TY - JOUR A1 - Moll, Heidrun A1 - Röllinghoff, Martin T1 - T-cell reactivity to purified lipophosphoglycan from Leishmania major: A model for analysis of the cellular immune response to microbial carbohydrates. N2 - The major macromolecule on the surface o/Leishmania majorpromastigotes is a lipophosphoglycan (LPG). This glycoconjugate plays a key role in determining infectivity and survival of para-sites in the mammalian host cell. In addition, L. major LPG is able to induce a host-protective immune response. In this article, we summarise the evidence for recognition of highly purified LPG by T cells and we discuss the potential mechanisms of T-cell Stimulation by this non-protein antigen. KW - Leishmania KW - T lymphocytes KW - glycosyl phosphatidyl-inostitols. Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-33022 ER - TY - THES A1 - Keller, Christian T1 - The role of dendritic cells in the immunoregulation of leishmaniasis - transfection of dendritic cells with mRNA encoding a molecularly defined parasitic antigen T1 - Die Rolle dendritischer Zellen in der Immunregulation der Leishmaniose - Transfektion dendritischer Zellen mit mRNA eines molekular definierten Parasitenantigens N2 - Die kutane Leishmaniose ist eine Infektionskrankheit, die besonders in tropischen und Wüstenregionen endemisch ist, mit einer Inzidenz von 1,5 Millionen Fällen im Jahr und einer Prävalenz von 12 Millionen Infizierten weltweit. Die Infektion kann durch den intrazellulären Parasiten Leishmania major hervorgerufen werden. Am Mausmodell ist die Krankheit ausführlich untersucht. Wie dabei deutlich wurde, ist für die Immunität gegen den Erreger die Induktion einer Klasse von Interferon (IFN)--produzierenden CD4+ T-Helfer-Zellen (TH1-Zellen) entscheidend, welche Makrophagen dazu aktivieren, die von ihnen beherbergten Parasiten abzutöten. Die Umlenkung der Immunantwort in Richtung einer schützenden TH1-Antwort wird auch der Schlüssel zu einem effektiven Impfstoff sein. Ex vivo mit Leishmanienantigenen beladene dendritische Zellen sind vor einiger Zeit als Vakzine gegen L. major-Infektionen beschrieben worden. Ein einzelnes rekombinantes Antigen, LeIF (Leishmania homologue of eukaryotic ribosomal initiation factor 4a), ein parasitäres Protein, das die IL-12-Produktion durch dendritische Zellen stimuliert und das als mikrobiell konserviertes Strukturmolekül (pattern-associated molecular pattern; PAMP) diskutiert wird, vermittelte dabei, zum Pulsen von dendritischen Zellen verwendet, einen schützenden TH1-abhängigen Effekt. Der Einsatz rekombinanter Proteine ist jedoch mit etlichen Nachteilen verbunden, weshalb andere Methoden zur Verabreichung von Antigenen entwickelt wurden. Aus der Tumorforschung ist unlängst die RNA-Elektroporation dendritischer Zellen als eine sichere und vielseitige Methode hervorgegangen, bei der eine große Anzahl von RNA-Molekülen, die für ein bestimmtes Antigen kodieren, durch einen elektrischen Impuls in das Cytosol dendritischer Zellen gelangt. Die vorliegende Arbeit beschreibt zum ersten Mal die Transfektion dendritischer Zellen mit RNA eines molekular definierten Parasitenantigens. Zunächst erfolgte die Etablierung eines standardisierten Protokolls für die RNA-Transfektion mit dem enhanced green fluorescent protein (EGFP) als Reporterantigen. EGFP-RNA war gut translatierbar in einem In-vitro-Translationssystem, und es konnten sowohl eine Zellinie (fetal skin-derived dendritic cells; FSDC) als auch primäre, aus Knochenmarkkulturen der Maus gewonnene dendritische Zellen (bone marrow-derived dendritic cells; BMDC) mit einem Anteil von bis zu 90% bzw. 75% effizient EGFP-transfiziert werden. In beiden Zelltypen wurde die maximale Transfektionseffizienz mit 20 µg RNA erreicht, die mit größeren Mengen an RNA nicht weiter zu steigern war. Die Höhe der Antigenexpression, gemessen als mittlere Fluoreszenzintensität (MFI) in der Durchflußzytometrie, war direkt proportional zur verwendeten RNA-Menge. In FSDC waren die Transfektionseffizienz und die MFI generell höher als in BMDC bei gleicher RNA-Menge. Zudem konnte gezeigt werden, daß eine Behandlung mit LPS die Kinetik beeinflußt: Die maximale Expression war höher und wurde auch eher erreicht, worauf zudem ein schnellerer Abfall folgte. In den Transfektionsexperimenten mit LeIF wurden zwei Varianten von LeIF-RNA verwendet: eine für die gesamte LeIF-Sequenz kodierende LeIF(fl)-RNA, und eine nur für die aminoterminale Hälfte der LeIF-Sequenz (226 Aminosäuren), dem immunogenen Teil des LeIF-Moleküls, kodierende LeIF(226)-RNA. Im Western Blot von Ganzzellysaten dendritischer Zellen war nur LeIF(fl) nach Transfektion nachzuweisen, wohingegen LeIF(226) in LeIF(226)-transfizierten BMDC nie nachzuweisen war. Da beide Konstrukte aber gut im zellfreien System translatierbar waren, stellte der fehlgeschlagene Nachweis von LeIF(226) kein Fehlschlagen der RNA-Translation, sondern vielmehr einen raschen Antigenabbau dar. Es bestand daher die Erwartung, daß LeIF(226)-transfizierte BMDC trotzdem in der Lage sein müßten, von LeIF(226) abgeleitete antigene Peptide an T-Zellen von mit rekombinantem LeIF (rLeIF) immunisierten BALB/c-Mäusen zu präsentieren. Diese Vermutung wurde durch Messung von IFN- in Stimulationsversuchen mit BMDC und T-Zellen bestätigt, die zeigten, daß am Tag 7 der Kultur mit rLeIF gepulste, LeIF(226)- und LeIF(fl)-transfizierte BMDC in der Tat antigenspezifisch T-Zellen aus LeIF-immunisierten Mäusen aktivierten. IL-4 hingegen wurde nicht produziert, was mit der Tatsache vereinbar ist, daß in Lymphknoten LeIF-vakzinierter Mäusen hauptsächlich T-Zellen vom TH1-Typ zu finden sind. In den Überständen LeIF-transfizierter BMDC-Kulturen, im Gegensatz zu rLeIF-gepulsten BMDC, waren die proinflammatorischen Zytokine IL-1β, IL-6, IL-10 und IL-12 nicht nachzuweisen. Dieser Effekt lag nicht am Elektroporationsvorgang, da die Zytokinproduktion von mit rekombinantem LeIF elektroporierten BMDC nur teilweise beeinträchtigt war. Die Expression von CD86 war nach LeIF-Transfektion zudem geringer als nach Pulsen mit rLeIF. LeIF-Transfektion führte mithin nicht zur Reifung dendritischer Zellen. LeIF-transfizierte BMDC könnten im Ergebnis als antigenspezifische Toleranzinduktoren fungiert haben, mit regulatorischen T-Zellen als Respondern. Der Effekt der Transfektion mit LeIF-RNA auf die immunstimulatorische Wirkung von BMDC war nicht signifikant erhöht, wenn BMDC am Tag 8 oder 9 der Kultur verwendet wurden. BMDC, die am Tag 8, und mehr noch am Tag 9 mit rLeIF gepulst wurden, induzierten hingegen eine energische T-Zell-Antwort. BMDC vom Tag 9 waren sogar in der Lage, naive T-Zellen zu aktivieren. Bevor eine starke, gegen LeIF gerichtete T-Zell-Antwort eingeleitet werden kann, müssen dendritische Zellen also letztlich – neben Präsentation des Antigens und Expression kostimulatorischer Moleküle – eine gewisse „Empfindlichkeit“ gegenüber dem Strukturmolekül LeIF besitzen, die mit ihrem Reifungsalter in Zusammenhang steht. Dieses dritte Signal wird nicht durch intrazelluläres LeIF nach Transfektion mit LeIF-RNA übermittelt, oder es wird unterdrückt. Darüber hinaus war nach Elektroporation von rLeIF die IL-12-Produktion von BMDC gänzlich aufgehoben, die Produktion von IL-1 bei höheren Antigendosen reduziert und die Produktion von IL-10 teilweise erhöht. Die Produktion von IL-6 war unbeeinflußt. Dieses veränderte Zytokinprofil legt eine Doppelnatur von LeIF als PAMP nahe: Neben der bei extrazellulärem Vorliegen von LeIF erwiesenen Eigenschaft, die Produktion von IL-12 zu stimulieren, welches die Resistenz des Wirtes gegen L. major steigert, könnte LeIF bei intrazellulärem Vorliegen auch zu Evasionsmechanismen des Parasiten vor dem Immunsystem des Wirtes beitragen, möglicherweise durch Wechselwirkung mit MAP (mitogen-activated protein)-Kinase-Signalwegen. Die Eigenschaften von LeIF als Adjuvans hängen also sowohl von der Verabreichungsmethode (Transfektion mit RNA bzw. Pulsen mit dem rekombinanten Protein) als auch vom Zielkompartiment (extra- bzw. intrazellulär) ab. Zusammenfassend konnte also in dieser Arbeit gezeigt werden, daß BMDC mit einem Parasitenantigen transfizierbar sind. Das Antigen wird dabei prozessiert und präsentiert, aber von dendritischen Zellen nicht als PAMP erkannt. Durch Transfektion mit antigenkodierender mRNA alleine werden mithin nicht alle notwendigen Signale für die Induktion einer potenten Immunantwort übermittelt. N2 - Cutaneous leishmaniasis is an infectious disease that is endemic especially in tropical and desert regions with an incidence of 1.5 million cases per year and a prevalence of 12 million people infected worldwide. The infection can be caused by the intracellular parasite Leishmania major. The disease has been studied extensively in the murine model. It has become apparent that the induction of a class of interferon (IFN)--producing CD4+ T helper cells (TH1 cells) that activate macrophages to kill the parasites they harbor is desicive for the establishment of immunity. The redirection of the host’s immune response towards a protective TH1 phenotype will also be the key to an effective vaccine. Dendritic cells (DC) loaded with leishmanial antigens ex vivo were lately described as vaccines against L. major infections. One single recombinant Leishmania antigen, LeIF (Leishmania homologue of eukaryotic ribosomal initiation factor 4a), which was identified as a protein that stimulates DC to secrete interleukin (IL)-12 and discussed as a pattern-associated molecular pattern (PAMP), was found to mediate a protective TH1-dependent effect when used for pulsing of DC. The application of recombinant proteins is tied to many disadvantages, which is why other methods of antigen administration have been developed. RNA electroporation of DC has recently emerged from tumor research as a safe and versatile method of antigen delivery, by which a large number of RNA molecules encoding a specific antigen gains access to the cytosol of DC by an electrical impulse. The present study describes, for the first time, transfection of DC with RNA encoding a molecularly defined parasite antigen. Initially, a standardized protocol for RNA transfection was established, using the enhanced green fluorescent protein (EGFP) as reporter antigen. EGFP-RNA was well translatable in an in vitro translation system, and both a DC cell line (fetal skin-derived DC; FSDC) and murine primary bone marrow-derived DC (BMDC) could be transfected efficiently, with a yield of up to 90% and 75%, respectively. In both cell types, maximal transfection efficiency was attained with 20 µg RNA and could not be further increased with larger amounts of RNA. The level of antigen expression, measured as the mean fluorescence intensity (MFI) by flow cytometry, was directly proportional to the amount of RNA used for transfection. In FSDC, transfection efficiency and MFI were generally higher than in BMDC when the same amounts of RNA were used. Furthermore, the kinetics was shown to be sensitive to treatment with lipopolysaccharide (LPS): the expression peak was higher and was reached sooner, followed by a more rapid decline. In transfection experiments with LeIF, two variants of LeIF-RNA were used: LeIF(fl)-RNA, encoding the complete LeIF sequence, and LeIF(226)-RNA, encoding only the aminoterminal half of the LeIF sequence (226 amino acids), the immunogenic part of LeIF. Only LeIF(fl) was detectable by Western Blot in whole cell lysates of BMDC after LeIF(fl)-RNA transfection, whereas LeIF(226) could never be detected in LeIF(226)-transfected BMDC. However, as both constructs were well translatable in a cell-free system, the failure to detect LeIF(226) in BMDC lysates did not represent a failure in RNA translation, but rather a rapid antigen degradation. It was therefore expected that LeIF(226)-transfected BMDC should nevertheless be able to present LeIF(226)-derived antigenic peptides to T cells from BALB/c mice primed with recombinant LeIF (rLeIF). This hypothesis was confirmed by measuring IFN- production in BMDC-T cell co-incubation assays, showing that rLeIF-pulsed, LeIF(226)- and LeIF(fl)-transfected day 7 BMDC did indeed activate T cells from LeIF-immunized mice in an antigen-specific manner. In contrast, IL-4 was not produced, which was consistent with the fact that T cells found in lymph nodes from LeIF-primed mice are primarily of the TH1 type. In the supernatants of LeIF-transfected BMDC cultures, in contrast to rLeIF-pulsed BMDC, the proinflammatory cytokines IL-1β, IL-6, IL-10 and IL-12 were not detected. This effect was not due to the electroporation procedure, as cytokine production by BMDC electroporated with rLeIF was only partially impaired. Also, the expression levels of CD86 were lower upon LeIF transfection than after pulsing with rLeIF. Thus, LeIF transfection did not induce maturation of DC. In conclusion, LeIF-transfected BMDC may have acted as semi-mature antigen-specific tolerance inducers, with regulatory T cells as responders. The effect of LeIF transfection on the immunostimulatory capacity of BMDC was not significantly increased when day 8 or 9 BMDC were used. However, day 8, and even more day 9 BMDC pulsed with rLeIF mounted a vigorous T cell response. Day 9 BMDC were able to activate naïve T cells. In conclusion, before a strong T cell response against LeIF can be induced, DC need to – besides presenting antigen and expressing co-stimulatory molecules – exhibit a susceptibility to the innate signaling molecule LeIF which is linked to their maturation age. This third signal is provided by extracellular rLeIF, but it is not conveyed – or is suppressed – by intracellular LeIF after LeIF-RNA transfection. Furthermore, electroporation of rLeIF abrogated IL-12 production by BMDC completely, the production of IL-1 was reduced with higher antigen doses, and the production of IL-10 was partially increased. The IL-6 production was unaffected. This altered cytokine profile suggests that LeIF as a PAMP might have a bipartite nature: besides exhibiting the capacity to stimulate IL-12 production upon extracellular presence, thereby enhancing host resistance against L. major, LeIF could also contribute to parasitic host evasion mechanisms from intracellular compartments of DC, possibly by interfering with mitogen-activated protein (MAP) kinase signaling pathways. Thus, the adjuvant properties of LeIF depend both on its mode of delivery (transfection with RNA vs. pulsing with the recombinant protein) and the targeted compartment (extra- vs. intracellular). From this work, it can be summarized that BMDC are well transfectable with a parasite antigen. The antigen is processed and presented, but it is not recognized as a PAMP by DC. Hence, transfection with antigen-encoding mRNA by itself does not convey all necessary signals for the elicitation of a potent immune response. KW - Elektroporation KW - Leishmania KW - Leishmania major KW - Immunbiologie KW - Immunologie KW - Dendritische Zelle KW - Transfektion KW - Impfung KW - Antigenpräsentation KW - EGFP KW - pathogen-associated molecular pattern KW - TH1/TH2 KW - Transfektion KW - EGFP KW - pathogen-associated molecular pattern KW - TH1/TH2 KW - transfection Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-26208 ER - TY - THES A1 - Niedermeier, Sabine T1 - 4-Chinolone als Ausgangspunkt für antiparasitäre und antivirale Wirkstoffe T1 - 4-quinolones as a starting point for anti-parasitic and anti-viral agents N2 - Im Mittelpunkt dieser Arbeit stand die Substanzgruppe der 4-Chinolone, die zum einen über ein intrinsisches antiparasitäres Potenzial gegen Erreger wie Plasmodien, Trypanosomen oder Mykobakterien verfügt und zum anderen über gezielte Substitution auch die Möglichkeit zu strukturellen Modifikationen bietet. Vorrangiges Ziel dieser Arbeit war der Aufbau einer strukturell möglichst diversen Substanzbibliothek und deren sukzessive Testung innerhalb des SFB630. Auf diese Weise sollten neue antiparasitäre Leitstrukturen als Ausgangspunkt für weitere strukturelle Optimierungen erhalten werden. Der Chinolon-Grundkörper sollte hierzu gemäß Gould-Jacobs-Reaktion aufgebaut werden. Zur Synthese diverser Amid-Derivate wurden verschiedene Synthese-strategien verfolgt. Alternativ wurden, ebenfalls über eine nukleophile Substitution (Piperidin-Derivat), in 7-Position modifizierte Verbindungen generiert, die unter Verwendung des Kupplungs-reagenzes PyBOB (Benzotriazol-1-yloxytri-pyrrolidinophosphonium Hexafluorphosphat) in die entsprechenden 1-Alkyl-1,4-dihydro-7-piperidinyl-4-oxo-chinolin-3-carboxamide transformiert wurden. Die in dieser Arbeit generierte Substanzbibliothek wurde anschließend innerhalb des SFB630 getestet. Hierbei zeigte sich, dass die Amidierung der 3-Carbonsäurefunktion eine Steigerung der antimikrobiellen Wirkung gegen Trypanosoma brucei mit sich brachte. Es kristallisierten sich aktive Verbindungen heraus, die erstmals eine Aktivität derartiger Derivate gegen Trypanosomen belegen und so zukünftig als Leitstrukturen für weitere strukturelle Modifizierungen herangezogen werden können. Mit dem in dieser Arbeit angewandten Random-Chemistry-Verfahren sollte in die Suche nach neuen Leitstrukturen gezielt das Zufallsprinzip integriert werden bzw. es sollten neue aktive Verbindungen generiert werden, die über die klassischen kombinatorischen Syntheseschemata bzw. die gängigen Reaktionsmechanismen nur schwer zugänglich sind. Eine Reihe von Fluorchinolon-Derivaten wurden in verschiedenen Lösungsmitteln, meist DMSO mit Zusätzen von Methanol oder Chloroform, gelöst bzw. suspendiert und anschließend einer ionisierenden γ-Strahlung von 500 kGy ausgesetzt. Die Testung mittels HPLC / FCPC generierter Fraktionen ergab zum Teil höhere antitrypanosomale Aktivitäten als die der korrespondie¬renden Ausgangsverbindungen. Eine Aktivität gegen Makrophagen konnte nicht festgestellt werden. Darüber hinaus wurde im Rahmen dieser Arbeit in Kooperation mit Prof. Schneider-Schaulies an der Identifizierung viraler Fusionsinhibitoren ausgewählter Paramyxoviren (Masern-Virus, Nipah-Virus) gearbeitet. Aus einer Ähnlichkeitssuche, basierend auf dem literaturbekannten Masern-Fusionsinhibitor 2-(4-Chlorphenyl)-N-(2-hydroxy-4-nitrophenyl)acetamid (AM-2), konnte die Struktur eines Chinolinamides identifiziert werden, woraufhin die generierte Substanzbibliothek auf antiviral-aktive Verbindungen gescreent werden sollte. Die Kristallstruktur des Nipah-Virus-Fusionsproteins wurde im Jahre 2006 aufgeklärt. Mit diesen Informationen konnte mittels Molecular-Modelling eine Bindetasche innerhalb der HR1-Domäne des F-Proteins identifiziert werden, mit der die erzielten inhibitorischen Aktivitäten gut in Einklang gebracht werden konnten. Diese Bindetasche befindet sich in einem Bereich weitreichender Umstrukturierungsvorgängen: Durch die Einlagerung des Liganden 7-(4-Carbamoyl-piperidin-1-yl)-N-(2,4-dichlorbenzyl)-1-cyclopropyl-6-fluor-4-oxo-1,4-dihydro-chinolin-3-carboxamid, in diese hydrophobe Tasche werden Wechselwirkungen mit den korrespondierenden Aminosäuren in der HR2-Domäne und so auch dessen Anlagerung unterbunden. In 1 μmolarer Konzentration konnte die Fusionsaktivität um 42% reduziert werden, die verwendeten Referenzsubstanz (OX-1) erzielte in selbiger Konzentration keine Wirkung. N2 - The present work focuses on the chemical class of 4-quinolones, which possess intrinsic antiparasitic activity against pathogens such as plasmodia, trypanosomes and mycobacteria and is amenable to chemical modification. The primary objective was to build up a library of structurally diverse compounds and to screen them subsequently within the SFB630 against the aforementioned parasites to obtain leads and subsequent lead optimisation. The quinolone skeletons were built up using the Gould-Jacobs’ procedure starting with the correspondingly substituted aniline derivatives. For the synthesis of the desired amide derivatives different strategies were applied. Piperidinyl-substituents at position 7 were introduced by nucleophilic substitution and the resulting compounds were coupled to the corresponding amides using benzotriazol-1-yl-oxy-tris-pyrrolidino-phosphonium hexafluorophosphat (PyBOP) as activating agent. Screening of the library produced revealed that amidation of the 3-carboxylic acid function produced an increase in the antimicrobial activity against Trypanosoma brucei. Some compounds exhibited high activity against trypanosomes and can be regarded as lead structure for further modifications. The random chemistry method was used search deliberately in this work to look for new prototypes or produce new active compounds that are difficult to access through classical combinational synthetic pathways and conventional reaction mechanisms. A series of fluoroquinolone derivatives were dissolved or suspended in various solvents, mainly DMSO with the addition of methanol or chloroform, and were then exposed to ionizing γ-radiation of 500 kGy. The fractions generated were separated by HPLC / FCPC and screened against trypanosomes and macrophages. Some fractions proved to have higher anti-trypanosomal activity than the corresponding precursor compounds. No activity against macrophages was found. Furthermore, in cooperation with Prof. Schneider-Schaulies, another part of this work focused on the identification of viral fusion inhibitors regarding distinct paramyxoviruses like measles and nipah viruses. A similarity search based on a known inhibitor of the fusion process - 2-(4-chlorophenyl)-N-(2-hydroxy-4-nitrophenyl)acetamide (AM-2) - led to the identification of the structure of a β-keto-carboxylic amide whereupon the designed library would be screened for compounds with antiviral activity. The structure of the nipah fusion protein in its post-fusion state was solved in 2006. By subsequent molecular modelling experiments a corresponding target structure within the HR1 domain of the F-protein was identified and concorded well with the obtained testing results. According to the location, this binding pocket is located where extensive conformational changes take place, mediating membrane fusion: The identified ligand 7-(4-carbamoyl-piperidin-1-yl)-N-(2,4-dichlorobenzyl)-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydro-quinoline-3-carboxamide can perfectly dock into this cavity and, by means of forces such as hydrogen bonds and hydrophobic effects, it could prevent specific interactions with the corresponding amino acids between the HR1 and HR2 domain and modify conformational rearrangements. A concentration of 1 μmol decreases fusion activity of 42% while the reference ligand OX-1 at the same concentration shows no effects. KW - Chinolinderivate KW - Gyrasehemmer KW - 4-Chinolonamid KW - Random Chemistry KW - Nipha-Virus KW - Trypanosomen KW - Leishmania KW - 4-quinolone KW - Typanosoma KW - Leishmania KW - Nipah virus KW - random chemistry Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-51791 ER - TY - THES A1 - Schnitzer, Johannes K. T1 - Mechanism of dendritic cell-based vaccination against Leishmania major T1 - Mechanismus der auf dendritischen Zellen beruhenden Impfung gegen Leishmania major N2 - Die Impfung mittels Antigen-beladener dendritischer Zellen [DZ] ist mittlerweile eine gut etablierte Technik, die dann zum Einsatz kommt, wenn Standard-Impftechniken versagen, vor Krankheiten zu schützen beziehungsweise diese zu heilen. Die Effizienz dieser Technik konnte bereits für diverse Infektionskrankheiten und Krebserkrankungen in experimentellen Tiermodellen sowie am Menschen gezeigt werden. Hierbei ist die Möglichkeit zur wohldefinierten Manipulation und Antigenbeladung der DZ ein großer Vorteil gegenüber den konventionellen Ansätzen. Jedoch ist vor allem bei der Anwendung im klinischen Bereich die Präparation, Herstellung und Manipulation dieser autologen DZ mit einem erheblichen technischen, zeitlichen sowie finanziellen Aufwand verbunden. Hinsichtlich einer Präventivimpfung gegen eine pandemische Infektionskrankheit, die in hauptsächlich unterentwickelten Ländern vorkommt, wird dieser Aufwand sicherlich ein Hindernis darstellen. Daher muss für solche Fälle ein maßgeschneiderter Impfstoff entwickelt werden, der sich am Vorbild des effektiven DZ-basierten Impfstoffs orientiert. Für die Impfung gegen die Leishmania Parasiten besteht so ein DZ-basierter Impfstoff bereits. Dessen Wirkung, eine T-Zell Antwort vom Typ Th1 zu induzieren, wurde bereits in mehreren Veröffentlichungen demonstriert. Zusätzlich hat aber eine unserer Studien gezeigt, dass das typische Th1-bezogene Zytokin IL-12 zur Differenzierung naiver T-Zellen nicht von den injizierten DZ bereitgestellt werden muss, sondern von der geimpften Maus. Dies gab erste Hinweise auf eine stärkere Beteiligung des Wirts-Immunsystems als zuvor angenommen. Daher sollte hier vertieft der Mechanismus dieser DZ-basierten Impfung untersucht werden, wobei modifizierte Impfstoff-Ansätze zum Einsatz kommen sollten. Dabei wurden die Fragen nach der vom Impfstoff transportierten Information und dem Empfänger dieser Information berücksichtigt. Das aktuelle Paradigma zur DZ-basierten Impfung besagt, dass transferierte DZ im direkten Kontakt mittels dreier Signale T-Zellen stimulieren und aktivieren. Dafür müssen diese DZ mit dem entsprechenden Antigen beladen und aktiviert worden sein um das Antigen-Peptide mittels MHC Molekül im Kontext der Co-Stimulation präsentieren zu können. Jedoch zeigt diese Studie hier, dass weder eine Aktivierung der DZ noch die Präsentation des Antigens mittels passender MHC Moleküle notwendig ist für die Induktion einer protektiven Immunantwort gegen Leishmania Parasiten. Aufgeschlossene, mit Antigen beladene DZ müssen nicht vor dem Transfer mit CpG ODN aktiviert worden sein, um entsprechende Immunität zu verleihen. Ebenso hat der MHC Typ in diesem Falle auch keinen Einfluss auf die Effektivität des Impfstoffs. Da im Weiteren aufgeschlossene mit Leishmania-Antigen beladene Makrophagen nach Impfung die gleiche Wirkung erzielen, wie vorangegangene DZ-basierte Impfstoffe, können keine DZ spezifischen Mechanismen Schlüsselkomponenten der Induktion einer protektiven Immunität sein. Darüber hinaus konnte gezeigt werden, dass die DZ der geimpften Mäuse, eine maßgebliche Rolle bei der Verarbeitung transferierter Signale spielen. Suspensionen aufgeschlossener DZ stellen eine Kombination aus freigesetzten löslichen Molekülen sowie Membranvesikeln dar, die sich nach dem Aufschluss gebildet haben. Nach Auftrennung dieser beiden Fraktionen konnte gezeigt werden, dass ausschließlich die Membran-Fraktion nach Verimpfung eine geeignete Immunantwort zum Schutz vor Leishmania Parasiten induzieren kann. Als Vorteil dieser Aufreinigung erweist sich zudem die stabile Lagermöglichkeit bei -80°C. Somit ist klar gezeigt, dass die Immunität-verleihende Einheit dieser Impfstoffvarianten in der Membran-Fraktion liegt. Verfolgt man die Induktion Th1-zugehöriger Zytokine in in vivo Experimenten so ergibt sich im Falle der Gesamtsuspension aufgeschlossener, mit Leishmania-Antigen beladener DZ ein klares Bild. Diese Suspension erzeugt das volle Spektrum der DZ-basierten Impfung gegen Leishmania Parasiten. Es kann sowohl Produktion von IL-12 und IL-2 als auch eine antigenspezifische T-Zell Proliferation nach Stimulation von Splenozyten mit der entsprechenden Suspension verzeichnet werden. Außerdem produzieren Splenozyten von entsprechend geimpften Mäusen nach Stimulation mit Leishmania-Antigen erhebliche Mengen des entscheidenden Zytokins IFNγ. Obwohl jedoch die Verimpfung aufgereinigter Membranvesikel dieses Ansatzes im Tierversuch zu biologisch sowie statistisch signifikanten Ergebnissen führt, lassen sich die entsprechend Th1-bezogenen Zytokine im in vivo Ansatz nur in geringen Maße nachweisen. Ob dies jedoch für einen in vivo unbemerkten Aktivitätsverlust des Vakzins oder für andere lymphatische Organe als Ort der T-Zell Instruktion spricht, ist noch unbekannt und muss noch geklärt werden. N2 - Dendritic cell-based vaccination is a well established technique for preventive and therapeutic instruction of the immune system where conservative vaccine formulations fail to cure or prevent diseases, respectively. Efficiency of this technique already was demonstrated in infectious diseases as well as for cancer in animal or human studies. Well controlled manipulation and antigen-loading of immature DC is most beneficial to this technique. But, time-consuming and cost-extensive procedures for preparation of DC precursors, expansion and stimulation of DC and inpatient administration are big disadvantages regarding vaccine development for pandemic infectious diseases that occur mainly in underdeveloped countries. Therefore vaccines are needed that are pathogen-tailored and able to induce equal immune responses as their DC-based vaccine models. For vaccination against Leishmania parasites such a DC-based vaccine is feasible and its efficacy to induce protective Th1-based immune responses was already demonstrated in several animal studies. But, one of our own studies indicated supportive activity of host cells exceeding the allocation of T cells to become activated by transferred DC. IL-12, an important cytokine for the induction of Th1-related immune responses, has to be produced by host cells. Therefore, the aim of this study was to investigate the mechanism of BMDC-based vaccination with regard to simplification of the vaccine formulation. Key questions that have been addressed are: Which cells process the information that is transferred by the injected DC and what are the key components of this information? Further more, it was looked at whether altered vaccine formulations are able to induce protective immunity and whether they share equal molecular mechanisms. The current paradigm of BMDC-based vaccination proposes direct interaction of transferred BMDC with host T cells. These BMDC have to be antigen-loaded for stimulation via antigen-peptide-MHC molecule-complexes and they have to be activated for proper co-stimulation of T cells. Here, this study demonstrates that neither activation for co-stimulation nor direct interaction with adequate MHC molecules is needed for the induction of protective immunity against infection with Leishmania-parasites. Disrupted antigen-loaded BMDC are able to induce protective immunity in BALB/c mice without pre-stimulation via CpG ODN. Beyond, if BMDC were used with a different MHC-background than recipient mice then the vaccine still would be efficient in terms of reduction of footpad swelling and parasite load in draining lymph nodes. Even more, DC-specific features are no key component that leads to protective immunity as vaccination with disrupted antigen-loaded MΦ shows equal properties than before mentioned vaccine formulations. Further more, it was found that host DC play a major role in transforming the incoming signal, received from transferred antigen-loaded DC, into Th1-related stimuli and Leishmania-antigen-specific T cell activation. Suspensions of disrupted antigen-loaded DC resemble a combination of laid off soluble molecules together with exosome-like vesicles that formed after disruption of membranes. Here it was shown that separation of the membranous and soluble fractions and subsequent transfer into BALB/c mice will lead to protection of these mice against infection with L. major promastigotes only if the membranous fraction is used as vaccine. More, this vaccine formulation takes advantage of easy storage at -80°C with no need of fresh production. This clearly demonstrates that the immunity-inducing principle of disrupted DC-based vaccination lies within the membrane enclosed fraction. On a molecular level, disrupted antigen-loaded DC induce Th1-related cytokines during vaccination and as response on pathogen encounter. In vivo assays revealed IL-12 production and antigen-specific T cell proliferation among splenocytes that were stimulated with disrupted antigen-loaded DC. Splenocytes of accordingly vaccinated mice produce tremendous amounts of IFNγ after stimulation with Leishmania parasites. In summary, disrupted antigen-loaded BMDC fulfil all characteristics of DC-based vaccination against Leishmania major. But, while purification of membranes of antigen-loaded DC and subsequent transfer to BALB/c mice leads to control of the disease in the animal model, only slight levels of Th1-related cytokines are seen in the in vivo assays. Whether this points towards a loss of vaccine activity on unseen levels or unknown sites where Th1-related immunity is induced by both, complete solution and purified membranes, still has to be determined. KW - Leishmania major KW - Immunsystem KW - Impfung KW - Dendritische Zelle KW - Makrophage KW - Interferon KW - Interleukin 12 KW - Leishmania KW - Immunologie KW - Dendritic cell Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74865 ER - TY - JOUR A1 - Cull, Benjamin A1 - Lima Prado Godinho, Joseane A1 - Fernandes Rodrigues, Juliany Cola A1 - Frank, Benjamin A1 - Schurigt, Uta A1 - Williams, Roderick AM A1 - Coombs, Graham H A1 - Mottram, Jeremy C T1 - Glycosome turnover in Leishmania major is mediated by autophagy JF - Autophagy N2 - Autophagy is a central process behind the cellular remodeling that occurs during differentiation of Leishmania, yet the cargo of the protozoan parasite's autophagosome is unknown. We have identified glycosomes, peroxisome-like organelles that uniquely compartmentalize glycolytic and other metabolic enzymes in Leishmania and other kinetoplastid parasitic protozoa, as autophagosome cargo. It has been proposed that the number of glycosomes and their content change during the Leishmania life cycle as a key adaptation to the different environments encountered. Quantification of RFP-SQL-labeled glycosomes showed that promastigotes of L. major possess ~20 glycosomes per cell, whereas amastigotes contain ~10. Glycosome numbers were significantly greater in promastigotes and amastigotes of autophagy-defective L. major Δatg5 mutants, implicating autophagy in glycosome homeostasis and providing a partial explanation for the previously observed growth and virulence defects of these mutants. Use of GFP-ATG8 to label autophagosomes showed glycosomes to be cargo in ~15% of them; glycosome-containing autophagosomes were trafficked to the lysosome for degradation. The number of autophagosomes increased 10-fold during differentiation, yet the percentage of glycosome-containing autophagosomes remained constant. This indicates that increased turnover of glycosomes was due to an overall increase in autophagy, rather than an upregulation of autophagosomes containing this cargo. Mitophagy of the single mitochondrion was not observed in L. major during normal growth or differentiation; however, mitochondrial remnants resulting from stress-induced fragmentation colocalized with autophagosomes and lysosomes, indicating that autophagy is used to recycle these damaged organelles. These data show that autophagy in Leishmania has a central role not only in maintaining cellular homeostasis and recycling damaged organelles but crucially in the adaptation to environmental change through the turnover of glycosomes. KW - ATG8 KW - Leishmania KW - TEM KW - glycosome KW - protozoan parasite KW - ATG KW - autophagy-related KW - GFP KW - green fluorescent protein KW - MVT KW - multivesicular tubule KW - RFP KW - red fluorescent protein KW - transmission electron microscopy KW - adaptation KW - autophagy KW - mC KW - mCherry KW - fluorescent protein Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150277 VL - 10 IS - 12 ER - TY - THES A1 - Skaf, Joseph T1 - Antileishmanial and antitrypanosomal compounds from \(Achillea\) \(fragrantissima\) T1 - Antileishmanien- und Antitrypanosomen-Wirkstoffe aus \(Achillea\) \(fragrantissima\) N2 - This PhD thesis is dealing with the bioassay-guided fractionation of a dichloromethane extract of the aerial parts of Achillea fragrantissima with the aim of isolation and structure isolation of the antileishmanial and/or antitrypanosomal principles in the plant. N2 - Diese Dissertation beschäftigt sich mit der aktivitätsgeleiteten Fraktionierung eines Dichlormethanextrakts aus den oberirdischen Teilen von Achillea fragrantissima mit dem Ziel der Isolierung und Strukturaufklärung der anti-leishmanialen und/oder anti-trypanosomalen Verbindungen der Pflanze. KW - Schafgarbe KW - Antitrypanosomal KW - Antitrypanosomen KW - Flavonoinds KW - Sesquiterpene lactones KW - Alkamides KW - Achillea Fragrantissima KW - Flavoniden KW - Sesquiterpenlactonen KW - Alkamiden KW - Arzneimittelforschung KW - Trypanosomen KW - Leishmania Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167841 ER - TY - THES A1 - Eisenhuth, Nicole Juliana T1 - Novel and conserved roles of the histone methyltransferase DOT1B in trypanosomatid parasites T1 - Neue und konservierte Rollen der Histonmethyltransferase DOT1B in Parasiten der Ordnung Trypanosomatida N2 - The family of trypanosomatid parasites, including the human pathogens Trypanosoma brucei and Leishmania, has evolved sophisticated strategies to survive in harmful host environments. While Leishmania generate a safe niche inside the host’s macrophages, Trypanosoma brucei lives extracellularly in the mammalian bloodstream, where it is constantly exposed to the attack of the immune system. Trypanosoma brucei ensures its survival by periodically changing its protective surface coat in a process known as antigenic variation. The surface coat is composed of one species of ‘variant surface glycoprotein’ (VSG). Even though the genome possesses a large repertoire of different VSG isoforms, only one is ever expressed at a time from one out of the 15 specialized subtelomeric ‘expression sites’ (ES). Switching the coat can be accomplished either by a recombination-based exchange of the actively-expressed VSG with a silent VSG, or by a transcriptional switch to a previously silent ES. The conserved histone methyltransferase DOT1B methylates histone H3 on lysine 76 and is involved in ES regulation in T. brucei. DOT1B ensures accurate transcriptional silencing of the inactive ES VSGs and influences the kinetics of a transcriptional switch. The molecular machinery that enables DOT1B to execute these regulatory functions at the ES is still elusive, however. To learn more about DOT1B-mediated regulatory processes, I wanted to identify DOT1B-associated proteins. Using two complementary approaches, specifically affinity purification and proximity-dependent biotin identification (BioID), I identified several novel DOT1B-interacting candidates. To validate these data, I carried out reciprocal co-immunoprecipitations with the most promising candidates. An interaction of DOT1B with the Ribonuclease H2 protein complex, which has never been described before in any other organism, was confirmed. Trypanosomal Ribonuclease H2 maintains genome integrity by resolving RNA-DNA hybrids, structures that if not properly processed might initiate antigenic variation. I then investigated DOT1B’s contribution to this novel route to antigenic variation. Remarkably, DOT1B depletion caused an increased RNA-DNA hybrid abundance, accumulation of DNA damage, and increased VSG switching. Deregulation of VSGs from throughout the silent repertoire was observed, indicating that recombination-based switching events occurred. Encouragingly, the pattern of deregulated VSGs was similar to that seen in Ribonuclease H2-depleted cells. Together these data support the hypothesis that both proteins act together in modulating RNA-DNA hybrids to contribute to the tightly-regulated process of antigenic variation. The transmission of trypanosomatid parasites to mammalian hosts is facilitated by insect vectors. Parasites need to adapt to the extremely different environments encountered during transmission. To ensure their survival, they differentiate into various specialized forms adapted to each tissue microenvironment. Besides antigenic variation, DOT1B additionally affects the developmental differentiation from the mammalian-infective to the insect stage of Trypanosoma brucei. However, substantially less is known about the influence of chromatin-associated proteins such as DOT1B on survival and adaptation strategies of related Leishmania parasites. To elucidate whether DOT1B’s functions are conserved in Leishmania, phenotypes after gene deletion were analyzed. As in Trypanosoma brucei, generation of a gene deletion mutant demonstrated that DOT1B is not essential for the cell viability in vitro. DOT1B deletion was accompanied with a loss of histone H3 lysine 73 trimethylation (the lysine homologous to trypanosomal H3K76), indicating that Leishmania DOT1B is also solely responsible for catalyzing this post-translational modification. As in T. brucei, dimethylation could only be observed during mitosis/cytokinesis, while trimethylation was detectable throughout the cell cycle in wild-type cells. In contrast to the trypanosome DOT1B, LmxDOT1B was not essential for differentiation in vitro. However, preliminary data indicate that the enzyme is required for effective macrophage infection. In conclusion, this study demonstrated that the identification of protein networks and the characterization of protein functions of orthologous proteins from related parasites are effective tools to improve our understanding of the parasite survival strategies. Such insights are a necessary step on the road to developing better treatments for the devastating diseases they cause. N2 - Vertreter der Familie der Trypanosomatidae einschließlich der humanpathogenen Trypanosoma brucei und Leishmania Arten entwickelten eine Reihe von ausgeklügelten Strategien, um in ihren Wirten zu überleben. Während sich Leishmanien eine sichere Nische in den Makrophagen ihrer Wirte aufbauen, lebt Trypanosoma brucei ausschließlich extrazellulär im Blutkreislauf der Säugetiere. Dort ist der Parasit ständig dem Angriff des Immunsystems ausgesetzt. Um sein Überleben zu sichern, wechselt er regelmäßig seine variablen Oberflächenproteine (VSG), eine Strategie, die auch als antigene Variation bekannt ist. Obwohl das Genom des Parasiten über ein enormes Repertoire an VSG Genen verfügt, wird immer nur eine einzige Art von einer von 15 spezialisierten telomerproximalen Expressionsstellen (ES) transkribiert. Um die VSG-Zelloberfläche zu wechseln, können Trypanosomen das VSG Gen der aktiven ES gegen ein inaktives VSG aus dem gigantischen Repertoire mittels Rekombination eintauschen. Eine weitere Möglichkeit ist der Transkriptionswechsel zu einer zuvor stillen ES. Die konservierte Histonmethyltransferase DOT1B katalysiert die Methylierung von Histon H3 am Lysin 76 und ist an der ES-Regulation beteiligt. DOT1B gewährleistet den transkriptionell inaktiven Status der ES und beeinflusst die Kinetik eines transkriptionellen ES Wechsels. Die molekularen Komponenten, die DOT1B diese regulatorischen Funktionen an der ES ermöglichen, sind jedoch noch unbekannt. Um mehr über die von DOT1B vermittelten Mechanismen zu erfahren, ist es notwendig, DOT1B-assoziierte Proteine zu identifizieren. Durch die Anwendung von komplementären biochemischen Proteinaufreinigungsmethoden gelang es mir, mehrere potentielle Proteininteraktionen zu DOT1B zu entdecken. Um die Daten zu validieren, führte ich weitere Proteinaufreinigungen mit den vielversprechendsten Kandidaten durch. Eine Interaktion zwischen DOT1B und der Ribonuklease H2 konnte bestätigt werden - eine Interaktion, die noch nie zuvor in anderen Organismen beschrieben wurde. In Trypanosomen gewährleistet Ribonuklease H2 die Genomintegrität, indem das Enzym RNA-DNA-Hybride auflöst. Diese Strukturen können zudem, wenn sie nicht richtig prozessiert werden, antigene Variation initiieren. In dieser Studie wurde daher außerdem DOT1B’s Beitrag zu diesem Weg der Initiation der antigenen Variation analysiert. In der Tat konnte gezeigt werden, dass DOT1B RNA-DNA-Hybride moduliert und die Genomintegrität sowie VSG-Wechselrate beeinflusst. Die Tatsache, dass in DOT1B-Mutanten VSG Isoformen von den unterschiedlichsten Genomregionen exprimiert wurden, deutet darauf hin, dass rekombinations-basierte Ereignisse dem VSG-Wechsel zu Grunde lagen. Da in den DOT1B-Mutanten ähnliche VSG exprimiert wurden wie in Ribonuklease H2-Mutanten, kann vermutet werden, dass beide Proteine bei der Modulation der RNA-DNA-Hybride zusammenwirken, um antigene Variation zu regulieren. Trypanosomen und Leishmanien werden mittels Insektenvektoren auf den nächsten Säugerwirt übertragen. Sie müssen daher nicht nur im Säugerwirt überleben, sondern sich auch an die extrem unterschiedliche Umgebung im Vektor anpassen. Dafür differenzieren sich die Parasiten in speziell angepasste Zellstadien. Zusätzlich zu der antigenen Variation beeinflusst DOT1B die Entwicklungsdifferenzierung in Trypanosoma brucei. In Leishmanien hingegen ist über den Einfluss von chromatin-assoziierten Proteinen wie DOT1B auf die Überlebens- und Anpassungsstrategien wesentlich weniger bekannt. Um herauszufinden, ob die Funktionen von DOT1B in Leishmanien konserviert sind, wurden Phänotypen nach Gendeletion analysiert. Wie auch in Trypanosoma brucei konnte gezeigt werden, dass DOT1B für das Überleben der Parasiten nicht essentiell ist. Die Deletion von DOT1B ging mit einem Verlust der Trimethylierung von Histon H3 am Lysin 73 (dem zum trypanosomalen H3K76 homologen Lysin) einher, was darauf hinweist, dass DOT1B auch in Leishmanien allein für die Katalyse dieser posttranslationalen Modifikation verantwortlich ist. Wie in Trypanosoma brucei konnte eine Dimethylierung nur in der Mitose/Zytokinese beobachtet werden, wobei die Trimethylierung während des gesamten Zellzyklus in Wildtyp-Zellen nachweisbar war. Im Gegensatz zum trypanosomalen DOT1B war LmxDOT1B für die Differenzierung in vitro entbehrlich. Vorläufige Daten zeigen jedoch, dass das Enzym für eine wirksame Makrophageninfektion wesentlich ist. Zusammenfassend zeigte diese Studie, dass die Identifizierung von Proteinnetzwerken und die Charakterisierung von Funktionen orthologer Proteine aus verwandten Parasiten wirksame Werkzeuge sind, um unser Verständnis der Überlebensstrategien der Parasiten zu verbessern. Solche Erkenntnisse sind ein notwendiger Schritt auf dem Weg zu effektiveren Behandlungsmethoden für die verheerenden Krankheiten, die diese Parasiten verursachen. KW - Trypanosoma brucei KW - Leishmania KW - Chromatin KW - Histon-Methyltransferase KW - DNA repair KW - developmental differentiation KW - DOT1 KW - Ribonuclease H2 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219936 ER - TY - JOUR A1 - Engstler, Markus A1 - Beneke, Tom T1 - Gene editing and scalable functional genomic screening in Leishmania species using the CRISPR/Cas9 cytosine base editor toolbox LeishBASEedit JF - eLife N2 - CRISPR/Cas9 gene editing has revolutionised loss-of-function experiments in Leishmania, the causative agent of leishmaniasis. As Leishmania lack a functional non-homologous DNA end joining pathway however, obtaining null mutants typically requires additional donor DNA, selection of drug resistance-associated edits or time-consuming isolation of clones. Genome-wide loss-of-function screens across different conditions and across multiple Leishmania species are therefore unfeasible at present. Here, we report a CRISPR/Cas9 cytosine base editor (CBE) toolbox that overcomes these limitations. We employed CBEs in Leishmania to introduce STOP codons by converting cytosine into thymine and created http://www.leishbaseedit.net/ for CBE primer design in kinetoplastids. Through reporter assays and by targeting single- and multi-copy genes in L. mexicana, L. major, L. donovani, and L. infantum, we demonstrate how this tool can efficiently generate functional null mutants by expressing just one single-guide RNA, reaching up to 100% editing rate in non-clonal populations. We then generated a Leishmania-optimised CBE and successfully targeted an essential gene in a plasmid library delivered loss-of-function screen in L. mexicana. Since our method does not require DNA double-strand breaks, homologous recombination, donor DNA, or isolation of clones, we believe that this enables for the first time functional genetic screens in Leishmania via delivery of plasmid libraries. KW - CRISPR/Cas9 KW - Leishmania KW - cytosine base editor (CBE) toolbox KW - gene editing KW - scalable functional genomic screening KW - LeishBASEedit Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350002 VL - 12 ER -