extracellular volume fraction. There has been an increased interest in extracellular volume fraction measurements as the extracel- lular volume is used as a proxy for the detection of diffuse fibrosis, which has previously been inaccessible to non-invasive methods. Several correction factors are used in volume fraction quantification, but the influence of hematocrit in ECV measurements has been neglected so far. In mice and rats, the regional blood volume is a major constituent of the ECV, leading to a significant influence of hematocrit. A new correction is proposed to account for the volume fraction taken up by hematocrit. For this ECV hematocrit correction, the RBV has to be measured as well. Using both measurements, the ex- tracellular volume fraction can be corrected and the extracellular-extravascular-volume- fraction quantified. A fundamentally different contrast-mechanism can be utilized using the measurement of chemical exchange. Instead of shortening relaxation times, the contrast provided by chemical exchange agents can be turned on and off using frequency selective rf-pulses. Due to the chemical exchange the effect of these pulses can be accumulated. Measure- ments exploiting this accumulation effect in general produce a negative contrast requiring a control-experiment for further evaluation. In the last part of this dissertation, a new technique transferring excitation instead of saturation could be demonstrated. By ge- nerating a real positive contrast, no control experiment is required. Other properties unavailable to previously published chemical exchange transfer methods can be exploi- ted. One example demonstrated in this dissertation is the separation of simultaneously excited compounds by their respective phase information imprinted by the excitation pulses. In summary, several robust methods could be implemented to further the capabilities of quantitative physiological MRI. KW - Kernspintomografie KW - Physioloische MRT KW - Modellbasierte Rekonstruktion KW - FAIR-ASL KW - Chemischer Austausch KW - Regionales Blutvolumen KW - Extrazellularvolumen KW - T1-Quantifizierung KW - Kernspinresonanz KW - Myokardiale Perfusion KW - Niere KW - Perfusionsmessung Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161061 ER - TY - THES A1 - Gram, Maximilian T1 - Neue Methoden der Spin-Lock-basierten Magnetresonanztomographie: Myokardiale T\(_{1ρ}\)-Quantifizierung und Detektion magnetischer Oszillationen im nT-Bereich T1 - New methods of spin-lock-based magnetic resonance imaging: myocardial T\(_{1ρ}\) quantification and detection of magnetic oscillations in the nT range N2 - Das Ziel der vorliegenden Arbeit war die Entwicklung neuer, robuster Methoden der Spin-Lock-basierten MRT. Im Fokus stand hierbei vorerst die T1ρ-Quantifizierung des Myokards im Kleintiermodell. Neben der T1ρ-Bildgebung bietet Spin-Locking jedoch zusätzlich die Möglichkeit der Detektion ultra-schwacher, magnetischer Feldoszillationen. Die Projekte und Ergebnisse, die im Rahmen dieses Promotionsvorhabens umgesetzt und erzielt wurden, decken daher ein breites Spektrum der Spin-lock basierten Bildgebung ab und können grob in drei Bereiche unterteilt werden. Im ersten Schritt wurde die grundlegende Pulssequenz des Spin-Lock-Experimentes durch die Einführung des balancierten Spin-Locks optimiert. Der zweite Schritt war die Entwicklung einer kardialen MRT-Sequenz für die robuste Quantifizierung der myokardialen T1ρ-Relaxationszeit an einem präklinischen Hochfeld-MRT. Im letzten Schritt wurden Konzepte der robusten T1ρ-Bildgebung auf die Methodik der Felddetektion mittels Spin-Locking übertragen. Hierbei wurden erste, erfolgreiche Messungen magnetischer Oszillationen im nT-Bereich, welche lokal im untersuchten Gewebe auftreten, an einem klinischen MRT-System im menschlichen Gehirn realisiert. N2 - The main goal of the present work was to develop new, robust methods of spin-lock-based MRI. The initial focus was on T1ρ quantification of the myocardium in small animal models. However, in addition to T1ρ imaging, spin-locking offers the possibility of detecting ultra-weak magnetic field oscillations. The projects and results realized and obtained in this PhD project therefore cover a broad spectrum of spin-lock based imaging and can be roughly divided into three areas. The first step was to optimize the basic pulse sequence of the spin-lock experiment by introducing balanced spin-locking. The second step was to develop a cardiac MRI sequence for robust quantification of the myocardial T1ρ relaxation time on a preclinical high-field MRI scanner. In the final step, concepts of robust T1ρ imaging were adapted to spin-lock based magnetic field detection. First successful measurements of magnetic field oscillations in the nT range, which occur locally inside the tissue under investigation, were realized on a clinical MRI system in the human brain. KW - Kernspintomografie KW - Magnetresonanztomographie KW - Kernspinresonanz KW - Spin-Lock KW - T1ρ KW - T1rho KW - Kardio-MRT KW - Rotary Excitation KW - Myokardiale T1ρ-Quantifizierung KW - Felddetektion KW - funktionelle MRT Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-322552 ER -