TY - THES A1 - Elfeber, Katrin T1 - Immunologischer Nachweis des Natrium-Glukose-Kotransporters SGLT1 im mikrovaskulären System des Gehirns, des Herzens und des Skelettmuskels T1 - Immunological evidence for the location of the sodium/glucose cotransporter SGLT1 in the microvascular system of brain, heart and sceletal muscle N2 - Glukose ist einer der Hauptenergielieferanten der Säugetierzellen. Aus diesem Grund wird die Glukoseaufnahme durch erleichterte Diffusion durch die GLUT (SLC2) Familie, sowie durch die Familie der sekundär aktiven Transporter SGLT (SLC5A) gesichert. In dieser Arbeit wurde ein polyklonaler Antikörper gegen SGLT1 aus Kaninchen hergestellt. Dieser Antikörper wurde für die Innunhistologie sowie für Western blots eingesetzt. Man sah eine Anfärbung von Bürstensaummembranen an Dünndarm- und Nierentubulusepithelzellen, aber in diesen Geweben nicht an Mikrogefäßen. Darüberhinaus konnten wir SGLT1 an der basolateralen Membran von Speicheldrüsenazini sehen, auch hier konnten wir SGLT1 in den Kapillaren nicht sehen. Überraschenderweise konnte SGLT1 in der Blut-Hirn-Schranke nachgewiesen werden. Auch konnte man die Lokalisation von SGLT1 in den Kapillaren des Herzens und des Skelettmuskels zeigen. Die physiologische und pathophysiologische Bedeutung dieser Lokalisationen liegt noch im Unklaren. N2 - Glucose is one of the main energy sources of mammalian cells. Therefore glucose uptake is complicatedly regulated by facilated glucose uptake via transporters of the GLUT (SLC2) family and secondary active transporters of the SGLT (SLC5A) family. For this work, a polyclonal antibody against rat SGLT1 was raised in rabbits. This antibody was used in immunohistochemistry and western blots. Brush border membranes of small intestine and kidney epithelial cells were stained, but no microvessels in these tissues. Futhermore we could see SGLT1 in the basolateral membrane of the acini of salivary glands, here we could not dectect SGLT1 in capillary endothelial cells. Surprisingly we were able to detect SGLT in the blood-brain-barrier. We were also able to show the location of SGLT1 in the capillaries of heart and sceletal muscle. The physiologial and pathophysiological impact of this locations remains to be determined. KW - Glukose KW - Endothel KW - Gehirn KW - Herz KW - Muskel KW - glucose KW - endothelium KW - brain KW - heart KW - muscle Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-19221 ER - TY - THES A1 - Filatova, Alina T1 - Mechanism and Control of Nuclear-Cytoplasmic Translocation of the Transporter Regulator RS1 T1 - Mechanismus und Kontrolle der Translokation der Transporterregulator RS1 zwischen Kern und Zytoplasma N2 - Das RS1 Protein (Gen RSC1A1) beteiligt sich an der Regulation des Na+-D-Glukose-kotransporters SGLT1 und einiger anderer Transporter. In subkonfluenten LLC-PK1 Zellen hemmt RS1 die Freisetzung von SGLT1 aus dem trans-Golgi-Netzwerk und die Transkription von SGLT1. Während es sich in konfluenten Zellen hauptsächlich im Zytoplasma befindet, ist RS1 in subkonfluenten Zellen im Kern und im Zytoplasma lokalisiert. In der vorliegenden Arbeit wurden Mechanismus und Regulation der konfluenzabhängigen Kernlokalisation von RS1 untersucht. Dabel konnte gezeigt werden, dass die von Konfluenz abhängige Kernlokalisation von RS1 durch den Zellzyklus reguliert wird. In RS1 aus Sus scrofa (pRS1) wurde eine Sequenz identifiziert („nuclear shuttling signal“, NS), die für die konfluenzabhängige Verteilung von RS1 verantwortlich ist und sowohl das Signal für die Kernlokalisation (NLS) als auch das Signal für den Export aus dem Kern (NES) beinhaltet. Die NLS und NES Signale von RS1 vermitteln die Translokation des Proteins in den Kern und aus dem Kern mit Hilfe von Importin β1 bzw. CRM1, wobei die Verteilung von RS1 zwischen Kern und Zytoplasma durch die Aktivität des Exportsystems bestimmt wird. Es wurde gezeigt, dass die benachbarte Proteinkinase C (PKC) Phosphorylierungsstelle an Serin 370 von pRS1 die NS-gesteuerte Kernlokalisierung kontrolliert und für die vom Zellzyklus abhängige Kernlokalisation notwendig ist. Aufgrund der Ergebnisse der ortsgerichteten Mutagenese, PKC-Aktivierungsexperimenten und Massenspektrometrie-Analyse des Phosphorylierungsmusters von RS1 wurde ein Modell vorgeschlagen, das die Regulation der Kernlokalisation des RS1 Proteins in LLC-PK1 Zellen beschreibt. Dem Modell zufolge wird RS1 in subkonfluenten Zellen stark in den Kern befördert, während der Export von RS1 aus dem Kern nicht stattfindet. Das führt zur Anreicherung von RS1 im Kern. Nach Konfluenz wird Serin 370 durch PKC phosphoryliert, was die Steigerung des RS1-Exports aus dem Kern begünstigt und die überwiegend zytoplasmatische Lokalisation des Proteins in konfluenten Zellen hervorruft. Die konfluenzabhängige Regulation der Lokalisation von RS1 kann die Expression von SGLT1 während der Regeneration von Enterozyten im Dünndarm und der Regeneration von Zellen der Nierentubuli nach hypoxämischem Stress kontrollieren. Außerdem deutet die Analyse der Genexpression in embryonalen Fibroblasten der RS-/- Mäuse deutet darauf hin, dass die transkriptionale Regulation durch RS1 im Zellzyklus und bei der Zellteilung eine wichtige Rolle spielen kann. Da die Lokalisation von RS1 zellzyklusabhängig ist, kann RS1 für die Regulation der Transporter in spezifischen Phasen des Zellzyklus wichtig sein. N2 - The RS1 protein (gene RSC1A1) participates in regulation of Na+-D-glucose cotransporter SGLT1 and some other solute carriers. In subconfluent LLC-PK1 cells, RS1 inhibits release of SGLT1 from the trans-Golgi network and transcription of SGLT1. In subconfluent cells, RS1 is localized in the nucleus and the cytoplasm whereas confluent cells contain predominantly cytoplasmic RS1. In the present study, the mechanism and regulation of confluence-dependent nuclear location of RS1 was investigated. Confluence dependent nuclear location of RS1 was shown to be regulated by the cell cycle. A nuclear shuttling signal (NS) in pRS1 was identified that ensures confluence-dependent distribution of pRS1 and comprises nuclear localization signal (NLS) and nuclear export signal (NES). The NLS and NES of RS1 mediate translocation into and out of the nucleus via importin ß1 and CRM1, respectively, and the nuclear/cytoplasmic distribution of the RS1 protein is determined by the nuclear export activity. The adjacent protein kinase C (PKC) phosphorylation site at serine 370 of pRS1 was shown to control nuclear localization driven by NS and is necessary for the differential localization of RS1 in quiescent versus proliferating cells. Basing on the data of site-directed mutagenesis, PKC activation experiments and mass spectrometry analysis of RS1 phosphorylation, the following model of the regulation of RS1 nuclear location in LLC-PK1 cells was proposed. In subconfluent cells, RS1 is actively imported into the nucleus whereas nuclear export of RS1 is not active leading to accumulation of RS1 in the nucleus. After confluence, phosphorylation of serine 370 of pRS1 by PKC takes place leading to enhancement of RS1 nuclear export and predominantly cytoplasmic distribution of the protein in the confluent cells. The confluence-dependent regulation of RS1 localization may control SGLT1 expression during regeneration of enterocytes in small intestine and during regeneration of renal tubular cells after hypoxemic stress. Moreover, the gene expression profiling of mouse embryonic fibroblasts with RS1-/- genotype suggests that transcriptional regulation by RS1 might be important for the cell cycle and cell division. Since RS1 localization depends on the cell cycle, RS1 might play a role in the regulation of the solute carriers during specific phases of the cell cycle. KW - RS1 KW - NES KW - NLS KW - Kern KW - Regulation KW - SGLT1 KW - Zellzyklus KW - Glukose KW - RS1 KW - NES KW - NLS KW - nucleus KW - transporter regulator KW - SGLT1 KW - glucose KW - nuclear export signal KW - nuclear localization signal KW - cell cycle KW - glucose Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-38512 ER - TY - THES A1 - Srinivasan, Aruna T1 - RS1 protein dependent and independent short and long term regulation of sodium dependent glucose transporter -1 T1 - RS1 Protein abhängige und unabhängige Kurz- und Langzeitregulation des Natrium-abhängigen Glukosetransporter -1 N2 - The Na+-D-glucose cotransporter in small intestine is regulated in response to food composition. Short term regulation of SGLT1 occurs post-transcriptionally in response to changes in luminal glucose. Adaptation to dietary carbohydrate involves long term regulation at the transcriptional level. The intracellular protein RS1 (gene RSC1A1) is involved in transcriptional and post-transcriptional regulation of SGLT1. RS1 contains an N-terminal domain with many putative phosphorylation sites. By Expressing SGLT1 in oocytes of Xenopus laevis it was previously demonstrated that the post-transcriptional down-regulation of SGLT1 by RS1 was dependent on the intracellular glucose concentration and activated by protein kinase C (PKC). The role of RS1 for short term regulation of SGLT1 in mouse small intestine in response to glucose and PKC was investigated comparing effects in RS1-/- mice and wildtype mice. Effects on SGLT1 activity were determined by measuring phlorizin inhibited uptake of α-methylglucoside (AMG). The involvement of RS1 in glucose dependent short term regulation could not be elucidated for technical reasons. However, evidence for RS1 independent short-term downregulation of SGLT1 after stimulation of PKC could be provided. It was shown that this downregulation includes decrease in the amount and/or in turnover of SGLT1 in the brush-border membrane as well as an increase of substrate affinity for AMG transport. Trying to elucidate the role of RS1 in long term regulation of SGLT1 in small intestine in response to glucose and fat content of the diet, wildtype and RS1-/- mice were kept for 2 months on a normo-caloric standard diet with high glucose and low fat content (ND), on a hyper-caloric glucose-galactose reduced diet with high fat content (GGRD) or on a hyper-caloric diet with a high fat and high glucose content (HFHGD). Thereafter the animals were starved overnight and SGLT1 mediated AMG uptake was measured. Independent of diet AMG uptake in ileum was smaller compared to duodenum and jejunum. In jejunum of wildtype and RS1-/- mice kept on the fat rich diets (GGRD and HFHGH) transport activity of SGLT1 was lower compared to mice kept on ND with low fat content. This result suggests an RS1 independent downregulation due to fat content of diet. Different to RS1-/- mice, the duodenum of wildtype mice showed transport activity of SGLT1 smaller in mice kept on glucose galactose reduced diet (GGRD) compared to the glucose galactose rich diets (ND and HFHGG). These data indicate that RS1 is involved in glucose dependent long term regulation in duodenum. N2 - Der Na+-Glukose-Cotransporter SGLT1 im Dünndarm wird in Abhängigkeit zur Nahrungszusammensetzung reguliert. Kurzzeitregulation von SGLT1 tritt posttranskritionell als Antwort zu sich ändernden Glukosekonzentrationen im Darmlumen auf. Anpassung an Nahrungskohlenhydrate beinhaltet die Langzeitregulation auf transkripionellem Level. Das intrazelluläre Protein RS1 (Gen RSC1A1) ist an der transkriptionellen und post-transkriptionellen Regulation von SGLT1 beteiligt. Es enthält eine N-terminale Domäne mit vielen putativen Phosphorylierungsstellen. Bei der Expression von SGLT1 im Xenopus leavis Oocytensystem wurde gezeigt, dass die posttranskriptionelle Herunterregulation von SGLT1 durch RS1 von der intrazelluläre Glukosekonzentration abhängt und durch Proteinkinase C (PKC) aktiviert wird. Die Rolle von RS1 in der Kurzzeitregulation von SGLT1 im Dünndarm der Maus als Antwort auf Glukose und PKC wurde durch vergleichende Studien zwischen RS1- knockout (RS1-/-)- Mäusen und Wildtyp-Mäusen untersucht. Effekte auf die SGLT1-Aktivität wurden durch Messung der durch Phlorizin inhibierbaren Aufnahme des SGLT1-spezifischen Substrats α-Methyl-Glycopyranosid (AMG) bestimmt. Der Einfluss von RS1 in der Glukose-abhängigen Kurzzeitregulation konnte aus technischen Gründen nicht untersucht werden, jedoch gab es Anzeichen für eine von RS1 unabhängige Kurzzeitregulation von SGLT1 durch PKC. Es wurde gezeigt, dass diese Herunterregulation sowohl eine Abnahme der Menge und/oder der Umsatzrate von SGLT1 in der Bürstensaummembran wie auch eine Zunahme der Substrat-Affinität für den AMG-Transport beinhaltet. Um die Rolle von RS1 auf die Langzeitregulation von SGLT1 in Dünndarm als Antwort auf den Glukose- und Fettgehalt der Nahrung zu untersuchen, wurden Wildtyp- und RS1-/- Mäuse für 2 Monate entweder auf einer normalenergetischen Standarddiät mit hohem Glukose- und niedrigem Fettgehalt (ND), auf einer hochenergetischen Diät mit reduziertem Glukose und Galaktose-Gehalt (GGRD) oder auf einer hochenergetischen Diät mit hohem Fett- und Glukosegehalt (HFHGD) gehalten. Danach wurden die Tiere über Nacht gefastet und die durch SGLT1 vermittelte AMG –Aufnahme gemessen. Unabhängig der Diät war die AMG-Aufnahme im Ileum geringer als in Duodenum und Jejunum. Im Jejunum von Wildtyp- und RS1-/- Mäusen die auf einer fettreichen Diät (GGRD und HFHGD) gehalten wurden war die Transportaktivität von SGLT1 geringer verglichen mit der Aktivität von Mäusen auf ND. Dieses Ergebnis lässt eine RS1-unabhängige Herunterregulation die durch den Fettgehalt hervorgerufen wird vermuten. Anders als in RS1-/- Mäusen war die Transportaktivität von SGLT1 im Duodenum von Wildtypmäusen bei der Glukose-Galaktose- reduzierten Diät niedriger verglichen mit den Glukose-Galaktose-reichen Diäten (ND und HFHGD). Diese Daten legend die Vermutung nahen, das RS1 an der Glukose-abhängigen Langzeitregulation im Duodenum beteiligt ist. KW - Glucosetransportproteine KW - Regulation KW - Natrium-abhängigen Glukosetransporter-1 KW - Sodium dependent glucose transporter-1 KW - Dünndarm KW - Glukose KW - Glukosetransporter -1 Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85665 ER -