TY - JOUR A1 - Lehrnbecher, T. A1 - Merz, H. A1 - Sebald, Walter A1 - Poot, M. T1 - Interleukin 4 drives phytohemagglutinin-activated T cells through several cell cycles: no synergism between interleukin 2 and interleukin 4 N2 - Cell kinetic studies of T cells stimulated with the interleukin 2 (11-2), D-4, or both lymphokines were performed with conventional [3H] thymidine incorporation and with the bivariate BrdU/Hoechst technique. 11-2 and 11-4 are able to drive phytohemagglutininactivated T cells through more than one cell cycle. Neither synergistic nor inhibitory efl'ect on T -cell proliferationwas seen for the stimulation with both 11-2 and 11-4 as compared with the effect ofll-2 alone. The quantitative data ofthe cell cycle distribution ofphytohemagglutininactivated T cells suggestthat the population ofll-4-responsive cells is at least an overlapping population, if not a real subset of the ·population of the 11-2-responsive cells. KW - Biochemie KW - BrdU-Hoechst KW - cell cycle KW - flow cytometry KW - interleukin 2 KW - interleukin 4 Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-62491 ER - TY - THES A1 - Heinrich, Tilman T1 - Validierung der Zellzyklusdiagnostik bei Ataxia telangiectasia T1 - Exclusion/confirmation of Ataxia telangiectasia via cell cycle analysis N2 - Im Rahmen der vorliegenden Arbeit wurde die Methode der durchflusszytometrischen Zellzyklusanalyse von Lymphozyten bei Patienten mit der klinischen Verdachtsdiagnose Ataxia telangiectasia beschrieben. Hierzu wurden die Daten von 327 Patienten ausgewertet. In 82 Fällen ergab sich eine Bestätigung der Verdachtsdiagnose, in 225 Fällen konnte das Vorliegen dieser Erkrankung ausgeschlossen werden, bei den übrigen untersuchten Fällen ergab die Zellzyklusanalyse Auffälligkeiten hinsichtlich des Proliferationsverhaltens der untersuchten Zellen und/oder ihrer Strahlensensitivität, die eine eindeutige Zuordnung zu einer der beiden Gruppen (AT-postiv/AT-negativ) zunächst nicht gestatteten. Diese Auffälligkeiten lassen sich teils auf technische Probleme (geronnenes Blut, langer Zeitraum zwischen Blutentnahme und Analyse), teils auf biologische Besonderheiten (bestehende Begleiterkrankungen wie Leukämie, Lymphom) zurückführen. Die durchflusszytometrische Zellzyklusanalyse von Lymphozyten ergibt als diagnostisch relevante Parameter den Anteil der nicht-proliferierenden Zellen (G0,G1) sowie den Anteil der in der G2-Phase des 1. Zellzyklus verbleibenden Zellen bezogen auf die Wachstumsfraktion (G2/GF). Der Anteil der nicht-proliferierenden Zellen (G0,G1) ist ein Maß für die Stimulierbarkeit der Lymphozyten. Diese Stimulierbarkeit ist bei Zellen von AT-Patienten häufig vermindert, d.h. das Ausmaß der Mitogenantwort gibt ebenso einen Hinweis auf das Vorliegen der Erkrankung AT wie die Strahlensensitivität der Zellen. Letztere wird durch den zweiten der oben angeführten Parameter (G2/GF) repräsentiert. Der für die Erkrankung AT charakteristische Funktionsverlust des ATM-Proteins, welches im unbeeinträchtigten Zustand für die Kontrolle der Reparatur von strahleninduzierten DNA-Schädigungen verantwortlich ist, führt typischerweise zu einer Erhöhung des Anteils von Zellen in der G2-Phase, nachdem diese Zellen ionisierender Strahlung ausgesetzt waren. Die zweidimensionale Auftragung dieser Parameter (G0,G1 gegen G2/GF) erlaubt in der Regel bereits eine guten Abgrenzung der Gruppe der AT-positiven gegen die AT-negativen Fälle. Die Berücksichtigung eines weiteren Parameters, nämlich des AFP-Wertes, gestattet darüberhinaus in mehreren Fällen die Zuordnung der oben erwähnten, zunächst unklaren Fälle zu einer dieser Gruppen. Die durchflusszytometrische Zellzyklusanalyse von bestrahlten Lymphozyten kann daher als Screening-Methode bei der Untersuchung von Patienten mit der Verdachtsdiagnose Ataxia telangiectasia als ein dem CSA überlegenes Verfahren angesehen werden. Die Kombination dreier Parameter: 1) Anteil der nicht-proliferierenden Zellen (G0,G1), 2) Anteil der in der G2-Phase des 1. Zellzyklus verbleibenden Zellen bezogen auf die Wachstumsfraktion (G2/GF) und 3) AFP-Wert erlaubt hierbei im Rahmen der AT-Diagnostik in >93% der Fälle eine eindeutige Zuordnung zur Gruppe der AT-negativen bzw. AT-positiven Fälle. N2 - Ataxia telangiectasia (AT) is an autosomal recessive multisystem disorder with increased radiosensitivity and cancer susceptibility. The responsible gene (ATM) consists of 66 exons and a coding region of 9171 bp which precludes direct sequencing as a screening assay for confirmation or exclusion of the clinical suspicion of AT. Peripheral blood mononuclear cells of 327 patients refered for the exclusion of AT were exposed to ionizing radiation (IR) and incubated for 72 h in the presence of PHA. Using bivariate BrdU-Hoechst/Ethidium bromide flowcytometry, the following cell cycle parameters were ascertained: (1) proportion of non-proliferating (G0,G1) cells as a measure of mitogen response, (2) proportion of first cycle G2-phase cells relative to the growth fraction (G2/GF) as a measure of radiosensitivity. >93% of the cases could be unequivocally assigned either to the AT-negative or the AT-positive group of patients. Combination of cell cycle data with serum AFP concentrations led to the exclusion of AT in nearly all of the uncertain cases. We conclude that cell cycle testing complemented by serum AFP measurements fulfills the criteria as a rapid and economical screening procedure in the differential diagnosis of juvenile ataxias. KW - Ataxia telangiectasia KW - Zellzyklus KW - ATM KW - Durchflusszytometrie KW - Radiosensitivität KW - childhood ataxia KW - ataxia telangiectasia KW - cell cycle KW - flowcytometry KW - radiosensivitity Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-14654 ER - TY - THES A1 - Buck, Annette Dorothea T1 - Wirkung atherogener Lipoproteine auf den Zellzyklus von Endothelzellen T1 - Effect of lipoproteins on the cell cycle of endothelial cells N2 - Es wurde die Wirkung von oxidiertem LDL, ein ausgeprägt atherogen wirkendes Lipoprotein, auf die Zellzyklusregulation von Endothelzellen untersucht. Eine Bestimmung der Proliferation von HUVEC zeigte einen dualer Effekt von OxLDL: Niedrige Konzentrationen (1-50μg/ml)OxLDL führten zu einem Anstieg der Proliferation im Vergleich zu Kontrollzellen,wohingegen es bei höheren Konzentrationen OxLDL (100 und 200μg/ml) zu einem Absterben der Zellen kam. Im Weiteren wurde der Einfluss von OxLDL auf den Zellzyklusinhibitor p27Kip1 mittels Western Blot-Analyse und Oligonukleotid-Transfektion bestimmt. N2 - The effect of OxLDL, which is a very atherogenic lipoprotein, on cell cycle regulation of endothelial cells was studied. Proliferation studies of HUVEC showed a dual effect of OxLDL: low concentrations (1-50μg/ml)of OxLDL induced an increase of proliferation, whereas with hihger concentrations (100 and 200μg/ml) cell death of HUVEC was observed. To further evaluate the influence of OxLDL on cell cycle regulation the cell cycle inhibitor p27kip1 was investigated by Western Blot analysis and oligonucleotid-transfection. KW - OxLDL KW - p27kip1 KW - HUVEC KW - Zellzyklus KW - Atherosklerose KW - OxLDL KW - p27kip1 KW - HUVEC KW - cell cycle KW - atherosclerosis Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-19157 ER - TY - THES A1 - Schmit, Fabienne T1 - LINC, a novel protein complex involved in the regulation of G2/M genes T1 - LINC, ein neuer Proteinkomplex, der G2/M Gene reguliert N2 - Regulated progression through the cell cycle is essential for ordered cell proliferation. One of the best characterized tumor suppressors is the retinoblastoma protein pRB, which together with the E2F transcription factors regulates cell cycle progression. In the model organisms Drosophila melanogaster and Caenorhabditis elegans, RB/E2F containing multiprotein complexes have been described as transcriptional regulators of gene expression. This work first describes a homologous complex in human cells named LINC (for LIN complex). It consists of a stable core complex containing LIN-9, LIN-37, LIN-52, LIN-54 and RbAp48. This core complex interacts cell cycle-dependently with different pocket proteins and transcription factors. In quiescent cells, LINC associates with p130 and E2F4. In S-phase cells these interactions are lost and LINC binds to B-MYB and p107. The transient knock-down of LIN-54 in primary fibroblasts, as the depletion of LIN-9, leads to cell cycle defects. The cells are delayed before the entry into mitosis. This effect is due to the fact that the knock-down of LINC components leads to the downregulation of cell cycle genes responsible for the entry into and exit from mitosis as well as for checkpoints during mitosis. These LINC target genes are known E2F G2/M target genes, which are expressed later than the classical G1/S E2F target genes. The transcriptional regulation by LINC is a direct effect as LINC binds to the promoters of its target genes throughout the cell cycle. LINC contains three DNA-binding proteins. E2F4 and B-MYB, which cell cycle-dependently bind to LINC, are known DNA-binding transcription factors. Additionally, it is show here that the LINC core complex member LIN-54 also directly binds to the promoter of a LINC target gene. Although the exact molecular mechanism of LINC function needs to be analyzed further, data in this work provide a model for the delayed activation of G2/M target genes. B-MYB, a G1/S E2F target gene, binds to LINC upon its expression in S-phase. Then only LINC is a transcriptional activator that induces the expression of the G2/M genes. This provides an explanation for the delayed expression of these E2F G2/M target genes. N2 - Die Regulation des Zellzyklus ist unerlässlich für die fehlerfreie Zellteilung. Einer der am Besten charakterisierten Tumorsuppressoren ist das Retinoblastom-Protein pRB, welches zusammen mit den E2F Transkriptionsfaktoren den Zellzyklus reguliert. In den Modellorganismen Drosophila melanogaster und Caenorhabditis elegans wurden Multiproteinkomplexe beschrieben, die pRB und E2F Homologe enthalten und transkriptionell die Expression von Zielgenen regulieren. Diese Arbeit beschreibt erstmals LINC, einen homologen Komplex in humanen Zellen. Der LIN-Kernkomplex besteht aus LIN-9, LIN-37, LIN-52, LIN-54 and RbAp48 und assoziiert zellzyklus-abhängig mit Pocket Proteinen und Transkriptionsfaktoren. In ruhenden Zellen (G0) assoziiert LINC mit p130 und E2F4. In der S-Phase verlassen p130 und E2F4 den Komplex und B-MYB und p107 interagieren mit LINC. Die transiente Depletion von LIN-54, ebenso wie die Depletion von LIN-9, führt zu Defekten im Zellzyklus. Die „knock-down“-Zellen treten verzögert in die Mitose ein. Dies konnte darauf zurückgeführt werden, dass die Depletion von LINC Mitgliedern Gene herunterreguliert, die für den Eintritt in und den Austritt aus der Mitose, sowie für Regulationsprozesse während der Mitose verantwortlich sind. Diese LINC Zielgene wurden bisher als G2/M E2F Zielgene beschrieben, welche verglichen mit klassischen E2F Zielgenen verzögert exprimiert werden. Die transkriptionelle Regulation durch LINC ist ein direkter Effekt, da LINC in G0 und in der S-Phase an die Promotoren seiner Zielgene bindet. LINC enthält drei DNA-bindende Proteine. Die zellzyklus-abhängigen Komponenten von LINC E2F4 und BMYB sind bekannte DNA-bindende Transkriptionsfaktoren. Zusätzlich konnte in dieser Arbeit gezeigt werden, dass das LINC Kernprotein LIN-54 direkt an den Promoter eines LINC Zielgens, cdc2, bindet. Obwohl der genaue molekulare Mechanismus für die Funktion von LINC noch genauer untersucht werden muss, liefern Daten in dieser Arbeit ein Modell für die verzögerte Expression von G2/M Genen. B-MYB ist selbst ein E2F Zielgen und bindet an LINC sobald es exprimiert wird. Erst die Assoziation von B-MYB an LINC in der S-Phase macht LINC zu einem transkriptionellen Aktivator G2/M-spezifischer Gene. Dies erklärt die verzögerte Expression dieser E2F G2/M Zielgene. KW - Zellzyklus KW - Transkription KW - LINC KW - LIN-54 KW - G2/M Übergang KW - LINC KW - LIN-54 KW - cell cycle KW - G2/M transition KW - transcription Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29336 ER - TY - THES A1 - Filatova, Alina T1 - Mechanism and Control of Nuclear-Cytoplasmic Translocation of the Transporter Regulator RS1 T1 - Mechanismus und Kontrolle der Translokation der Transporterregulator RS1 zwischen Kern und Zytoplasma N2 - Das RS1 Protein (Gen RSC1A1) beteiligt sich an der Regulation des Na+-D-Glukose-kotransporters SGLT1 und einiger anderer Transporter. In subkonfluenten LLC-PK1 Zellen hemmt RS1 die Freisetzung von SGLT1 aus dem trans-Golgi-Netzwerk und die Transkription von SGLT1. Während es sich in konfluenten Zellen hauptsächlich im Zytoplasma befindet, ist RS1 in subkonfluenten Zellen im Kern und im Zytoplasma lokalisiert. In der vorliegenden Arbeit wurden Mechanismus und Regulation der konfluenzabhängigen Kernlokalisation von RS1 untersucht. Dabel konnte gezeigt werden, dass die von Konfluenz abhängige Kernlokalisation von RS1 durch den Zellzyklus reguliert wird. In RS1 aus Sus scrofa (pRS1) wurde eine Sequenz identifiziert („nuclear shuttling signal“, NS), die für die konfluenzabhängige Verteilung von RS1 verantwortlich ist und sowohl das Signal für die Kernlokalisation (NLS) als auch das Signal für den Export aus dem Kern (NES) beinhaltet. Die NLS und NES Signale von RS1 vermitteln die Translokation des Proteins in den Kern und aus dem Kern mit Hilfe von Importin β1 bzw. CRM1, wobei die Verteilung von RS1 zwischen Kern und Zytoplasma durch die Aktivität des Exportsystems bestimmt wird. Es wurde gezeigt, dass die benachbarte Proteinkinase C (PKC) Phosphorylierungsstelle an Serin 370 von pRS1 die NS-gesteuerte Kernlokalisierung kontrolliert und für die vom Zellzyklus abhängige Kernlokalisation notwendig ist. Aufgrund der Ergebnisse der ortsgerichteten Mutagenese, PKC-Aktivierungsexperimenten und Massenspektrometrie-Analyse des Phosphorylierungsmusters von RS1 wurde ein Modell vorgeschlagen, das die Regulation der Kernlokalisation des RS1 Proteins in LLC-PK1 Zellen beschreibt. Dem Modell zufolge wird RS1 in subkonfluenten Zellen stark in den Kern befördert, während der Export von RS1 aus dem Kern nicht stattfindet. Das führt zur Anreicherung von RS1 im Kern. Nach Konfluenz wird Serin 370 durch PKC phosphoryliert, was die Steigerung des RS1-Exports aus dem Kern begünstigt und die überwiegend zytoplasmatische Lokalisation des Proteins in konfluenten Zellen hervorruft. Die konfluenzabhängige Regulation der Lokalisation von RS1 kann die Expression von SGLT1 während der Regeneration von Enterozyten im Dünndarm und der Regeneration von Zellen der Nierentubuli nach hypoxämischem Stress kontrollieren. Außerdem deutet die Analyse der Genexpression in embryonalen Fibroblasten der RS-/- Mäuse deutet darauf hin, dass die transkriptionale Regulation durch RS1 im Zellzyklus und bei der Zellteilung eine wichtige Rolle spielen kann. Da die Lokalisation von RS1 zellzyklusabhängig ist, kann RS1 für die Regulation der Transporter in spezifischen Phasen des Zellzyklus wichtig sein. N2 - The RS1 protein (gene RSC1A1) participates in regulation of Na+-D-glucose cotransporter SGLT1 and some other solute carriers. In subconfluent LLC-PK1 cells, RS1 inhibits release of SGLT1 from the trans-Golgi network and transcription of SGLT1. In subconfluent cells, RS1 is localized in the nucleus and the cytoplasm whereas confluent cells contain predominantly cytoplasmic RS1. In the present study, the mechanism and regulation of confluence-dependent nuclear location of RS1 was investigated. Confluence dependent nuclear location of RS1 was shown to be regulated by the cell cycle. A nuclear shuttling signal (NS) in pRS1 was identified that ensures confluence-dependent distribution of pRS1 and comprises nuclear localization signal (NLS) and nuclear export signal (NES). The NLS and NES of RS1 mediate translocation into and out of the nucleus via importin ß1 and CRM1, respectively, and the nuclear/cytoplasmic distribution of the RS1 protein is determined by the nuclear export activity. The adjacent protein kinase C (PKC) phosphorylation site at serine 370 of pRS1 was shown to control nuclear localization driven by NS and is necessary for the differential localization of RS1 in quiescent versus proliferating cells. Basing on the data of site-directed mutagenesis, PKC activation experiments and mass spectrometry analysis of RS1 phosphorylation, the following model of the regulation of RS1 nuclear location in LLC-PK1 cells was proposed. In subconfluent cells, RS1 is actively imported into the nucleus whereas nuclear export of RS1 is not active leading to accumulation of RS1 in the nucleus. After confluence, phosphorylation of serine 370 of pRS1 by PKC takes place leading to enhancement of RS1 nuclear export and predominantly cytoplasmic distribution of the protein in the confluent cells. The confluence-dependent regulation of RS1 localization may control SGLT1 expression during regeneration of enterocytes in small intestine and during regeneration of renal tubular cells after hypoxemic stress. Moreover, the gene expression profiling of mouse embryonic fibroblasts with RS1-/- genotype suggests that transcriptional regulation by RS1 might be important for the cell cycle and cell division. Since RS1 localization depends on the cell cycle, RS1 might play a role in the regulation of the solute carriers during specific phases of the cell cycle. KW - RS1 KW - NES KW - NLS KW - Kern KW - Regulation KW - SGLT1 KW - Zellzyklus KW - Glukose KW - RS1 KW - NES KW - NLS KW - nucleus KW - transporter regulator KW - SGLT1 KW - glucose KW - nuclear export signal KW - nuclear localization signal KW - cell cycle KW - glucose Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-38512 ER - TY - JOUR A1 - Belair, Cédric A1 - Baud, Jessica A1 - Chabas, Sandrine A1 - Sharma, Cynthia M A1 - Vogel, Jörg A1 - Staedel, Cathy A1 - Darfeuille, Fabien T1 - Helicobacter pylori interferes with an embryonic stem cell micro RNA cluster to block cell cycle progression JF - Silence : a Journal of RNA regulation N2 - Background MicroRNAs, post-transcriptional regulators of eukaryotic gene expression, are implicated in host defense against pathogens. Viruses and bacteria have evolved strategies that suppress microRNA functions, resulting in a sustainable infection. In this work we report that Helicobacter pylori, a human stomach-colonizing bacterium responsible for severe gastric inflammatory diseases and gastric cancers, downregulates an embryonic stem cell microRNA cluster in proliferating gastric epithelial cells to achieve cell cycle arrest. Results Using a deep sequencing approach in the AGS cell line, a widely used cell culture model to recapitulate early events of H. pylori infection of gastric mucosa, we reveal that hsa-miR-372 is the most abundant microRNA expressed in this cell line, where, together with hsa-miR-373, it promotes cell proliferation by silencing large tumor suppressor homolog 2 (LATS2) gene expression. Shortly after H. pylori infection, miR-372 and miR-373 synthesis is highly inhibited, leading to the post-transcriptional release of LATS2 expression and thus, to a cell cycle arrest at the G1/S transition. This downregulation of a specific cell-cycle-regulating microRNA is dependent on the translocation of the bacterial effector CagA into the host cells, a mechanism highly associated with the development of severe atrophic gastritis and intestinal-type gastric carcinoma. Conclusions These data constitute a novel example of host-pathogen interplay involving microRNAs, and unveil the couple LATS2/miR-372 and miR-373 as an unexpected mechanism in infection-induced cell cycle arrest in proliferating gastric cells, which may be relevant in inhibition of gastric epithelium renewal, a major host defense mechanism against bacterial infections. KW - MicroRNAs KW - cell cycle KW - Helicobacter pylori KW - gastric cancer Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-140438 VL - 2 IS - 7 ER - TY - JOUR A1 - Gaubatz, Stefan A1 - Esterlechner, Jasmina A1 - Reichert, Nina A1 - Iltzsche, Fabian A1 - Krause, Michael A1 - Finkernagel, Florian T1 - LIN9, a Subunit of the DREAM Complex, Regulates Mitotic Gene Expression and Proliferation of Embryonic Stem Cells JF - PLoS ONE N2 - The DREAM complex plays an important role in regulation of gene expression during the cell cycle. We have previously shown that the DREAM subunit LIN9 is required for early embryonic development and for the maintenance of the inner cell mass in vitro. In this study we examined the effect of knocking down LIN9 on ESCs. We demonstrate that depletion of LIN9 alters the cell cycle distribution of ESCs and results in an accumulation of cells in G2 and M and in an increase of polyploid cells. Genome-wide expression studies showed that the depletion of LIN9 results in downregulation of mitotic genes and in upregulation of differentiation-specific genes. ChIP-on chip experiments showed that mitotic genes are direct targets of LIN9 while lineage specific markers are regulated indirectly. Importantly, depletion of LIN9 does not alter the expression of pluripotency markers SOX2, OCT4 and Nanog and LIN9 depleted ESCs retain alkaline phosphatase activity. We conclude that LIN9 is essential for proliferation and genome stability of ESCs by activating genes with important functions in mitosis and cytokinesis. KW - cell cycle KW - cell division KW - cell differentation KW - DNA-binding proteins KW - gene expression KW - gene regulation KW - gene targeting KW - microarrays KW - pluripotency Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96922 ER - TY - JOUR A1 - Buchberger, Alexander A1 - Böhm, Stephanie T1 - The Budding Yeast Cdc48Shp1 Complex Promotes Cell Cycle Progression by Positive Regulation of Protein Phosphatase 1 (Glc7) JF - PLoS One N2 - The conserved, ubiquitin-selective AAA ATPase Cdc48 regulates numerous cellular processes including protein quality control, DNA repair and the cell cycle. Cdc48 function is tightly controlled by a multitude of cofactors mediating substrate specificity and processing. The UBX domain protein Shp1 is a bona fide substrate-recruiting cofactor of Cdc48 in the budding yeast S. cerevisiae. Even though Shp1 has been proposed to be a positive regulator of Glc7, the catalytic subunit of protein phosphatase 1 in S. cerevisiae, its cellular functions in complex with Cdc48 remain largely unknown. Here we show that deletion of the SHP1 gene results in severe growth defects and a cell cycle delay at the metaphase to anaphase transition caused by reduced Glc7 activity. Using an engineered Cdc48 binding-deficient variant of Shp1, we establish the Cdc48Shp1 complex as a critical regulator of mitotic Glc7 activity. We demonstrate that shp1 mutants possess a perturbed balance of Glc7 phosphatase and Ipl1 (Aurora B) kinase activities and show that hyper-phosphorylation of the kinetochore protein Dam1, a key mitotic substrate of Glc7 and Ipl1, is a critical defect in shp1. We also show for the first time a physical interaction between Glc7 and Shp1 in vivo. Whereas loss of Shp1 does not significantly affect Glc7 protein levels or localization, it causes reduced binding of the activator protein Glc8 to Glc7. Our data suggest that the Cdc48Shp1 complex controls Glc7 activity by regulating its interaction with Glc8 and possibly further regulatory subunits. KW - alleles KW - cell cycle KW - immunoprecipitation KW - phosphatases KW - genetic interactions Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96073 ER - TY - JOUR A1 - Wolter, Patrick A1 - Hanselmann, Steffen A1 - Pattschull, Grit A1 - Schruf, Eva A1 - Gaubatz, Stefan T1 - Central spindle proteins and mitotic kinesins are direct transcriptional targets of MuvB, B-MYB and FOXM1 in breast cancer cell lines and are potential targets for therapy JF - Oncotarget N2 - The MuvB multiprotein complex, together with B-MYB and FOXM1 (MMB-FOXM1), plays an essential role in cell cycle progression by regulating the transcription of genes required for mitosis and cytokinesis. In many tumors, B-MYB and FOXM1 are overexpressed as part of the proliferation signature. However, the transcriptional targets that are important for oncogenesis have not been identified. Given that mitotic kinesins are highly expressed in cancer cells and that selected kinesins have been reported as target genes of MMB-FOXM1, we sought to determine which mitotic kinesins are directly regulated by MMB-FOXM1. We demonstrate that six mitotic kinesins and two microtubule-associated non-motor proteins (MAPs) CEP55 and PRC1 are direct transcriptional targets of MuvB, B-MYB and FOXM1 in breast cancer cells. Suppression of KIF23 and PRC1 strongly suppressed proliferation of MDA-MB-231 cells. The set of MMB-FOXM1 regulated kinesins genes and 4 additional kinesins which we referred to as the mitotic kinesin signature (MKS) is linked to poor outcome in breast cancer patients. Thus, mitotic kinesins could be used as prognostic biomarker and could be potential therapeutic targets for the treatment of breast cancer. KW - breast cancer KW - kinesin KW - cell cycle KW - cytokinesis Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-171851 VL - 8 IS - 7 ER - TY - THES A1 - von Papen, Hans Michael T1 - Untersuchungen zum Einfluss der Meningokokkeninfektion auf den Zellzyklus von Epithelzellen T1 - Disease and carrier isolates of Neisseria meningitidis cause G1 cell cycle arrest in human epithelial cells N2 - Zahlreiche humanpathogene bakterielle Erreger können ihre Fähigkeit zur Kolonisation epithelialer Barrieren optimieren, indem sie mit dem Zellzyklus der infizierten Wirtszelle in Wechselwirkung treten und so die Abschilferung und Erneuerung des Epithels verzögern. Die hierbei wirksamen bakteriellen Effektoren sind als „Cyclomoduline“ bekannt und gelten als neue Klasse bakterieller Pathogenitätsfaktoren. Ziel der vorliegenden Promotionsarbeit war es zu untersuchen, ob durch die Infektion menschlicher pharyngealer Epithelzellen mit N. meningitidis der Zellzyklus der Wirtszelle beeinflusst wird. Mit zwei verschiedenen Untersuchungsmethoden konnte übereinstimmend gezeigt werden, dass die Infektion der Epithelzelllinie Detroit 562 mit verschiedenen Meningokokkenisolaten zu einer signifikanten Akkumulation von Epithelzellen in der G1-Phase führte. Dieser Effekt wurde sowohl von pathogenen Meningokokkenstämmen als auch von Trägerstämmen ausgelöst, jedoch nur durch Isolate, die fähig zur Adhärenz und zur Invasion in die Epithelzelle waren. Durch Hitzebehandlung der Bakterien konnte der Zellzyklusarrest vollständig aufgehoben werden. Ebenso konnte der Effekt durch Inkubation der Epithelzellen mit bakteriellen Kulturüberständen und durch Infektion der Zellen mit E. coli-Stämmen, welche die Meningokokkenadhäsine Opa und Opc überexprimieren, nicht ausgelöst werden. Es konnte weiterhin nachgewiesen werden, dass die Infektion mit N. meningitidis in der Zielzelle zu einer signifikant gesteigerten Expression des CDK-Inhibitors p21WAF1/Cip1 führte, begleitet von einer vermehrten Lokalisation im Zellkern. Auch zeigte sich eine veränderte Proteinexpression der für die G1-Phase relevanten Cycline D und E. Diese scheint sich erst posttranslational zu ereignen, da die unterschiedliche Expression auf mRNA-Ebene nicht festgestellt werden konnte. Zusammenfassend konnte dargestellt werden, dass die Infektion von Pharynxepithelzellen mit lebenden, zur Adhärenz und Invasion fähigen Meningokokkenstämmen in der menschlichen Zielzelle einen Zellzyklusarrest in der G1-Phase verursacht, vermutlich durch veränderte Expression der Zellzyklusregulatoren p21WAF1/Cip1, Cyclin D und Cyclin E. Möglicherweise stellt die Induktion dieses Zellzyklusarrestes einen wichtigen Schritt in der Pathogenese der bakteriellen Kolonisation des oberen Atemwegsepithels durch N. meningitidis dar. N2 - Several microbial pathogens have developed mechanisms to modulate host cell cycle progression in order to improve bacterial colonization of epithelial barriers. The required bacterial effectors were summarized as “cyclomodulins” and have been proposed to be a new class of virulence factors. The objective of this doctoral research study was to analyze the capability of N. meningitidis to interfere with the cell cycle progression in human pharyngeal epithelial cells. Using two different methods for cell cycle analysis, we show that infection of the human pharyngeal epithelial cell line Detroit 562 with different meningococcal isolates induces an arrest of epithelial host cells in the G1 phase. This effect was caused by infection with both pathogenic isolates and carriage isolates, but only by strains able to adhere to and to invade into the host cells. Heat-inactivation of the bacteria prior to infection completely prevented the cell cycle arrest. Moreover treatment of epithelial cells with bacterial supernatants, as well as infection with E. coli strains expressing neisserial adhesins Opa and Opc did not induce the cell cycle arrest. We further demonstrate that infection of Detroit 562 cells with N. meningitidis leads to a significantly increased expression of the CDK-inhibitor p21WAF1/Cip1 in the host cell, as well as its increased nuclear localization. The protein expression of cyclin D and E, which are relevant for progression through the G1 phase, were altered by bacterial infection, too. This effect is most likely induced by posttranslational modification, since bacterial infection did not affect Cyclin D and E mRNA levels. In conclusion, we demonstrate that infection of human pharyngeal epithelial cells with different isolates of N. meningitidis arrests the host cells at the G1 phase, most likely by affecting the expression of the cell cycle regulators p21WAF1/Cip1, cyclin D and Cyclin E. Potentially, induction this cell cycle arrest is an important step in the pathogenesis of meningococcal colonization and further infection. KW - Neisseria meningitidis KW - Zellzyklus KW - Epithel KW - cell cycle Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-192862 ER - TY - JOUR A1 - Leal, Andrea Zurita A1 - Schwebs, Marie A1 - Briggs, Emma A1 - Weisert, Nadine A1 - Reis, Helena A1 - Lemgruber, Leondro A1 - Luko, Katarina A1 - Wilkes, Jonathan A1 - Butter, Falk A1 - McCulloch, Richard A1 - Janzen, Christian J. T1 - Genome maintenance functions of a putative Trypanosoma brucei translesion DNA polymerase include telomere association and a role in antigenic variation JF - Nucleic Acids Research N2 - Maintenance of genome integrity is critical to guarantee transfer of an intact genome from parent to off-spring during cell division. DNA polymerases (Pols) provide roles in both replication of the genome and the repair of a wide range of lesions. Amongst replicative DNA Pols, translesion DNA Pols play a particular role: replication to bypass DNA damage. All cells express a range of translesion Pols, but little work has examined their function in parasites, including whether the enzymes might contribute to host-parasite interactions. Here, we describe a dual function of one putative translesion Pol in African trypanosomes, which we now name TbPolIE. Previously, we demonstrated that TbPolIE is associated with telomeric sequences and here we show that RNAi-mediated depletion of TbPolIE transcripts results in slowed growth, altered DNA content, changes in cell morphology, and increased sensitivity to DNA damaging agents. We also show that TbPolIE displays pronounced localization at the nuclear periphery, and that its depletion leads to chromosome segregation defects and increased levels of endogenous DNA damage. Finally, we demonstrate that TbPolIE depletion leads to deregulation of telomeric variant surface glycoprotein genes, linking the function of this putative translesion DNA polymerase to host immune evasion by antigenic variation. KW - cross-link repair KW - cell cycle KW - gene expression KW - low fidelity KW - replication KW - bypass KW - theta KW - reveals KW - binding Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230579 VL - 48 IS - 17 ER - TY - JOUR A1 - Houben, Roland A1 - Ebert, Marlies A1 - Hesbacher, Sonja A1 - Kervarrec, Thibault A1 - Schrama, David T1 - Merkel Cell Polyomavirus Large T Antigen is Dispensable in G2 and M-Phase to Promote Proliferation of Merkel Cell Carcinoma Cells JF - Viruses N2 - Merkel cell carcinoma (MCC) is an aggressive skin cancer frequently caused by the Merkel cell polyomavirus (MCPyV), and proliferation of MCPyV-positive MCC tumor cells depends on the expression of a virus-encoded truncated Large T antigen (LT) oncoprotein. Here, we asked in which phases of the cell cycle LT activity is required for MCC cell proliferation. Hence, we generated fusion-proteins of MCPyV-LT and parts of geminin (GMMN) or chromatin licensing and DNA replication factor1 (CDT1). This allowed us to ectopically express an LT, which is degraded either in the G1 or G2 phase of the cell cycle, respectively, in MCC cells with inducible T antigen knockdown. We demonstrate that LT expressed only in G1 is capable of rescuing LT knockdown-induced growth suppression while LT expressed in S and G2/M phases fails to support proliferation of MCC cells. These results suggest that the crucial function of LT, which has been demonstrated to be inactivation of the cellular Retinoblastoma protein 1 (RB1) is only required to initiate S phase entry. KW - Merkel cell polyomavirus KW - large T antigen KW - cell cycle KW - Merkel cell carcinoma Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218171 SN - 1999-4915 VL - 12 IS - 10 ER -