TY - THES A1 - Andelovic, Kristina T1 - Characterization of arterial hemodynamics using mouse models of atherosclerosis and tissue-engineered artery models T1 - Charakterisierung arterieller Hämodynamiken in atherosklerotischen Mausmodellen und tissue-engineerten Arterienmodellen N2 - Within this thesis, three main approaches for the assessment and investigation of altered hemodynamics like wall shear stress, oscillatory shear index and the arterial pulse wave velocity in atherosclerosis development and progression were conducted: 1. The establishment of a fast method for the simultaneous assessment of 3D WSS and PWV in the complete murine aortic arch via high-resolution 4D-flow MRI 2. The utilization of serial in vivo measurements in atherosclerotic mouse models using high-resolution 4D-flow MRI, which were divided into studies describing altered hemodynamics in late and early atherosclerosis 3. The development of tissue-engineered artery models for the controllable application and variation of hemodynamic and biologic parameters, divided in native artery models and biofabricated artery models, aiming for the investigation of the relationship between atherogenesis and hemodynamics Chapter 2 describes the establishment of a method for the simultaneous measurement of 3D WSS and PWV in the murine aortic arch at, using ultra high-field MRI at 17.6T [16], based on the previously published method for fast, self-navigated wall shear stress measurements in the murine aortic arch using radial 4D-phase contrast MRI at 17.6 T [4]. This work is based on the collective work of Dr. Patrick Winter, who developed the method and the author of this thesis, Kristina Andelovic, who performed the experiments and statistical analyses. As the method described in this chapter is basis for the following in vivo studies and undividable into the sub-parts of the contributors without losing important information, this chapter was not split into the single parts to provide fundamental information about the measurement and analysis methods and therefore better understandability for the following studies. The main challenge in this chapter was to overcome the issue of the need for a high spatial resolution to determine the velocity gradients at the vascular wall for the WSS quantification and a high temporal resolution for the assessment of the PWV without prolonging the acquisition time due to the need for two separate measurements. Moreover, for a full coverage of the hemodynamics in the murine aortic arch, a 3D measurement is needed, which was achieved by utilization of retrospective navigation and radial trajectories, enabling a highly flexible reconstruction framework to either reconstruct images at lower spatial resolution and higher frame rates for the acquisition of the PWV or higher spatial resolution and lower frame rates for the acquisition of the 3D WSS in a reasonable measurement time of only 35 minutes. This enabled the in vivo assessment of all relevant hemodynamic parameters related to atherosclerosis development and progression in one experimental session. This method was validated in healthy wild type and atherosclerotic Apoe-/- mice, indicating no differences in robustness between pathological and healthy mice. The heterogeneous distribution of plaque development and arterial stiffening in atherosclerosis [10, 12], however, points out the importance of local PWV measurements. Therefore, future studies should focus on the 3D acquisition of the local PWV in the murine aortic arch based on the presented method, in order to enable spatially resolved correlations of local arterial stiffness with other hemodynamic parameters and plaque composition. In Chapter 3, the previously established methods were used for the investigation of changing aortic hemodynamics during ageing and atherosclerosis in healthy wild type and atherosclerotic Apoe-/- mice using the previously established methods [4, 16] based on high-resolution 4D-flow MRI. In this work, serial measurements of healthy and atherosclerotic mice were conducted to track all changes in hemodynamics in the complete aortic arch over time. Moreover, spatially resolved 2D projection maps of WSS and OSI of the complete aortic arch were generated. This important feature allowed for the pixel-wise statistical analysis of inter- and intragroup hemodynamic changes over time and most importantly – at a glance. The study revealed converse differences of local hemodynamic profiles in healthy WT and atherosclerotic Apoe−/− mice, with decreasing longWSS and increasing OSI, while showing constant PWV in healthy mice and increasing longWSS and decreasing OSI, while showing increased PWV in diseased mice. Moreover, spatially resolved correlations between WSS, PWV, plaque and vessel wall characteristics were enabled, giving detailed insights into coherences between hemodynamics and plaque composition. Here, the circWSS was identified as a potential marker of plaque size and composition in advanced atherosclerosis. Moreover, correlations with PWV values identified the maximum radStrain could serve as a potential marker for vascular elasticity. This study demonstrated the feasibility and utility of high-resolution 4D flow MRI to spatially resolve, visualize and analyze statistical differences in all relevant hemodynamic parameters over time and between healthy and diseased mice, which could significantly improve our understanding of plaque progression towards vulnerability. In future studies the relation of vascular elasticity and radial strain should be further investigated and validated with local PWV measurements and CFD. Moreover, the 2D histological datasets were not reflecting the 3D properties and regional characteristics of the atherosclerotic plaques. Therefore, future studies will include 3D plaque volume and composition analysis like morphological measurements with MRI or light-sheet microscopy to further improve the analysis of the relationship between hemodynamics and atherosclerosis. Chapter 4 aimed at the description and investigation of hemodynamics in early stages of atherosclerosis. Moreover, this study included measurements of hemodynamics at baseline levels in healthy WT and atherosclerotic mouse models. Due to the lack of hemodynamic-related studies in Ldlr-/- mice, which are the most used mouse models in atherosclerosis research together with the Apoe-/- mouse model, this model was included in this study to describe changing hemodynamics in the aortic arch at baseline levels and during early atherosclerosis development and progression for the first time. In this study, distinct differences in aortic geometries of these mouse models at baseline levels were described for the first time, which result in significantly different flow- and WSS profiles in the Ldlr-/- mouse model. Further basal characterization of different parameters revealed only characteristic differences in lipid profiles, proving that the geometry is highly influencing the local WSS in these models. Most interestingly, calculation of the atherogenic index of plasma revealed a significantly higher risk in Ldlr-/- mice with ongoing atherosclerosis development, but significantly greater plaque areas in the aortic arch of Apoe-/- mice. Due to the given basal WSS and OSI profile in these two mouse models – two parameters highly influencing plaque development and progression – there is evidence that the regional plaque development differs between these mouse models during very early atherogenesis. Therefore, future studies should focus on the spatiotemporal evaluation of plaque development and composition in the three defined aortic regions using morphological measurements with MRI or 3D histological analyses like LSFM. Moreover, this study offers an excellent basis for future studies incorporating CFD simulations, analyzing the different measured parameter combinations (e.g., aortic geometry of the Ldlr-/- mouse with the lipid profile of the Apoe-/- mouse), simulating the resulting plaque development and composition. This could help to understand the complex interplay between altered hemodynamics, serum lipids and atherosclerosis and significantly improve our basic understanding of key factors initiating atherosclerosis development. Chapter 5 describes the establishment of a tissue-engineered artery model, which is based on native, decellularized porcine carotid artery scaffolds, cultured in a MRI-suitable bioreactor-system [23] for the investigation of hemodynamic-related atherosclerosis development in a controllable manner, using the previously established methods for WSS and PWV assessment [4, 16]. This in vitro artery model aimed for the reduction of animal experiments, while simultaneously offering a simplified, but completely controllable physical and biological environment. For this, a very fast and gentle decellularization protocol was established in a first step, which resulted in porcine carotid artery scaffolds showing complete acellularity while maintaining the extracellular matrix composition, overall ultrastructure and mechanical strength of native arteries. Moreover, a good cellular adhesion and proliferation was achieved, which was evaluated with isolated human blood outgrowth endothelial cells. Most importantly, an MRI-suitable artery chamber was designed for the simultaneous cultivation and assessment of high-resolution 4D hemodynamics in the described artery models. Using high-resolution 4D-flow MRI, the bioreactor system was proven to be suitable to quantify the volume flow, the two components of the WSS and the radStrain as well as the PWV in artery models, with obtained values being comparable to values found in literature for in vivo measurements. Moreover, the identification of first atherosclerotic processes like intimal thickening is achievable by three-dimensional assessment of the vessel wall morphology in the in vitro models. However, one limitation is the lack of a medial smooth muscle cell layer due to the dense ECM. Here, the utilization of the laser-cutting technology for the generation of holes and / or pits on a microscale, eventually enabling seeding of the media with SMCs showed promising results in a first try and should be further investigated in future studies. Therefore, the proposed artery model possesses all relevant components for the extension to an atherosclerosis model which may pave the way towards a significant improvement of our understanding of the key mechanisms in atherogenesis. Chapter 6 describes the development of an easy-to-prepare, low cost and fully customizable artery model based on biomaterials. Here, thermoresponsive sacrificial scaffolds, processed with the technique of MEW were used for the creation of variable, biomimetic shapes to mimic the geometric properties of the aortic arch, consisting of both, bifurcations and curvatures. After embedding the sacrificial scaffold into a gelatin-hydrogel containing SMCs, it was crosslinked with bacterial transglutaminase before dissolution and flushing of the sacrificial scaffold. The hereby generated channel was subsequently seeded with ECs, resulting in an easy-to-prepare, fast and low-cost artery model. In contrast to the native artery model, this model is therefore more variable in size and shape and offers the possibility to include smooth muscle cells from the beginning. Moreover, a custom-built and highly adaptable perfusion chamber was designed specifically for the scaffold structure, which enabled a one-step creation and simultaneously offering the possibility for dynamic cultivation of the artery models, making it an excellent basis for the development of in vitro disease test systems for e.g., flow-related atherosclerosis research. Due to time constraints, the extension to an atherosclerosis model could not be achieved within the scope of this thesis. Therefore, future studies will focus on the development and validation of an in vitro atherosclerosis model based on the proposed bi- and three-layered artery models. In conclusion, this thesis paved the way for a fast acquisition and detailed analyses of changing hemodynamics during atherosclerosis development and progression, including spatially resolved analyses of all relevant hemodynamic parameters over time and in between different groups. Moreover, to reduce animal experiments, while gaining control over various parameters influencing atherosclerosis development, promising artery models were established, which have the potential to serve as a new platform for basic atherosclerosis research. N2 - Im Rahmen dieser Arbeit wurden drei Hauptansätze zur Bewertung und Untersuchung der veränderten Hämodynamik wie Wandschubspannung, des oszillatorischen Scherindex und der arteriellen Pulswellengeschwindigkeit bei der Entwicklung und Progression der Atherosklerose durchgeführt: 1. Die Etablierung einer schnellen Methode zur gleichzeitigen Bestimmung der 3D-Wandschubspannung und der Pulswellengeschwindigkeit im gesamten Aortenbogen der Maus mittels hochauflösender 4D-Fluss-MRT 2. Die Verwendung von seriellen in vivo Messungen in atherosklerotischen Mausmodellen mittels hochauflösender 4D-Fluss-MRT, die in Studien zur Beschreibung der veränderten Hämodynamik bei später und früher Atherosklerose aufgeteilt wurden 3. Die Entwicklung von tissue-engineerten Arterienmodellen für die kontrollierte Anwendung und Variation von hämodynamischen und biologischen Parametern, unterteilt in native Arterienmodelle und biofabrizierte Arterienmodelle, mit dem Ziel, die Beziehung zwischen Atherogenese und veränderter Hämodynamik zu untersuchen Kapitel 2 beschreibt die Etablierung einer Methode zur gleichzeitigen Messung von 3D-Wandschubspannung und Pulswellengeschwindigkeit im Aortenbogen der Maus unter Verwendung der Ultrahochfeld-MRT bei 17,6T [16], die auf der zuvor veröffentlichten Methode zur schnellen, selbstnavigierten Messung der Wandschubspannung im Aortenbogen der Maus unter Verwendung der radialen 4D-Phasenkontrast-MRT bei 17,6T [4] basiert. Dieses Projekt basiert auf der gemeinsamen Arbeit von Dr. Patrick Winter, der diese Methode entwickelt hat, und der Autorin dieser Thesis, Kristina Andelovic, die die Experimente und statistischen Analysen durchgeführt hat. Da die in diesem Kapitel beschriebene Methode die Grundlage für die folgenden in vivo Studien darstellt und sich nicht in die einzelnen Beiträge der Autoren aufteilen lässt, ohne dass wichtige Informationen verloren gehen, wurde dieses Kapitel nicht in die einzelnen Teile aufgeteilt, um grundlegende Informationen über die Mess- und Analysemethoden zu liefern und somit eine bessere Verständlichkeit für die folgenden Studien zu gewährleisten. Die größte Herausforderung in diesem Kapitel bestand darin, die Anforderung an eine hohe räumliche Auflösung zur Bestimmung der Geschwindigkeitsgradienten an der Gefäßwand für die WSS-Quantifizierung und an eine hohe zeitliche Auflösung für die Bestimmung der Pulswellengeschwindigkeit zu erfüllen, ohne die Messzeit aufgrund der Notwendigkeit von zwei separaten Messungen zu verlängern. Darüber hinaus ist für eine vollständige Erfassung der Hämodynamik im murinen Aortenbogen eine vollständige 3D-Messung des Aortenbogens erforderlich, die durch die Nutzung der retrospektiven Navigation und radialen Trajektorien erreicht wurde. Dies wurde durch ein hoch flexibles Rekonstruktionssystem ermöglicht, das entweder Bilder mit geringerer räumlicher Auflösung und höheren Bildraten für die Erfassung der Pulswellengeschwindigkeit oder mit höherer räumlicher Auflösung und niedrigeren Bildraten für die Erfassung der 3D-WSS in einer angemessenen Messzeit von nur 35 Minuten rekonstruieren konnte. Die in vivo-Bestimmung aller relevanter hämodynamischen Parameter, die mit der Entwicklung und dem Fortschreiten der Atherosklerose zusammenhängen, wurde somit in einer einzigen experimentellen Sitzung ermöglicht. Die Methode wurde an gesunden Wildtyp- und atherosklerotischen Apoe-/- Mäusen validiert, wobei keine Unterschiede in der Robustheit der Messungen zwischen pathologischen und gesunden Mäusen festgestellt werden konnten. Die heterogene Verteilung der Plaqueentwicklung und Arterienversteifung in der Atherosklerose [10, 12] weist jedoch auf die Wichtigkeit lokaler PWV-Messungen hin. Zukünftige Studien sollten sich daher auf die 3D-Erfassung der lokalen PWV im murinen Aortenbogen auf Grundlage der vorgestellten Methode konzentrieren, um räumlich aufgelöste Korrelationen der lokalen arteriellen Steifigkeit mit anderen hämodynamischen Parametern und der Plaquezusammensetzung zu ermöglichen. In Kapitel 3 wurden die zuvor etablierten Methoden zur Untersuchung der sich verändernden Hämodynamik in der Aorta während des Alterns und der Atherosklerose bei gesunden Wildtyp- und atherosklerotischen Apoe-/- Mäusen verwendet [4, 16], die auf hochauflösender 4D-Fluss MRT basieren. In dieser Arbeit wurden serielle Messungen an gesunden und atherosklerotischen Mäusen durchgeführt, um alle Veränderungen der Hämodynamik im gesamten Aortenbogen über die Zeit zu verfolgen. Zudem wurden in dieser Arbeit räumlich aufgelöste 2D-Projektionskarten der WSS und des OSI des gesamten Aortenbogens generiert. Diese Methode ermöglichte die pixelweise statistische Analyse der Unterschiede und hämodynamischen Veränderungen zwischen und innerhalb von Gruppen im Zeitverlauf und die Visualisierung auf einen Blick. Die Studie ergab sich gegensätzlich entwickelnde lokale hämodynamische Profile bei gesunden WT- und atherosklerotischen Apoe-/- Mäusen, wobei die longWSS über die Zeit abnahm und der OSI zunahm, während die PWV bei gesunden Mäusen konstant blieb. Im Gegensatz nahm die longWSS zu und der OSI bei kranken Mäusen ab, während die PWV über die Zeit zunahm. Darüber hinaus wurden räumlich aufgelöste Korrelationen zwischen WSS, PWV, Plaque und Gefäßwandeigenschaften ermöglicht, die detaillierte Einblicke in die Zusammenhänge zwischen Hämodynamik und Plaquezusammensetzung in der Atherosklerose bieten. Dabei wurde die zirkumferentielle WSS als potenzieller Marker für die Plaquegröße und -zusammensetzung bei fortgeschrittener Atherosklerose identifiziert. Darüber hinaus ergaben Korrelationen mit der PWV, dass der maximale radiale Druck als potenzieller Marker für die vaskuläre Elastizität dienen könnte. Zusammengefasst demonstriert diese Studie die Nützlichkeit der hochauflösenden 4D-Fluss MRT zur räumlichen Auflösung, Visualisierung und Analyse statistischer Unterschiede in allen relevanten hämodynamischen Parametern im Zeitverlauf und zwischen gesunden und erkrankten Mäusen, was unser Verständnis der Plaqueprogression in Richtung Vulnerabilität erheblich verbessern könnte. In zukünftigen Studien sollte jedoch der Zusammenhang zwischen Gefäßelastizität und radialem Druck weiter untersucht und mit lokalen PWV-Messungen und CFD validiert werden. Darüber hinaus spiegelten die histologischen 2D-Datensätze nicht die 3D-Eigenschaften und regionalen Charakteristika der atherosklerotischen Plaques wider. Daher sollten künftige Studien eine Analyse des 3D-Plaquevolumens und der 3D-Plaquenzusammensetzung sowie morphologische Messungen mittels MRT oder der Lichtblattmikroskopie mit einbeziehen, um das fundamentale Verständnis der Beziehung zwischen veränderter Hämodynamik und der Atherosklerose weiter zu verbessern. In Kapitel 4 ging es um die Beschreibung und Untersuchung der Hämodynamik in frühen Stadien der Atherosklerose. Darüber hinaus umfasste diese Studie zum ersten Mal Messungen der basalen Hämodynamik in gesunden WT- und atherosklerotischen Mausmodellen. Aufgrund des Mangels an Studien, die die Hämodynamik in Ldlr-/- Mäusen beschreiben, die zusammen mit dem Apoe-/- Mausmodell die am häufigsten verwendeten Mausmodelle in der Atheroskleroseforschung sind, wurde dieses Modell in diese Studie integriert, um erstmals die sich verändernde Hämodynamik im Aortenbogen zu Beginn und während der Entwicklung und Progression der frühen Atherosklerose zu beschreiben. In dieser Studie wurden erstmals deutliche Unterschiede in den basalen Aortengeometrien dieser Mausmodelle identifiziert, die zu signifikant unterschiedlichen Fluss- und WSS-Profilen im Ldlr-/- Mausmodell führen. Eine weitere basale Charakterisierung verschiedener Parameter ergab nur modell-charakteristische Unterschiede in den Lipidprofilen, was beweist, dass die Geometrie die lokale WSS in diesen Modellen stark beeinflusst. Interessanterweise ergab die Berechnung des atherogenen Plasma-Indexes ein signifikant höheres Risiko bei Ldlr-/- Mäusen mit fortschreitender Atheroskleroseentwicklung, aber signifikant größere Plaqueflächen im Aortenbogen der Apoe-/- Mäuse. Aufgrund des gegebenen basalen WSS- und OSI-Profils in diesen beiden Mausmodellen - zwei Parameter, die die Plaque-Entwicklung und -Progression stark beeinflussen - gibt es Hinweise darauf, dass sich die regionale Plaque-Entwicklung zwischen diesen Mausmodellen während der Atherogenese stark unterscheidet. Daher sollten sich künftige Studien auf die räumlich-zeitliche Bewertung der Plaqueentwicklung und -Zusammensetzung in den drei definierten Aortenregionen konzentrieren, wobei morphologische Messungen mittels MRT oder histologische 3D-Analysen wie LSFM zum Einsatz kommen. Darüber hinaus bietet diese Studie eine hervorragende Grundlage für künftige Studien mit CFD-Simulationen, in denen die verschiedenen gemessenen Parameterkombinationen (z. B. die Aortengeometrie der Ldlr-/-Maus mit dem Lipidprofil der Apoe-/- Maus) analysiert und die daraus resultierende Plaqueentwicklung und -Zusammensetzung simuliert werden. Dies könnte zum Verständnis des komplexen Zusammenspiels zwischen veränderter Hämodynamik, Serumlipiden und Atherosklerose beitragen und unser grundlegendes Verständnis der Schlüsselfaktoren für die Entstehung von Atherosklerose deutlich verbessern. In Kapitel 5 wird die Etablierung eines tissue-engineerten Arterienmodells beschrieben, das auf nativen, von Schweinehalsschlagadern hergestellten, dezellularisierten Gerüststrukturen basiert. Diese wurden zudem in einem MRT-geeigneten Bioreaktorsystem [23] kultiviert, um die hämodynamisch bedingte Atheroskleroseentwicklung auf kontrollierbare Weise zu untersuchen, wobei hierfür die zuvor etablierten Methoden zur WSS- und PWV-Bewertung [4, 16] verwendet wurden. Dieses in vitro Arterienmodell zielte auf die Reduzierung von Tierversuchen ab und bot gleichzeitig eine vereinfachte, aber vollständig kontrollierbare physikalische und biologische Umgebung. Zu diesem Zweck wurde in einem ersten Schritt ein sehr schnelles und schonendes Dezellularisierungsverfahren etabliert, das zu Gerüststrukturen basierend auf Schweinehalsschlagadern führte, die eine vollständige Azellularität aufwiesen, wobei gleichzeitig die Zusammensetzung der extrazellulären Matrix, die allgemeine Ultrastruktur und die mechanischen Eigenschaften der nativen Arterien erhalten blieben. Darüber hinaus wurde eine gute Zelladhäsion und -proliferation erreicht, die mit isolierten menschlichen Endothelzellen aus humanem Vollblut untersucht wurde. Darüber hinaus wurde zum ersten Mal eine MRT-geeignete Arterienkammer für die gleichzeitige Kultivierung der generierten Modelle und der Untersuchung der hochauflösenden 4D-Hämodynamik in diesen Arterienmodellen entwickelt. Unter Verwendung der hochauflösenden 4D-Fluss-MRT erwies sich das Bioreaktorsystem als sehr geeignet, den Volumenstrom, die beiden Komponenten der WSS inklusive dem radialen Druck und die PWV in den Arterienmodellen zu quantifizieren, wobei die erhaltenen Werte sehr gut mit den in der Literatur gefundenen Werten für in vivo-Messungen vergleichbar sind. Darüber hinaus lassen sich durch die dreidimensionale Untersuchung der Gefäßwandmorphologie in den in vitro-Modellen erste atherosklerotische Prozesse wie die Verdickung der Intima erkennen. Eine Einschränkung ist jedoch das Fehlen einer medialen glatten Muskelzellschicht aufgrund der dichten ECM des Gewebegerüsts. Die Verwendung der Laserschneidetechnik zur Erzeugung von Löchern und / oder Gruben im Mikrometerbereich, die eine Besiedlung des Mediums mit SMCs ermöglichen, zeigte in einem ersten Versuch vielversprechende Ergebnisse und sollte in zukünftigen Studien daher dringend weiter untersucht werden. Das präsentierte Arterienmodell verfügt somit über alle relevanten Komponenten für die Erweiterung zu einem Atherosklerosemodell und ebnet den Weg für ein deutlich besseres Verständnis der Schlüsselmechanismen in der Atherogenese. Kapitel 6 beschreibt die Entwicklung eines einfach herzustellenden, kostengünstigen und vollständig an gegebene Bedürfnisse anpassbaren Arterienmodells auf Grundlage von Biomaterialien. Hier wurden thermoresponsive Opfergerüststrukturen, die mit der MEW-Technik hergestellt wurden, zur Herstellung variabler, biomimetischer Formen verwendet, um die geometrischen Eigenschaften des Aortenbogens, bestehend aus Verzweigungen und Krümmungen, zu imitieren. Nach der Einbettung der Opfergerüststruktur in ein Gelatin-Hydrogel, das zudem SMCs enthält, wurde es mit bakterieller Transglutaminase vernetzt, bevor es aufgelöst und gespült wurde. Der so entstandene Hydrogelkanal wurde anschließend mit Endothelzellen besiedelt, wodurch ein einfach zu erstellendes, schnelles und kostengünstiges Arterienmodell entstand. Im Gegensatz zum nativen Arterienmodell ist dieses Modell daher deutlich variabler in Größe und Form und bietet die wichtige Möglichkeit, von Anfang an glatte Muskelzellen mit einzubringen. Darüber hinaus wurde speziell für die gegebene Gerüststruktur eine maßgeschneiderte und hochgradig anpassungsfähige Perfusionskammer entwickelt, die eine sehr schnelle und einstufige Herstellung des Arterienmodells ermöglicht und gleichzeitig die Möglichkeit zur dynamischen Kultivierung der Modelle bietet, was eine hervorragende Grundlage für die Entwicklung von in vitro Krankheits-Testsystemen für z.B. die Atheroskleroseforschung im Zusammenhang mit der Hämodynamik darstellt. Aus Zeitgründen konnte die Ausweitung auf ein Atherosklerosemodell jedoch im Rahmen dieser Arbeit nicht realisiert werden. Daher werden sich zukünftige Studien auf die Entwicklung und Validierung eines in vitro-Atherosklerosemodells konzentrieren, das auf den hier entwickelten zwei- und dreischichtigen Arterienmodellen basiert. Zusammenfassend lässt sich sagen, dass diese Arbeit den Weg für eine schnelle Erfassung und detaillierte Analyse der sich verändernden Hämodynamik während der Entwicklung und der Progression der Atherosklerose geebnet hat, einschließlich räumlich aufgelöster Analysen aller relevanten hämodynamischen Parameter im Zeitverlauf innerhalb einer Gruppe und zwischen verschiedenen Gruppen. Darüber hinaus wurden vielversprechende Arterienmodelle etabliert, die das Potenzial haben, als neue Plattform für die Atherosklerose-Grundlagenforschung zu dienen, um Tierversuche zu minimieren und gleichzeitig die Kontrolle über verschiedene Parameter zu erlangen, die die Atheroskleroseentwicklung beeinflussen. KW - Hämodynamik KW - Arteriosklerose KW - Tissue Engineering KW - Atherosclerosis KW - MRI KW - Hemodynamics KW - Tissue Engineering KW - Biofabrication KW - Artery Models Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-303601 ER - TY - THES A1 - Pres, Sebastian T1 - Detection of a plasmon-polariton quantum wave packet by coherent 2D nanoscopy T1 - Nachweis eines Plasmon-Polariton-Quantenwellenpakets durch kohärente 2D-Nanoskopie N2 - Plasmonic nanostructures are considered promising candidates for essential components of integrated quantum technologies because of their ability to efficiently localize broad-band electromagnetic fields on the nanoscale. The resulting local near field can be understood as a spatial superposition of spectrally different plasmon-polariton modes due to the spectrally broad optical excitation, and thus can be described as a classical wave packet. Since plasmon polaritons, in turn, can transmit and receive non-classical light states, the exciting question arises to what extent they have to be described as quantum mechanical wave packets, i.e. as a superposition of different quantum states. But how to probe, characterize and eventually manipulate the quantum state of such plasmon polaritons? Up to now, probing at room temperatures relied completely on analyzing quantum optical properties of the corresponding in-going and out-going far-field photon modes. However, these methods so far only allow a rather indirect investigation of the plasmon-polariton quantum state by means of transfer into photons. Moreover, these indirect methods lack spatial resolution and therefore do not provide on-site access to the plasmon-polariton quantum state. However, since the spectroscopic method of coherent two-dimensional (2D) nanoscopy offers the capability to follow the plasmon- polariton quantum state both in Hilbert space and in space and time domain a complete characterization of the plasmon polariton is possible. In this thesis a versatile coherent 2D nanoscopy setup is presented combining spectral tunability and femtosecond time resolution with spatial resolution on the nanometer scale due to the detection of optically excited nonlinear emitted electrons via photoemission electron microscopy (PEEM). Optical excitation by amplitude- and phase-shaped, systematically-modified and interferometric-stable multipulse sequences is realized, and characterized via Fourier-transform spectral interferometry (FTSI). This linear technique enables efficient data acquisition in parallel to a simultaneously performed experiment. The full electric-field reconstruction of every generated multipulse sequence is used to analyze the effect of non-ideal pulse sequences on the two-dimensional spectral data of population-based multidimensional spectroscopy methods like, e.g., the coherent 2D nanoscopy applied in this thesis. Investigation of the spatially-resolved nonlinear electron emission yield from plasmonic gold nanoresonators by coherent 2D nanoscopy requires a quasi-particle treatment of the addressed plasmon-polariton mode and development of a quantum model to adequately describe the plasmon-assisted multi-quantum electron emission from nanostructures. Good agreement between simulated and experimental data enables to connect certain spectral features to superpositions of non-adjacent plasmon-polariton quantum states, i.e, non-adjacent occupation-number states of the underlying quantized, harmonic oscillator, thus direct probing of the plasmon-polariton quantum wave packet at the location of the nanostructure. This is a necessary step to locally control and manipulate the plasmon-polariton quantum state and thus of general interest for the realization of nanoscale quantum optical devices. N2 - Plasmonische Nanostrukturen gelten als vielversprechende Kanditaten für wesentliche Bestandteile integrierter Quantentechnologien, da sie in der Lage sind, breitbandige elektromagnetische Felder auf der Nanoskala effizient zu lokalisieren. Durch die spektral breitbandige optische Anregung kann das so erzeugte lokale Nahfeld als räumliche Überlagerung von spektral verschiedenen Plasmon-Polariton Moden aufgefasst und daher als klassisches Wellenpaket beschrieben werden. Da Plasmon-Polaritonen wiederum nichtklassische Lichtzustände übertragen und erhalten können, stellt sich allerdings die spannende Frage, inwieweit man sie als quantenmechanische Wellenpakete, sprich eine Superposition von unterschiedlichen Quantenzuständen, beschreiben muss. Doch wie lässt sich der Quantenzustand solcher Plasmon-Polaritonen untersuchen, charakterisieren und schließlich manipulieren? Bislang beruhte die Untersuchung bei Raumtemperatur vollständig auf der Analyse der quantenoptischen Eigenschaften der entsprechenden ein- und ausgehenden Fernfeld-Photonenmoden. Diese Methoden erlauben allerdings bisher nur eine eher indirekte Untersuchung des Plasmonen-Polaritonen-Quantenzustands mittels Überführung in Photonen. Darüber hinaus mangelt es diesen indirekten Methoden an räumlicher Auflösung und sie bieten daher keinen Zugang zum Plasmonen-Polaritonen-Quantenzustand am Ort der Nanostruktur. Die spektroskopische Methode der kohärenten 2D-Nanoskopie bietet allerdings die Möglichkeit, den Plasmon-Polariton-Quantenzustand sowohl im Hilbert-Raum als auch im Raum- und Zeitbereich zu verfolgen, wodurch eine vollständige Charakterisierung des Plasmon-Polaritons möglich ist. In dieser Arbeit wird ein vielseitiger experimenteller Aufbau zur kohärenten zweidimensionalen (2D)-Nanoskopie vorgestellt, der spektrale Durchstimmbarkeit und Femtosekunden-Zeitauflösung mit räumlicher Auflösung auf der Nanometerskala durch den Nachweis optisch angeregter nichtlinear-emittierter Elektronen mittels Photoemissionselektronenmikroskopie (PEEM) kombiniert. Die optische Anregung durch amplituden- und phasengeformte, systematisch modifizierte und interferometrisch stabile Multipulssequenzen wird realisiert und über Fouriertransformierte Spektrale Interferenz (FTSI) charakterisiert. Diese lineare Technik ermöglicht eine effiziente Datenerfassung parallel zu einem gleichzeitig durchgeführten Experiment. Die vollständige Rekonstruktion des elektrischen Feldes jeder erzeugten Multipulssequenz wird verwendet, um die Auswirkung nicht-idealer Pulssequenzen auf die zweidimensionalen Spektraldaten von populationsbasierten multidimensionalen Spektroskopiemethoden, wie beispielsweise der in dieser Arbeit verwendeten kohärenter 2D-Nanoskopie, zu analysieren. Die Untersuchung der räumlich aufgelösten nichtlinearen Elektronenemissionsausbeute von plasmonischen Gold-Nanoresonatoren durch kohärente 2D-Nanoskopie erfordert eine Quasiteilchen-Behandlung der angesprochenen Plasmon-Polariton-Mode und die Entwicklung eines Quantenmodells, um die plasmonenunterstützte Multiquanten-Elektronenemission von Nanostrukturen korrekt zu beschreiben. Die gute Übereinstimmung zwischen simulierten und experimentellen Daten ermöglicht es, bestimmte spektrale Merkmale mit Überlagerungen von nicht-benachbarten Plasmon-Polariton-Quantenzuständen, sprich nicht-benachbarter Besetzungszahlzustände des zugrunde liegenden quantisierten, harmonischen Oszillators, in Verbindung zu bringen und so direkt das Plasmon-Polariton-Quantenwellenpaket am Ort der Nanostruktur zu untersuchen. Dies ist ein notwendiger Schritt, um den Plasmon-Polariton-Quantenzustand lokal zu kontrollieren und zu manipulieren, und somit von allgemeinem Interesse für die Realisierung von quantenoptischen Geräten im Nanomaßstab. KW - Coherent Multidimensional Spectroscopy KW - Photoemissionselektronenmikroskopie KW - Coherent Two-dimensional Nanoscopy KW - Fourier-transform spectral interferometry KW - Quantum Plasmonics KW - Femtosecond Pulse Shaping Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-348242 ER - TY - THES A1 - Bayer, Florian T1 - Investigating electromagnetic properties of topological surface states in mercury telluride T1 - Untersuchung elektromagnetischer Eigenschaften topologischer Oberflächenzustände in Quecksilber-Tellurid N2 - This doctoral thesis investigates magneto-optical properties of mercury telluride layers grown tensile strained on cadmium telluride substrates. Here, layer thicknesses start above the usual quantum well thickness of about 20 nm and have a upper boundary around 100 nm due to lattice relaxation effects. This kind of layer system has been attributed to the material class of three-dimensional topological insulators in numerous publications. This class stands out due to intrinsic boundary states which cross the energetic band gap of the layer's bulk. In order to investigate the band structure properties in a narrow region around the Fermi edge, including possible boundary states, the method of highly precise time-domain Terahertz polarimetry is used. In the beginning, the state of the art of Teraherz technology at the start of this project is discussed, moving on to a detailed description and characterization of the self-built measurement setup. Typical standard deviation of a polarization rotation or ellipticity measurement are on the order of 10 to 100 millidegrees, according to the transmission strength through investigated samples. A range of polarization spectra, depending on external magnetic fields up to 10 Tesla, can be extracted from the time-domain signal via Fourier transformation. The identification of the actual band structure is done by modeling possible band structures by means of the envelope function approximation within the framework of the k·p method. First the bands are calculated based on well-established model parameters and from them the possible optical transitions and expected ellipticity spectra, all depending on external magnetic fields and the layer's charge carrier concentration. By comparing expected with measured spectra, the validity of k·p models with varying depths of detail is analyzed throughout this thesis. The rich information encoded in the ellipitcity spectra delivers key information for the attribution of single optical transitions, which are not part of pure absorption spectroscopy. For example, the sign of the ellipticity signals is linked to the mix of Landau levels which contribute to an optical transition, which shows direct evidence for bulk inversion asymmetry effects in the measured spectra. Throughout the thesis, the results are compared repeatedly with existing publications on the topic. It is shown that the models used there are often insufficient or, in worst case, plainly incorrect. Wherever meaningful and possible without greater detours, the differences to the conclusions that can be drawn from the k·p model are discussed. The analysis ends with a detailed look on remaining differences between model and measurement. It contains the quality of model parameters as well as different approaches to integrate electrostatic potentials that exist in the structures into the model. An outlook on possible future developments of the mercury cadmium telluride layer systems, as well as the application of the methods shown here onto further research questions concludes the thesis. N2 - Diese Doktorarbeit untersucht die magneto-optischen Eigenschaften zugverspannter Quecksilbertelluridschichten auf Cadmiumtelluridsubstraten. Die Schichtdicken sind hierbei dicker als die gewöhnlicher Quantentrogsysteme bis etwa 20 nm und nach oben hin beschränkt durch Gitterrelaxationeffekte ab ca. 100 nm. Dieses Schichtsystem wurde in zahlreichen Publikationen der Materialklasse dreidimensionaler Topologischer Isolatoren zugeordnet, welche sich durch intrinsische Grenzflächenzustände auszeichnet, die energetisch in der Bandlücke des Schichtinneren liegen. Um die Eigenschaften der Bandstruktur im direkten Umfeld der Fermi-Kante, inklusive etwaiger Grenzflächenzustände, untersuchen zu können, kommt die Methode der hochpräzisen Zeitdomänen-Terahertz-Polarimetrie zum Einsatz. Der Stand der dazu nötigen Technik wird zu Beginn der Doktorarbeit einleitend diskutiert und der daraus entstandene Messaufbau wird im Detail beschrieben, sowie dessen Charakterisierung erläutert. Die typischerweise erzielbare Standardabweichung einer Messung liegt, je nach Transmissionsgrad der untersuchten Probenstrukturen, im Bereich weniger 10 bis 100 Tausendstel Grad für die Polarisationgrößen Rotation und Elliptizität. In Abhängigkeit externer Magnetfelder bis hin zu 10 Telsa ergeben sich so mittels Fourier-Transformation des Zeitsignals verschiedene Polarisationspektren. Der Rückschluss auf die zugrunde liegende Bandstruktur gelingt durch die Modellierung möglicher Bandstrukturen mittels der Einhüllenden-Funktionen-Näherung der k·p-Methode. Hierzu wird zunächst die Bandstruktur nach den gewählten Modellparametern berechnet und aus dieser wiederum die zu erwartenden Elliptizitätsspektren in Abhängigkeit des externen Magnetfeldes und der Ladungsträgerkonzentration berechnet. Aus dem Vergleich berechneter und tatsächlich gemessener Spektren wird im Laufe der Arbeit die Validität verschieden detaillierter k·p-Modelle analysiert. Die reichhaltigen Informationen aus der Elliptizitätsmesung liefern bei der Zuordnung einzelner optischer Übergänge entscheidende Hinweise, die in reiner Absorptionsspektroskopie nicht enthalten sind. So ist das Vorzeichen der Elliptizität verknüpft mit der Zusammensetzung der am optischen Übergang beteiligten Landau-Level Zustände. Dies ermöglicht einen direkten Nachweis sogenannter Bulk-Inversions-Asymmetrie-Effekte aus den Spektren. Im Verlauf der Arbeit wird zudem wiederholt ein Vergleich der Ergebnisse mit existierenden Publikationen gezogen, wobei sich zeigt, dass dort verwendete Modelle häufig unzureichend oder inkorrekt sind. Wo immer dies sinnvoll und ohne größeren Aufwand möglich ist, werden die Unterschiede zu Aussagen, die aus dem k·p-Modell heraus getroffen werden können, diskutiert. Zum Ende der Analyse hin wird verstärkt auf die Grenzen der k·p-Methode eingegangen und verbleibende Abweichungen zwischen Modell und Messung diskutiert. Dies beinhaltet sowohl die Qualität der verwendeten Modellparameter, als auch verschiedene Versuche, die in den Strukturen vorhandenen elektrostatischen Potentiale mit in die Modellierung zu integrieren. Abschließend wird ein Ausblick auf mögliche zukünftige Entwicklungen des Quecksilbercadmiumtellurid Schichtsystems und die Anwendung der hier vorgestellten Methodiken auf weitere Fragestellungen gegeben. KW - Quecksilbertellurid KW - Topologie KW - Oberfläche KW - Mercury telluride KW - Topology KW - THz KW - Surface Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-352127 ER - TY - THES A1 - Miller, Kirill T1 - Untersuchung von Nanostrukturen basierend auf LaAlO\(_3\)/SrTiO\(_3\) für Anwendungen in nicht von-Neumann-Rechnerarchitekturen T1 - Investigation of nanostructures based on LaAlO\(_3\)/SrTiO\(_3\) for applications in non von Neumann architectures N2 - Die Dissertation beschäftigt sich mit der Analyse von oxidischen Nanostrukturen. Die Grundlage der Bauelemente stellt dabei die LaAlO3/SrTiO3-Heterostruktur dar. Hierbei entsteht an der Grenzfläche beider Übergangsmetalloxide ein quasi zweidimensionales Elektronengas, welches wiederum eine Fülle von beachtlichen Eigenschaften und Charakteristika zeigt. Mithilfe lithographischer Verfahren wurden zwei unterschiedliche Bauelemente verwirklicht. Dabei handelt es sich einerseits um einen planaren Nanodraht mit lateralen Gates, welcher auf der Probenoberfläche prozessiert wurde und eine bemerkenswerte Trialität aufweist. Dieses Bauelement kann unter anderem als ein herkömmlicher Feldeffekttransistor agieren, wobei der Ladungstransport durch die lateral angelegte Spannung manipuliert wird. Zusätzlich konnten auch Speichereigenschaften beobachtet werden, sodass das gesamte Bauelement als ein sogenannter Memristor fungieren kann. In diesem Fall hängt der Ladungstransport von der Elektronenakkumulation auf den lateralen potentialfreien Gates ab. Die Memristanz des Nanodrahts lässt sich unter anderem durch Lichtleistungen im Nanowattbereich und mithilfe von kurzen Spannungspulsen verändern. Darüber hinaus kann die Elektronenakkumulation auch in Form einer memkapazitiven Charakteristik beobachtet werden. Neben dem Nanodraht wurde auch eine Kreuzstruktur, die eine ergänzende ferromagnetischen Elektrode beinhaltet, realisiert. Mit diesem neuartigen Bauteil wird die Umwandlung zwischen Spin- und Ladungsströmen innerhalb der nanoskaligen Struktur untersucht. Hierbei wird die starke Spin-Bahn-Kopplung im quasi zweidimensionalen Elektronengas ausgenutzt. N2 - The dissertation focuses on the analysis of oxide nanostructures. The basis of the devices consists of the LaAlO3/SrTiO3 heterostructure. A quasi two-dimensional electron gas is formed at the interface of the two transition metal oxides, which in turn exhibits a plethora of remarkable properties and characteristics. Two different components were realized using lithographic processes. The first is a planar nanowire with lateral gates, which was processed on the sample surface and exhibits remarkable triality. Among other things, this device can act as a conventional field-effect transistor, whereby the charge transport is manipulated by the laterally applied voltage. In addition, storage properties could also be observed, so that the entire component can function as a so-called memristor. In this case, the charge transport depends on the accumulation of electrons on the floating gates. The memristance of the nanowire can be altered using light power in the nanowatt range and with the aid of short voltage pulses. In addition, electron accumulation can also be observed in the form of a memcapacitive characteristic. In addition to the nanowire, a cross structure containing a complementary ferromagnetic electrode was also realized. This novel device is used to investigate the conversion between spin and charge currents within the nanoscale structure. Here, the strong spin-orbit coupling in the quasi two-dimensional electron gas is utilized. KW - Memristor KW - Heterostruktur-Bauelement KW - Spin-Bahn-Wechselwirkung KW - Grenzfläche KW - Übergangsmetalloxide KW - LaAlO\(_3\)/SrTiO\(_3\) KW - Transportspektroskopie KW - Spin-Ladungs-Umwandlung KW - Memkondensator KW - Nanoelektronik Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-354724 ER - TY - THES A1 - Rückert, Martin Andreas T1 - Rotationsdriftspektroskopie T1 - Rotational Drift Spectroscopy N2 - Die wachsende Verfügbarkeit von magnetischen Nanopartikeln (MNPs) mit funktionalisierten Partikeloberflächen eröffnet weitreichende Möglichkeiten für chemische, biologische und klinische Analysemethoden. Durch Funktionalisierung kann eine gezielte Interaktion mit Molekülen bewirkt werden, die im Allgemeinen auch die Beweglichkeit der MNPs verändern. Methoden zur Charakterisierung von MNPs wie bspw. AC-Suszeptometrie, Magnetorelaxometrie (MRX) oder Magnetic Particle Spectroscopy (MPS) können diese Änderung der Beweglichkeit bei MNPs messen, wenn es sich um MNPs handelt, deren magnetisches Moment im Partikel fixiert ist. Damit ist mit funktionalisierten MNPs indirekt auch die spezifische Messung von Molekülkonzentrationen möglich. MNPs können zudem in biokompatibler Form hergestellt werden und sind dadurch auch als in-vivo Marker einsetzbar. Das 2005 das erste Mal veröffentlichte Magnetic Particle Imaging (MPI) kann als ein mittels Gradientenfeldern um die räumliche Kodierung erweitertes MPS betrachtet werden. Dank biokompatibler MNPs handelt es sich dabei um eine in-vivo-taugliche, nicht-invasive Bildgebungsmethode. Mit funktionalisierten MNPs als Marker ist damit im Prinzip auch molekulare Bildgebung möglich, die durch Detektion der beteiligten Moleküle (Biomarker) Stoffwechselprozesse räumlich abbilden kann. Im Vergleich zur Bildgebung von Gewebe- und Knochenstrukturen lassen sich die diagnostischen Möglichkeiten durch molekulare Bildgebung erheblich erweitern. Rotationsdriftspektroskopie (Rotational Drift Spectroscopy, RDS) ist eine in dieser Arbeit entwickelte Methode für die induktive Messung der Beweglichkeit von MNPs in flüssiger Suspension. Es verwendet die Rotationsdrift von MNPs in rotierenden magnetischen Feldern als Grundlage und bietet das Potential die Änderungen der Beweglichkeit von MNPs mit einer Empfindlichkeit messen zu können, welche potentiell um mehrere Größenordnungen höher sein kann als mit den oben erwähnten Verfahren. Die vorliegende Arbeit konzentriert sich auf die Verwendbarkeit dieses Effekts als Spektroskopiemethode. Die Eigenschaften des RDS-Signals sind jedoch auch als Grundlage für räumliche Kodierung vielversprechend. In weiterführenden Projekten soll daher auch die Entwicklung von Rotationsdriftbildgebung (Rotating Drift Imaging, RDI) als ein nicht-invasives Verfahren für molekulare Bildgebung angestrebt werden. Der Grundgedanke von RDS entlehnt sich aus einem in 2006 veröffentlichten Sensordesign basierend auf magnetische Mikropartikel in einem schwachen rotierenden Magnetfeld. Das rotierende Magnetfeld ist dabei so schwach gewählt, dass sich das Partikel aufgrund der viskosen Reibung nicht mehr synchron mit dem externen Feld drehen kann. Die Frequenz der resultierenden asynchronen Rotationsdrift liegt unterhalb der Frequenz des externen Rotationsfelds und ist Abhängig von der viskosen Reibung. Aufgrund dieser Abhängigkeit können Änderungen im Reibungskoeffizienten des Partikels über Änderungen in der Rotationsdriftfrequenz gemessen werden. RDS zielt darauf ab, diese Rotationsdrift bei suspendierten MNPs über deren makroskopische Magnetisierung messen zu können. Damit wird u.a. auch die nicht-invasive Messung von MNPs innerhalb opaker biologischer Proben möglich. MNP-Suspensionen sind großzahlige Nanopartikel-ensembles und können nicht wie ein einzelnes Mikropartikel gemessen werden. Für die induktive Messung ist vor dem Start eine Ausrichtung aller magnetischen Momente nötig, da sich deren makroskopische Magnetisierung andernfalls zu Null addiert. Aufgrund von Rotationsdiffusion bleibt diese Ausrichtung nur eine begrenzte Zeit bestehen, so dass auch die eigentliche Messung des RDS-Signals nur eine begrenzte Zeit möglich ist. Diese Ausrichtung wurde in den ersten Experimenten durch einen kurzen Magnetfeldpuls erzeugt. In der Empfangsspule ist die Induktion durch das Rotationsfeld typischer Weise um mehrere Größenordnungen höher als das zu erwartende Signal und muss durch einen Tiefpass unterdrückt werden. In diesem Tiefpassfilter ruft jedoch die Einkopplung des Anfangspulses eine Pulsantwort hervor, die ebenso mehrere Größenordnungen des zu erwartenden Signals betragen kann und ähnlich langsam wie typische Signale abklingt. Die Unterdrückung dieser Pulsantwort stellte in den ersten Experimenten die größte Hürde da. Der erste Aufbau hatte eine Relaisschaltung zur Pulsunterdrückung und resultierte in einer Totzeit von 3 ms zwischen Anfangspuls und Start der Messung. Aufgrund dieser Totzeit waren die ersten Messungen auf größere Agglomerate und Sedimente von MNPs beschränkt, da nur in diesem Fall eine hinreichend lange Zerfallsdauer der Probenmagnetisierung vorlag. Das Verhalten derartiger Partikelsysteme ist jedoch aufgrund von mechanischer und magnetischer Interpartikelwechselwirkung vergleichsweise komplex und theoretisch schwer modellierbar. Das primäre Zielsystem für RDS hingegen, Eindomänenpartikel mit im Partikel fixierter Magnetisierung und Punktsymmetrie bzgl. des Reibungstensors, erlaubt die Aufstellung einer parametrisierten Funktion für den Signalverlauf. Es ermöglicht somit aufgrund der besseren Berechenbarkeit eine solidere Auswertung des RDS-Signals. Um Eindomänenpartikel in wässriger Suspension mit typischen Partikeldurchmessern um 100 nm messen zu können ist eine Verkürzung der Totzeit auf mindestens 1/10 erforderlich. Prinzipiell kann diese Problematik durch die Verwendung schneller Halbleiterschalter in Verbindung mit einer präzise abstimmbaren induktiven Entkopplung des Spulensystems gemindert werden. Simulationen des RDS-Signals für verschiedene RDS-Sequenzen zeigen jedoch noch zwei weitere Möglichkeiten auf, die ohne aufwändigen Eingriffe in der Hardware auskommen. Zum einen kann durch orthogonales Frequenzmischen mit geeignetem Frequenz- und Phasenverhältnis eine Ausrichtung der magnetischen Momente bewirkt werden. Da die benötigten Frequenzen vollständig im Sperrband des Tiefpassfilters liegen können, lässt sich damit die Pulsantwort bei hinreichend „weichem“ Umschalten zwischen der Polarisierungssequenz und der RDS-Sequenz vollständig vermeiden. Darüber hinaus zeigt sich, dass es bei Anwesenheit eines schwachen Offsetfelds (< 10 % der Rotationsfeldamplitude) zu einer Ausrichtung der magnetischen Momente kommt, wenn das magnetische Rotationsfeld seine Richtung ändert und diese Änderung nicht abrupt erfolgt, sondern das Rotationsfeld übergangsweise in ein linear oszillierendes Feld übergeht. Hingegen wird die Wirkung des Offsetfelds durch das Rotationsfeld vor und nach dem Wechsel nahezu vollständig neutralisiert, so dass damit das Störsignale generierende Schalten eines Offsetfelds ersetzt werden kann. Es ist auf diese Weise nicht möglich, Echosequenzen zu erzeugen, da hier bei der für Echosequenzen benötigten Richtungsumkehr des Rotationsfelds die zuvor aufgeprägte Phasenverteilung durch das Offsetfeld zerstört wird und somit anstelle einer Signalechogenerierung eine neue RDS-Messung gestartet wird. Obwohl es Echosequenzen mit Anfangspuls erlauben, mehr MNP Parameter zu messen, bietet dieser Ansatz dennoch entscheidende Vorteile. So ergibt sich eine massive Vereinfachung der Hardware und es sind bei gleicher Rotationsfrequenz deutlich höhere Wiederholraten möglich. Die Vermeidung von Schaltvorgängen durch die Verwendung von Offsetfeldern ermöglicht es, mit dem ursprünglichem Aufbau auch Partikelsysteme zu untersuchen, deren Relaxationszeit weit unter 3 ms liegt. Hier zeigt sich, dass sich für unterschiedliche Partikelsysteme teils sehr charakteristische Signalmuster ergeben. Diese lassen sich grob in drei Kategorien einteilen. Die erste Kategorie sind suspendierte Eindomänenpartikel mit einer nicht vernachlässigbaren Relaxationszeit. Hier handelt es sich um das bevorzugte Zielsystem für RDS, das durch die Langevin-Gleichung beschrieben werden kann. Die zweite Kategorie sind Partikelsysteme, bei denen die Relaxationsdauer vernachlässigbar ist. In diesem Fall kann der Signalverlauf mit der Langevinfunktion beschrieben werden. Die dritte Kategorie umfasst alle übrigen Partikelsysteme, insbesondere Suspensionen von MNP-Clustern, die u.a. aufgrund von Interpartikelwechselwirkung komplexe Signalverläufe ergeben, die sich praktisch nicht berechnen lassen. Spektroskopische Untersuchungen sind damit dennoch durch das Anlegen entsprechender Referenzdatenbanken möglich (Fingerprinting). Multiparametrisches RDS, d.h. die Wiederholung der Messung für z.B. unterschiedliche Amplituden oder unterschiedliche Viskositäten des Suspensionsmediums, erzeugt aufgrund mehrerer nichtlinearer Abhängigkeiten massive Unterschiede im resultierenden multidimensionalen Datensatz. Das verspricht die Erreichbarkeit hoher spektroskopischer Trennschärfen bei geeigneter Partikel- und Sequenzoptimierung. Die Simulationen und experimentellen Ergebnisse dieser Arbeit zeigen grundsätzliche Hürden und Möglichkeiten für das ebenfalls in dieser Arbeit eingeführte RDS auf. Es zeigt damit grundlegende Aspekte auf, die für die Entwicklung von RDS-Hardware und die Optimierung von MNP-Suspensionen nötig sind. Mit RDS wird in weiterführenden Arbeiten die Entwicklung von hochempfindlichen Bioassays und die Erweiterung um die räumliche Kodierung angestrebt (RDI), da der zugrunde liegende Effekt zugleich sehr vielversprechend als Grundlage für molekulare Bildgebung ist. N2 - The growing availability of magnetic nanoparticles (MNPs) with functionalized particle surfaces opens up far-reaching possibilities for chemical, biological and clinical analytical methods. Functionalization can cause targeted interaction with molecules, which generally also change the mobility of MNPs. Methods for characterizing MNPs such as AC-susceptometry, magnetorelaxometry (MRX), or magnetic particle spectroscopy (MPS) can measure this change in mobility in MNPs if they are MNPs whose magnetic moment is fixed in the particle. Thus, functionalized MNPs can indirectly be used to specifically measure molecular concentrations. MNPs can also be produced in biocompatible form, making them useful as in vivo markers. Magnetic Particle Imaging (MPI), first published in 2005, can be viewed as an MPS extended by spatial coding using gradient fields. Thanks to biocompatible MNPs, it is an in vivo, non-invasive imaging method. With functionalized MNPs as markers, molecular imaging is thus in principle also possible, which can spatially map metabolic processes by detecting the molecules involved (biomarkers). Compared to imaging of tissue and bone structures, the diagnostic possibilities can be considerably extended by molecular imaging. Rotational drift spectroscopy (RDS) is a method developed in this work for inductively measuring the mobility of MNPs in liquid suspension. It uses the rotational drift of MNPs in rotating magnetic fields as a basis and offers the potential to measure the changes in the mobility of MNPs with a sensitivity that can potentially be several orders of magnitude higher than the methods mentioned above. The present work focuses on the applicability of this effect as a spectroscopy method. However, the properties of the RDS signal are also promising as a basis for spatial coding. Therefore, in further projects, the development of Rotating Drift Imaging (RDI) as a non-invasive method for molecular imaging will also be pursued. The basic idea of RDS is borrowed from a sensor design published in 2006 based on magnetic microparticles in a weak rotating magnetic field. The rotating magnetic field is chosen so weak that the particle cannot rotate synchronously with the external field due to viscous friction. The frequency of the resulting asynchronous rotational drift is below the frequency of the external rotating field and is dependent on the viscous friction. Due to this dependence, changes in the friction coefficient of the particle can be measured via changes in the rotational drift frequency. RDS aims to be able to measure this rotational drift in suspended MNPs via their macroscopic magnetization. Among other things, this will enable the non-invasive measurement of MNPs within opaque biological samples. MNP suspensions are large number nanoparticle ensembles and cannot be measured like a single microparticle. For inductive measurement, alignment of all magnetic moments is necessary before starting, otherwise their macroscopic magnetization adds up to zero. Due to rotational diffusion, this alignment remains only for a limited time, so that the actual measurement of the RDS signal is also possible only for a limited time. This alignment was created in the first experiments by a short magnetic field pulse. In the receiving coil, the induction due to the rotating field is typically several orders of magnitude higher than the expected signal and must be suppressed by a low-pass filter. In this low-pass filter, however, the injection of the initial pulse elicits a pulse response that can likewise be several orders of magnitude of the expected signal and decays similarly slowly to typical signals. Suppression of this pulse response was the major hurdle in the initial experiments. The initial setup had a relay circuit for pulse suppression and resulted in a dead time of 3 ms between the initial pulse and the start of the measurement. Due to this dead time, the first measurements were limited to larger agglomerates and sediments of MNPs, since only in this case there was a sufficiently long decay time of the sample magnetization. However, the behavior of such particle systems is comparatively complex and difficult to model theoretically due to mechanical and magnetic interparticle interactions. In contrast, the primary target system for RDS, single domain particles with magnetization fixed in the particle and point symmetry with respect to the friction tensor, allows the establishment of a parameterized function for the signal course. Thus, it allows a more solid evaluation of the RDS signal due to its better computability. In order to measure single domain particles in aqueous suspension with typical particle diameters around 100 nm, a reduction of the dead time to at least 1/10 is required. In principle, this problem can be mitigated by using fast semiconductor switches in conjunction with precisely tunable inductive decoupling of the coil system. Simulations of the RDS signal for various RDS sequences, however, reveal two other possibilities that do not require extensive intervention in the hardware. First, orthogonal frequency shuffling with suitable frequency and phase ratios can be used to cause alignment of the magnetic moments. Since the required frequencies can lie entirely within the stopband of the low-pass filter, this allows the pulse response to be completely avoided with sufficiently "soft" switching between the polarization sequence and the RDS sequence. Furthermore, it is shown that in the presence of a weak offset field (< 10 % of the rotating field amplitude), there is an alignment of the magnetic moments when the rotating magnetic field changes direction and this change does not occur abruptly, but the rotating field transitions to a linear oscillating field. On the other hand, the effect of the offset field is almost completely neutralized by the rotating field before and after the change, so that the switching of an offset field, which generates interference signals, can thus be replaced. It is not possible to generate echo sequences in this way, since here the previously imposed phase distribution is destroyed by the offset field when the direction of the rotation field is reversed, which is required for echo sequences, and thus a new RDS measurement is started instead of signal echo generation. Although echo sequences with an initial pulse allow more MNP parameters to be measured, this approach still offers decisive advantages. For example, there is a massive simplification of the hardware and significantly higher repetition rates are possible at the same rotation frequency. The avoidance of switching processes by using offset fields makes it possible to investigate particle systems with relaxation times far below 3 ms with the original setup. Here it is shown that for different particle systems partly very characteristic signal patterns result. These can be roughly divided into three categories. The first category is suspended single domain particles with a non- negligible relaxation time. This is the preferred target system for RDS, which can be described by the Langevin equation. The second category is particle systems where the relaxation time is negligible. In this case, the signal response can be described by the Langevin function. The third category includes all other particle systems, in particular suspensions of MNP clusters, which, due to interparticle interactions, among other things, yield complex signal courses that cannot be calculated in practice. Spectroscopic investigations are nevertheless possible by creating corresponding reference databases (fingerprinting). Multiparametric RDS, i.e. repeating the measurement for e.g. different amplitudes or different viscosities of the suspension medium, generates massive differences in the resulting multidimensional data set due to several nonlinear dependencies. This promises the achievability of high spectroscopic discriminatory power with suitable particle and sequence optimization. The simulations and experimental results of this work highlight fundamental hurdles and opportunities for RDS, which is also introduced in this work. It thus highlights fundamental aspects necessary for the development of RDS hardware and the optimization of MNP suspensions. With RDS, further work will aim to develop highly sensitive bioassays and extend them to include spatial encoding (RDI), as the underlying effect is at the same time very promising as a basis for molecular imaging. KW - Magnetteilchen KW - Nanopartikel KW - Spektroskopie KW - Magnetpartikelspektroskopie KW - magnetic nanoparticles KW - rotating magnetic field Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-268631 ER - TY - JOUR A1 - Dawood, Peter A1 - Breuer, Felix A1 - Stebani, Jannik A1 - Burd, Paul A1 - Homolya, István A1 - Oberberger, Johannes A1 - Jakob, Peter M. A1 - Blaimer, Martin T1 - Iterative training of robust k‐space interpolation networks for improved image reconstruction with limited scan specific training samples JF - Magnetic Resonance in Medicine N2 - To evaluate an iterative learning approach for enhanced performance of robust artificial‐neural‐networks for k‐space interpolation (RAKI), when only a limited amount of training data (auto‐calibration signals [ACS]) are available for accelerated standard 2D imaging. Methods In a first step, the RAKI model was tailored for the case of limited training data amount. In the iterative learning approach (termed iterative RAKI [iRAKI]), the tailored RAKI model is initially trained using original and augmented ACS obtained from a linear parallel imaging reconstruction. Subsequently, the RAKI convolution filters are refined iteratively using original and augmented ACS extracted from the previous RAKI reconstruction. Evaluation was carried out on 200 retrospectively undersampled in vivo datasets from the fastMRI neuro database with different contrast settings. Results For limited training data (18 and 22 ACS lines for R = 4 and R = 5, respectively), iRAKI outperforms standard RAKI by reducing residual artifacts and yields better noise suppression when compared to standard parallel imaging, underlined by quantitative reconstruction quality metrics. Additionally, iRAKI shows better performance than both GRAPPA and standard RAKI in case of pre‐scan calibration with varying contrast between training‐ and undersampled data. Conclusion RAKI benefits from the iterative learning approach, which preserves the noise suppression feature, but requires less original training data for the accurate reconstruction of standard 2D images thereby improving net acceleration. KW - complex‐valued machine learning KW - data augmentation KW - deep learning KW - GRAPPA KW - parallel imaging KW - RAKI Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312306 VL - 89 IS - 2 SP - 812 EP - 827 ER - TY - THES A1 - Bauernfeind, Maximilian Josef Xaver T1 - Epitaxy and Spectroscopy of Two-Dimensional Adatom Systems: the Elemental Topological Insulator Indenene on SiC T1 - Epitaxie und Spektroskopie zweidimensionaler Adatom Systeme: der elementare Topologische Isolator Indenene auf SiC N2 - Two-dimensional (2D) topological insulators are a new class of materials with properties that are promising for potential future applications in quantum computers. For example, stanene represents a possible candidate for a topological insulator made of Sn atoms arranged in a hexagonal lattice. However, it has a relatively fragile low-energy spectrum and sensitive topology. Therefore, to experimentally realize stanene in the topologically non-trivial phase, a suitable substrate that accommodates stanene without compromising these topological properties must be found. A heterostructure consisting of a SiC substrate with a buffer layer of adsorbed group-III elements constitutes a possible solution for this problem. In this work, 2D adatom systems of Al and In were grown epitaxially on SiC(0001) and then investigated structurally and spectroscopically by scanning tunneling microscopy (STM) and photoelectron spectroscopy. Al films in the high coverage regime \( (\Theta_{ML}\approx2\) ML\( ) \) exhibit unusually large, triangular- and rectangular-shaped surface unit cells. Here, the low-energy electron diffraction (LEED) pattern is brought into accordance with the surface topography derived from STM. Another Al reconstruction, the quasi-one-dimensional (1D) Al phase, exhibits a striped surface corrugation, which could be the result of the strain imprinted by the overlayer-substrate lattice mismatch. It is suggested that Al atoms in different surface areas can occupy hexagonal close-packed and face-centered cubic lattice sites, respectively, which in turn lead to close-packed transition regions forming the stripe-like corrugations. On the basis of the well-known herringbone reconstruction from Au(111), a first structural model is proposed, which fits well to the structural data from STM. Ultimately, however, thermal treatments of the sample could not generate lower coverage phases, i.e. in particular, a buffer layer structure. Strong metallic signatures are found for In high coverage films \( (\Theta_{ML}\approx3\) to \(2\) ML\() \) by scanning tunneling spectroscopy (STS) and angle-resolved photoelectron spectroscopy (ARPES), which form a \( (7\times7) \), \( (6\times4\sqrt{3}) \), and \( (4\sqrt{3}\times4\sqrt{3}) \) surface reconstruction. In all these In phases electrons follow the nearly-free electron model. Similar to the Al films, thermal treatments could not obtain the buffer layer system. Surprisingly, in the course of this investigation a triangular In lattice featuring a \( (1\times1) \) periodicity is observed to host massive Dirac-like bands at \( K/K^{\prime} \) in ARPES. Based on this strong electronic similarity with graphene at the Brillouin zone boundary, this new structure is referred to as \textit{indenene}. An extensive theoretical analysis uncovers the emergence of an electronic honeycomb network based on triangularly arranged In \textit{p} orbitals. Due to strong atomic spin-orbit coupling and a comparably small substrate-induced in-plane inversion symmetry breaking this material system is rendered topologically non-trivial. In indenene, the topology is intimately linked to a bulk observable, i.e., the energy-dependent charge accumulation sequence within the surface unit cell, which is experimentally exploited in STS to confirm the non-trivial topological character. The band gap at \( K/K^{\prime} \), a signature of massive Dirac fermions, is estimated by ARPES to approximately 125 meV. Further investigations by X-ray standing wave, STM, and LEED confirm the structural properties of indenene. Thus, this thesis presents the growth and characterization of the novel quantum spin Hall insulator material indenene. N2 - Zweidimensionale (2D) topologische Isolatoren sind eine neue Materialklasse mit vielversprechenden Eigenschaften für potenzielle zukünftige Anwendungen in Quantencomputern. Stanene stellt hier beispielsweise einen möglichen Kandidaten für einen topologischen Isolator dar. Diese 2D-Schicht besteht aus Sn-Atomen, angeordnet in einem hexagonalen Gitter. Allerdings weist dieses Gitter ein relativ fragiles Niederenergiespektrum und eine empfindliche Topologie auf. Um Stanene daher in der topologisch nicht-trivialen Phase experimentell realisieren zu können, muss ein geeignetes Substrat gefunden werden, das Stanene aufnehmen kann, ohne die topologischen Eigenschaften zu beeinträchtigen. Eine Heterostruktur aus einem SiC-Substrat mit einer Pufferschicht aus adsorbierten Gruppe-III Elementen stellt hier eine mögliche Lösung für dieses Problem dar. Im Hinblick darauf wurden für diese Arbeit 2D-Adatomsysteme aus Al und In epitaktisch auf SiC(0001) gewachsen und mittels Rastertunnelmikroskopie (engl.: scanning tunneling microscopy, STM) und Photoelektronenspektroskopie strukturell und spektroskopisch untersucht. Al-Schichten mit hoher Bedeckung \( (\Theta_{ML}\approx2\) ML\( ) \) weisen ungewöhnlich große, dreieckig und rechteckig geformte Oberflächeneinheitszellen auf. Hierbei wird das Beugungsmuster der niederenergetischen Elektronenbeugung (engl.: low-energy electron diffraction, LEED) mit der aus STM abgeleiteten Oberflächentopographie in Einklang gebracht. Eine andere Al-Rekonstruktion, die quasi-eindimensionale (1D) Al-Phase, zeigt eine gestreifte Oberflächenkorrugation, die ein Ergebnis der Verspannung durch die Fehlanpassung des Al-Gitters auf dem Substratgitter sein könnte. Es wird vorgeschlagen, dass Al-Atome in verschiedenen Oberflächenbereichen sowohl jeweils hexagonal-dichtgepackte als auch kubisch flächenzentrierte Gitterplätze einnehmen können. In Übergangsregionen zwischen beiden Bereichen erzeugt dies dicht gepackte Al-Atome, die wiederum die streifenartigen Korrugationen hervorrufen. Auf der Basis der bekannten Fischgrätenrekonstruktion von Au(111) wird ein erstes Strukturmodell vorgeschlagen, das gut mit strukturellen STM-Daten übereinstimmt. Letztendlich konnten jedoch durch thermische Behandlungen der Probe keine Phasen mit geringerer Bedeckung, das heißt insbesondere die Pufferschichtstruktur, erzeugt werden. In-Hochbedeckungsphasen \( (\Theta_{ML}\approx3\) to \(2\) ML\() \) weisen ein ausgeprägtes metallisches Verhalten auf in der Rastertunnelspektroskopie (engl.: scanning tunneling spectroscopy, STS) und winkelaufgelösten Photoelektronenspektroskopie (engl.: angle-resolved photoelectron spectroscopy, ARPES). Zudem bilden diese Phasen eine \( (7\times7) \), \( (6\times4\sqrt{3}) \), and \( (4\sqrt{3}\times4\sqrt{3}) \)-Oberflächenrekonstruktion aus. In all diesen Phasen folgen die Elektronen dem Modell der quasifreien Elektronen. Ähnlich zu den Al-Filmen konnte auch hier nach thermischen Behandlungen der Probe keine Pufferschichtstruktur erzeugt werden. Überraschenderweise tritt im Laufe dieser Untersuchung ein Dreiecksgitter aus In-Atomen mit einer \( (1\times1) \)-Periodizität auf, das bei \( K/K^{\prime} \) massive Dirac-artige Bänder in ARPES zeigt. Aufgrund der starken Ähnlichkeit mit der Graphene-Bandstruktur am Brillouinzonenrand, wird dieses neuartige Materialsystem \textit{Indenene} benannt. Eine umfangreiche theoretische Untersuchung legt die Entstehung eines elektronischen Honigwabennetzwerks offen, dass sich aufgrund von dreieckig angeordneten In \textit{p}-Orbitalen bildet. Durch starke atomare Spin-Bahn-Wechselwirkung und einen vergleichsweisen schwachen substratinduzierten Inversionssymmetriebruch in der Ebene, ist dieses Materialsystem topologisch nicht-trivial. In Indenene ist die Topologie eng mit einer Volumenobservablen, genauer die energieabhängige Ladungsakkumulationsequenz innerhalb der Oberflächeneinheitszelle, verknüpft. Diese Sequenz wird mittels STS experimentell ausgenutzt, um den topologisch nicht-trivialen Charakter zu bestätigen. Die Bandlücke bei \( K/K^{\prime} \), charakteristisch für massive Dirac-Fermionen, wird mittels ARPES auf ungefähr 125 meV abgeschätzt. Weitere Untersuchungen basierend auf stehenden Röntgenwellen, STM, und LEED bestätigen die strukturellen Eigenschaften von Indenene. Dementsprechend wird in dieser Arbeit dasWachstum und auch die Charakterisierung des neuartigen Quanten Spin Hall Isolators Indenene vorgestellt. KW - Dreiecksgitter KW - Monoschicht KW - Indium KW - Topologischer Isolator KW - Siliciumcarbid KW - Monolage KW - Siliziumkarbid KW - STM KW - Triangular lattice KW - Monolayer KW - Silicon carbide KW - ARPES KW - Rastertunnelmikroskop Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-311662 ER - TY - THES A1 - Tcakaev, Abdul-Vakhab T1 - Soft X-ray Spectroscopic Study of Electronic and Magnetic Properties of Magnetic Topological Insulators T1 - Spektroskopische Untersuchung der elektronischen und magnetischen Eigenschaften magnetischer topologischer Isolatoren mit weicher Röntgenstrahlung N2 - After the discovery of three-dimensional topological insulators (TIs), such as tetradymite chalcogenides Bi$_2$Se$_3$, Bi$_2$Te$_3$ and Sb$_2$Te$_3$ – a new class of quantum materials characterized by their unique surface electronic properties – the solid state community got focused on topological states that are driven by strong electronic correlations and magnetism. An important material class is the magnetic TI (MTI) exhibiting the quantum anomalous Hall (QAH) effect, i.e. a dissipationless quantized edge-state transport in the absence of external magnetic field, originating from the interplay between ferromagnetism and a topologically non-trivial band structure. The unprecedented opportunities offered by these new exotic materials open a new avenue for the development of low-dissipation electronics, spintronics, and quantum computation. However, the major concern with QAH effect is its extremely low onset temperature, limiting its practical application. To resolve this problem, a comprehensive understanding of the microscopic origin of the underlying ferromagnetism is necessary. V- and Cr-doped (Bi,Sb)$_2$Te$_3$ are the two prototypical systems that have been widely studied as realizations of the QAH state. Finding microscopic differences between the strongly correlated V and Cr impurities would help finding a relevant model of ferromagnetic coupling and eventually provide better control of the QAH effect in these systems. Therefore, this thesis first focuses on the V- and Cr-doped (Bi,Sb)$_2$Te$_3$ systems, to better understand these differences. Exploiting the unique capabilities of x-ray absorption spectroscopy and magnetic circular dichroism (XAS/XMCD), combined with advanced modeling based on multiplet ligand-field theory (MLFT), we provide a detailed microscopic insight into the local electronic and magnetic properties of these systems and determine microscopic parameters crucial for the comparison with theoretical models, which include the $d$-shell filling, spin and orbital magnetic moments. We find a strongly covalent ground state, dominated by the superposition of one and two Te-ligand-hole configurations, with a negligible contribution from a purely ionic 3+ configuration. Our findings indicate the importance of the Te $5p$ states for the ferromagnetism in (Bi, Sb)$_2$Te$_3$ and favor magnetic coupling mechanisms involving $pd$-exchange. Using state-of-the-art density functional theory (DFT) calculations in combination with XMCD and resonant photoelectron spectroscopy (resPES), we reveal the important role of the $3d$ impurity states in mediating magnetic exchange coupling. Our calculations illustrate that the kind and strength of the exchange coupling varies with the impurity $3d$-shell occupation. We find a weakening of ferromagnetic properties upon the increase of doping concentration, as well as with the substitution of Bi at the Sb site. Finally, we qualitatively describe the origin of the induced magnetic moments at the Te and Sb sites in the host lattice and discuss their role in mediating a robust ferromagnetism based on a $pd$-exchange interaction scenario. Our findings reveal important clues to designing higher $T_{\text{C}}$ MTIs. Rare-earth ions typically exhibit larger magnetic moments than transition-metal ions and thus promise the opening of a wider exchange gap in the Dirac surface states of TIs, which is favorable for the realization of the high-temperature QAH effect. Therefore, we have further focused on Eu-doped Bi$_2$Te$_3$ and scrutinized whether the conditions for formation of a substantial gap in this system are present by combining spectroscopic and bulk characterization methods with theoretical calculations. For all studied Eu doping concentrations, our atomic multiplet analysis of the $M_{4,5}$ x-ray absorption and magnetic circular dichroism spectra reveals a Eu$^{2+}$ valence, unlike most other rare earth elements, and confirms a large magnetic moment. At temperatures below 10 K, bulk magnetometry indicates the onset of antiferromagnetic ordering. This is in good agreement with DFT results, which predict AFM interactions between the Eu impurities due to the direct overlap of the impurity wave functions. Our results support the notion of antiferromagnetism coexisting with topological surface states in rare-earth doped Bi$_2$Te$_3$ and corroborate the potential of such doping to result in an antiferromagnetic TI with exotic quantum properties. The doping with impurities introduces disorder detrimental for the QAH effect, which may be avoided in stoichiometric, well-ordered magnetic compounds. In the last part of the thesis we have investigated the recently discovered intrinsic magnetic TI (IMTI) MnBi$_6$Te$_{10}$, where we have uncovered robust ferromagnetism with $T_{\text{C}} \approx 12$ K and connected its origin to the Mn/Bi intermixing. Our measurements reveal a magnetically intact surface with a large moment, and with FM properties similar to the bulk, which makes MnBi$_6$Te$_{10}$ a promising candidate for the QAH effect at elevated temperatures. Moreover, using an advanced ab initio MLFT approach we have determined the ground-state properties of Mn and revealed a predominant contribution of the $d^5$ configuration to the ground state, resulting in a $d$-shell electron occupation $n_d = 5.31$ and a large magnetic moment, in excellent agreement with our DFT calculations and the bulk magnetometry data. Our results together with first principle calculations based on the DFT-GGA$+U$, performed by our collaborators, suggest that carefully engineered intermixing plays a crucial role in achieving a robust long-range FM order and therefore could be the key for achieving enhanced QAH effect properties. We expect our findings to aid better understanding of MTIs, which is essential to help increasing the temperature of the QAH effect, thus facilitating the realization of low-power electronics in the future. N2 - Nach der Entdeckung von dreidimensionalen topologischen Isolatoren (TIs), einer neuen Klasse von Quantenmaterialien, die sich durch ihre einzigartigen elektronischen Oberflächeneigenschaften auszeichnen – und zu denen beispielsweise die Tetradymit-Di\-chal\-kogenide Bi2Se3, Bi2Te3 und Sb2Te3 gehören –, gerieten zunehmend topologische Zustände, deren Eigenschaften von starken elektronische Korrelationen und Magnetismus bestimmt werden, in den Fokus aktueller Festkörperforschung. Eine wichtige Materialklasse bilden die magnetischen TI (MTI), die einen quantenanomalen Hall-Effekt (QAH) aufweisen, d.h. eine dissipationsfreie, quantisierte Randzustandsleitfähigkeit in Abwesenheit eines externen Magnetfeldes, die aus dem Zusammenspiel von Ferromagnetismus und einer topologisch nicht-trivialen Bandstruktur resultiert. Die beispiellosen Möglichkeiten, die solche neuen, exotischen Materialien bieten, eröffnen einen neuen Weg für die Entwicklung von Elektronik mit geringer Verlustleistung, sowie von Spintronik und von Quanten\-com\-pu\-tern. Das Hauptproblem des QAH-Effekts ist jedoch die extrem niedrige Temperatur, bei der er auftritt, was seine praktische Anwendung einschränkt. Um dieses Problem zu lösen, ist ein umfassendes Verständnis des mikroskopischen Ursprungs des zugrunde liegenden Ferromagnetismus erforderlich. V- und Cr-dotiertes (Bi,Sb)2Te3 sind die beiden prototypischen Systeme, die als Realisierungen des QAH-Zustands umfassend untersucht wurden. Die Suche nach mikro\-skopischen Unterschieden zwischen den stark korrelierten V- und Cr-Dotieratomen würde helfen, ein relevantes Modell für die ferromagnetische Kopplung zu finden und schließlich eine bessere Kontrolle des QAH-Effekts in diesen Systemen zu ermöglichen. Daher konzentriert sich diese Arbeit zunächst auf die V- und Cr-dotierten (Bi,Sb)2Te3-Systeme, um diese Unterschiede besser zu verstehen. Unter Ausnutzung der einzigartigen Möglich\-keiten der Röntgenabsorptionsspektroskopie und des magnetischen Zirkulardichroismus (XAS/XMCD), kombiniert mit fortschrittlicher Modellierung auf der Grundlage der Multiplett-Liganden-Feld-Theorie (MLFT), geben wir einen detaillierten mi\-kro\-sko\-pi\-schen Einblick in die lokalen elektronischen und magnetischen Eigenschaften dieser Systeme und bestimmen mikroskopische Parameter, die für den Vergleich mit theoretischen Modellen entscheidend sind. Wir finden einen stark kovalenten Grundzustand, der von der Überlagerung von Ein- und Zwei-Te-Liganden-Loch-Konfigurationen dominiert wird, mit einem vernachlässigbaren Beitrag einer rein ionischen 3+ Konfiguration. Unsere Ergebnisse weisen auf die Bedeutung der Te 5p$−Zustände für den Ferromagnetismus in(Bi,Sb)\(2Te3 hin und deuten auf magnetische Kopplungsmechanismen mit pd-Austausch hin. Unter Verwendung modernster Dichtefunktionaltheorie (DFT)-Rechnungen in Kombination mit XMCD und resonanter Photoelektronenspektroskopie (resPES) demonstrieren wir die wichtige Rolle der 3d-Dotieratomzustände bei der Vermittlung der magnetischen Austauschkopplung. Unsere Berechnungen zeigen, dass die Art und Stärke der Austauschkopplung mit der 3d-Schalenbesetzung der Dotieratome variiert. Wir stellen eine Abschwächung der ferromagnetischen Eigenschaften bei Erhöhung der Dotierungskonzentration fest, ebenso wie bei Substitution von Bi an der Sb-Stelle. Schließlich beschreiben wir qualitativ den Ursprung der induzierten magnetischen Momente an den Te- und Sb-Stellen im Wirtsgitter und diskutieren ihre Rolle bei der Vermittlung eines robusten Ferromagnetismus auf der Grundlage des pd$−Austauschwechselwirkungsszenarios. Unsere Ergebnisse liefern wichtige Anhaltspunkte für die Entwicklung von MTIsmithöherem\(TC. Seltenerdionen weisen typischerweise größere magnetische Momente auf als Über\-gangsmetall-Ionen und legen daher die Öffnung einer größeren Austausch\-lücke in den Dirac-Ober\-flächenzuständen von TIs nahe, was für den Hochtemperatur-QAH-Effekt günstig ist. Daher haben wir uns weiter auf Eu-dotiertes Bi2Te3 konzentriert und untersucht, ob die Bedingungen für die Bildung einer substantiellen Lücke in diesem System gegeben sind, indem wir spektroskopische und Bulk-Charakterisierungsmethoden mit theoretischen Berechnungen kombiniert haben. Für alle untersuchten Eu\hyp{}Dotierungs\-kon\-zen\-trationen zeigt unsere atomare Multiplettanalyse der M4,5-Röntgenabsorptions- und der magnetischen Zirkulardichroismus-Spektren eine Eu2+-Valenz, im Gegensatz zu den meisten anderen Seltenen Erden, und bestätigt ein großes magnetisches Moment. Bei Temperaturen unter 10 K zeigt die Magnetometrie das Einsetzen einer antiferromagnetischen Ordnung an. Dies steht in guter Übereinstimmung mit DFT-Ergebnissen, die AFM-Wechselwirkungen zwischen den Eu-Dotieratomen aufgrund des direkten Überlapps der Wellenfunktionen der Dotieratome vorhersagen. Unsere Ergebnisse unterstützen die Annahme von Antiferromagnetismus, der mit topologischen Oberflächenzuständen in mit Seltenerdatomen dotiertem Bi2Te3 koexistiert, und bestätigen das Potenzial einer solchen Dotierung, einen antiferromagnetischen TI mit exotischen Quanteneigenschaften zu erzeugen. Dotierung führt zu einer für den QAH-Effekt nachteiligen Unordnung, die in stöchiometrischen, gut geordneten magnetischen Verbindungen vermieden werden kann. Im letzten Teil der Arbeit haben wir den kürzlich entdeckten, intrinsischen magnetischen TI (IMTI) MnBi6Te10 untersucht, in dem wir robusten Ferromagnetismus mit TC≈12 K beobachtet und seinen Ursprung mit Mn/Bi-Antilagendefekte (Substitution von Mn auf Bi-Plätzen und umgekehrt) in Verbindung gebracht haben. Unsere Messungen zeigen eine magnetisch intakte Oberfläche mit einem großen Moment und mit FM-Eigenschaften, die denen im Inneren des Materials ähnlich sind, was MnBi6Te10 zu einem vielversprechenden Kandidaten für den QAH-Effekt bei erhöhten Temperaturen macht. Darüber hinaus haben wir mit Hilfe eines fortgeschrittenen ab initio MLFT-Ansatzes die Grundzustandseigenschaften von Mn bestimmt und einen vorherrschenden Beitrag der d5-Konfiguration zum Grundzustand festgestellt, was zu einer d-Schalen-Elektronenbesetzung nd=5.31 und einem großen magnetischen Moment führt, in hervorragender Übereinstimmung mit unseren DFT-Berechnungen und den Daten der Magnetometrie. Unsere Ergebnisse, kombiniert mit den auf DFT-GGA+U basierenden First-Principle-Berechnungen, die von Kollegen durchgeführt wurden, deuten darauf hin, dass sorgfältig herbeigeführte Antilagendefekte eine entscheidende Rolle bei der Erzielung einer robusten langreichweitigen FM-Ordnung spielen und daher der Schlüssel zur Er\-zie\-lung verbesserter QAH\hyp{}Eigenschaften sein könnten. Wir erwarten, dass unsere Ergebnisse zu einem besseren Verständnis von MTIs beitragen werden, was wiederum die Erhöhung der Temperatur des QAH-Effekts und damit die Realisierung von Low-Power-Elektronik in der Zukunft erleichtern wird. KW - Topologischer Isolator KW - Röntgenspektroskopie KW - x-ray spectroscopy KW - topological insulators KW - XMCD Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-303786 ER - TY - JOUR A1 - Grüne, Jeannine A1 - Londi, Giacomo A1 - Gillett, Alexander J. A1 - Stähly, Basil A1 - Lulei, Sebastian A1 - Kotova, Maria A1 - Olivier, Yoann A1 - Dyakonov, Vladimir A1 - Sperlich, Andreas T1 - Triplet Excitons and Associated Efficiency‐Limiting Pathways in Organic Solar Cell Blends Based on (Non‐) Halogenated PBDB‐T and Y‐Series JF - Advanced Functional Materials N2 - The great progress in organic photovoltaics (OPV) over the past few years has been largely achieved by the development of non‐fullerene acceptors (NFAs), with power conversion efficiencies now approaching 20%. To further improve device performance, loss mechanisms must be identified and minimized. Triplet states are known to adversely affect device performance, since they can form energetically trapped excitons on low‐lying states that are responsible for non‐radiative losses or even device degradation. Halogenation of OPV materials has long been employed to tailor energy levels and to enhance open circuit voltage. Yet, the influence on recombination to triplet excitons has been largely unexplored. Using the complementary spin‐sensitive methods of photoluminescence detected magnetic resonance and transient electron paramagnetic resonance corroborated by transient absorption and quantum‐chemical calculations, exciton pathways in OPV blends are unravelled employing the polymer donors PBDB‐T, PM6, and PM7 together with NFAs Y6 and Y7. All blends reveal triplet excitons on the NFA populated via non‐geminate hole back transfer and, in blends with halogenated donors, also by spin‐orbit coupling driven intersystem crossing. Identifying these triplet formation pathways in all tested solar cell absorber films highlights the untapped potential for improved charge generation to further increase plateauing OPV efficiencies. KW - halogenation KW - non‐fullerene acceptors KW - organic photovoltaics KW - spin physics KW - triplet excitons Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312164 VL - 33 IS - 12 ER - TY - THES A1 - Stahlhut, Philipp T1 - Konzeption und Aufbau einer Nanofokus Labor CT Anlage in Reflexionsgeometrie auf Basis eines Rasterelektronenmikroskops T1 - Design and construction of a nanofocus laboratory CT system in reflection geometry based on a scanning electron microscope N2 - In der vorliegenden Arbeit werden die Konzeption und Realisierung eines Computertomographen zur Materialanalyse auf Basis eines Rasterelektronenmikroskops mit einem räumlichen Auflösungsvermögen im Nanometerbereich diskutiert. Durch einen fokussierten Elektronenstrahl, der mit einer Beschleunigungsspannung von 30 kV auf eine mikrostrukturierte Wolframnadel mit einem Spitzenradius von bis zu 50 nm gezielt wird, entsteht ein kleiner Röntgenbrennfleck über den mit geometrischer Vergrößerung hochauflösende Projektionen eines zu untersuchenden Objekts erzeugt werden. Durch Rotation des Testobjekts werden Projektionen aus verschiedenen Blickwinkeln aufgenommen und über einen speziellen Rekonstruktionsalgorithmus zu einem 3-dimensionalen Bild zusammengefügt. Bei der Beurteilung der Einzelkomponenten des Geräts wird insbesondere auf Struktur, Form und den elektrochemischen Herstellungsprozess der Röntgenquelle eingegangen. Eine ausreichend genaue Positionierung von Messobjekt und Röntgenbrennfleck wird über Piezoachsen realisiert, während die Stabilität des Röntgenbrennflecks über die Elektronenoptik des Rasterelektronenmikroskops und die Form der Quellnadel optimiert wird. Das räumliche Auflösungsvermögen wird über die Linienspreizfunktion an Materialkanten abgeschätzt. Für eine Wolfram-Block-Quelle ergibt sich dabei ein Auflösungsvermögen von 325 nm – 400 nm in 3D, während der Quellfleck einer Wolframnadel das Auflösungsvermögen der Anlage auf 65 nm – 90 nm in 2D und 170 nm – 300 nm in 3D bei Messungen an einem AlCu29-Testobjekt anhebt. Außerdem werden die Auswirkungen der Phasenkontrastcharakteristik der Röntgenquelle auf die rekonstruierten Bilder nach Anwendung eines Paganin-Filters diskutiert. Dabei zeigt sich, dass durch Anwendung des Filters ein verbessertes Signal-zu-Rausch-Verhältnis auf Kosten der räumlichen Bildauflösung erzielt werden kann. Eine Vergleichsmessung mit einem kommerziell verfügbaren Röntgenmikroskop zeigt die Stärken des vorgestellten Systems bei Untersuchung von stark absorbierenden Messobjekten. Das kompakte Design erlaubt eine Weiterentwicklung in Richtung eines nanoCT-Moduls als Upgrade Option für Rasterelektronenmikroskope im Gegensatz zu den weitaus teureren bisher verbreiteten nanoCT-Geräten. N2 - The presented thesis discusses the conceptual design and realization of a computed tomography system for material analysis based on a scanning electron microscope with a spatial resolution in the nanometer range. A focused electron beam accelerated through a field of 30 kV aimed at a microstructured tungsten needle with a tip radius of up to 50 nm creates a small X-ray focal spot enabling high-resolution projections of an object via geometric magnification. By rotating the object, projections from different angles are recorded and combined into a 3-dimensional image using a special reconstruction algorithm. When assessing the individual components of the device, particular attention is paid to the structure, shape and the electrochemical manufacturing process of the X-ray source. Sufficiently accurate positioning of the sample and the X-ray focal spot is realized via piezo axes, while the stability of the focal spot is optimized via the electron optics of the scanning electron microscope and the shape of the source needle. The spatial resolution is estimated via the line spread function at material edges. For a tungsten block source, this results in a spatial resolution of 325 nm – 400 nm in 3D, while the source spot of a tungsten needle increases the spatial resolution of the system to 65 nm – 90 nm in 2D and 170 nm – 300 nm in 3D for measurements on an AlCu29 test object. In addition, the effects of the phase contrast characteristics of the X-ray source on the reconstructed images after applying a Paganin phase retrieval filter are discussed. It is shown that by applying the filter, an improved signal-to-noise ratio can be achieved at the expense of spatial image resolution. Comparable measurements with a commercially available X-ray microscope shows the strengths of the presented system when investigating strongly absorbing samples. The compact design allows development towards a nanoCT-module as an upgrade option for scanning electron microscopes, reaching a similar resolution as the nanoCT-devices that are commercially available up to now but at reduced costs. KW - Computertomographie KW - Rasterelektronenmikroskopie KW - Nanometerbereich KW - Laborgerät KW - Materialanalytik KW - Reflexionsgeometrie Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-302648 ER - TY - THES A1 - Jung, Johannes T1 - Wechselwirkungen zwischen Kantenzuständen auf dem topologisch kristallinen Isolator Pb\(_{1-x}\)Sn\(_x\)Se T1 - Interactions between edge states on the topologically crystalline insulator Pb\(_{1-x}\)Sn\(_x\)Se N2 - Einerseits besteht die einfachste Möglichkeit zum Ladungs- und Informationstransport zwischen zwei Punkten in deren direkter Verbindung durch eindimensionale Kanäle. Andererseits besitzen topologische Materialien exotische und äußerst vorteilhafte Eigenschaften, weshalb es nahe liegt, dass schon bald neue Anwendungen aus ihnen realisiert werden. Wenn diese beiden Entwicklungen zusammenkommen, dann ist ein grundlegendes Verständnis von Quanteninterferenz oder Hybridisierungseffekten in eindimensionalen, topologischen Kanälen von fundamentaler Wichtigkeit. Deshalb werden in der vorliegenden Arbeit Wechselwirkungen von eindimensionalen, topologisch geschützten Kantenzuständen, die an ungeradzahligen Stufenkanten auf der (001)–Oberfläche von Pb1−xSnxSe auftreten, untersucht. Aufgrund der lateralen Lokalisierung auf wenige Nanometer um eine Stufenkante herum und der Notwendigkeit zwischen gerad- und ungeradzahligen Stufenkantenhöhen zu unterscheiden, bieten sich die Rastertunnelmikroskopie und -spektroskopie als Methoden an. Die neu entdeckten Kopplungs- bzw. Wechselwirkungseffekte zwischen benachbarten Kantenzuständen treten auf, sobald der Stufe zu Stufe Abstand einen kritischen Wert von dkri ≈ 25nm unterschreitet. Dieses Kriterium kann durch verschiedene räumliche Anordnungen von Stufenkanten erfüllt werden. Infolgedessen werden sich kreuzende, parallel verlaufende und zusammenlaufende Stufenkanten genauer untersucht. Bei letzteren verändert sich entlang der Struktur kontinuierlich der Abstand und damit die Kopplungsstärke zwischen den beiden Randkanälen. Infolgedessen wurden drei Koppelungsregime identifiziert. (I) Ausgehend von einer schwachen Wechselwirkung zeigt der für die Kantenzustände charakteristische Peak im Spektrum zunächst eine Verbreiterung und Verminderung der Intensität. (II) Mit weiter zunehmender Wechselwirkung beginnt sich der Zustand in zwei Peaks aufzuspalten, sodass ab dkri ≈ 15nm an beiden Stufenkanten durchgehen eine Doppelpeak zu beobachten ist . Mit weiter abnehmendem Abstand erreicht die Aufspaltung Werte von einigen 10 meV, während sich die Intensität weiter reduziert. (III) Sobald zwei Stufenkanten weniger als etwa 5nm voneinander getrennt sind, konvergieren aufgrund der schwindenden Intensität und des sinkenden energetischen Abstands der beiden Peaks zu den van Hove Singularitäten die Spektren an den Stufenkanten gegen das Spektrum über einer Terrasse. i Die Aufspaltung verläuft in den Bereichen I und II asymmetrisch, d. h. ein Peak verbleibt ungefähr bei der Ausgangsenergie, während der andere mit zunehmender Kopplung immer weiter weg schiebt. Bezüglich der Asymmetrie kann kein Unterschied festgestellt werden, ob die zusammenlaufenden Stufenkanten eine Insel oder Fehlstelleninsel bilden oder ob die Stufenkanten sogar gänzlich parallel verlaufen. Es zeigt sich keine Präferenz, ob zunächst der niederenergetische oder der hochenergetische Peak schiebt. Erst im Regime starker Kopplung (III) kann beobachtet werden, dass beide Peaks die Ausgangsenergie deutlich verlassen. Im Gegensatz dazu kann bei sich kreuzenden Stufen ein erheblicher Einfluss der Geometrie, in Form des eingeschlossenen Winkels, auf das Spektrum beobachtet werden. Unabhängig vom Winkel existiert am Kreuzungspunkt selbst kein Kantenzustand mehr. Die Zustände an den vier Stufen beginnen, abhängig vom Winkel, etwa 10-15nm vor dem Kreuzungspunkt abzuklingen. Überraschenderweise zeigt sich dabei, dass im Fall rechtwinkliger Stufen gar keine Aufspaltung zu beobachten ist, während bei allen anderen Winkeln ein Doppelpeak festgestellt werden kann. Diese Entdeckung deutet auf Orthogonalität bezüglich einer Quantenzahl bei den beteiligten Kantenzustände hin. Neben einer nur theoretisch vorhergesagten Spinpolarisation kann dieser Effekt auch von dem orbitalem Charakter der beteiligten Dirac–Kegel verursacht sein. Da der topologische Schutz in Pb1−xSnxSe durch Kristallsymmetrien garantiert ist, wird als letzter intrinsischer Effekt der Einfluss von eindimensionalen Defekten auf die Kantenzustände untersucht. Berücksichtigt werden dabei ein nicht näher klassifizierbarer, oberflächennaher Defekt und Schraubversetzungen. In beiden Fällen kann ebenfalls eine Aufspaltung des Kantenzustands in einen Doppelpeak gezeigt werden. Im zweiten Teil dieser Arbeit werden die Grundlagen für eine Wiederverwendung von (Pb,Sn)Se–Oberflächen bei zukünftige Experimenten mit (magnetischen) Adatomen geschaffen. Durch Kombination von Inoenzerstäubung und Tempern wird dabei nicht nur eine gereinigte Oberfläche erzeugt, sondern es kann auch das Ferminiveau gezielt erhöht oder gesenkt werden. Dieser Effekt beruht auf eine Modifikation der Sn– Konzentration und der von ihr kontrollierten Anzahl an Defektelektronen. Als letztes sind erste Messungen an Cu- und Fe–dotierte Proben gezeigt. Durch die Adatome tritt eine n–Dotierung auf, welche den Dirac–Punkt des Systems in Richtung des Ferminiveaus verschiebt. Sobald er dieses erreicht hat kommt es zu Wechselwirkungsphänomenen an freistehenden Stufenkanten. Dies führt zu einer Doppelpeakstruktur mit einer feinen Aufspaltung von wenigen meV. Das Phänomen ist auf ein schmales Energiefenster beschränkt, bei dem die Lage des Dirac–Punkts nur etwa 5 meV (in beide Richtungen) von der des Ferminiveaus abweichen darf. N2 - First, the simplest possibility of transporting charges and information between twopoints is given by there direct connection due to one dimensional channels. Second,topological materials have exotic and extremely advantageous properties, which makethem suitable for further applications. If these two come together, then a basic understandingof quantum interference or hybridization effects in one-dimensional, topologicalchannels is of fundamental importance. Therefore, in the present work, interactionsof one dimensional, topologically protected edge states, hosted at odd numbered stepedges on the (001) surface of (Pb,Sn)Se, are investigated.Due to the lateral localization to a few nanometers around a step edge and the needto differentiate between even and odd numbered step heights, scanning tunneling microscopyand spectroscopy are the tools of choice. The newly discovered coupling orinteraction effects between neighboring edge states appear as soon as their distancedecrease below a critical value of dcri ≈ 25 nm. This criterion can be met by variousspatial arrangements of step edges. As a result, crossing, parallel and converging stepedges are examined more closely.With the latter, the distance and thus the coupling strength between the two edgechannels changes continuously along the structure. As a result, three coupling regimeswere identified. (I) Starting from a weak interaction, the peak in the spectrum that ischaracteristic of the edge states initially shows a broadening and reduction in intensity.(II) With increasing interaction, the state begins to split into two peaks, so thatfrom dcri ≈ 15nm a double peak can be observed at both step edges. As the distancecontinues to decrease, the splitting reaches values of a few 10 meV, while the intensitycontinues to drop. (III) As soon as two step edges are separated by less than about 5nm, the spectra at the step edges converge against the spectrum over a terrace due tothe decreasing intensity and the decreasing energetic distance of the two peaks to thevan Hove singularities.iiiThe split is asymmetrical in areas I and II, which means that one peak remains roughlyat the original energy, while the other shifts further and further away with increasingcoupling. With regard to the asymmetry, no difference can be determined whether theconverging step edges form an island, a vacancy island or even run completely parallel.There is no preference as to whether the low energy or high energy peak shifts. Onlyin the regime of strong coupling (III) both peaks clearly leave the initial energy.In contrast to this, a considerable influence of the geometry on the spectrum can beobserved, with the included angle as parameter, for intersecting steps. Independentof the angle, there is no longer an edge state at the intersection itself. The statesat the four edges start to decay, depending on the angle, about 10-15nm before thepoint of intersection. Surprisingly, it turns out that in the case of right angled steps nosplitting at all can be observed, while a double peak can be found for all other angles.This discovery indicates orthogonality with respect to a quantum number in the edgestates involved. In addition to a theoretically predicted spin polarization, this effectcan also be caused by the orbital character of the Dirac cones involved.Since the topological protection in Pb1−xSnxSe is guaranteed by crystal symmetries,the last intrinsic effect to be examined is the influence of one dimensional defects onthe edge states. A near-surface defect, which cannot be classified in any more detailand a screw dislocation are taken into account. In both cases, a splitting of the edgestate into a double peak can also be shown.In the second part of this thesis the basis for reuse of surfaces in future experimentswith (magnetic) adatoms is created. The combination of sputtering and annealing notonly creates a cleaned surface, but in addition it tunes the Fermi level in a controllableway. This effect is based on a modification of the Sn concentration and the associatednumber of holes.Finally, the first measurements on Cu and Fe-doped samples are shown. The adatomscause n-doping, which shifts the Dirac point of the system in the direction of theFermi level. As soon as he has achieved this, there is an interaction phenomenon at thefreestanding step edges. This leads to a double peak structure with a fine split of a fewmeV. This phenomenon is limited to a narrow energy window in which the position ofthe Dirac point may only deviate by about 5 meV (in both directions) from that of theFermi level. KW - Topologischer Isolator KW - Rastertunnelmikroskopie KW - PbSnSe KW - Scanning tunneling microscopy KW - edge states KW - Kantenzustand Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-298616 ER - TY - THES A1 - Crespo Vidal, Can Raphael T1 - Spectroscopic investigation of the three-dimensional topological insulators (MnBi\(_2\)Te\(_4\))(Bi\(_2\)Te\(_3\))\(_n\) and HgTe: band structure, orbital symmetries, and influence of the cation \(d\)-states T1 - Spektroskopische Untersuchung der dreidimensionalen topologischen Isolatoren (MnBi\(_2\)Te\(_4\))(Bi\(_2\)Te\(_3\))\(_n\) und HgTe: Bandstruktur, orbitale Symmetrien und Einfluss der kationischen \(d\)-Zustände N2 - This thesis examines the electronic properties of two materials that promise the realization and observation of novel exotic quantum phenomena. For this purpose, angle-resolved photoemission forms the experimental basis for the investigation of the electronic properties. Furthermore, the magnetic order is investigated utilizing X-ray dichroism measurements. First, the bulk and surface electronic structure of epitaxially grown HgTe in its three-dimensional topological insulator phase is investigated. In this study, synchrotron radiation is used to address the three-dimensional band structure and orbital composition of the bulk states by employing photon-energy-dependent and polarization-dependent measurements, respectively. In addition, the topological surface state is examined on in situ grown samples using a laboratory photon source. The resulting data provide a means to experimentally localize the bulk band inversion in momentum space and to evidence the momentum-dependent change in the orbital character of the inverted bulk states. Furthermore, a rather new series of van der Waals compounds, (MnBi\(_2\)Te\(_4\))(Bi\(_2\)Te\(_3\))\(_n\), is investigated. First, the magnetic properties of the first two members of the series, MnBi\(_2\)Te\(_4\) and MnBi\(_4\)Te\(_7\), are studied via X-ray absorption-based techniques. The topological surface state on the two terminations of MnBi\(_4\)Te\(_7\) is analyzed using circular dichroic, photon-energy-dependent, and spin-resolved photoemission. The topological state on the (MnBi\(_2\)Te\(_4\))-layer termination shows a free-standing Dirac cone with its Dirac point located in the bulk band gap. In contrast, on the (Bi\(_2\)Te\(_3\))-layer termination the surface state hybridizes with the bulk valences states, forming a spectral weight gap, and exhibits a Dirac point that is buried within the bulk continuum. Lastly, the lack of unambiguous evidence in the literature showing a temperature-dependent mass gap opening in these magnetic topological insulators is discussed through MnBi\(_2\)Te\(_4\). N2 - In dieser Arbeit werden die elektronischen Eigenschaften zweier Materialien untersucht, welche die Realisierung und Beobachtung neuartiger exotischer Quantenphänomene versprechen. Hierbei bildet die winkelaufgelöste Photoemission die experimentelle Grundlade für die Untersuchung der elektronischen Eigenschaften. Zudem wird die magnetische Ordnung mittels Röntgendichroismusmessungen untersucht. Zunächst wird die elektronische Volumen- und Oberflächenstruktur von epitaktisch gewachsenem HgTe in der Phase eines dreidimensionalen topologischen Isolators untersucht. In dieser Studie wird Synchrotronstrahlung verwendet, um die dreidimensionale Bandstruktur und die orbitale Zusammensetzung der Volumenzustände durch photonenenergieabhängige bzw. polarisationsabhängige Messungen zu bestimmen. Darüber hinaus wird der topologische Oberflächenzustand an in situ gewachsenen Proben mit einer Laborphotonenquelle untersucht. Die daraus resultierenden Daten ermöglichen eine Lokalisierung der Bandinversion im Impulsraum und den Nachweis der impulsabhängigen Veränderung des Orbitalcharakters der invertierten Volumenzustände. Zusätzlich wird eine relativ neue Reihe von van-der-Waals-Verbindungen, (MnBi\(_2\)Te\(_4\))(Bi\(_2\)Te\(_3\))\(_n\), untersucht. Zunächst werden die magnetischen Eigenschaften der ersten beiden Mitglieder der Reihe, MnBi\(_2\)Te\(_4\) und MnBi\(_4\)Te\(_7\), mittels Röntgenabsorptionsverfahren bestimmt. Der topologische Oberflächenzustand auf den beidem Terminierungen von MnBi\(_4\)Te\(_7\) wird unter der Verwendung von zirkularem Dichroismus, photonenenergieabhängiger sowie spinaufgelöster Photoemission analysiert. Der topologische Zustand auf der (MnBi\(_2\)Te\(_4\)-Terminierung zeigt dabei einen freistehenden Dirac-Zustand mit einem in der Volumenbandlücke liegendem Dirac-Punkt. Im Gegensatz dazu hybridisiert der Oberflächenzustand auf der (Bi\(_2\)Te\(_3\))\(_n\)-Terminierung mit den Volumenzuständen, wodurch eine Lücke im spektralen Gewicht entsteht, und weist einen Dirac-Punkt auf, der vom Volumenkontinuum überlagert ist. Abschließend wird das Fehlen einer eindeutigen Beweislage in der Literatur, die eine temperaturabhängige Öffnung einer Energielücke in diesen Materialien zeigt, anhand von (MnBi\(_2\)Te\(_4\) diskutiert. KW - ARPES KW - Topologischer Isolator KW - Bandstruktur KW - Oberflächenzustand KW - Antiferromagnetismus KW - magnetic topological insulator KW - angle-resolved photoelectron spectroscopy KW - spin-resolved ARPES Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312931 ER - TY - THES A1 - Genheimer, Ulrich T1 - The Photophysics of Small Organic Molecules for Novel Light Emitting Devices T1 - Die Photophysik kleiner organischer Moleküle für innovative lichtemittierende Bauteile N2 - This PhD thesis addresses the photophysics of selected small organic molecules with the purpose of using them for efficient and even novel light sources. In particular, the studies presented focused on revealing the underlying exciton dynamics and determining the transition rates between different molecular states. It was shown how the specific properties and mechanisms of light emission in fluorescent molecules, molecules with phosphorescence or thermally activated delayed fluorescence (TADF), biradicals, and multichromophores can be utilized to build novel light-emitting devices. The main tool employed here was the analysis of the emitters’ photon statistics, i.e. the analysis of the temporal distribution of emitted photons, during electrical or optical excitation. In the introduction of this work, the working principle of an organic light-emitting diode (OLED) was introduced, while Chapter 2 provided the physical background of the relevant properties of organic molecules and their interaction with light. In particular, the occurrence of discrete energy levels in organic semiconductors and the process of spontaneous light emission were discussed. Furthermore, in this chapter a mathematical formalism was elaborated with the goal to find out what kind of information about the studied molecule can be obtained by analyzing its photon statistics. It was deduced that the intensity correlation function g (2)(t) contains information about the first two factorial moments of the photon statistics and that higher order factorial moments do not contain any additional information about the system under study if the system is always in the same state after the emission of a photon. To conclude the introductory part, Chapter 3 introduced the utilized characterization methods including confocal microscopy of single molecules, time correlated single photon counting and temperature dependent photoluminescence measurements. To provide the background necessary for an understanding of for the following result chapters, in Section 4.1 a closer look was taken at the phenomenon of blinking and photobleaching of individual molecules. For a squaraine-based fluorescent emitter rapid switching between a bright and dark state was observed during photoexcitation. Using literature transition rates between the molecular states, a consistent model was developed that is able to explain the distribution of the residence times of the molecule in the bright and dark states. In particular, an exponential and a power-law probability distribution was measured for the time the molecule resides in tis bright and dark state, respectively. This behavior as well as the change in photoluminescence intensity between the two states was conclusively explained by diffusion of residual oxygen within the sample, which had been prepared in a nitrogen-filled glovebox. For subsequent samples of this work, thin strips of atomic aluminum were deposited on the matrices to serve as oxygen getter material. This not only suppressed the efficiency of photobleaching, but also noticeably prolonged the time prior to photobleaching, which made many of the following investigations possible in the first place. For emitters used in displays, emission properties such as narrow-band luminescence and short fluorescence lifetimes are desired. These properties can be influenced not only by the emitter molecule itself, but also by the interaction with the chosen environment. Therefore, before focusing on the photophysics of individual small organic molecules, Section 4.2 highlighted the interaction of a perylene bisimide-based molecular species with its local environment in a disordered polymethyl methacrylate matrix. In a statistical approach, individual photophysical properties were measured for 32 single molecules and correlations in the variation of the properties were analyzed. This revealed how the local polarity of the molecules’ environment influences their photophysics. In particular, it was shown how an increase in local polarity leads to a red-shifted emission, narrower emission lines, broader vibronic splitting between different emission lines in combination with a smaller Huang-Rhys parameter, and a longer fluorescence lifetime. In the future, these results may help to embed individual chromophores into larger macromolecules to provide the chromophore with the optimal local environment to exhibit the desired emission properties. The next two sections focused on a novel and promising class of chromophores, namely linear coordinated copper complexes, synthesized in the group of Dr. Andreas Steffen at the Institute of Inorganic Chemistry at the University of Würzburg. In copper atoms, the d-orbitals are fully occupied, which prevents undesirable metal-centered d-d⋆ states, which tend to lie low in energy and recombine non-radiatively. Simultaneously, the copper atom provides a flexible coordination geometry, while complexes in their linear form are expected to exhibit the least amount of excited state distortions. Depending on the chosen ligands, these copper complexes can exhibit phosphorescence as well as temperature activated delayed fluorescence. In Section 4.3, a phosphorescent copper complex with a chlorine atom and a 1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethyl-2-pyrrolidine-ylidene- ligand was tested for its suitability as an optically active material in an OLED. For this purpose, an OLED with a polyspirobifluorene-based copolymer matrix and the dopant at a concentration of 20 wt% was electrically excited. Deconvolution of the emission spectrum in contributions from the matrix and the dopant revealed that 60 % of the OLEDs emission was due to the copper complex. It was also shown that the shape of the emission spectrum of the copper complex remains unchanged upon incorporation into the OLED, but is red-shifted by about 233 meV. In Section 4.4, a second copper complex exhibiting thermally activated delayed fluorescence was analyzed. This complex comprised a carbazolate as well as a 2-(2,6- diisopropyl)-phenyl-1,1-diphenyl-isoindol-2-ium-3-ide ligand and was examined in the solid state and at the single-molecule level, where single photon emission was recorded up to an intensity of 78’000 counts per second. The evaluation of the second-order autocorrelation function of the emitted light proved an efficient transition between singlet and triplet excited states on the picosecond time scale. In the solid state, the temperature- dependent fluorescence decay of the complex was analyzed after pulsed photoexcitation in the temperature range between 300 K and 5 K. From these measurements, a small singlet-triplet energy gap of only 65 meV and a triplet sublevel splitting of 3.0 meV were derived. The transition rates between molecular states could also be determined. Here, the fast singlet decay time of τS1 = 9.8ns proved the efficient thermally activated delayed fluorescence process, which was demonstrated for the first time for this new class of copper(I) complexes thus. While the use of thermally activated delayed fluorescence is a potential way to harness otherwise long-living dark triplet states, radicals completely avoid dark triplet states. However, this usually comes with the huge drawback of the molecules being chemically unstable. Therefore, two chemically stable biradical species were synthesized in the framework of the DFG research training school GRK 2112 on Molecular biradicals: structure, properties and reactivity, by Yohei Hattori in the group of Prof. Dr. Christoph Lambert and Rodger Rausch in the group of Prof. Dr. Frank Würthner at the Institute of Organic Chemistry at the University of Würzburg, respectively. In Section 4.5, it was investigated how these molecules can be used in OLEDs. In the first isoindigo based biradical (6,6’-bis(3,5-di-tert-butyl-4-phenoxyl)-1,1’-bis(2- ethylhexyl)-[3,3’-biindolinyl-idene]-2,2’-dione) two tert-butyl moieties kinetically block chemical reactions at the place of the lone electrons and an electron-withdrawing core shifts the electron density into the center of the chromophore. With these properties, it was possible to realize a poly(p-phenylene vinylene) copolymer based OLED doped with the biradical and to observe luminescence during optical as well as electrical excitation. Analyzing shapes of the photo- and electroluminescence spectra at different doping concentrations, Förster resonance energy transfer was determined to be the dominant transition mechanism for excitons from the matrix to the biradical dopants. Likewise, OLEDs could be realized with the second diphenylmethylpyridine based birad- ical (4-(5-(bis(2,4,6-trichlorophenyl)methyl)-4,6-dichloropyridin-2-yl)-N-(4-(5-(bis(2,4,6- -trichlorophenyl)methyl)-4,6-dichloropyridin-2-yl)phenyl)-N-(4-methoxyphenyl)aniline) as dopant. In this biradical, chlorinated diphenylmethyl groups protect the two unpaired electrons. Photo- and electroluminescence spectra showed an emission in the near in- frared spectral range between 750 nm and 1000 nm. Also, Förster resonance energy trans- fer was the dominant energy transfer mechanism with an transfer efficiency close to 100 % even at doping concentrations of only 5 wt%. In addition to demonstrating the working OLEDs based in biradicals, the detection of luminescence of the two biradical species in devices also constitutes an important step toward making use of experimental techniques such as optically detected electron spin resonance, which could provide information about the electronic states of the emitter and their spin manifold during OLED operation. Another class of emitters studied are molecules in which several chromophores are co- valently linked to form a macrocyclic system. The properties of these multichromophores were highlighted in Section 4.6. Here, it was analyzed how the photophysical behavior of the molecules is affected by the covalent linking, which determines the interaction be- tween the chromophores. The first multichromophore, 2,2’-ditetracene, was synthesized by Lena Ross in the group of Prof. Dr. Anke Krüger at the Institute of Organic Chemistry at the University of Würzburg and was analyzed in this work both at the single-molecule level and in its aggregated crystalline form. While the single crystals were purified and grown in a vertical sublimation oven, the samples for the single molecule studies were prepared in matrices of amorphous polymethyl methacrylate and crystalline anthracene. Tetracene was analyzed concurrently to evaluate the effects of covalent linking. In samples where the distance between two molecules is sufficiently large, tetracene and 2,2’-ditracene show matching emission profiles with the only difference in the Franck-Condon factors and a de- creased photoluminescence decay time constant from 14 ns for tetracene to 5 ns for 2,2’- ditracene, which can be attributed to the increased density of the vibrational modes in 2,2’-ditracene. Evaluation of the photon statistics of individual 2,2’-ditracene molecules however showed that the system does not behave as two individual chromophores but as a collective state, preserving the spectral properties of the two tetracene chromophores. Complementary calculations performed by Marian Deutsch in the group of Prof. Dr. Bernd Engels at the Institute of Physical and Theoretical Chemistry at the University of Würzburg helped to understand the processes in the materials and could show that the electronic and vibronic modes of 2,2’-ditracene are superpositions of the modes occurring in tetracene. In contrast, single-crystalline 2,2’-ditetracene behaves significantly different than tetracene, namely exhibiting a red shift in photoluminescence of 150 meV, caused by an altered crys- talline packing that lowers the S1-state energy level. Temperature-dependent photolu- minescence measurements revealed a rich emission pattern from 2,2’-ditetracene single crystals. The mechanisms behind this were unraveled using photoluminescence lifetime density analysis in different spectral regions of the emission spectrum and at different tem- peratures. An excimer state was identified that is located about 5 meV below the S1-state, separated by a 1 meV barrier, and which can decay to the ground state with a time constant of 9 ns. Also, as the S1-state energy level is lowered below the E(S1) ≥ 2 ×E(T1) threshold, singlet fission is suppressed in 2,2’-ditetracene in contrast to tetracene. Therefore, at low temperatures, photoluminescence is enhanced by a factor of 46, which could make 2,2’- ditetracene a useful material for future applications in devices such as OLEDs or lasers. The second multichromophore species, para-xylylene bridged perylene bisimide macrocycles, were synthesized by Peter Spenst in the group of Prof. Dr. Frank Würthner at the Institute of Organic Chemistry at the University of Würzburg, by linking three and four perylene bisimides, respectively. To reveal the exciton dynamics in these macrocycles, highly diluted monomers as well as trimers and tetramers were doped into matrices of polymethyl methacrylate to create thin films in which individual macrocycles could be analyzed. The emission spectra of the macrocycles remained identical to those of the monomers, indicating weak coupling between the chromophores. Single photon emission could be verified for monomers as well as macrocycles, as exciton-exciton annihilation processes suppress the simultaneous emission of two photons from one macrocycle. Nevertheless, the proof of the occurrence of a doubly excited state was obtained by excitation power dependent photon statistics measurements. The formalism developed in the theory part of this thesis for calculating the photon statistics of multichromophore systems was used here to find a theoretical model that matches the experimental results. The main features of this model are a doubly excited state, fast singlet-singlet annihilation, and an efficient transition from the doubly excited state to a dark triplet state. The occurrence of triplet-triplet annihilation was demonstrated in a subsequent experiment in which the macrocycles were excited at a laser intensity well above the saturation intensity of the monomer species. In contrast to the monomers, the trimers and tetramers exhibited neither a complete dark state nor saturation of photoluminescence. Both processes, efficient singlet-singlet and triplet-triplet annihilation make perylene bisimide macrocycles exceptionally bright single photon emitters. These advantages were utilized to realize a room temperature electrically driven fluorescent single photon source. For this purpose, OLEDs were fabricated using polyvinylcarbazole and 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazol blends as a host material for perylene bisimide trimers. Photon antibunching could be observed in both optically and electrically driven devices, representing the first demonstration of electrically driven single photon sources using fluorescent emitters at room temperature. As expected from the previous optical experiments, the electroluminescence of the molecules was exceptionally bright, emitting about 105 photons per second, which could be seen even by eye under the microscope. Finally, in the last section 4.7 of this thesis, two additional measurement schemes were proposed as an alternative to the measurement of the second-order correlation function g (2)(t) of single molecules, which only provides information about the first two factorial moments of the molecules’ photon statistics. In the first scheme, the g (3)(t) function was measured with three photodiodes, which is a consequential extension of the Hanbury Brown and Twiss measurement with two photodiodes. It was demonstrated how measuring the g (3)(t) function is able to identify interfering emitters with non-Poisson statistics in the experiment. The second setup was designed with an electro-optic modulator that repeatedly gen- erates photoexcitation in the form of a step function. The recording of luminescence transients for different excitation intensities yields the same results as the correspond- ing g (2)-functions measured on single emitters, both in their shape and in their depen- dence on excitation power. To demonstrate this concept, the TADF emitter TXO-TPA (2- [4-(diphenylamino)phenyl]-10,10-dioxide-9H-thioxanthen-9-one) was doped at a concen- tration of 10−4 wt% in a mCP (1,3-Bis(N-carbazolyl)benzene) matrix. This concentration was low enough that TXO-TPA molecules did not interact with each other, but an ensem- ble of molecules was still present in the detection volume. The intramolecular transition rates between singlet and triplet states of TXO-TPA could be derived with an error of at most 5 %. Other experimental techniques designed to obtain this information require ei- ther lengthy measurements on single molecules, where sample preparation is also often a challenge, or temperature-dependent fluorescence lifetime measurements, which require a cryostat, which in turn places constraints on the sample design used. In future, this ap- proach could establish a powerful method to study external factors influencing molecular transition rates. Overall, this thesis has introduced new molecular materials, revealed their photophys- ical properties, and demonstrated how they can be used to fabricate efficient and even novel light sources. N2 - Diese Dissertation befasst sich mit der Photophysik ausgewählter kleiner organischer Mo- leküle mit dem Ziel, diese für effiziente und sogar neuartige Lichtquellen zu nutzen. Die vorgestellten Studien konzentrierten sich insbesondere darauf, die zugrunde liegende Ex- zitonendynamiken offenzulegen und die Übergangsraten zwischen verschiedenen mole- kularen Zuständen zu bestimmen. Es wurde gezeigt, wie die spezifischen Eigenschaften und Mechanismen der Lichtemission in fluoreszierenden Molekülen, Molekülen mit Phos- phoreszenz oder thermisch aktivierter verzögerter Fluoreszenz (TADF), Biradikalen und Multichromophoren genutzt werden können, um neuartige lichtemittierende Bauelemen- te herzustellen. Das wichtigste Instrument, das dabei zum Einsatz kam, war die Analyse der Photonenstatistik der Emitter, d. h. die Analyse der zeitlichen Verteilung der emittier- ten Photonen während der elektrischen oder optischen Anregung. In der Einleitung dieser Arbeit wurde das Funktionsprinzip organischer Leuchtdioden (OLED) vorgestellt, während in Kapitel 2 der physikalische Hintergrund relevanter Eigen- schaften organischer Moleküle, des Lichts und ihrer Wechselwirkung miteinander behan- delt wurde. Insbesondere wurden das Auftreten von diskreten Energieniveaus in organi- schen Halbleitern und der Prozess der spontanen Lichtemission erörtert. Darüber hinaus wurde in diesem Kapitel ein mathematischer Formalismus ausgearbeitet, um herauszufin- den, welche Informationen über das untersuchte Molekül durch die Analyse seiner Photo- nenstatistik gewonnen werden können. Es wurde mathematisch gezeigt, dass die Inten- sitätskorrelationsfunktion g (2)(t) Informationen über die ersten beiden faktoriellen Mo- mente der Photonenstatistik enthält und faktorielle Momente höherer Ordnung keine zu- sätzlichen Informationen über das untersuchte System enthalten, wenn sich das System nach der Emission eines Photons immer im gleichen Zustand befindet. Zum Abschluss des Grundlagenteil dieser Arbeit wurden in Kapitel 3 die verwendeten Charakterisierungs- methoden vorgestellt, darunter die konfokale Mikroskopie einzelner Moleküle, die zeitkor- relierte Einzelphotonenzählung und temperaturabhängige Photolumineszenzmessungen. Um den für das Verständnis der folgenden Ergebniskapitel notwendigen Hintergrund zu schaffen, wurde in Abschnitt 4.1 die Phänomene des Photoblinkens und des Photo- bleichens einzelner Moleküle näher betrachtet. Bei einem Squarain-basierten fluoreszierenden Emitter wurde während der Photoanregung ein schneller Wechsel zwischen ei- nem hellen und einem dunklen Zustand beobachtet. Anhand von Übergangsraten zwi- schen den Molekülzuständen, die aus der Literatur bekannt sind, wurde ein konsisten- tes Modell vorgestellt, das die Verteilung der Verweilzeiten des Moleküls in den hellen und dunklen Zuständen erklären kann. Insbesondere wurde eine Exponential- und eine Potenzgesetz-Wahrscheinlichkeitsverteilung für die Zeit gemessen, die das Molekül im hel- len bzw. dunklen Zustand verweilte. Dieses Verhalten sowie der Wechsel der Photolumi- neszenzintensität zwischen den beiden Zuständen wurde schlüssig durch diffundierenden Restsauerstoff in der Probe erklärt, die in einer mit Stickstoff gefüllten Glovebox hergestellt worden war. Auf die organischen Gast-Wirts-Filme der nachfolgenden Proben dieser Ar- beit wurden dünne Streifen aus Aluminium aufgebracht, die als Sauerstoffgetter dienten. Dadurch wurde nicht nur der Effekt des Photobleichens unterdrückt, sondern auch die Zeit bis zu diesem deutlich verlängert, was viele der folgenden Untersuchungen überhaupt erst möglich machte. Für Emitter, die in Displays verwendet werden, sind Emissionseigenschaften wie schmalbandige Lumineszenz und kurze Fluoreszenzlebensdauern wünschenswert. Diese Eigenschaften können nicht nur durch das Emittermolekül selbst, sondern auch durch die Wechselwirkung mit der Umgebung beeinflusst werden. Bevor der Fokus auf die Photophysik einzelner kleiner organischer Moleküle gelegt wurde, wurde daher in Abschnitt 4.2 die Wechselwirkung einer molekularen Spezies auf Perylenbisimid- Basis mit ihrer lokalen Umgebung in einer ungeordneten Polymethylmethacrylatmatrix untersucht. In einem statistischen Ansatz wurden individuelle photophysikalische Eigenschaften für 32 einzelne Moleküle gemessen und Korrelationen in der Variation dieser Merkmale analysiert. Dadurch wurde deutlich, wie die lokale Polarität der Umgebung der Moleküle deren Photophysik beeinflusst. Insbesondere wurde gezeigt, wie eine Erhöhung der lokalen Polarität zu einer rotverschobenen Emission, schmaleren Emissionslinien, einer breiteren vibronischen Aufspaltung zwischen verschiedenen Emissionslinien in Kombination mit einem kleineren Huang-Rhys-Parameter und einer längeren Fluoreszenzlebensdauer führt. In Zukunft könnten diese Ergebnisse dazu beitragen, einzelne Chromophore in größere Makromoleküle einzubetten, um dem Chromophor die optimale lokale Umgebung zu bieten, damit es die gewünschten Emissionseigenschaften aufweist. Die nächsten beiden Abschnitte widmeten sich einer innovativen und vielversprech- enden Klasse von Chromophoren, linear koordinierten Kupferkomplexen, die in der Gruppe von Dr. Andreas Steffen am Institut für Anorganische Chemie der Universität Würzburg synthetisiert wurden. Bei Kupferatomen sind die d-Orbitale vollständig besetzt, was unerwünschte metallzentrierte d-d⋆-Zustände verhindert, die in der Regel eine niedrige Energie besitzen und nicht strahlend rekombinieren. Gleichzeitig bietet das Kupferatom eine flexible Koordinationsgeometrie, und es wird erwartet, dass Komplexe in ihrer linearen Form die geringsten Molekülverformung nach optischer Anregung erfahren. Je nach Wahl der Liganden können diese Kupferkomplexe sowohl Phosphoreszenz als auch temperaturaktivierte verzögerte Fluoreszenz zeigen. In Abschnitt 4.3 wurde ein phosphoreszierender Kupferkomplex mit einem Chloratom und einem 1-(2,6- Diisopropylphenyl)-3,3,5,5-Tetramethyl-2-pyrrolidin-yliden-Liganden auf seine Eignung als optisch aktives Material in einer OLED untersucht. Zu diesem Zweck wurde eine OLED mit einer auf Polyspirobisfluoren basierenden Copolymermatrix und dem Dotant in einer Konzentration von 20 wt% elektrisch angeregt. Die Entfaltung des Emissionsspektrums in Beiträge der Matrix und des Dotanten ergab, dass 60 % der OLED-Emission auf den Kupferkomplex zurückzuführen war. Außerdem wurde gezeigt, dass die Form des Emissionsspektrums des Kupferkomplexes beim Einbau in die OLED unverändert bleibt, aber um etwa 233 meV rot verschoben ist. In Abschnitt 4.4 wurde ein zweiter Kupferkomplex analysiert, der eine thermisch aktivierte verzögerte Fluoreszenz (TAFD) aufweist. Dieser Komplex besteht aus einem Carbazolat sowie einem 2-(2,6-Diisopropyl)-phenyl-1,1-diphenyl-isoindol-2-ium-3-id- Liganden und wurde als Festkörper und auf Einzelmolekülebene untersucht, wobei eine Einzelphotonenemission bis zu einer Intensität von 78.000 Photonen pro Sekunde gemessen wurde. Die Auswertung der Autokorrelationsfunktion zweiter Ordnung des emittierten Lichts belegt einen effizienten Übergang zwischen den angeregten Singulett- und Triplett-Zuständen auf der Pikosekunden-Zeitskala. Im Festkörper wurde der temperaturabhängige Fluoreszenzabfall des Komplexes nach gepulster Photoanregung im Temperaturbereich zwischen 300 K und 5 K untersucht. Aus diesen Messungen wurde eine kleine Singulett-Triplett-Energielücke von nur 65 meV und eine Triplett-Subniveau- Aufspaltung von 3.0 meV ermittelt. Die Übergangsraten zwischen den entsprechenden molekularen Zuständen konnten ebenfalls bestimmt werden. Die schnelle Singulett- Zerfallszeit von τS1 = 9.8ns konnte den effizienten thermisch aktivierten verzögerten Fluoreszenzprozess zugeordnet werden, der somit erstmals für diese neue Klasse der Kupfer(I)-Komplexe nachgewiesen wurde. Während die thermisch aktivierte verzögerte Fluoreszenz eine elegante Möglichkeit ist, ansonsten dunkle Triplettzustände für die strahlende Emission zu nutzen, vermeiden Radikale Molekülspezies dunkle Triplettzustände vollständig. Dies hat jedoch in der Regel den großen Nachteil, dass die Moleküle chemisch instabil sind. Daher wurden im Rahmen des DFG-Graduiertenkollegs GRK 2112 Molecular biradicals: structure, properties and reactivity von Yohei Hattori aus der Arbeitsgruppe von Prof. Dr. Christoph Lambert und Rodger Rausch aus der Arbeitsgruppe von Prof. Dr. Frank Würthner am Institut für Organischen Chemie an der Universität Würzburg zwei chemisch stabile Radikal-Spezies synthetisiert. In Abschnitt 4.5 wurde untersucht, wie diese Moleküle in OLEDs verwendet werden können. Im ersten Biradikal auf Isoindigo-Basis (6,6’-Bis(3,5-di-tert-butyl-4-phenoxyl)-1,1’- bis(2-ethylhexyl)-[3,3’-biindolinyl-iden]-2,2’-dion) blockieren zwei tert-Butyl-Einheiten sterisch chemische Reaktionen an der Stelle des ungepaarten Elektrons und ein elek- tronenziehender Kern verschiebt die Elektronendichte ins Zentrum des Chromophors. Mit diesen Eigenschaften war es möglich, eine mit dem Biradikal dotierte OLED auf Basis eines Poly(p-phenylenvinylen)-Copolymers zu realisieren und Lumineszenz sowohl unter optischer als auch unter elektrischer Anregung zu beobachten. Die Analyse der Formen der Photo- und Elektrolumineszenzspektren bei unterschiedli- chen Dotierungskonzentrationen ergab, dass der Förster-Resonanz-Energietransfer der dominierende Übergangsmechanismus für Exzitonen von der Matrix auf die bi- radikalischen Dotierstoffe ist. Ebenso konnten OLEDs mit dem zweiten Biradikal auf Diphenylmethylpyridinbasis (4-(5-(Bis(2,4,6-trichlorphenyl)methyl)-4,6-dichlorpyridin- 2-yl)-N-(4-(5-(Bis(2,4,6-trichlorphenyl)methyl)-4,6-dichlorpyridin-2-yl)phenyl)-N-(4- methoxyphenyl)anilin) als Dotierstoff realisiert werden. In diesem Biradikal schützen chlorierte Diphenylmethylgruppen die beiden ungepaarten Elektronen. Die Photo- und Elektrolumineszenzspektren zeigten eine Emission im nahen Infrarotbereich zwischen 750 nm und 1000 nm. Ebenso war der Försterresonanz-Energietransfer der dominieren- de Energietransfermechanismus mit einer Transfereffizienz von nahezu 100 %, selbst bei Dotierungskonzentrationen von etwa 5 wt%. Neben der Demonstration funktionie- render OLEDs auf der Basis von Biradikalen stellt der Nachweis der Lumineszenz der beiden Biradikal-Spezies in den Bauteilen auch einen wichtigen Schritt zur Nutzung experimenteller Techniken wie der optisch detektierten Elektronenspinresonanz dar, die komplementäre Informationen über die elektronischen Zustände der Emitters und deren Spin-Verteilung während des OLED-Betriebs liefern können. Eine weitere untersuchte Klasse von Emittern sind Moleküle, bei denen mehrere Chro- mophore kovalent zu einem molekularen System verbunden sind. Die Eigenschaften die- ser Multichromophore wurden in Abschnitt 4.6 analysiert. Dabei wurde untersucht, wie das photophysikalische Verhalten der Moleküle durch die kovalente Bindung beeinflusst wird, welche maßgeblich die Wechselwirkung zwischen den Chromophoren bestimmt. Das erste Multichromophor, 2,2’-Ditetracen, wurde von Lena Ross in der Gruppe von Prof. Dr. Anke Krüger am Institut für Organischen Chemie an der Universität Würzburg synthetisiert und in dieser Arbeit sowohl auf Einzelmolekülebene als auch in seiner kristallinen Form analysiert. Während die Einkristalle in einem vertikalen Sublimationsofen aufgerei- nigt und gewachsen wurden, wurden die Proben für die Einzelmolekülstudien an Matrizen von Polymethylmethacrylat und kristallinem Anthracen präpariert. Simultan wurde Tetra- cen analysiert, um die Auswirkungen der kovalenten Bindung beurteilen zu können. In Proben, bei denen der Abstand zwischen zwei Gastmolekülen ausreichend groß ist, zeigen Tetracen und 2,2’-Ditracen übereinstimmende Emissionsprofile mit lediglich veränderten Franck-Condon-Faktoren und einer verringerten Photolumineszenz-Abklingzeitkonstante von 14 ns für Tetracen auf 5 ns für 2,2’-Ditracen, was auf die erhöhte Dichte der Schwin- gungsmoden in 2,2’-Ditracen zurückgeführt werden kann. Die Auswertung der Photonen- statistiken der einzelnen 2,2’-Ditracen-Moleküle zeigte, dass sich das System erwartungs- gemäß nicht wie zwei einzelne Chromophore verhält, sondern wie ein kollektiver Zustand, der jedoch die spektralen Eigenschaften der beiden Tetracen-Chromophore beibehält. Er- gänzende Berechnungen, die von Marian Deutsch in der Gruppe von Prof. Dr. Bernd Engels am Institut für Physikalische und Theoretische Chemie an der Universität Würzburg durch- geführt wurden, halfen, die Prozesse in den Materialien zu verstehen und konnten zei- gen, dass die elektronischen und vibronischen Moden von 2,2’-Ditracen eine Superpo- sition der Moden in Tetracen sind. Im Gegensatz dazu unterscheidet sich einkristallines 2,2’-Ditetracen von Tetracen. So weist es eine Rotverschiebung der Photolumineszenz von 150 meV auf, die durch eine veränderte kristalline Packung verursacht wird, die das Ener- gieniveau des S1-Zustands absenkt. Temperaturabhängige Photolumineszenzmessungen zeigten ein reichhaltiges Emissionsmuster von 2,2’-Ditetracen-Einkristallen. Die zugrun- de liegenden Mechanismen wurden mithilfe der Analyse von Photolumineszenz-Lebens- dauern in verschiedenen Spektralbereichen des Emissionsspektrums und bei unterschied- lichen Temperaturen ermittelt. Es wurde ein Excimer-Zustand identifiziert, der sich etwa 5 meV unterhalb des S1-Zustands befindet, der durch eine 1 meV-Barriere von diesem ge- trennt ist und der mit einer Zeitkonstante von 9 ns in den Grundzustand zerfallen kann. Außerdem wird die Singulett-Aufspaltung in 2,2’-Ditetracen im Gegensatz zu Tetracen un- terdrückt, da das Energieniveau des S1-Zustands unter die Schwelle von E(S1) ≥ 2×E(T1) abgesenkt wird. Folglich wird die Photolumineszenz bei niedrigen Temperaturen um einen Faktor von bis zu 46 verstärkt, was 2,2’-Ditetracen zu einem nützlichen Material für zu- künftige Anwendungen in Geräten wie OLEDs oder Lasern machen könnte. Die zweite multichromophore Spezies, para-Xylylen-verbundene Perylenbisimid-Makro- zyklen, wurden von Peter Spenst in der Gruppe von Prof. Dr. Frank Würthner am Institut der Organischen Chemie an der Universität Würzburg synthetisiert, indem drei bzw. vier Perylenbisimide miteinander verknüpft wurden. Um die Exzitonendynamik in diesen Makrozyklen zu untersuchen, wurden stark verdünnte Monomere sowie Trimere und Tetra- mere in Matrizen aus Polymethylmethacrylat mit sehr niedriger Konzentration dotiert, um dünne Filme zu erzeugen, in denen individuelle Makrozyklen analysiert werden konnten. Die Emissionsspektren der Makrozyklen blieb identisch zu denen der Monomere, was auf eine schwache Kopplung zwischen den Chromophoren hindeutet. Die Emission einzel- ner Photonen konnte sowohl für Monomere als auch für Makrozyklen nachgewiesen wer- den, da Exziton-Exziton-Annihilationsprozesse die gleichzeitige Emission von zwei Photo- nen aus einem Makromolkül unterdrücken. Der Nachweis eines doppelt angeregten Zu- stands wurde durch Messungen der von der Anregungsleistung abhängigen Photonensta- tistik erbracht. Der im theoretischen Teil dieser Arbeit entwickelte Formalismus zur Be- rechnung der Photonenstatistik von multichromophoren Systemen wurde hier verwendet, um ein theoretisches Modell zu finden, das mit den experimentellen Ergebnissen überein- stimmt. Die wichtigsten Merkmale dieses Modells sind ein doppelt angeregter Zustand, eine schnelle Singulett-Singulett-Annihilation und ein effizienter Übergang vom doppelt angeregten Zustand in einen dunklen Triplett-Zustand. Das Auftreten der Triplett-Triplett- Annihilation wurde in einem anschließenden Experiment nachgewiesen, bei dem die Ma- krozyklen mit einer Laserintensität angeregt wurden, die deutlich über der Sättigungsin- tensität der Monomerspezies lag. Im Gegensatz zu den Monomeren wiesen die Trimere und Tetramere weder einen vollständig dunklen Zustand noch eine Sättigung der Photolu- mineszenz auf. Beide Prozesse, Singulett-Singulett- und Triplett-Triplett-Annihilation, ma- chen Perylenbisimid-Makrozyklen zu außergewöhnlich hellen Einzelphotonen-Emittern. Diese Vorteile wurden genutzt, um eine elektrisch betriebene Einzelphotonenquelle bei Raumtemperatur zu realisieren. Zu diesem Zweck wurden OLEDs unter Verwendung von Polyvinylcarbazol und 2-tert-Butylphenyl-5-biphenyl-1,3,4-oxadiazol als Wirtsmaterialien für Perylenbisimid-Trimere hergestellt. Photonen-Antibunching konnte sowohl in optisch als auch in elektrisch betriebenen OLEDs beobachtet werden, was die erste Demonstrati- on von elektrisch betriebenen Einzelphotonenquellen mit fluoreszierenden Emittern bei Raumtemperatur darstellt. Wie aufgrund der vorangegangenen optischen Experimente zu erwarten war, war die Elektrolumineszenz der Moleküle außergewöhnlich hell und wies et- wa 105 Photonen pro Sekunde auf, so dass die Einzelemitteremission sogar mit dem Auge unter dem Mikroskop gesehen werden konnten. Im letzten Abschnitt 4.7 dieser Dissertation wurden schließlich zwei zusätzliche Messverfahren als Alternative zur Messung der Korrelationsfunktion zweiter Ordnung g (2)(t) einzelner Moleküle vorgeschlagen, da die g (2)(t)-Funktion nur Informationen über die ersten beiden faktoriellen Momente der Photonenstatistik der Moleküle liefert. In einem ersten Ansatz wurde die g (3)(t)-Funktion mit drei Photodioden gemessen, was eine logische Erweiterung der Messung nach Hanbury Brown und Twiss mit zwei Photodioden darstellt. Hierbei wurde gezeigt, wie die Messung der g (3)(t)-Funktion in der Lage ist, störende Emitter mit Nicht-Poisson-Statistik im Experiment zu identifizieren. Das zweite Messverfahren ist mit einem elektro-optischen Modulator ausgestattet, der wiederholt Photoanregungen in Form einer Stufenfunktion ermöglicht. Die Aufzeichnung von Lumineszenz-Transienten für verschiedene Anregungsintensitäten erzeugt am mole- kularen Ensemble die gleichen Ergebnisse wie g (2)(t)-Messungen, die an Einzelemittern durchgeführt wurden, sowohl in ihrer Form als auch in ihrer Abhängigkeit von der Anre- gungsleistung. Zur Demonstration dieses Konzepts wurde der TADF-Emitter TXO-TPA (2- [4-(Diphenylamino)phenyl]-10,10-dioxide-9H-thioxanthen-9-one) in einer Konzentration von 10−4 wt% mit einer mCP (1,3-Bis(N-carbazolyl)benzol)-Matrix gemischt. Diese Kon- zentration war gering genug, dass die TXO-TPA-Moleküle nicht miteinander wechselwirk- ten, aber dennoch ein Ensemble von Molekülen im Detektionsvolumen vorhanden war. Die intramolekularen Übergangsraten zwischen Singulett- und Triplett-Zuständen von TXO-TPA konnten mit einem Fehler von nur 5 % abgeleitet werden. Andere experimen- telle Techniken, mit denen diese Informationen gewöhnlich gewonnen werden, erfordern entweder langwierige Messungen an einzelnen Molekülen, bei denen die Probenvorberei- tung oft eine Herausforderung darstellt, oder temperaturabhängige Messungen der Fluo- reszenzlebensdauer, für die ein Kryostat erforderlich ist, was wiederum Anforderungen an das verwendete Probendesign stellt. In Zukunft könnte dieser Ansatz eine nützliche Me- thode darstellen, um externer Faktoren, die die molekularen Übergangsraten beeinflussen, zu bestimmen und zu quantifizieren. Insgesamt wurden in dieser Arbeit neue molekulare Materialien vorgestellt, ihre photophysikalischen Eigenschaften offengelegt und demonstriert, wie sie zur Herstellung effizienter und sogar neuartiger Lichtquellen verwendet werden können. KW - Fotophysik KW - Photophysics KW - organic KW - OLED KW - Photophysik Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-320313 ER - TY - THES A1 - Fischer, Mathias T1 - Transient Phenomena and Ionic Kinetics in Hybrid Metal Halide Perovskite Solar Cells T1 - Transiente Phänomene und ionische Kinetik in Hybrid-Metallhalogenid- Perowskit-Solarzellen N2 - The fact that photovoltaics is a key technology for climate-neutral energy production can be taken as a given. The question to what extent perovskite will be used for photovoltaic technologies has not yet been fully answered. From a photophysical point of view, however, it has the potential to make a useful contribution to the energy sector. However, it remains to be seen whether perovskite-based modules will be able to compete with established technologies in terms of durability and cost efficiency. The additional aspect of ionic migration poses an additional challenge. In the present work, primarily the interaction between ionic redistribution, capacitive properties and recombination dynamics was investigated. This was done using impedance spectroscopy, OCVD and IV characteristics as well as extensive numerical drift-diffusion simulations. The combination of experimental and numerical methods proved to be very fruitful. A suitable model for the description of solar cells with respect to mobile ions was introduced in chapter 4.4. The formal mathematical description of the model was transferred by a non-dimensionalization and suitable numerically solvable form. The implementation took place in the Julia language. By intelligent use of structural properties of the sparse systems of equations, automatic differentiation and the use of efficient integration methods, the simulation tool is not only remarkably fast in finding the solution, but also scales quasi-linearly with the grid resolution. The software package was released under an open source license. In conventional semiconductor diodes, capacitance measurements are often used to determine the space charge density. In the first experimental chapter 5, it is shown that although this is also possible for the ionic migration present in perovskites, it cannot be directly understood as doping related, since the space charge distribution strongly depends on the preconditions and can be manipulated by an externally applied voltage. The exact form of this behavior depends on the perovskite composition. This shows, among other things, that experimental results can only be interpreted within the framework of conventional semiconductors to a very limited extent. Nevertheless, the built-in 99 potential of the solar cell can be determined if the experiments are carried out properly. A statement concerning the type and charge of the mobile ions is not possible without further effort, while their number can be determined. The simulations were applied to experimental data in chapter 6. Thus, it could be shown that mobile ions make a significant contribution to the OCVD of perovskite solar cells. j-V characteristics and OCVD transients measured as a function of temperature and illumination intensities could be quantitatively modeled simultaneously using a single global set of parameters. By the simulations it was further possible to derive a simple experimental procedure to determine the concentration and the diffusivity of the mobile ions. The possibility of describing different experiments in a uniform temperaturedependent manner strongly supports the model of mobile ions in perovskites. In summary, this work has made an important contribution to the elucidation of ionic contributions to the (photo)electrical properties of perovskite solar cells. Established experimental techniques for conventional semiconductors have been reinterpreted with respect to ionic mass transport and new methods have been proposed to draw conclusions on the properties for ionic transport. As a result, the published simulation tools can be used for a number of further studies. N2 - Dass die Photovoltaik eine Schlüsseltechnologie für die klimaneutrale Energieerzeu- gung ist, kann als gegeben angesehen werden. Die Frage, inwieweit Perowskit für Photovoltaik-Technologien eingesetzt werden wird, ist noch nicht abschließend geklärt. Aus photophysikalischer Sicht hat es jedoch das Potenzial, einen sinnvollen Beitrag im Energiesektor zu leisten. Es bleibt jedoch abzuwarten, ob Module auf Perowskitbasis in Bezug auf Haltbarkeit und Kosteneffizienz mit den etablierten Technologien konkurrieren können. Der zusätzliche Aspekt der Ionenmigration stellt eine weitere Herausforderung im Bezug zu Degeneration und MPP-tracking dar. In der vorliegenden Arbeit wurde vor allem die Wechselwirkung zwischen Ionenumverteilung, kapazitiven Eigenschaften und Rekombinationsdynamik untersucht. Dazu wurden Impedanzspektroskopie, OCVD- und IV-Kennlinien sowie umfangreiche numerische Drift-Diffusions-Simulationen eingesetzt. Die Kombination von experimentellen und numerischen Methoden erwies sich als sehr fruchtbar. Ein geeignetes Modell zur Beschreibung von Solarzellen im Hinblick auf mobile Ionen wurde in Kapitel 4.4 vorgestellt. Die formale mathematische Beschreibung des Modells wurde durch eine Nichtdimensionalisierung und geeignete numerisch lösbare Form umgesetzt. Die Implementierung erfolgte in der Sprache Julia. Durch intelligente Ausnutzung struktureller Eigenschaften der dünn besetzten Gleichungssysteme, automatische Differenzierung und den Einsatz effizienter Integrationsmethoden ist das Simulationswerkzeug nicht nur bemerkenswert schnell in der Lösungsfindung, sondern skaliert auch quasi-linear mit der Gitterauflösung. Das Softwarepaket wurde unter einer Open- Source-Lizenz veröffentlicht. Bei herkömmlichen Halbleiterdioden werden häufig Kapazitätsmessungen zur Bestim- mung der Raumladungsdichte verwendet. Im ersten experimentellen Kapitel 5 wird gezeigt, dass dies zwar auch für die in Perowskiten vorhandene Ionenwanderung möglich ist, aber nicht direkt als dopingbedingt verstanden werden kann, da die Raum- ladungsverteilung stark von den Voraussetzungen abhängt und durch eine extern angelegte Spannung manipuliert werden kann. Die genaue Form dieses Verhaltens hängt von der Zusammensetzung des Perowskits ab. Dies zeigt u.a., dass experimentelle Ergebnisse nur sehr eingeschränkt im Rahmen konventioneller Halbleiter interpretiert werden können. Dennoch lässt sich das eingebaute Potenzial der Solarzelle bestimmen, wenn die Experimente richtig durchgeführt werden. Eine Aussage über die Art und Ladung der beweglichen Ionen ist ohne weiteren Aufwand nicht möglich, während ihre Anzahl bestimmt werden kann. Die Simulationen wurden in Kapitel 6 auf experimentelle Daten angewandt. So konnte gezeigt werden, dass mobile Ionen einen wesentlichen Beitrag zur OCVD von Perowskit-Solarzellen leisten. j-V -Charakteristika und OCVD-Transienten, die in Abhängigkeit von Temperatur und Beleuchtungsintensität gemessen wurden, konnten mit einem einzigen globalen Parametersatz gleichzeitig quantitativ modelliert werden. Durch die Simulationen war es ferner möglich, ein einfaches experimentelles Verfahren zur Bestim- mung der Konzentration und des Diffusionsvermögens der mobilen Ionen abzuleiten. Die Möglichkeit, verschiedene Experimente einheitlich und temperaturabhängig zu beschreiben, unterstützt das Modell der mobilen Ionen in Perowskiten sehr. Zusammenfassend kann gesagt werden, dass diese Arbeit einen wichtigen Beitrag zur Aufklärung der ionischen Beiträge zu den (photo)elektrischen Eigenschaften von Perowskit-Solarzellen geleistet hat. Etablierte experimentelle Techniken für konventionelle Halbleiter wurden im Hinblick auf den ionischen Massentransport neu interpretiert, und es wurden neue Methoden vorgeschlagen, um Rückschlüsse auf die für den ionischen Transport charakteristischen Eigenschaften zu ziehen. Das Ergebnis ist, dass die veröffentlichten Simulationswerkzeuge für eine Reihe weiterer Studien genutzt werden können. KW - Simulation KW - Perowskit KW - Dünnschichtsolarzelle KW - Fotovoltaik KW - Drift-Diffusion KW - Photoviltaics KW - Simulation KW - Perovskite KW - Solar-Cell Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-322204 ER - TY - THES A1 - Friedrich, Felix T1 - Magnetic Excitations in Single and Coupled Atoms on Surfaces: From the Kondo Effect to Yu-Shiba-Rusinov States T1 - Magnetische Anregungen in einzelnen und gekoppelten Atomen auf Oberflächen: Vom Kondo-Effekt zu Yu-Shiba-Rusinov-Zuständen N2 - Magnetic systems underlie the physics of quantum mechanics when reaching the limit of few or even single atoms. This behavior limits the minimum size of magnetic bits in data storage devices as spontaneous switching of the magnetization leads to the loss of information. On the other hand, exactly these quantum mechanic properties allow to use such systems in quantum computers. Proposals to realize qubits involve the spin states of single atoms as well as topologically protected Majorana zero modes, that emerge in coupled systems of magnetic atoms in proximity to a superconductor. In order to implement and control the proposed applications, a detailed understanding of atomic spins and their interaction with the environment is required. In this thesis, two different systems of magnetic adatoms coupled to metallic and superconducting surfaces are studied by means of scanning tunneling microscopy (STM) and spectroscopy: Co atoms on the clean Cu(111) were among the first systems exhibiting signatures of the Kondo effect in an individual atom. Yet, a recent theoretical work proposed an alternative interpretation of these early experimental results, involving a newly described many-body state. Spin-averaged and -polarized experiments in high magnetic fields presented in this thesis confirm effects beyond the Kondo effect that determine the physics in these Co atoms and suggest a potentially even richer phenomenology than proposed by theory. The second studied system are single and coupled Fe atoms on the superconducting Nb(110) surface. Magnetic impurities on superconducting surfaces locally induce Yu-Shiba-Rusinov (YSR) states inside the superconducting gap due to their pair breaking potential. Coupled systems of such impurities exhibit YSR bands and, if the bands cross the Fermi level such that the band structure is inverted, host Majorana zero modes. Using the example of Fe atoms on Nb(110), the YSR states’ dependence on the adatom–substrate interaction as well as the interatomic YSR state coupling is investigated. In the presence of oxygen on the Nb surface, the adatom–substrate interaction is shown to be heavily modified and the YSR states are found to undergo a quantum phase transition, which can be directly linked to a modified Kondo screening. STM tips functionalized with CO molecules allow to resolve self-assembled one-dimensional chains of Fe atoms on the clean Nb(110) surface to study the YSR states’ coupling. Mapping out the states’ wave functions reveals their symmetry, which is shown to alter as a function of the states’ energy and number of atoms in the chain. These experimental results are reproduced in a simple tight-binding model, demonstrating a straightforward possibility to describe also more complex YSR systems toward engineered, potentially topologically non-trivial states. N2 - Magnetische Systeme unterliegen im Limit von wenigen Atomen den Gesetzen der Quantenmechanik. Diese Tatsache beschränkt die minimale Größe magnetischer Bits in der Datenspeicherung, da spontane Änderungen der Magnetisierung zu Datenverlust führen. Gleichzeitig ist es genau jenes quantenmechanische Verhalten, welches es erlaubt, diese Systeme in Quantencomputern zu verwenden. Vorschläge, die dafür notwendigen Qubits zu realisieren, umfassen die Spinzustände einzelner Atome sowie topologisch geschützte Majorana-Nullmoden, welche in Systemen gekoppelter magnetischer Atome in Supraleitern auftreten. Für die Umsetzung dieser Anwendungen sind detaillierte Kenntnisse über die Wechselwirkung atomarer Spins mit ihrer Umgebung nötig. In dieser Arbeit werden zwei verschiedene solcher Systeme aus magnetischen Adatomen auf Oberflächen mit der Methode der Rastertunnelmikroskopie (RTM) und -spektroskopie untersucht: Lange galten einzelne Co-Atome auf der Cu(111)-Oberfläche als prototypisches Modell für den Kondo-Effekt in Einzelatomen. Dies wurde jedoch vor Kurzem durch eine Theoriearbeit infrage gestellt, welche die bisherigen experimentellen Daten durch das Auftreten eines neu beschriebenen Vielteilchen-Zustands erklärt. In dieser Arbeit werden neue, spingemittelte und -aufgelöste Messungen in hohen Magnetfeldern präsentiert, welche das Auftreten von Effekten jenseits des Kondo-Effekts in diesem System bestätigen. Im zweiten Teil der Arbeit werden einzelne und gekoppelte Fe-Atome auf der supraleitenden Nb(110)-Oberfläche untersucht. Magnetische Defekte erzeugen in Supraleitern aufgrund ihres Paarbrechungspotentials Yu-Shiba-Rusinov(YSR)-Zustände innerhalb der supraleitenden Bandlücke. Die Kopplung dieser Zustände resultiert in YSR-Bändern, und kann durch Inversion der Bandlücke zum Auftreten von Majorana-Nullmoden führen. Am Beispiel von Fe-Atomen auf Nb(110) wird hier der Einfluss der Adatom–Oberflächen-Wechselwirkung auf die YSR-Zustände sowie deren interatomare Kopplung untersucht. Es wird gezeigt, dass Sauerstoff die Wechselwirkung stark beeinflusst und die atomaren YSR-Zustände infolge dessen einen Quantenphasenübergang durchlaufen. Dieser kann direkt auf eine veränderte Kondo-Abschirmung zurückgeführt werden. Weiter werden mittels mit CO-Molekülen funktionalisierter RTM-Spitzen eindimensionale Ketten aus Fe-Atomen auf der sauberen Nb(110)-Oberfläche identifiziert, anhand derer die Kopplung der YSR-Zustände untersucht wird. Ortsaufgelöste Messungen der zugehörigen Wellenfunktionen decken die Symmetrie dieser Zustände auf, welche ein alternierendes Verhalten zwischen Ketten mit gerader und ungerader Atomzahl aufweist. Diese experimentellen Ergebnisse werden anschließend in einem tight-binding-Modell, welches auch auf komplexere Systeme angewandt werden kann, beschrieben. KW - Rastertunnelmikroskopie KW - Oberflächenphysik KW - Kondo-Effekt KW - Supraleitung KW - Magnetische Anregung KW - Yu-Shiba-Rusinov-Zustände KW - Majorana-Nullmoden Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-320699 ER - TY - THES A1 - Gram, Maximilian T1 - Neue Methoden der Spin-Lock-basierten Magnetresonanztomographie: Myokardiale T\(_{1ρ}\)-Quantifizierung und Detektion magnetischer Oszillationen im nT-Bereich T1 - New methods of spin-lock-based magnetic resonance imaging: myocardial T\(_{1ρ}\) quantification and detection of magnetic oscillations in the nT range N2 - Das Ziel der vorliegenden Arbeit war die Entwicklung neuer, robuster Methoden der Spin-Lock-basierten MRT. Im Fokus stand hierbei vorerst die T1ρ-Quantifizierung des Myokards im Kleintiermodell. Neben der T1ρ-Bildgebung bietet Spin-Locking jedoch zusätzlich die Möglichkeit der Detektion ultra-schwacher, magnetischer Feldoszillationen. Die Projekte und Ergebnisse, die im Rahmen dieses Promotionsvorhabens umgesetzt und erzielt wurden, decken daher ein breites Spektrum der Spin-lock basierten Bildgebung ab und können grob in drei Bereiche unterteilt werden. Im ersten Schritt wurde die grundlegende Pulssequenz des Spin-Lock-Experimentes durch die Einführung des balancierten Spin-Locks optimiert. Der zweite Schritt war die Entwicklung einer kardialen MRT-Sequenz für die robuste Quantifizierung der myokardialen T1ρ-Relaxationszeit an einem präklinischen Hochfeld-MRT. Im letzten Schritt wurden Konzepte der robusten T1ρ-Bildgebung auf die Methodik der Felddetektion mittels Spin-Locking übertragen. Hierbei wurden erste, erfolgreiche Messungen magnetischer Oszillationen im nT-Bereich, welche lokal im untersuchten Gewebe auftreten, an einem klinischen MRT-System im menschlichen Gehirn realisiert. N2 - The main goal of the present work was to develop new, robust methods of spin-lock-based MRI. The initial focus was on T1ρ quantification of the myocardium in small animal models. However, in addition to T1ρ imaging, spin-locking offers the possibility of detecting ultra-weak magnetic field oscillations. The projects and results realized and obtained in this PhD project therefore cover a broad spectrum of spin-lock based imaging and can be roughly divided into three areas. The first step was to optimize the basic pulse sequence of the spin-lock experiment by introducing balanced spin-locking. The second step was to develop a cardiac MRI sequence for robust quantification of the myocardial T1ρ relaxation time on a preclinical high-field MRI scanner. In the final step, concepts of robust T1ρ imaging were adapted to spin-lock based magnetic field detection. First successful measurements of magnetic field oscillations in the nT range, which occur locally inside the tissue under investigation, were realized on a clinical MRI system in the human brain. KW - Kernspintomografie KW - Magnetresonanztomographie KW - Kernspinresonanz KW - Spin-Lock KW - T1ρ KW - T1rho KW - Kardio-MRT KW - Rotary Excitation KW - Myokardiale T1ρ-Quantifizierung KW - Felddetektion KW - funktionelle MRT Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-322552 ER - TY - THES A1 - Stühler, Rudolf Raul Albert T1 - Growth and Spectroscopy of the Two-dimensional Topological Insulator Bismuthene on SiC(0001) T1 - Wachstum und Spektroskopie des zweidimensionalen topologischen Isolators Bismuthen auf SiC(0001) N2 - A plethora of novel material concepts are currently being investigated in the condensed matter research community. Some of them hold promise to shape our everyday world in a way that silicon-based semiconductor materials and the related development of semiconductor devices have done in the past. In this regard, the last decades have witnessed an explosion of studies concerned with so called ‘’quantum materials’’ with emerging novel functionalities. These could eventually lead to new generations of electronic and/or spintronic devices. One particular material class, the so called topological materials, play a central role. As far as their technological applicability is concerned, however, they are still facing outstanding challenges to date. Predicted for the first time in 2005 and experimentally verified in 2007, two-dimensional topological insulators (2D TIs) (a.k.a. quantum spin Hall insulators) exhibit the outstanding property of hosting spin-polarized metallic states along the boundaries of the insulating 2D bulk material, which are protected from elastic single-particle backscattering and give rise to the quantum spin Hall effect (QSHE). Owing to these peculiar properties the QSHE holds promise for dissipationless charge and/or spin transport. However, also in today’s best 2D TIs the observation of the QSHE is still limited to cryogenic temperatures of maximum 100 K. Here, the discovery of bismuthene on SiC(0001) has marked a milestone towards a possible realization of the QSHE at or beyond room-temperature owing to the massively increased electronic bulk energy gap on the order of 1 eV. This thesis is devoted to and motivated by the goal of advancing its synthesis and to build a deeper understanding of its one-particle and two-particle electronic properties that goes beyond prior work. Regarding the aspect of material synthesis, an improved growth procedure for bismuthene is elaborated that increases the domain size of the material considerably (by a factor of ≈ 3.2 - 6.5 compared to prior work). The improved film quality is an important step towards any future device application of bismuthene, but also facilitates all further basic studies of this material. Moreover, the deposition of magnetic transition metals (Mn and Co) on bismuthene is investigated. Thereby, the formation of ordered magnetic Bi-Mn/Co alloys is realized, their structure is resolved with scanning tunneling microscopy (STM), and their pristine electronic properties are resolved with scanning tunneling spectroscopy (STS) and photoemission spectroscopy (PES). It is proposed that these ordered magnetic Bi-Mn/Co-alloys offer the potential to study the interplay between magnetism and topology in bismuthene in the future. In this thesis, a wide variety of spectroscopic techniques are employed that aim to build an understanding of the single-particle, as well as two-particle level of description of bismuthene's electronic structure. The techniques involve STS and angle-resolved PES (ARPES) on the one hand, but also optical spectroscopy and time-resolved ARPES (trARPES), on the other hand. Moreover, these experiments are accompanied by advanced numerical modelling in form of GW and Bethe-Salpeter equation calculations provided by our theoretical colleagues. Notably, by merging many experimental and theoretical techniques, this work sets a benchmark for electronic structure investigations of 2D materials in general. Based on the STS studies, electronic quasi-particle interferences in quasi-1D line defects in bismuthene that are reminiscent of Fabry-Pérot states are discovered. It is shown that they point to a hybridization of two pairs of helical boundary modes across the line defect, which is accompanied by a (partial) lifting of their topological protection against elastic single-particle backscattering. Optical spectroscopy is used to reveal bismuthene's two-particle elecronic structure. Despite its monolayer thickness, a strong optical (two-particle) response due to enhanced electron-hole Coulomb interactions is observed. The presented combined experimental and theoretical approach (including GW and Bethe-Salpeter equation calculations) allows to conclude that two prominent optical transitions can be associated with excitonic transitions derived from the Rashba-split valence bands of bismuthene. On a broader scope this discovery might promote further experiments to elucidate links of excitonic and topological physics. Finally, the excited conduction band states of bismuthene are mapped in energy and momentum space employing trARPES on bismuthene for the first time. The direct and indirect band gaps are succesfully extracted and the effect of excited charge carrier induced gap-renormalization is observed. In addition, an exceptionally fast excited charge carrier relaxation is identified which is explained by the presence of a quasi-metallic density of states from coupled topological boundary states of domain boundaries. N2 - Zahlreiche neuartige Materialkonzepte werden derzeit in der Festkörperforschung untersucht. Einige von ihnen haben das Potenzial, unsere Alltagswelt in einer Weise zu beeinflussen, wie es Halbleitermaterialien auf Siliziumbasis und die damit verbundene Entwicklung von Halbleiterbauelemente in der Vergangenheit getan haben. In diesem Zusammenhang gab es in den letzten Jahrzehnten eine regelrechte Flut von Untersuchungen zu sogenannten „Quantenmaterialien“ mit völlig neuen Funktionalitäten. Diese könnten in Zukunft schließlich zu einer neuen Generation von elektronischen und/oder spintronischen Bauelementen führen. Eine spezielle Materialklasse, die so genannten topologischen Materialien, spielen dabei eine wichtige Rolle. Hinsichtlich ihrer technologischen Anwendbarkeit stehen sie jedoch bis heute vor großen Herausforderungen. Zweidimensionale topologische Isolatoren (2D TIs) (auch bekannt als Quanten Spin Hall Isolatoren) wurden erstmals 2005 vorhergesagt und schließlich 2007 experimentell bestätigt. Diese Materialien haben die außergewöhnliche Eigenschaft, dass sie spinpolarisierte metallische Zustände entlang der Grenzen des isolierenden 2D-Volumenmaterials aufweisen, die vor elastischer Ein-Teilchen-Rückstreuung geschützt sind und damit den Quanten-Spin-Hall-Effekt (QSHE) begründen. Aufgrund dieser besonderen Eigenschaften verspricht der QSHE einen dissipationsfreien Ladungs- und/oder Spintransport. Allerdings ist die Beobachtung des QSHE auch in den gegenwärtig am besten entwickelten 2D-TIs immer noch auf kryogene Temperaturen von maximal 100 K beschränkt. In diesem Zusammenhang war die Entdeckung von Bismuthen (engl. bismuthene) auf SiC(0001) ein Meilenstein in Bezug auf eine mögliche Realisierung des QSHE bei oder oberhalb von Raumtemperatur aufgrund der massiv vergrößerten elektronischen Volumenenergielücke in der Größenordnung von 1 eV. Dieser Arbeit liegt das Ziel und die Motivation zugrunde, die Synthese von Bismuthen zu verbessern und darüber hinaus das derzeitige Verständnis der elektronischen Ein- und Zweiteilchen-Eigenschaften dieses Materials zu erweitern. Was den Aspekt der Materialsynthese betrifft, so wird ein verbessertes Wachstumsverfahren für Bismuthen erarbeitet, das die Domänengröße des Materials beträchtlich erhöht (um einen Faktor von ≈ 3.2 - 6.5 im Vergleich zu früheren Arbeiten). Die verbesserte Filmqualität stellt einen wichtigen Schritt in Hinblick auf zukünftige Anwendungen von Bismuthen dar, erleichtert darüber hinaus aber auch alle grundlegenden Untersuchungen mit diesem Material. Darüber hinaus wird die Deposition von magnetischen übergangsmetallen (Mn und Co) auf Bismuthen erforscht. So konnten geordnete magnetische Bi-Mn/Co-Legierungen hergestellt werden, deren Struktur mit Rastertunnelmikroskopie (STM) und deren elektronische Eigenschaften mit Rastertunnelspektroskopie (STS) und Photoemissionsspektroskopie (PES) aufgelöst wurden. Es wird nahegelegt, dass diese geordneten magnetischen Bi-Mn/Co-Legierungen das Potenzial bieten, die Wechselwirkung zwischen Magnetismus und Topologie in Bismuthen in Zukunft zu untersuchen. In dieser Dissertation werden eine Vielzahl von spektroskopischen Techniken eingesetzt, die darauf abzielen, die elektronische Struktur von Bismuthen auf der Ein-Teilchen- und Zwei-Teilchen-Ebene zu verstehen. Die Techniken umfassen einerseits STS und winkelaufgelöste PES (ARPES), andererseits aber auch optische Spektroskopie und zeitaufgelöste ARPES (trARPES). Darüber hinaus werden diese Experimente durch umfangreiche numerische Modellierungen in Form von GW-Rechnungen und Lösungen der Bethe-Salpeter-Gleichung unterstützt, die von unseren theoretischen Kollegen durchgeführt wurden. Durch die Verknüpfung zahlreicher experimenteller und theoretischer Methoden setzt diese Arbeit auch einen Maßstab für die Untersuchung der elektronischen Struktur von 2D-Materialien im Allgemeinen. Basierend auf den Untersuchungen mit STS werden elektronische Quasiteilchen Interferenzen in quasi-1D Liniendefekten in Bismuthen entdeckt, die an Fabry-Pérot Zustände erinnern. Dabei wird gezeigt, dass diese Interferenzen auf eine Hybridisierung zweier Paare helikaler Grenzmoden über den Liniendefekt hinweg hinweisen, was mit einer (teilweisen) Aufhebung ihres topologischen Schutzes gegen elastische Ein-Teilchen-Rückstreuung einhergeht. Mit Hilfe optischer Spektroskopie wird die elektronische Zwei-Teilchen-Struktur von Bismuthen untersucht. Dabei ist trotz der Einzelschichtdicke eine starke optische, d.h. Zwei-Teilchen-, Antwort aufgrund der starken Elektron-Loch Coulomb-Wechselwirkungen zu beobachten. Der kombinierte experimentelle und theoretische Zugang (einschließlich GW Rechnungen und Lösungen der Bethe-Salpeter-Gleichung) erlaubt den Nachweis, dass zwei markante optische Übergänge Exzitonenanregungen sind, die von Valenzbändern von Bismuthen stammen, welche durch die Rashba-Wechselwirkung getrennt sind. Im weiteren Kontext könnte diese Entdeckung Anlass zu künftigen Experimenten sein, um die Zusammenhänge zwischen exzitonischer und topologischer Physik zu untersuchen. Schließlich werden erstmals die angeregten Leitungsbandzustände von Bismuthen mit Hilfe von trARPES energie- und impulsaufgelöst gemessen. Dabei ist es gelungen, die direkte und indirekte Bandlücke zu ermitteln und zudem den Effekt einer Ladungsträger induzierten Bandlücken-Renormalisierung zu beobachten. Darüber hinaus wird eine außergewöhnlich schnelle Relaxation angeregter Ladungsträger nachgewiesen, die durch das Vorhandensein einer quasi-metallischen Zustandsdichte aufgrund gekoppelter topologischer Randmoden an Domänengrenzen erklärt wird. KW - Topologischer Isolator KW - Rastertunnelmikroskop KW - Zweidimensionales Material KW - Bismuthene KW - helical edge states KW - honeycomb lattice KW - quantum spin hall insulator KW - two-dimensional topological insulator KW - trARPES KW - exciton KW - magnetic KW - Photoelektronenspektroskopie KW - Siliziumcarbid Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-320084 ER - TY - THES A1 - Lutter, Fabian T1 - Elementsensitive Bildgebung - Einsatz chromatischer Pixelarrays in Röntgen nano-CT T1 - Element sensitive imaging - Use of chromatic pixel arrays in X-ray nano-CT N2 - Diese Arbeit befasst sich mit der Weiterentwicklung und Charakterisierung des XRM-II nanoCT Systems, sowie dessen Möglichkeiten zur Materialtrennung und Elementbestimmung in der nano-Computertomographie. Beim XRM-II nanoCT System handelt es sich um ein Röntgenmikroskop, welches in ein Rasterelektronenmikroskop integriert ist, und auf dem Prinzip der geometrischen Vergrößerung basiert. Neben zweidimensionalen Durchstrahlungsbildern ist dieses Mikroskop auch zur dreidimensionalen Bildgebung mittels Computertomographie fähig. Der Ausgangspunkt für die Weiterentwicklung ist das XRM-II, mit welchem bereits Computertomographien im Nanometerbereich möglich waren. Deren Aufnahmedauer liegt zwischen 14 und 21 Tagen, was das System trotz seiner hohen Auflösung wenig praktikabel macht. Durch eine Anpassung der Blendeneinstellungen am Rasterelektronenmikroskop konnte der Strahlstrom um den Faktor 40 erhöht und damit die Aufnahmedauer auf 24 Stunden reduziert werden, wobei weiterhin eine zweidimensionale Auflösung von \(167 \pm 9\) nm erreicht wird. Durch die Trennung von Objekt- und Targetmanipulator lassen sich beide unabhängig und genauer bewegen, wodurch es möglich ist selbst 50 nm große Strukturen abzubilden. Die Charakterisierung erfolgt sowohl für das komplette System als auch getrennt in die entscheidenden Komponenten wie Target und Detektor. Für das Röntgentarget werden Monte-Carlo Simulationen zur Brennfleckgröße, welche entscheidend für die erreichbare Auflösung ist, durchgeführt und mit Auflösungstests verglichen. Der Röntgendetektor wird hinsichtlich seiner spektralen Auflösung überprüft, welche hauptsächlich vom Charge Sharing Effekt beeinflusst wird. Die Charakterisierung des Gesamtsystems erfolgt durch den Vergleich mit einer höher auflösenden Bildgebungsmethode, der FIB Tomographie. Hierbei wird die gleiche Probe, ein Bruchstück einer CPU, mit beiden Methoden unter der Voraussetzung einer ähnlichen Aufnahmezeit (24 h) untersucht. In der nano-CT kann ein 12 mal größeres Volumen analysiert werden, was jedoch eine geringere räumliche Auflösung als die FIB Tomographie mit sich bringt. Da die spektrale Auflösung des Detektors aufgrund des Charge Sharing begrenzt ist, lassen sich nur Materialien mit einem großen Unterschied in der Ordnungszahl mittels der Energieschwellen des Detektors trennen. Jedoch kann in Verbindung mit der geeigneten Wahl des Targetmaterials der Absorptionskontrast für leichte Materialien, wie beispielsweise \(SiO_2\) verbessert werden. Darüber hinaus ist es am XRM-II nanoCT möglich, durch das integrierte EDX-System, Elemente in der Computertomographie zu identifizieren. Dies wird anhand eines Drei-Wegekatalysators und eines NCA-Partikel gezeigt. N2 - The general topic of this thesis is the development and characterization of the XRM-II nanoCT system, as well as its possibilities for material separation in nano-computed tomographay. The XRM-II nanoCT system is an X-ray microscope integrated into a scanning electron microscope and is based on the principle of geometric magnification. In addition to two-dimensional radiographs, this system is also capable of three-dimensional imaging by using computed tomography. The starting point for the development is the XRM-II system, which is already capable of performing computed tomography in the nanometer range. The acquisition time is between 14 and 21 days, which is the reason why this system is impractical despite its high resolution. By adjusting the aperture settings on the scanning electron microscope, the beam current could be increased by a factor of 40, reducing the acquisition time to 24 hours, while the achievable resolution is still at \(167 \pm 9\) nm. By separating the object and target manipulator, their movement becomes independent and more precisely, resulting in the possibility of resolving even 50 nm sized structures. The characterization is done both for the complete system and separately for the decisive components such as target and detector. Monte Carlo simulations of the focal spot size, which is crucial for the achievable resolution, are performed for the X-ray target and are compared to resolution tests. The spectral resolution of the X-ray detector is checked, which is mainly influenced by the charge sharing effect. The complete system is characterized by the comparison of it to a higher resolving imaging method, the FIB Tomography. The exact same sample, a fragment of a CPU, is analyzed with both imaging methods under the restriction of a similar measurement time (24 h). In the nano-CT the examined volume is 12 times larger than in the FIB tomography, resulting in a lower spatial resolution. Since the spectral resolution of the detector is mainly limited by charge sharing, only materials with a large difference in atomic number can be separated using the detector's energy thresholds. In connection with an appropriate choice of target material, the absorption contrast for light materials such as \(SiO_2\) can be improved. Furthermore, it is possible to identify elements in the computed tomography on the XRM-II nanoCT system using the integrated EDX system. This is demonstrated on a three-way catalytic converter and on a NCA particle. KW - Computertomographie KW - Rasterelektronenmikroskopie KW - Nanometerbereich KW - Röntgendetektor KW - Energieauflösung KW - Elementbestimmung KW - nano-CT KW - Röntgenmikroskopie Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-319955 ER - TY - THES A1 - Armer, Melina Brigitte Melanie T1 - High-Quality Lead-Free Double Perovskite Single Crystals and their Optical Properties T1 - Optische Eigenschaften von bleifreien Doppelperowskit Einkristallen N2 - The presented thesis deals with the investigation of the characteristic physical properties of lead-free double perovskites. For this purpose lead-free double perovskite single crystals were grown from solution. In order to assess the influence of growth temperature on tail states in the material, the crystals were studied using Photoluminescence Excitation (PLE) and Transmission measurements. Additionally, lead-free double perovskite solar cells and thin films were investigated to address the correlation of precursor stoichiometry and solar cell efficiency. In a last step a new earth abundant lead-free double perovskite was introduced and its physical properties were studied by photoluminescene and absorptance. Like this it was possible to assess the suitability of this material for solar cell applications in the future. N2 - Um die charakteristischen physikalischen Eigenschaften von bleifreien Doppelperowskiten näher zu untersuchen, wurden im Rahmen dieser Arbeit Einkristalle aus einer Lösung gezogen. Um den Einfluss der Wachstumstemperatur auf sogenannte „tail states“ in den Kristallen zu untersuchen, wurde hierbei auf optische Methoden wie „photoluminescence excitation“ (PLE) und Transmission zurückgegriffen. Des Weiteren wurden Solarzellen mit bleifreiem Doppelperowskit als Absorberschicht näher untersucht. Hierbei wurden unter anderem Dünnfilme genutzt, um den Einfluss der Filmstöchiometrie auf die Solarzelleffizienzen zu untersuchen. Zuletzt wurde ein weiteres Doppelperowskitmaterial mittels Photolumineszenz und Absorptionmessungen untersucht um Rückschlüsse auf seine Eignung als Absorberschicht in Solarzellen zu ziehen. KW - Perowskit KW - Fotovoltaik KW - Kristallzüchtung KW - Perovskite KW - Lead-free double perovskite KW - crystal growth KW - Photoluminescence KW - Solar cell Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-327503 ER - TY - THES A1 - Baumgärtner, Kiana Jasmin T1 - Spectroscopic Investigation of the Transient Interplay at Hybrid Molecule-Substrate Interfaces after Photoexcitation: Ultrafast Electronic and Atomic Rearrangements T1 - Spektroskopische Untersuchung des dynamischen Zusammenspiels an hybriden Molekül-Substrat Grenzflächen: Ultraschnelle Elektronen- und Atombewegungen N2 - This thesis is aimed at establishing modalities of time-resolved photoelectron spectroscopy (tr-PES) conducted at a free-electron laser (FEL) source and at a high harmonic generation (HHG) source for imaging the motion of atoms, charge and energy at photoexcited hybrid organic/inorganic interfaces. Transfer of charge and energy across interfaces lies at the heart of surface science and device physics and involves a complex interplay between the motion of electrons and atoms. At hybrid organic/inorganic interfaces involving planar molecules, such as pentacene and copper(II)-phthalocyanine (CuPc), atomic motions in out-of-plane direction are particularly apparent. Such hybrid interfaces are of importance to, e.g., next-generation functional devices, smart catalytic surfaces and molecular machines. In this work, two hybrid interfaces – pentacene atop Ag(110) and copper(II)-phthalocyanine (CuPc) atop titanium disulfide (1T-TiSe2) – are characterized by means of modalities of tr-PES. The experiments were conducted at a HHG source and at the FEL source FLASH at Deutsches Elektronen-Synchrotron DESY (Hamburg, Germany). Both sources provide photon pulses with temporal widths of ∼ 100 fs and thus allow for resolving the non-equilibrium dynamics at hybrid interfaces involving both electronic and atomic motion on their intrinsic time scales. While the photon energy at this HHG source is limited to the UV-range, photon energies can be tuned from the UV-range to the soft x-ray-range at FLASH. With this increased energy range, not only macroscopic electronic information can be accessed from the sample’s valence and conduction states, but also site-specific structural and chemical information encoded in the core-level signatures becomes accessible. Here, the combined information from the valence band and core-level dynamics is obtained by performing time- and angle-resolved photoelectron spectroscopy (tr-ARPES) in the UV-range and subsequently performing time-resolved x-ray photoelectron spectroscopy (tr-XPS) and time-resolved photoelectron diffraction (tr-XPD) in the soft x-ray regime in the same experimental setup. The sample’s bandstructure in energy-momentum space and time is captured by a time-of-flight momentum microscope with femtosecond temporal and sub-Ångström spatial resolutions. In the investigated systems, out-of-equilibrium dynamics are traced that are connected to the transfer of charge and energy across the hybrid interfaces. While energetic shifts and complementary population dynamics are observed for molecular and substrate states, the shapes of involved molecular orbitals change in energy-momentum space on a subpicosecond time scale. In combination with theory support, these changes are attributed to iiiatomic reorganizations at the interface and transient molecular structures are reconstructed with sub-Ångström precision. Unique to the material combination of CuPc/TiSe2, a structural rearrangement on the macroscopic scale is traced simultaneously: ∼ 60 % of the molecules undergo a concerted, unidirectional in-plane rotation. This surprising observation and its origin are detailed in this thesis and connected to a particularly efficient charge transfer across the CuPc/TiSe2 interface, resulting in a charging of ∼ 45 % of CuPc molecules. N2 - Das Ziel der vorliegenden Doktorarbeit ist es, die Bewegung von Atomen, Ladungsträgern und Energie an organisch/anorganischen Grenzschichten fernab des thermischen Gleichgewichts zu visualisieren und deren Wechselwirkung zu entschlüsseln. Dies wird experimentell mittels zeitaufgelöster Photoemissionsexperimente an einer Freien-Elektronen-LaserQuelle und an einer Höher-Harmonischen-Quelle verwirklicht. Ladungs- und Energietransfer zwischen organisch/anorganischen Grenzschichten sind zentrale Komponenten für die Funktion Molekül-basierter Anwendungen, wie z.B. katalytische Oberflächen, elektronische Schalt- und Speichergeräte oder molekulare Maschinen. Sie stellen einen dynamischen Prozess dar, der sich in einem Wechselspiel aus der Bewegung von Elektronen zwischen beiden Schichten und atomaren Bewegungen innerhalb beider Schichten äußert. Planare Moleküle, wie Pentacen oder Kupfer(II)-Phthalocyanin (CuPc), eignen sich besonders um solche atomaren Bewegungen zu untersuchen, da diese aufgrund geringer Rückstellkräfte senkrecht zur Molekülebene besonders ausgeprägt sein können. In dieser Arbeit werden Ladungs- und Energietransferprozesse an zwei ausgewählten Grenzschichten untersucht: Pentacen auf Silber (Ag(110)) und CuPc auf Titan Diselenid (1T-TiSe2). Zeitaufgelöste Photoemissionsexperimente (tr-PES) wurden an einer HöherHarmonischen-Quelle und an dem Freien-Elektronen-Laser FLASH (Deutsches Elektronen-Synchrotron DESY, Hamburg, Deutschland) durchgeführt. Beide Lichtquellen liefern Photonenpulse mit einer Halbwertsbreite von etwa 100 fs und sind daher geeignet, um Nicht-Gleichgewichtsprozesse zeitlich aufzulösen, die auf der Bewegung von sowohl Elektronen als auch Atomen basieren. Die gewählte Höher-Harmonische-Quelle liefert Photonenenergien im UV-Bereich. Bei FLASH hingegen können die Photonenenergien variabel vom UV-Bereich bis hin zum Weichröntgenbereich erzeugt werden. Dieser erweiterte Energiebereich ermöglicht es, zusätzlich zur elektronischen Dynamik im Valenzbereich, auch Dynamiken kernnaher Zustände zu beobachten. Mithilfe dreier Modalitäten von zeitaufgelöster Photoemission – zeit- und winkelaufgelöste Photoelektronenspektroskopie (tr-ARPES), zeitaufgelöste Röntgenphotoelektronenspektroskopie (tr-XPS) und zeitaufgelöste Röntgenphotoelektronen-Diffraktion (tr-XPD) – werden sowohl die elektronischen als auch strukturellen Dynamiken der Grenzschicht rekonstruiert. Dabei dient tr-ARPES im UV-Bereich zur Charakterisierung der makroskopischen elektronischen Eigenschaften und tr-XPS und tr-XPD im Weichröntgenbereich dienen zur Analyse lokaler chemischer und struktureller Eigenschaften. Alle Messungen wurden unter denselben experimentellen Beidingungen durchgeführt und mithilfe eines Flugzeit-Impulsmikroskops konnte die transiente Bandstruktur mit einer Ortauflösung im Sub-Ångström-Bereich und einer Zeitauflö- sung im Femtosekunden-Bereich aufgenommen werden. In beiden untersuchten Systemen werden elektronische und strukturelle Prozesse an der Molekül–Substrat Grenzfläche beobachtet, die durch einen Ladungs- und Energietransfer in Folge optischer Anregung erklärt werden. Dieser Transfer äußert sich elektronisch durch ein Befüllen des Substrat-Leitungsbands und einem zeitgleichen Entleeren der MolekülValenzorbitale. Strukturelle Veränderungen, wie die Adsorptionshöhe oder intramolekulare Atompositionen, werden aus den sich zeitgleich verformenden Molekül-Valenzorbitalen rekonstruiert. Speziell für CuPc/TiSe2 wird ein effektiver Ladungstransfer beobachtet, wodurch 375 fs nach optischer Anregung ∼ 45 % der Moleküle einfach positiv geladen vorliegen. Diese Ladungstrennung zwischen den sich wie ein Schachbrett anordnenden positivgeladenen und neutralen Molekülen sowie dem Substrat führt zu einer Modulation des Oberflächenpotentials, welche eine energetische Verschiebung aller Grenzflächenzustände bedingt und intramolekulare Strukturveränderungen sowie eine makroskopische Reorganisation des Molekülfilms zur Folge hat: ∼ 60 % der Moleküle drehen sich innerhalb von ∼ 375 fs synchron auf dem Substrat und nehmen nach ∼ 1800 fs wieder ihre Ausgangsposition ein. Diese überraschende Beobachtung sowie die Ursache werden detaillierter in der vorliegenden Arbeit diskutiert und in den Kontext aktueller Forschung an "molekularen Schaltern" gebracht. KW - ARPES KW - Pump-Probe-Technik KW - Übergangsmetalldichalkogenide KW - Orbital KW - Molekül KW - orbital tomography KW - time-resolved KW - free electron laser KW - charge transfer KW - molecular movie Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-330531 ER - TY - THES A1 - Scheffler, Lukas T1 - Molecular beam epitaxy of the half-Heusler antiferromagnet CuMnSb T1 - Molekularstrahlepitaxie des halb-Heusler Antiferromagneten CuMnSb N2 - This work presents a newly developed method for the epitaxial growth of the half-Heusler antiferromagnet CuMnSb. All necessary process steps, from buffer growth to the deposition of a protective layer, are presented in detail. Using structural, electrical, and magnetic characterization, the material parameters of the epitaxial CuMnSb layers are investigated. The successful growth of CuMnSb by molecular beam epitaxy is demonstrated on InAs (001), GaSb (001), and InP (001) substrates. While CuMnSb can be grown pseudomorphically on InAs and GaSb, the significant lattice mismatch for growth on InP leads to relaxation already at low film thicknesses. Due to the lower conductivity of GaSb compared to InAs, GaSb substrates are particularly suitable for the fabrication of CuMnSb layers for lateral electrical transport experiments. However, by growing a high-resistive ZnTe interlayer below the CuMnSb layer, lateral transport experiments on CuMnSb layers grown on InAs can also be realized. Protective layers of Ru and Al2O3 have proven to be suitable for protecting the CuMnSb layers from the environment. Structural characterization by high resolution X-ray diffraction (full width at half maximum of 7.7 ′′ of the rocking curve) and atomic force microscopy (root mean square surface roughness of 0.14 nm) reveals an outstanding crystal quality of the epitaxial CuMnSb layers. The half-Heusler crystal structure is confirmed by scanning transmission electron microscopy and the stoichiometric material composition by Rutherford backscattering spectrometry. In line with the high crystal quality, a new minimum value of the residual resistance of CuMnSb (𝜌0 = 35 μΩ ⋅ cm) could be measured utilizing basic electrical transport experiments. An elaborate study of epitaxial CuMnSb grown on GaSb reveals a dependence of the vertical lattice parameter on the Mn/Sb flux ratio. This characteristic enables the growth of tensile, unstrained, and compressive strained CuMnSb layers on a single substrate material. Additionally, it is shown that the Néel temperature has a maximum of 62 K at stoichiometric material composition and thus can be utilized as a selection tool for stoichiometric CuMnSb samples. Mn-related defects are believed to be the driving force for these observations. The magnetic characterization of the epitaxial CuMnSb films is performed by superconducting quantum interference device magnetometry. Magnetic behavior comparable to the bulk material is found, however, an additional complex magnetic phase appears in thin CuMnSb films and/or at low magnetic fields, which has not been previously reported for CuMnSb. This magnetic phase is believed to be localized at the CuMnSb surface and exhibits both superparamagnetic and spin-glass-like behavior. The exchange bias effect of CuMnSb is investigated in combination with different in- and out-of-plane ferromagnets. It is shown that the exchange bias effect can only be observed in combination with in-plane ferromagnets. Finally, the first attempts at the growth of fully epitaxial CuMnSb/NiMnSb heterostructures are presented. Both magnetic and structural studies by secondary-ion mass spectrometry indicate the interdiffusion of Cu and Ni atoms between the two half-Heusler layers, however, an exchange bias effect can be observed for the CuMnSb/NiMnSb heterostructures. Whether this exchange bias effect originates from exchange interaction between the CuMnSb and NiMnSb layers, or from ferromagnetic inclusions in the antiferromagnetic layer can not be conclusively identified. N2 - In dieser Arbeit wird eine neu entwickelte Methode für das epitaktische Wachstum des antiferromagnetischen halb-Heuslers CuMnSb vorgestellt. Alle notwendigen Prozessschritte, vom Pufferschichtwachstum bis hin zum Aufbringen einer Schutzschicht, werden detailliert dargestellt. Mittels struktureller, elektrischer und magnetischer Charakterisierung werden die Materialparameter der epitaktischen CuMnSb-Schichten untersucht. Das erfolgreiche Wachstum von CuMnSb durch Molekularstrahlepitaxie wird auf InAs (001), GaSb (001) und InP (001) Substraten demonstriert. Während CuMnSb auf InAs und GaSb pseudomorph gewachsen werden kann, führt die signifikante Gitterfehlanpassung beim Wachstum auf InP bereits bei geringen Schichtdicken zur Relaxation. Aufgrund der geringeren Leitfähigkeit von GaSb im Vergleich zu InAs sind GaSb-Substrate besonders geeignet für die Herstellung von CuMnSb-Schichten für laterale elektrische Transportexperimente. Durch Einbringen einer hochohmigen ZnTe-Zwischenschicht unterhalb der CuMnSb-Schicht können jedoch auch laterale Transportexperimente an CuMnSb-Schichten, die auf InAs gewachsen werden, durchgeführt werden. Schutzschichten aus Ru und Al2O3 haben sich als geeignet erwiesen, die CuMnSb-Schichten vor der Umgebung zu schützen. Die strukturelle Charakterisierung mittels hochauflösender Röntgendiffraktometrie (Halbwertsbreite der Rocking-Kurve von 7.7′′) und Rasterkraftmikroskopie (quadratisches Mittel der Oberflächenrauhigkeit von 0.14nm) zeigt eine hervorragende Kristallqualität der epitaktischen CuMnSb-Schichten. Die halb-Heusler Kristallstruktur wird durch Rastertransmissionselektronenmikroskopie und die stöchiometrische Materialzusammensetzung durch Rutherford- Rückstreuungsspektrometrie bestätigt. In Übereinstimmung mit der hohen Kristallqualität konnte ein neuer Minimalwert des Restwiderstands von CuMnSb (𝜌0 = 35μΩ⋅cm) mit Hilfe von einfachen elektrischen Transportexperimenten gemessen werden. Eine ausführliche Untersuchung von epitaktischem CuMnSb, das auf GaSb gewachsen wurde, zeigt eine Abhängigkeit der vertikalen Gitterkonstante vom Mn/Sb-Flussverhältnis. Diese Eigenschaft ermöglicht das Wachstum von zugverspannten, unverspannten und druckverspannten CuMnSb Schichten auf einem einzigen Substratmaterial. Darüber hinaus wird gezeigt, dass die Néel-Temperatur bei stöchiometrischer Materialzusammensetzung ein Maximum von 62 K aufweist und somit als Auswahlinstrument für stöchiometrische CuMnSb Proben dienen kann. Es wird angenommen, dass Mn-bezogene Defekte ursächlich für diese Beobachtungen sind. Die magnetische Charakterisierung der epitaktischen CuMnSb-Filme erfolgt mittels Magnetometrie. Das magnetische Verhalten ist mit dem des Volumenmaterials vergleichbar. Allerdings tritt in dünnen CuMnSb Filmen und/oder bei niedrigen Magnetfeldern eine zusätzliche komplexe magnetische Phase auf, die bisher noch nicht für CuMnSb beobachtet wurde. Es wird angenommen, dass diese magnetische Phase an der CuMnSb-Oberfläche lokalisiert ist und sowohl superparamagnetisches als auch Spin-Glas-artiges Verhalten zeigt. Der Exchange Bias Effekt von CuMnSb wird in Kombination mit verschiedenen Ferromagneten mit vertikaler und horizontaler remanenter Magnetisierung untersucht. Es wird gezeigt, dass der Exchange Bias Effekt nur in Kombination mit Ferromagneten mit horizontaler remanenter Magnetisierung beobachtet werden kann. Schließlich werden die ersten Versuche zum Wachstum von vollständig epitaktischen CuMnSb/NiMnSb-Heterostrukturen vorgestellt. Sowohl magnetische als auch strukturelle Untersuchungen mittels Sekundärionen-Massenspektrometrie weisen auf die Interdiffusion von Cu- und Ni-Atomen zwischen den beiden halb-Heusler Schichten hin. Der Exchange Bias Effekt kann an den CuMnSb/NiMnSb Heterostrukturen beobachtet werden. Ob dieser Exchange Bias Effekt auf Austauschwechselwirkungen zwischen den CuMnSb- und NiMnSb-Schichten oder auf ferromagnetische Einschlüsse in der antiferromagnetischen Schicht zurückzuführen ist, lässt sich nicht eindeutig feststellen. KW - Molekularstrahlepitaxie KW - Heuslersche Legierung KW - half-Heusler KW - Antiferromagnetikum KW - CuMnSb KW - Antiferromagnet KW - Heusler Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-322839 ER - TY - THES A1 - Imhof, Stefan Michael T1 - The effects of non-Hermiticity and non-linearity on topological phenomena investigated in electric networks T1 - Die Einflüsse von Nicht-Hermitizität und Nicht-Linearität auf topologische Phänomene untersucht in elektrischen Schaltkreisen N2 - Topological phenomena known from solid state physics have been transferred to a variety of other classical and quantum systems. Due to the equivalence of the Hamiltonian matrix describing tight binding models and the grounded circuit Laplacian describing an electrical circuit we can investigate such phenomena in circuits. By implementing different Hermitian topological models general suggestions on designing those types of circuit are worked out with the aim of minimizing unwanted coupling effects and parasitic admittances in the circuit. Here the existence and the spatial profile of topological states as well as the band structure of the model can be determined. Due to the complex nature of electric admittance the investigations can be directly expanded to systems with broken Hermiticity. The particular advantages of the experimental investigation of non-exclusively topological phenomena by means of electric circuits come to light in the realization of non-Hermitian and non-linear models. Here we find limitation of the Hermitian bulk-boundary correspondence principle, purely real eigenvalues in non-Hermitian PT-symmetrical systems and edge localization of all eigenstates in non-Hermitian and non-reciprocal systems, which in literature is termed the non-Hermitian skin effect. When systems obeying non-linear equations are studied, the grounded circuit Laplacian based on the Fourier-transform cannot be applied anymore. By combination of the connectivity of a topological system together with non-linear van der Pol oscillators self-activated and self-sustained topological edge oscillations can be found. These robust high frequency sinusoidal edge oscillations differ significantly from low frequency relaxation oscillations, which can be found in the bulk of the system. N2 - Die vorliegende Dissertation befasst sich mit der Realisierung, dem Nachweis und der Charakterisierung topologieinduzierter Zustände und Phänomene in elektrischen Schaltkreisen, den sogenannten ”topolectric circuits“, motiviert durch Erkenntnisse aus der Festkörperphysik. Hierfur wird die Beschreibung eines elektrischen Schaltkreises mithilfe des Knotenpotentialverfahrens verwendet, welches Potentiale und extern zugeführte Ströme von Schaltungen bestehend aus linearen elektrischen Bauelementen kompakt durch eine Admittanzmatrix miteinander verknüpft. Aufgrund der ̈Aquivalenz eines mithilfe von konzentrierten Bauteilen beschreibbaren Schaltkreises und eines gewichteten Graphens wird der Matrixformalismus in Bezug auf die zugrundeliegende Graphentheorie zum grounded circuit Laplacian Formalismus erweitert. Dieser dient anschließend als Grundlage fur die Verkn üpfung von elektrischen Schaltkreisen und festkörperphysikalischen Modellsystemen mit topologieinduzierten Pänomenen, die nicht auf der quantenphysikalischen Natur des Festkörpers beruhen. Denn der den Kristall beschreibende, quantenmechanische Hamiltonoperator in tight binding (engl. für: enge Bindung) Näherung kann in ̈ahnlicher Matrixschreibweise dargestellt werden. Dadurch können anschließend durch Messungen im Schaltkreis ̈aquivalent aufgrund der ̈Ahnlichkeit der beiden Matrizen Ruckschlüsse auf Elektron-Wellenfunktionen, deren Energien und die elektronische Bandstruktur des Festkörpers gezogen werden. ... KW - Metamaterial KW - Topologischer Isolator KW - PT-Transformation KW - Analogschaltung KW - LC-Oszillator KW - Topological metamaterial KW - Non-Hermitian skin effect KW - Topolectrics KW - Bulk-boundary correspondence Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-323329 ER - TY - THES A1 - Reis, Felix T1 - Realization and Spectroscopy of the Quantum Spin Hall Insulator Bismuthene on Silicon Carbide T1 - Realisierung und Spektroskopie des Quanten-Spin-Hall-Isolators Bismuten auf Siliziumkarbid N2 - Topological matter is one of the most vibrant research fields of contemporary solid state physics since the theoretical prediction of the quantum spin Hall effect in graphene in 2005. Quantum spin Hall insulators possess a vanishing bulk conductivity but symmetry-protected, helical edge states that give rise to dissipationless charge transport. The experimental verification of this exotic state of matter in 2007 lead to a boost of research activity in this field, inspired by possible ground-breaking future applications. However, the use of the quantum spin Hall materials available to date is limited to cryogenic temperatures owing to their comparably small bulk band gaps. In this thesis, we follow a novel approach to realize a quantum spin Hall material with a large energy gap and epitaxially grow bismuthene, i.e., Bi atoms adopting a honeycomb lattice, in a \((\sqrt{3}\times\sqrt{3})\) reconstruction on the semiconductor SiC(0001). In this way, we profit both from the honeycomb symmetry as well as the large spin-orbit coupling of Bi, which, in combination, give rise to a topologically non-trivial band gap on the order of one electronvolt. An in-depth theoretical analysis demonstrates that the covalent bond between the Si and Bi atoms is not only stabilizing the Bi film but is pivotal to attain the quantum spin Hall phase. The preparation of high-quality, unreconstructed SiC(0001) substrates sets the basis for the formation of bismuthene and requires an extensive procedure in ultra-pure dry H\(_2\) gas. Scanning tunneling microscopy measurements unveil the (\(1\times1\)) surface periodicity and smooth terrace planes, which are suitable for the growth of single Bi layers by means of molecular beam epitaxy. The chemical configuration of the resulting Bi film and its oxidation upon exposure to ambient atmosphere are inspected with X-ray photoelectron spectroscopy. Angle-resolved photoelectron spectroscopy reveals the excellent agreement of probed and calculated band structure. In particular, it evidences a characteristic Rashba-splitting of the valence bands at the K point. Scanning tunneling spectroscopy probes signatures of this splitting, as well, and allows to determine the full band gap with a magnitude of \(E_\text{gap}\approx0.8\,\text{eV}\). Constant-current images and local-density-of-state maps confirm the presence of a planar honeycomb lattice, which forms several domains due to different, yet equivalent, nucleation sites of the (\(\sqrt{3}\times\sqrt{3}\))-Bi reconstruction. Differential conductivity measurements demonstrate that bismuthene edge states evolve at atomic steps of the SiC substrate. The probed, metallic local density of states is in agreement with the density of states expected from the edge state's energy dispersion found in density functional theory calculations - besides a pronounced dip at the Fermi level. By means of temperature- and energy-dependent tunneling spectroscopy it is shown that the spectral properties of this suppressed density of states are successfully captured in the framework of the Tomonaga-Luttinger liquid theory and most likely originate from enhanced electronic correlations in the edge channel. N2 - Topologische Materie ist seit der Vorhersage des Quanten-Spin-Hall-Effekts in Graphen im Jahr 2005 eines der spannendsten Forschungsgebiete der gegenwärtigen Festkörperphysik. Quanten-Spin-Hall-Isolatoren besitzen zwar eine verschwindende Volumen-Leitfähigkeit, aber symmetriegeschützte, helikale Randzustände, welche verlustfreien Ladungstransport erlauben. Der 2007 erfolgte experimentelle Nachweis dieses außergewöhnlichen Materiezustands führte, inspiriert von möglicherweise bahnbrechenden zukünftigen Anwendungen, zu einem sprunghaften Anstieg der Forschungsaktivitäten auf diesem Gebiet. Jedoch ist der Nutzen der derzeit verfügbaren Quanten-Spin-Hall-Materialien aufgrund ihrer vergleichsweise kleinen Volumen-Bandlücken auf kryogene Temperaturen beschränkt. In dieser Arbeit verfolgen wir einen neuen Weg, ein Quanten-Spin-Hall-Material mit einer großen Energielücke zu realisieren und wachsen Bismuten, ein Honigwabengitter aus Bi-Atomen, epitaktisch in einer \((\sqrt{3}\times\sqrt{3})\)-Rekonstruktion auf den Halbleiter SiC(0001). Dadurch nutzen wir sowohl die Honigwaben-Symmetrie, als auch die große Spin-Bahn-Wechselwirkung von Bi aus, welche in Kombination zu einer topologisch nicht-trivialen Bandlücke in der Größenordnung eines Elektronenvolts führen. Eine eingehende theoretische Analyse zeigt, dass die kovalente Bindung zwischen den Si- und Bi-Atomen nicht nur den Bi-Film stabilisiert, sondern entscheidend zur Ausprägung der Quanten-Spin-Hall-Phase beiträgt. Die Präparation unrekonstruierter SiC(0001)-Substrate hoher Güte ist der Grundstein für das Bismutenwachstum und erfordert die Anwendung einer aufwändigen Prozedur in hochreinem, trockenem H\(_2\)-Gas. Messungen mit Rastertunnelmikroskopie enthüllen die (\(1\times1\))-Periodizität der Oberfläche und glatte Terrassenebenen, welche für das Aufwachsen einzelner Bi-Lagen mittels eines dedizierten Molekularstrahlepitaxieprozesses geeignet sind. Die chemische Konfiguration der Filme und ihre Oxidation nach Kontakt mit Umgebungsluft wird mit Röntgenphotoelektronenspektroskopie untersucht. Winkelaufgelöste Photoelektronenspektroskopie legt die exzellente Übereinstimmung zwischen gemessener und berechneter Bandstruktur offen. Insbesondere zeigt sie die charakteristische Rashba-Spinaufspaltung der Valenzbänder am K-Punkt. Messungen mit Rastertunnelspektroskopie beinhalten ebenso Hinweise dieser Aufspaltung, und ermöglichen die Bestimmung der vollständigen Größe der Bandlücke von \(E_\text{gap}\approx0.8\,\text{eV}\). Konstantstrom-Aufnahmen und Karten der lokalen Zustandsdichte bestätigen die Ausbildung eines planaren Honigwabengitters, welches aufgrund unterschiedlicher, jedoch äquivalenter Nukleationszentren der (\(\sqrt{3}\times\sqrt{3}\))-Bi-Rekonstruktion in mehreren Domänen auftritt. Messungen der differenziellen Leitfähigkeit offenbaren, dass sich Bismuten-Randzustände an atomaren Stufen des SiC-Substrats ausbilden. Die gemessene, lokale Zustandsdichte und die gemäß der Energiedispersion des Randzustands in Dichtefunktionaltheorierechnungen erwartete Zustandsdichte stimmen - abgesehen von einem starken Abfall am Fermi-Niveau - überein. Mit temperatur- und energieabhängiger Tunnelspektroskopie wird gezeigt, dass die spektralen Eigenschaften dieser unterdrückten Leitfähigkeit erfolgreich im Rahmen der Tomonaga-Luttinger-Flüssigkeitstheorie beschrieben und wahrscheinlich durch verstärkte elektronische Korrelationen im Randkanal ausgelöst werden. KW - Zweidimensionales Material KW - Topologischer Isolator KW - Siliziumcarbid KW - Rastertunnelmikroskopie KW - Photoelektronenspektroskopie KW - Bismuthene KW - Silicon Carbide KW - scanning tunneling spectroscopy KW - photoelectron spectroscopy KW - molecular beam epitaxy KW - quantum spin hall insulator KW - two-dimensional topological insulator KW - helical edge states KW - Luttinger liquid KW - honeycomb lattice Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258250 ER - TY - THES A1 - Schmitt, Matthias T1 - High Energy Spin- and Momentum-Resolved Photoelectron Spectroscopy of Complex Oxides T1 - Hochenergetische spin- und impulsaufgelöste Photoelektronenspektroskopie an komplexen Oxiden N2 - Spin- and \(k\)-resolved hard X-ray photoelectron spectroscopy (HAXPES) is a powerful tool to probe bulk electronic properties of complex metal oxides. Due to the low efficiency of common spin detectors of about \(10^{-4}\), such experiments have been rarely performed within the hard X-ray regime since the notoriously low photoionization cross sections further lower the performance tremendously. This thesis is about a new type of spin detector, which employs an imaging spin-filter with multichannel electron recording. This increases the efficiency by a factor of \(10^4\) and makes spin- and \(k\)-resolved photoemission at high excitation energies possible. Two different technical approaches were pursued in this thesis: One using a hemispherical deflection analyzer (HDA) and a separate external spin detector chamber, the other one resorting to a momentum- or \(k\)-space microscope with time-of-flight (TOF) energy recording and an integrated spin-filter crystal. The latter exhibits significantly higher count rates and - since it was designed for this purpose from scratch - the integrated spin-filter option found out to be more viable than the subsequent upgrade of an existing setup with an HDA. This instrumental development is followed by the investigation of the complex metal oxides (CMOs) KTaO\(_3\) by angle-resolved HAXPES (HARPES) and Fe\(_3\)O\(_4\) by spin-resolved HAXPES (spin-HAXPES), respectively. KTaO\(_3\) (KTO) is a band insulator with a valence-electron configuration of Ta 5\(d^0\). By angle- and spin-integrated HAXPES it is shown that at the buried interface of LaAlO\(_3\)/KTO - by the generation of oxygen vacancies and hence effective electron doping - a conducting electron system forms in KTO. Further investigations using the momentum-resolution of the \(k\)-space TOF microscope show that these states are confined to the surface in KTO and intensity is only obtained from the center or the Gamma-point of each Brillouin zone (BZ). These BZs are furthermore square-like arranged reflecting the three-dimensional cubic crystal structure of KTO. However, from a comparison to calculations it is found that the band structure deviates from that of electron-doped bulk KTaO\(_3\) due to the confinement to the interface. There is broad consensus that Fe\(_3\)O\(_4\) is a promising material for spintronics applications due to its high degree of spin polarization at the Fermi level. However, previous attempts to measure the spin polarization by spin-resolved photoemission spectroscopy have been hampered by the use of low photon energies resulting in high surface sensitivity. The surfaces of magnetite, though, tend to reconstruct due to their polar nature, and thus their magnetic and electronic properties may strongly deviate from each other and from the bulk, dependent on their orientation and specific preparation. In this work, the intrinsic bulk spin polarization of magnetite at the Fermi level (\(E_F\)) by spin-resolved photoelectron spectroscopy, is determined by spin-HAXPES on (111)-oriented thin films, epitaxially grown on ZnO(0001) to be \(P(E_F) = -80^{+10}_{-20}\) %. N2 - Spin- und \(k\)-aufgelöste harte Röntgenphotoelektronenspektroskopie (HAXPES) ist ein leistungsähiges Werkzeug zur Untersuchung der elektronischen Eigenschaften komplexer Metalloxide. Aufgrund der geringen Effizienz gängiger Spin-Detektoren von etwa \(10^{-4}\) wurden solche Experimente im Bereich der harten Röntgenstrahlung nur selten durchgeführt, da die notorisch niedrigen Photoionisationsquerschnitte die Leistungsfähigkeit noch weiter verringern. In dieser Arbeit geht es um einen neuartigen Spin-Detektor, der einen abbildenden Spin-Filter mit Mehrkanal-Elektronenaufzeichnung verwendet. Dies erhöht die Effizienz um einen Faktor \(10^4\) und ermöglicht spin- und \(k\)-aufgelöste Photoemission bei hohen Anregungsenergien. Zwei verschiedene technische Ansätze werden in der vorliegenden Arbeit verfolgt: Zum einen mit einem Halbkugelanalysator (HDA) und einer separaten externen Spin-Detektorkammer, zum anderen mit einem Impuls- oder Impuls-Mikroskop mit Flugzeit-Energieaufzeichnung (TOF) und einem integrierten Spin-Filterkristall. Letzteres weist deutlich höhere Zählraten auf, und - da es von Grund auf für diesen Zweck entwickelt wurde - erwies sich die integrierte Spinfilteroption als praktikabler als die nachträgliche Aufrüstung des bestehenden Aufbaus mit einem HDA. Auf diese instrumentelle Entwicklung folgt die Untersuchung der komplexen Metalloxide (CMOs) KTaO\(_3\) durch winkelaufgelöstes HAXPES (HARPES) und Fe\(_3\)O\(_4\) durch spinaufgelöstes HAXPES (spin-HAXPES). KTaO\(_3\) (KTO) ist ein Bandisolator mit einer Valenz-Elektronenkonfiguration von Ta 5\(d^0\). Durch winkel- und spin-integriertes HAXPES wird gezeigt, dass sich an der vergrabenen Grenzfläche von dLaAlO\(_3\)/KTO - durch die Erzeugung von Sauerstoff-Fehlstellen und damit effektiver Elektronendotierung - ein leitendes Elektronensystem in KTO bildet. Weitere Untersuchungen mit der Impulsauflösung des TOF-Mikroskops im \(k\)-Raum zeigen, dass diese Zustände auf die Oberfläche in KTO beschränkt sind und die Intensität nur vom Zentrum oder dem Gamma-Punkt jeder Brillouin-Zone (BZ) gemessen wird. Diese BZn sind darüber hinaus quadratisch angeordnet, was die dreidimensionale kubische Kristallstruktur von KTO widerspiegelt. Aus einem Vergleich mit Bandrechnungen geht jedoch hervor, dass die Bandstruktur aufgrund des Einschlusses an der Grenzfläche von der des elektronen-dotierten KTO-Volumens abweicht. Es besteht ein breiter Konsens darüber, dass Fe\(_3\)O\(_4\) aufgrund seines hohen Grades an Spinpolarisation am Fermi-Niveau ein vielversprechendes Material für Spintronik-Anwendungen ist. Bisherige Versuche, die Spinpolarisation durch spinaufgelöste Photoemissionsspektroskopie zu messen, wurden jedoch durch die Verwendung von niedrigen Photonenenergien behindert, was zu einer hohen Oberflächenempfindlichkeit führt. Die Oberflächen von Magnetit neigen jedoch aufgrund ihres polaren Charakters zu Rekonstruktionen, so dass ihre magnetischen und elektronischen Eigenschaften stark voneinander und vom Volumen abweichen können, abhängig von ihrer Oberflächenorientierung und ihrer spezifischen Präparation. In dieser Arbeit wird die intrinsische Bulk-Spinpolarisation von Magnetit am Fermi-Niveau (\(E_F\)) durch spinaufgelöste Photoelektronenspektroskopie an (111)-orientierten dünnen Filmen, die epitaktisch auf ZnO(0001) gewachsen sind, zu \(P(E_F) = -80^{+10}_{-20}\) % bestimmt. KW - Elektronenkorrelation KW - Elektronenspin KW - Röntgen-Photoelektronenspektroskopie KW - Spinell KW - Perowskit KW - Winkel- und spin-aufgelöste Photoelektronenspektroskopie im harten Röntgenbereich KW - Momentum- and spin-resolved hard X-ray photoelectron spectroscopy KW - Elektronenspin KW - Electron spin KW - Time-of-flight energy recording KW - Imaging spin-filter Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-264757 ER - TY - THES A1 - Mahler, David T1 - Surface states in the topological material HgTe T1 - Oberflächenzustände im topologischen Material HgTe N2 - The motivation for this work has been contributing a step to the advancement of technology. A next leap in technology would be the realization of a scalable quantum computer. One potential route is via topological quantum computing. A profound understanding of topological materials is thus essential. My work contributes by the investigation of the exemplary topological material HgTe. The focus lies on the understanding of the topological surface states (TSS) and new possibilities to manipulate them appropriately. Traditionally top gate electrodes are used to adjust the carrier density in such semi-conductor materials. We found that the electric field of the top gate can further alter the properties of the HgTe layer. The formation of additional massive Volkov-Pankratov states limits the accessibility of the TSS. The understanding of these states and their interplay with the TSS is necessary to appropriately design devices and to ensure their desired properties. Similarly, I observed the existence and stability of TSSs even without a bandgap in the bulk band structure in the inversion induced Dirac semi-metal phase of compressively strained HgTe. The finding of topological surface states in inversion-induced Dirac semi-metals provides a consistent and simple explanation for the observation reported for \(\text{Cd}_3\text{As}_2\). These observations have only been possible due to the high quality of the MBE grown HgTe layers and the access of different phases of HgTe via strain engineering. As a starting point I performed Magneto-transport measurements on 67 nm thick tensilely strained HgTe layers grown on a CdTe substrate. We observed multiple transport channels in this three-dimensional topological insulator and successfully identified them. Not only do the expected topological surface states exist, but also additional massive surface states have been observed. These additional massive surface states are formed due to the electrical field applied at the top gate, which is routinely used to vary the carrier density in the HgTe layer. The additional massive surface states are called Volkov-Pankratov states after B. A. Volkov and O. A. Pankratov. They predicted the existence of similar massive surface states at the interface of materials with mutually inverted bands. We first found indications for such massive Volkov-Pankratov states in high-frequency compressibility measurements for very high electron densities in a fruitful collaboration with LPA in Paris. Magneto-transport measurements and \(k \cdot p\) calculations revealed that such Volkov-Pankratov states are also responsible for the observed whole transport. We also found indications for similar massive VPS in the electron regime, which coexist with the topological surface states. The topological surface states exist over the full investigated gate range including a regime of pure topological insulator transport. To increase the variability of the topological surface states we introduced a modulation doping layer in the buffer layer. This modulation doping layer also enabled us to separate and identify the top and bottom topological surface states. We used the variability of the bulk band structure of HgTe with strain to engineer the band structure of choice using virtual substrates. The virtual substrates enable us to grow compressively strained HgTe layers that do not possess a bandgap, but instead linear crossing points. These layers are predicted to beDirac semi-metals. Indeed I observed also topological surface states and massive Volkov-Pankratov states in the compressively strained Dirac semi-metal phase. The observation of topological surfaces states also in the Dirac semi-metal phase has two consequences: First, it highlights that no bulk bandgap is necessary to observe topological surface states. Second, the observation of TSS also in the Dirac semi-metal phase emphasizes the importance of the underlying band inversion in this phase. I could not find any clear signatures of the predicted disjoint topological surface states, which are typically called Fermi-arcs. The presence of topological surface states and massive Volkov-Pankratov states offer a simple explanation for the observed quantum Hall effect and other two-dimensional transport phenomena in the class of inversion induced Dirac semi-metals, as \(\text{Cd}_3\text{As}_2\). This emphasizes the importance of the inherent bulk band inversion of different topological materials and provides a consistent and elegant explanation for the observed phenomena in these materials. Additionally, it offers a route to design further experiments, devices, and thus the foundation for the induction of superconductivity and thus topological quantum computing. Another possible path towards quantum computing has been proposed based on the chiral anomaly. The chiral anomaly is an apparent transport anomaly that manifests itself as an additional magnetic field-driven current in three-dimensional topological semimetals with a linear crossing point in their bulk band structure. I observed the chiral anomaly in compressively strained HgTe samples and performed multiple control experiments to identify the observed reduction of the magnetoresistance with the chiral anomaly. First, the dependence of the so-called negative magnetoresistance on the angle and strength of the magnetic field has been shown to fit the expectation for the chiral anomaly. Second, extrinsic effects as scattering could be excluded as a source for the observed negative MR using samples with different mobilities and thus impurity concentrations. Third, the necessity of the linear crossing point has been shown by shifting the electrochemical potential away from the linear crossing points, which diminished the negative magnetoresistance. Fourth, I could not observe a negative magnetoresistance in the three-dimensional topological insulator phase of HgTe. These observations together prove the existence of the chiral anomaly and verify compressively strained HgTe as Dirac semi-metal. Surprisingly, the chiral anomaly is also present in unstrained HgTe samples, which constitute a semi-metal with a quadratic band touching point. This observation reveals the relevance of the Zeeman effect for the chiral anomaly due to the lifting of the spin-degeneracy in these samples. Additionally to the chiral anomaly, the Dirac semi-metal phase of compressively strained HgTe showed other interesting effects. For low magnetic fields, a strong weak-antilocalization has been observed. Such a strong weak-anti-localization correction in a three-dimensional layer is surprising and interesting. Additionally, non-trivial magnetic field strength and direction dependencies have been observed. These include a strong positive magnetoresistance for high magnetic fields, which could indicate a metal-insulator transition. On a more device-oriented note, the semi-metal phase of unstrained HgTe constitutes the lower limit of the by strain engineering adjustable minimal carrier density of the topological surface states and thus of very high mobility. To sum up, topological surface states have been observed in the three-dimensional topological insulator phase and the Dirac semi-metal phase of HgTe. The existence and accessibility of topological surface states are thus independent of the existence of a bandgap in the bulk band structure. The topological surface states can be accompanied by massive Volkov-Pankratov states. These VPS are created by electric fields, which are routinely applied to adjust the carrier density in semiconductor devices. The theoretical predicted chiral anomaly has been observed in the Dirac semi-metal phase of HgTe. In contrast to theoretical predictions, no indications for the Fermi-arc called disjoint surface states have been observed, but instead the topological and massive Volkov-Pankratov surface states have been found. These states are thus expected for all inversion-induced topological materials. N2 - Der technologische Fortschritt schreitet immer schneller voran. Um diese Entwicklung zu ermöglichen, werden die Strukturen immer kleiner. Das Erreichen atomarer Größen könnte bald die Abkehr von der üblichen Miniaturisierung erfordern und den Sprung zu einer neuen Technologie erzwingen. Die Motivation dieser Arbeit ist es das Verständnis topologischer Materialien zu erweitern und so einen Beitrag zu der Realisierung eines solchen potenziellen Technologiesprungs zu leisten. Eine vielversprechende Möglichkeit zur Aufrechterhaltung der aktuellen Entwicklungsgeschwindigkeit ist die Realisierung eines skalierbaren Quantencomputers. Eine mögliche Umsetzung ist das topologische Quantum-Computing, das zum Beispiel durch induzierte Supraleitung in topologische Oberflächenzustände realisiert werden könnte. Das tiefgehende Verständnis der topologischen Oberflächenzustände und deren Manipulation ist ein Schwerpunkt dieser Arbeit. Der zweite Schwerpunkt wurde kürzlich auch als ein potenzieller Pfad zur Realisierung eines Quantencomputers basierend auf „chiralen Qubits“ vorgeschlagen, nämlich dem Nachweis und die Untersuchung des Transportphänomens der sogenannten chiralen Anomalie in Dirac- und Weyl-Halbmetallen. Die Untersuchungen in dieser Arbeit wurden am MBE gewachsenen topologischen Material HgTe durchgeführt. HgTe zeichnet sich dadurch aus, dass verschiedene topologische Phasen realisierbar sind. Dazu wird die HgTe-Schicht durch die Wahl entsprechender Substrate verspannt. Als Startpunkt für die Analyse der topologischen Oberflächenzustände habe ich die topologische Isolator-Phase gewählt. Diese wird durch ein gedehntes MBE-Wachstum der HgTe-Schicht auf einem CdTe-Substrat realisiert. Eine hohe Qualität der HgTe-Schicht und Oberfläche wurde dabei mit Hilfe von schützenden \(\text{Cd}_0.7\text{Hg}_0.3\text{Te}\)-Schichten gewährleistet. Wir haben zusätzlich eine Modulationsdoping Schicht in der unteren \(\text{Cd}_0.7\text{Hg}_0.3\text{Te}\)-Schicht eingeführt, die für eine kleine endliche Elektronendichte in der HgTe-Schicht sorgt. Diese Dotierung gewährleistet eine zuverlässige elektrische Kontaktierung. Aus diesen Waferstücken haben wir mit Hilfe optischer Lithografie und trocknen Ätzens so genannte Hall-Bars strukturiert, die aus einem Strompfad mit vier längs und quer angeordneten Spannungsabgriffen besteht. Eine Möglichkeit zur Kontrolle der Ladungsträgerdichte in der HgTe-Schicht wird über eine aufgedampfte Gate-Elektrode geschaffen. Diese Hall-Bars habe ich mit Hilfe von niedrig frequenten Wechselspannungsmessungen unter hohen Magnetfeldern bis zu 30 T bei tiefen Temperaturen von 2 K in Helium-Kryostaten bzw. 0.1 K in \(\text{He}_3\text{/He}\_4\)-Misch-Kryostaten untersucht. Die hohe Qualität der HgTe-Schicht spiegelt sich in den zuverlässig erreichten hohen Beweglichkeiten in der Größenordnung von \(0.5 \times 10^{6}\,\text{cm}^{2}/\text{Vs}\) im Elektronenregime und \(0.03 \times 10^6\,\text{cm}^2/\text{Vs}\) im Lochregime wider. Eine Quantisierung des Magneto-Transport ist dadurch schon für kleine Magnetfelder von \(B \gtrsim 0.5\,\text{T}\) beobachtbar. Dies ermöglichte mir die Analyse der Dispersion der Landau Levels und damit der Nachweis der Existenz von sechs zweidimensionalen Transportkanälen. Zwei dieser Kanäle konnten wir mit den topologischen Oberflächenzuständen identifizieren. Den Einfluss der Spannungen, die an der Gate-Elektrode angelegt wurden, haben wir in hoch frequenten Compressibilitätsmessungen festgestellt. In diesen Messungen haben wir für sehr hohe Elektrodenspannungen Hinweise auf zusätzliche massive Volkov-Pankratov Zustände gefunden. Der Name ist dabei gewählt worden, um die Vorhersage derartiger Zustände durch B. A. Volkov und O. A. Pankratov zu würdigen. Den Ursprung der vier weiteren Transportkanäle konnten wir mit Hilfe von Bandstrukturberechnungen auf zusätzliche Oberflächenzustände zurückführen. Die Berechnung haben wir mit Hilfe des Kane Models in der \(k \cdot p\) Näherung unter Beachtung der Hatree Potentiale, welche die angelegte Spannung an der Gate-Elektrode repräsentieren, durchgeführt. Die elektronenartigen topologischen Oberflächenzustände konnten für den ganzen untersuchten Elektrodenspannungsbereich nachgewiesen werden. Wir haben aber auch ein signifikantes und manipulierbares Elektrodenspannungsfenster gefunden, in welchem nur topologische Oberflächenzustände besetzt sind. Eine Möglichkeit zur Manipulation der Eigenschaften der topologischen Oberflächenzustände ist die Variation der Verspannung mit Hilfe des MBE-Wachstums auf virtuellen Substraten aus alternierenden \(\text{Cd}_{0.5}\text{Zn}_{0.5}\text{Te}\)- und CdTe-Schichten mit einstellbarer Gitterkonstante. Die HgTe-Schicht haben wir durch das Wachstum auf ein entsprechendes virtuelles Substrates druck- anstatt zugverspannt. Die HgTe-Schicht befindet sich dadurch in der Dirac-Halbmetall anstatt der dreidimensionalen topologischen Isolator-Phase. Dirac- Halbmetalle zeichnen sich durch einen linearen Kreuzungspunkt der Volumenmaterialbänder aus. Ich konnte topologische Oberflächenzustände und massive Volkov-Pankratov Zustände auch in der Dirac-Halbmetall-Phase nachweisen. Dieser Umstand weist die Existenz und Stabilität der topologischen Oberflächenzustände auch ohne Bandlücke in der Bandstruktur des Volumenmaterials nach. Des Weiteren betont die Anwesenheit der topologischen Oberflächenzustände die Relevanz der inhärenten Bandinversion für die Klasse der inversionsinduzierten Dirac-Halbmetalle. In druckverspanntem HgTe habe ich Quanten-Hall-Effekt beobachtet, der nur in zweidimensionalen Systemen auftritt. Ähnliche Beobachtungen wurden auch für andere Dirac-Halbmetalle, wie \(\text{Cd}_3\text{As}_2\), berichtet. Die topologischen Oberflächenzustände schlage ich als einfache und einheitliche Erklärung für diesen zweidimensionalen Transport vor. Die Anwesenheit linearer Kreuzungspunkte in der Volumenmaterialbandstruktur druckverspannten HgTes konnte ich durch die Beobachtung der chiralen Anomalie nachweisen. Damit konnte ich nicht nur druckverspanntes HgTe als Dirac-Halbmetall nachweisen, sondern auch einen Beitrag zum besseren Verständnis der chiralen Anomalie leisten. Des Weiteren habe elektrodenspannungsabhängige Messungen gezeigt, dass parallel anwesende Oberflächenzustände das Signal der chiralen Anomalie zwar überlagern, dieses aber nicht verhindern. Außerdem habe ich Untersuchungen an unterspannten HgTe Schichten durchgeführt, welche Halbmetalle mit einem Berührungspunkt zweier Bänder mit quadratischer Dispersion darstellen. Auch in diesen Schichten wurde die chirale Anomalie beobachtet. Dies verdeutlicht die Relevanz des Zeeman-Effektes für die Ausbildung der chiralen Anomalie in HgTe. Die chirale Anomalie zeigte eine unerwartet Magnetfeldrichtungsabhängigkeit des Wiederstandes im Bezug zur Stromrichtung. Diese Magnetfeldrichtungsabhängigkeit betont die Notwendigkeit der Beschreibung des Widerstandes als Tensor, damit die dreidimensionale Ausdehnung der experimentellen Proben und der daraus folgenden Effekte, wie dem Planar-Halleffekt, korrekt beschrieben werden. Des Weiteren habe ich eine für dreidimensionale Proben außergewöhnlich stark ausgeprägte Weak-Antilokalisierung beobachtet. Diese könnte spezifisch für topologische Halbmetalle sein, da ähnliche Beobachtungen auch für das Weyl Halbmetall TaA berichtet wurden. Das Ziel dieser Arbeit war es einen Beitrag zum technologischen Fortschritt durch das bessere Verständnis topologischer Materialen zu leisten. Dieses Ziel konnte somit erreicht werden. Wir können alle Zustände, die wir in dem dreidimensionalen topologischen Isolator zugverspanntes HgTe beobachtet haben, ihrem Ursprung zuordnen. Dies ermöglicht uns die Präparation und Manipulation der gewünschten Zustände für komplexe Bauteile, wie topologische und supraleitende Hybridstrukturen, zu optimieren. Ich konnte auch zum besseren Verständnis der Materialklasse der inversionsinduzierten Dirac-Halbmetalle beigetragen, indem ich die an druckverspannten HgTe gewonnen Erkenntnisse auf die gesamte Materialklasse der inversionsinduzierten Dirac-Halbmetalle verallgemeinern konnte. Dies ist zum Beispiel anhand des Nachweises der Anwesenheit von topologischen Oberflächenzuständen geschehen. Außerdem konnte ich neue Einblicke in die chirale Anomalie gewinnen. Die Existenz linearer Kreuzungspunkte in der Volumenmaterialbandstruktur wurde dabei als notwendige Bedingung bestätigt. Damit konnte ich einen Beitrag zum Verständnis der Grundbausteine für zweimögliche Pfade zu einem potenziellen Quantencomputer in der Form von zug- und druckverspanntem HgTe leisten. KW - Quecksilbertellurid KW - Topologischer Isolator KW - Elektronischer Transport KW - Oberflächenzustand KW - Dirac semimetal KW - topological insulator KW - HgTe KW - topological surface states KW - Volkov-Pankratov states Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-253982 ER - TY - THES A1 - Niehörster, Thomas T1 - Spektral aufgelöste Fluoreszenzlebensdauer-Mikroskopie mit vielen Farben T1 - Spectrally resolved fluorescence lifetime imaging microscopy with many colours N2 - Die Fluoreszenzmikroskopie ist eine vielseitig einsetzbare Untersuchungsmethode für biologische Proben, bei der Biomoleküle selektiv mit Fluoreszenzfarbstoffen markiert werden, um sie dann mit sehr gutem Kontrast abzubilden. Dies ist auch mit mehreren verschiedenartigen Zielmolekülen gleichzeitig möglich, wobei üblicherweise verschiedene Farbstoffe eingesetzt werden, die über ihre Spektren unterschieden werden können. Um die Anzahl gleichzeitig verwendbarer Färbungen zu maximieren, wird in dieser Arbeit zusätzlich zur spektralen Information auch das zeitliche Abklingverhalten der Fluoreszenzfarbstoffe mittels spektral aufgelöster Fluoreszenzlebensdauer-Mikroskopie (spectrally resolved fluorescence lifetime imaging microscopy, sFLIM) vermessen. Dazu wird die Probe in einem Konfokalmikroskop von drei abwechselnd gepulsten Lasern mit Wellenlängen von 485 nm, 532nm und 640nm angeregt. Die Detektion des Fluoreszenzlichtes erfolgt mit einer hohen spektralen Auflösung von 32 Kanälen und gleichzeitig mit sehr hoher zeitlicher Auflösung von einigen Picosekunden. Damit wird zu jedem detektierten Fluoreszenzphoton der Anregungslaser, der spektrale Kanal und die Ankunftszeit registriert. Diese detaillierte multidimensionale Information wird von einem Pattern-Matching-Algorithmus ausgewertet, der das Fluoreszenzsignal mit zuvor erstellten Referenzpattern der einzelnen Farbstoffe vergleicht. Der Algorithmus bestimmt so für jedes Pixel die Beiträge der einzelnen Farbstoffe. Mit dieser Technik konnten pro Anregungslaser fünf verschiedene Färbungen gleichzeitig dargestellt werden, also theoretisch insgesamt 15 Färbungen. In der Praxis konnten mit allen drei Lasern zusammen insgesamt neun Färbungen abgebildet werden, wobei die Anzahl der Farben vor allem durch die anspruchsvolle Probenvorbereitung limitiert war. In anderen Versuchen konnte die sehr hohe Sensitivität des sFLIM-Systems genutzt werden, um verschiedene Zielmoleküle voneinander zu unterscheiden, obwohl sie alle mit demselben Farbstoff markiert waren. Dies war möglich, weil sich die Fluoreszenzeigenschaften eines Farbstoffmoleküls geringfügig in Abhängigkeit von seiner Umgebung ändern. Weiterhin konnte die sFLIM-Technik mit der hochauflösenden STED-Mikroskopie (STED: stimulated emission depletion) kombiniert werden, um so hochaufgelöste zweifarbige Bilder zu erzeugen, wobei nur ein einziger gemeinsamer STED-Laser benötigt wurde. Die gleichzeitige Erfassung von mehreren photophysikalischen Messgrößen sowie deren Auswertung durch den Pattern-Matching-Algorithmus ermöglichten somit die Entwicklung von neuen Methoden der Fluoreszenzmikroskopie für Mehrfachfärbungen. N2 - Fluorescence microscopy is an important and near-universal technique to examine biological samples. Typically, biomolecules are selectively labelled with fluorophores and then imaged with high contrast. This can be done for several target molecules simultaneously, using different fluorophores that are usually distinguished by their spectra. This thesis describes a method to maximize the number of simultaneous stainings. Not only the spectral information but also the temporal information of the fluorescence decay is exploited by means of spectrally resolved fluorescence lifetime imaging microscopy (sFLIM). Using a confocal laser scanning microscope, the sample is excited by three alternatingly pulsed lasers at 485 nm, 532 nm, and 640 nm. Fluorescence light is detected on 32 spectrally separated detection channels with high time resolution of a few picoseconds. Thus, in this setup, we record the excitation laser, the spectral channel, and the time of arrival for each fluorescence photon. This detailed multi-dimensional information is then processed by a pattern-matching algorithm that compares the fluorescence signal with reference patterns of the used fluorophores to determine the contribution of each fluorophore in each pixel. Using this technique we imaged five different stainings per excitation laser, implying that 15 simultaneous stainings should theoretically be achievable. Current constraints in the sample preparation procedure limited the number of simultaneous stainings to nine. In additional experiments, we exploited the sensitivity of the sFLIM system to image several different target molecules simultaneously with the same fluorophore, taking advantage of slight changes in the fluorescence behaviour of the fluorophore due to environmental changes. We also combined sFLIM with stimulated emission depletion (STED) to perform super-resolution multi-target imaging with two stainings that operated with one common STED laser. Thus, the simultaneous exploitation of several photophysical parameters, in combination with algorythmic evaluation, allowed us to devise novel modes of multi-target imaging in fluorescence microscopy. KW - Fluoreszenzmikroskopie KW - Fluoreszenzlebensdauer-Mikroskopie KW - Konfokale Mikroskopie KW - STED-Mikroskopie KW - Fluoreszenz KW - Mustervergleich KW - Pattern Matching KW - sFLIM KW - TCSPC KW - Mikroskopie KW - Microscopy Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-296573 ER - TY - JOUR A1 - Gram, Maximilian A1 - Albertova, P. A1 - Schirmer, V. A1 - Blaimer, M. A1 - Gamer, M. A1 - Herrmann, M. J. A1 - Nordbeck, P. A1 - Jakob, P. M. T1 - Towards robust in vivo quantification of oscillating biomagnetic fields using Rotary Excitation based MRI JF - Scientific Reports N2 - Spin-lock based functional magnetic resonance imaging (fMRI) has the potential for direct spatially-resolved detection of neuronal activity and thus may represent an important step for basic research in neuroscience. In this work, the corresponding fundamental effect of Rotary EXcitation (REX) is investigated both in simulations as well as in phantom and in vivo experiments. An empirical law for predicting optimal spin-lock pulse durations for maximum magnetic field sensitivity was found. Experimental conditions were established that allow robust detection of ultra-weak magnetic field oscillations with simultaneous compensation of static field inhomogeneities. Furthermore, this work presents a novel concept for the emulation of brain activity utilizing the built-in MRI gradient system, which allows REX sequences to be validated in vivo under controlled and reproducible conditions. Via transmission of Rotary EXcitation (tREX), we successfully detected magnetic field oscillations in the lower nano-Tesla range in brain tissue. Moreover, tREX paves the way for the quantification of biomagnetic fields. KW - functional magnetic resonance imaging KW - Rotary EXcitation (REX) KW - oscillating biomagnetic fields Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300862 VL - 12 IS - 1 ER - TY - JOUR A1 - Müller, S. A1 - Spriestersbach, F. A1 - Min, C.-H. A1 - Fornari, C. I. A1 - Reinert, F. T1 - Molecular beam epitaxy of TmTe thin films on SrF\(_{2}\) (111) JF - AIP Advances N2 - The odd parity nature of 4f states characterized by strong spin–orbit coupling and electronic correlations has led to a search for novel topological phases among rare earth compounds, such as Kondo systems, heavy Fermions, and homogeneous mixed-valent materials. Our target system is thulium telluride thin films whose bandgap is expected to be tuned as a function of lattice parameter. We systematically investigate the growth conditions of TmxTey thin films on SrF\(_{2}\) (111) substrates by molecular beam epitaxy. The ratio between Te and Tm supply was precisely tuned, resulting in two different crystalline phases, which were confirmed by x-ray diffraction and x-ray photoemission spectroscopy. By investigating the crystalline quality as a function of the substrate temperature, the optimal growth conditions were identified for the desired Tm1Te1 phase. Additional low energy electron diffraction and reflective high energy electron diffraction measurements confirm the epitaxial growth of TmTe layers. X-ray reflectivity measurements demonstrate that homogeneous samples with sharp interfaces can be obtained for varied thicknesses. Our results provide a reliable guidance to prepare homogeneous high-quality TmTe thin films and thus serve as a basis for further electronic investigations. KW - thulium telluride KW - molecular beam epitaxy KW - thin films Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300876 VL - 12 IS - 2 ER - TY - JOUR A1 - Gram, Maximilian A1 - Gensler, Daniel A1 - Albertova, Petra A1 - Gutjahr, Fabian Tobias A1 - Lau, Kolja A1 - Arias-Loza, Paula-Anahi A1 - Jakob, Peter Michael A1 - Nordbeck, Peter T1 - Quantification correction for free-breathing myocardial T1ρ mapping in mice using a recursively derived description of a T\(_{1p}\)\(^{*}\) relaxation pathway JF - Journal of Cardiovascular Magnetic Resonance N2 - Background Fast and accurate T1ρ mapping in myocardium is still a major challenge, particularly in small animal models. The complex sequence design owing to electrocardiogram and respiratory gating leads to quantification errors in in vivo experiments, due to variations of the T\(_{1p}\) relaxation pathway. In this study, we present an improved quantification method for T\(_{1p}\) using a newly derived formalism of a T\(_{1p}\)\(^{*}\) relaxation pathway. Methods The new signal equation was derived by solving a recursion problem for spin-lock prepared fast gradient echo readouts. Based on Bloch simulations, we compared quantification errors using the common monoexponential model and our corrected model. The method was validated in phantom experiments and tested in vivo for myocardial T\(_{1p}\) mapping in mice. Here, the impact of the breath dependent spin recovery time T\(_{rec}\) on the quantification results was examined in detail. Results Simulations indicate that a correction is necessary, since systematically underestimated values are measured under in vivo conditions. In the phantom study, the mean quantification error could be reduced from − 7.4% to − 0.97%. In vivo, a correlation of uncorrected T\(_{1p}\) with the respiratory cycle was observed. Using the newly derived correction method, this correlation was significantly reduced from r = 0.708 (p < 0.001) to r = 0.204 and the standard deviation of left ventricular T\(_{1p}\) values in different animals was reduced by at least 39%. Conclusion The suggested quantification formalism enables fast and precise myocardial T\(_{1p}\) quantification for small animals during free breathing and can improve the comparability of study results. Our new technique offers a reasonable tool for assessing myocardial diseases, since pathologies that cause a change in heart or breathing rates do not lead to systematic misinterpretations. Besides, the derived signal equation can be used for sequence optimization or for subsequent correction of prior study results. KW - T1rho KW - radial KW - cardiac KW - correction KW - quantitative MRI KW - mapping KW - spin-lock KW - T1ρ Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300491 VL - 24 IS - 1 ER - TY - JOUR A1 - Guggenberger, Konstanze Viktoria A1 - Torre, Giulia Dalla A1 - Ludwig, Ute A1 - Vogel, Patrick A1 - Weng, Andreas Max A1 - Vogt, Marius Lothar A1 - Fröhlich, Matthias A1 - Schmalzing, Marc A1 - Raithel, Esther A1 - Forman, Christoph A1 - Urbach, Horst A1 - Meckel, Stephan A1 - Bley, Thorsten Alexander T1 - Vasa vasorum of proximal cerebral arteries after dural crossing - potential imaging confounder in diagnosing intracranial vasculitis in elderly subjects on black-blood MRI JF - European Radiology N2 - Objectives Vessel wall enhancement (VWE) may be commonly seen on MRI images of asymptomatic subjects. This study aimed to characterize the VWE of the proximal internal carotid (ICA) and vertebral arteries (VA) in a non-vasculitic elderly patient cohort. Methods Cranial MRI scans at 3 Tesla were performed in 43 patients (aged ≥ 50 years) with known malignancy for exclusion of cerebral metastases. For vessel wall imaging (VWI), a high-resolution compressed-sensing black-blood 3D T1-weighted fast (turbo) spin echo sequence (T1 CS-SPACE prototype) was applied post gadolinium with an isotropic resolution of 0.55 mm. Bilateral proximal intradural ICA and VA segments were evaluated for presence, morphology, and longitudinal extension of VWE. Results Concentric VWE of the proximal intradural ICA was found in 13 (30%) patients, and of the proximal intradural VA in 39 (91%) patients. Mean longitudinal extension of VWE after dural entry was 13 mm in the VA and 2 mm in the ICA. In 14 of 39 patients (36%) with proximal intradural VWE, morphology of VWE was suggestive of the mere presence of vasa vasorum. In 25 patients (64 %), morphology indicated atherosclerotic lesions in addition to vasa vasorum. Conclusions Vasa vasorum may account for concentric VWE within the proximal 2 mm of the ICA and 13 mm of the VA after dural entry in elderly subjects. Concentric VWE in these locations should not be confused with large artery vasculitis. Distal to these segments, VWE may be more likely related to pathologic conditions such as vasculitis. KW - vertebral artery KW - magnetic resonance imaging KW - vasa vasorum KW - large artery vasculitis KW - Atherosclerosis, intracranial arteries Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-266524 SN - 1432-1084 VL - 32 IS - 2 ER - TY - THES A1 - Iff, Oliver T1 - Implementierung und Charakterisierung von Einzelphotonenquellen in zweidimensionalen Übergangsmetall-Dichalkogeniden und deren Kopplung an optische Resonatoren T1 - Implementation and characterization of single photon sources in two-dimensional transition-metal dichalcogenides and their coupling to optical resonators N2 - Schon heute bilden Einzelphotonenquellen einen wichtigen Baustein in der Photonik und Quanteninformation. Der Fokus der Forschung liegt entsprechend auf dem Finden und Charakterisieren dafür geeigneter Materialsysteme. Konkret beschäftigt sich die vorliegende Arbeit vorwiegend mit dem Übergangsmetall-Dichalkogenid (TMDC1 ) Wolframdiselenid und seinen Eigenschaften. Diese Wahl ist durch den direkte Zugang zu Einzelphotonenquellen begründet, die sich in dessen Monolagen ausbilden können. Diese Lichtquellen können über eine Modulation der Verspannung der Monolage gezielt aktiviert werden. Durch die, verglichen mit ihrem Volumen, riesige Kontaktfläche lassen sich Monolagen zudem mit Hilfe des Substrats, auf das sie transferiert wurden, wesentlich beeinflussen. Im Rahmen dieser Arbeit wurden Monolagen von WSe2 in unterschiedlichen Bauteilen wie zirkulare Bragg-Gittern oder vorstrukturierten, metallischen Oberflächen implementiert und die Photolumineszenz des TMDCs untersucht. Diese Arbeit belegt die Möglichkeit, Einzelphotonenquellen basierend aufWSe2 -Monolagen auf verschiedenste Weise modulieren zu können. Dank ihrer zwei- dimensionalen Geometrie lassen sie sich einfach in bestehende Strukturen integrieren oder auch in der Zukunft mit weiteren 2D-Materialien kombinieren. N2 - Single photon sources are an important building block in today’s photonics and quantum information. This is the reason why a big focus lies on the exploration of new, suitable material systems. Specifically, the work in hand mainly discusses the transition metal dichalcogenide (TMDC) tungsten diselenide and its properties. The reason for this is the easy access to single photon sources, which can be found in WSe2 monolayers. These can deterministically be activated by utilizing strain. As the interface between a transferred monolayer and its underlying substrate is huge compared to its volume, the substrate itself always has a big impact on the TMDC. In scope of this work, WSe2 monolayers were transferred on several devices like circular Bragg gratings or structured metal surfaces in order to investigate the optical response of the TMDC. This work therefore proves the concept of modulating single photon sources based on WSe2 monolayers in many different ways. Thanks to their two-dimensional nature, monolayers of TMDCs can easily be integrated in existing devices and combined with other 2D materials in the future. KW - Einzelphotonenemission KW - Photolumineszenz KW - Optik KW - Zweidimensionales Material KW - Schwache Kopplung Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-281404 ER - TY - THES A1 - Höcker, Julian Harald T1 - High-quality Organolead Trihalide Perovskite Crystals: Growth, Characterisation, and Photovoltaic Applications T1 - Qualitativ-hochwertige bleiorganische Trihalogenid-Perowskit-Kristalle: Wachstum, Charakterisierung und photovoltaische Anwendungen N2 - Overview of the Organolead Trihalide Perovskite Crystal Area Studies of perovskite single crystals with high crystallographic quality is an important technological area of the perovskite research, which enables to estimate their full optoelectronic potential, and thus to boost their future applications [26]. It was therefore essential to grow high-quality single crystals with lowest structural as well as chemical defect densities and with a stoichiometry relevant for their thin-film counterparts [26]. Optoelectronic devices, e.g. solar cells, are highly complex systems in which the properties of the active layer (absorber) are strongly influenced by the adjacent layers, so it is not always easy to define the targeted properties and elaborate the design rules for the active layer. Currently, organolead trihalide perovskite (OLTP) single crystals with the structure ABX3 are one of the most studied crystalline systems. These hybrid crystals are solids composed of an organic cation such as methylammonium (A = MA+) or formamidinium (A = FA+) to form a three-dimensional periodic lattice together with the lead cation (B = Pb2+) and a halogen anion such as chloride, bromide or iodide (X = Cl-, Br- or I-) [23]. Among them are methylammonium lead tribromide (MAPbBr3), methylammonium lead triiodide (MAPbI3), as well as methylammonium lead trichloride (MAPbCl3) [62, 63]. Important representatives with the larger cation FA+ are formamidinium lead tribromide (FAPbBr3) and formamidinium lead triiodide (FAPbI3) [23, 64]. Besides the exchange of cations as well as anions, it was possible to grow crystals containing two halogens to obtain mixed crystals with different proportions of chlorine to bromine and bromine to iodine, as it is shown in Figure 70. By varying the mixing ratio of the halogens, it was therefore possible to vary the colour and thus the absorption properties of the crystals [85], as it can be done with thin polycrystalline perovskite films. In addition, since a few years it is also doable to grow complex crystals that contain several cations as well as anions [26, 80, 81]. These include the perovskites double cation – double halide formamidinium lead triiodide – methylammonium lead tribromide (FAPbI3)0.9(MAPbBr3)0.1 (FAMA) [26, 80] and formamidinium lead triiodide – methylammonium lead tribromide – caesium lead tribromide (FAPbI3)0.9(MAPbBr3)0.05(CsPbBr3)0.05 (CsFAMA) [81], which have made a significant contribution to increase the power conversion efficiency (PCE) in thin-film photovoltaics [47, 79, 182]. The growth of crystals to this day is performed exclusively from solution [23, 26, 56, 62]. Important preparation methods are the cooling acid-based precursor solution crystallisation [22], the inverse temperature crystallisation (ITC) [62], and the antisolvent vapour-assistant crystallisation (AVC) [137]. In the cooling crystallisation, the precursor salts AX and PbX2 are dissolved in an aqueous halogen-containing acid at high temperatures [56]. Controlled and slow cooling finally results in a supersaturated precursor solution, which leads to spontaneous nucleation of crystal nuclei, followed by subsequent crystal growth. The ITC method is based on the inverse or retrograde solubility of a dissociated perovskite in an organic solvent [23, 64]. With increasing temperature, the solubility of the perovskite decreases and mm-sized crystals can be grown within a few hours [23]. In the AVC method, the precursors are also dissolved in an organic solvent as well [137]. By slow evaporation of a so-called antisolvent [137], the solubility of the perovskite in the now present solvent mixture decreases and it finally precipitates. In addition, there are many other methods with the goal of growing high quality and large crystals in a short period of time [60, 61, 233, 310]. N2 - Mit der Antisolvent-Kristallisation (AVC) und der inversen Temperaturkristallisation (ITC) konnten alle aus der Dünnschichtanwendungen bekannten Perowskite auf Basis von Methylammonium als mm-große Kristalle gezüchtet werden. Detaillierte qualitative und quantitative Analysen ergaben die gleichen Stöchiometrie der Kristalle wie die ihrer entsprechenden Vorläuferlösung. Wie bereits erwähnt, war es möglich Kristalle mit einer Vielzahl unterschiedlicher Farben und dementsprechend variierenden Bandlücken zu erhalten, die durch selektive Änderung des Halogenverhältnisses als Photodetektoren im UV-VIS/NIR Bereich dienen könnten. Die Variation der Halogene führt jedoch nicht nur zu einer Veränderung der optischen Eigenschaften, sondern auch zu einer Erhöhung der Gitterkonstante mit zunehmendem Brom/Chlor- bzw. Iod/Brom-Verhältnis. Darüber hinaus ändert sich die Gitterstruktur von einem einfachen kubischen Gitter für MAPbCl3 und MAPbBr3 zu einem tetragonal-raumzentrierten Gitter für MAPbI3. Die Zahl der Verfahren zur Züchtung von OLTP-Einkristallen nimmt ständig zu. Die oben genannten Kristallisationsverfahren können kombiniert werden, um qualitativ hochwertige Perowskitkristalle zu züchten. Ein mechanischer Ansatz zur Züchtung komplexer und großformatiger Kristalle ohne Verwendung von Impfkristallen wurde mit der Wiederauffüllbaren-Kristallisationsmethode (RFCM) realisiert, die auf der inversen Löslichkeit von ITC beruht. Durch das Einleiten einer frischen Vorläuferlösung und die gleichzeitige Entfernung der verbrauchten Lösung war es möglich in-situ große Kristalle mit hervorragender struktureller Qualität zu züchten, wie die Röntgenbeugungsmessung (XRD) und die Rocking-Kurve eines FAMA-Einkristalls bestätigen. Die Methode ermöglicht nicht nur die Züchtung komplexer großer FAMA- und CsFAMA-Kristalle, sondern ist auch der etablierten Impfkristalltechnik überlegen, wie die radiographischen Messungen der Kristalloberfläche und des Kristallinneren zeigten. Um die Herausforderung der elektrischen Kontaktierung zu meistern, wurden Leiterplatten entwickelt, die die Kristalle sanft kontaktieren, um so elektronische Messungen zu ermöglichen. Ein wichtiger Beitrag zum Verständnis der inversen Löslichkeit wurde durch die Entwicklung eines neuen Kristallisationsverfahrens geleistet, das als reaktive inverse Temperaturkristallisation (RITC) bezeichnet wird. Dabei handelt es sich um eine Kombination aus reaktiver und inverser Temperaturkristallisation. Durch Zugabe einer geringen Menge eines primären Alkohols zur Perowskit-Vorläuferlösung konnte die inverse Löslichkeit des Perowskits drastisch reduziert werden. Dies konnte durch die Polaritätswerte der Alkohole bestimmt werden, wobei die Löslichkeit der Lösung mit abnehmender Polarität sank. Durch die geringere Löslichkeit konnten die Kristalle bei viel niedrigeren Temperaturen als mit der ITC-Methode gewachsen werden. Darüber hinaus eignet sich die Methode für die Züchtung aller bekannten bleiorganischen Trihalogenid-Perowskite und ermöglichte die Züchtung von qualitativ hochwertigen Einkristallen, was durch Röntgenmessungen bestätigt wurde. Um Perowskit-Kristalle für photovoltaische Anwendungen zu nutzen, müssen sie wie die entsprechenden polykristallinen Dünnschichten in ihrer Dicke reduziert werden, da mm-dicke Kristalle für diesen Zweck weniger geeignet sind. Bevor jedoch µm-dicke Kristalle gezüchtet wurden, wurden polykristalline MAPbI3-Dünnschichten mit einigen 100 nm auf dem Lochleiter Poly[N,N’-bis(4-butilphenyl) - N,N’-bis(phenyl)-benzidine] (polyTPD) prozessiert, um im Folgenden effiziente Solarzellen herzustellen. Die erzielten Ergebnisse lieferten nicht nur einen weiteren wichtigen Beitrag zur Perowskit-Dünnschichtphotovoltaik, sondern die gewonnenen Erkenntnisse ermöglichten im Folgenden auch ein besseres Verständnis für die Herstellung von halbleitenden Bauteilen auf Basis von Kristallwafern und Kristall-„Filmen“. Insbesondere die hydrophobe Eigenschaft von Poly(triaryl)aminen erleichterte die Handhabung von MAPbI3-Wafern. Um die Waferdicke zu kontrollieren und Kristalle mit einer hohen Strukturqualität zu züchten, wurde ein selbst gebauter Aufbau verwendet. Ein Kristallwafer kann leicht auf einem mit Poly[bis(4-phenyl) (2,4,6-trimethylphenyl) amine] (PTAA)-beschichteten Siliziumwafer gezüchtet werden, wobei die Wachstumshöhe des Kristalls durch Abstandshalter begrenzt ist. Die gewachsenen MAPbI3-Wafer mit einer Dicke von wenigen hundert µm erwiesen sich als sehr vielversprechend für die Herstellung eines Photodetektor-Prototyps, was durch die Auswertung des Photostroms und der Photoresponsivität in Abhängigkeit von der Zeit bestätigt wurde. Schließlich gelang es die Dicke der Perowskitkristalle MAPbBr3 und MAPbI3 mit Hilfe der raumbegrenzten RITC-Methode auf nur 10 bis 15 µm zu reduzieren. Wie die Wafer, wiesen auch die Kristall-„Filme“ eine hohe Strukturqualität auf und wurden für die Fabrikation einer MAPbI3-basierten Solarzelle verwendet. Die Auswertung der charakteristischen Solarzellenparameter der MAPbI3-Kristall-„Film“-Solarzelle lieferte erste vielversprechende Ergebnisse und zeigt das Potenzial der Verwendung von Kristallen für photovoltaische Zellen, auch wenn die Herstellung von dünnen Perowskit-Kristall-Solarzellen heute noch sehr schwierig ist. KW - Perowskit KW - Kristall KW - Perovskite KW - Crystal Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258590 ER - TY - THES A1 - Strunz, Jonas T1 - Quantum point contacts in HgTe quantum wells T1 - Quantenpunktkontakte in HgTe-Quantentrögen N2 - Quantenpunktkontakte (englisch: quantum point contacts, QPCs) sind eindimensionale Engstellen in einem ansonsten zweidimensionalen Elektronen- oder Lochsystem. Seit der erstmaligen Realisierung in GaAs-basierten zweidimensionalen Elektronengasen sind QPCs sukzessive zu einem Grundbestandteil mesoskopischer Physik geworden und erfahren in einer Vielzahl von Experimenten Anwendung. Jedoch ist es bis zur Anfertigung der vorliegenden Arbeit nicht gelungen, QPCs in der neuen Materialklasse der zweidimensionalen topologischen Isolatoren zu realisieren. In diesen Materialien tritt der sogenannte Quanten-Spin-Hall-Effekt (QSH-Effekt) auf, welcher sich durch die Ausbildung von leitfähigen, eindimensionalen sowie gleichermaßen spinpolarisierten Zuständen an der Bauteilkante auszeichnet, während die restlichen Bereiche der Probe isolierend sind. Ein in einem zweidimensionalen topologischen Isolator realisierter QPC kann demgemäß dafür benutzt werden, die sich stets an der Bauteilkante befindlichen QSH-Randkanäle einander räumlich anzunähern, was beispielsweise die Untersuchung potentieller Wechselwirkungseffekte zwischen ebenjenen Randkanälen ermöglicht. Die vorliegende Arbeit beschreibt die erstmalig erfolgreich durchgeführte Implementierung einer QPC-Technologie in einem QSH-System. Überdies werden die neuartigen Bauteile experimentell charakterisiert sowie analysiert. Nach einer in Kapitel 1 erfolgten Einleitung der Arbeit beschäftigt sich das nachfolgende Kapitel 2 zunächst mit der besonderen Bandstruktur von HgTe. In diesem Kontext wird die Ausbildung der QSH-Phase für HgTe-Quantentröge mit einer invertierten Bandstruktur erläutert, welche für deren Auftreten eine Mindesttrogdicke von d_QW > d_c = 6.3 nm aufweisen müssen. Im Anschluss wird das Konzept eines QPCs allgemein eingeführt sowie das zugehörige Transportverhalten analytisch beschrieben. Überdies werden die Einschränkungen und Randbedingungen diskutiert, welche bei der Realisierung eines QPCs in einem QSH-System Berücksichtigung finden müssen. Darauf folgt die Präsentation des eigens zur QPC-Herstellung entwickelten Lithographieprozesses, welcher auf einer mehrstufigen Anwendung eines für HgTe-Quantentrogstrukturen geeigneten nasschemischen Ätzverfahrens beruht. Die im Nachgang diskutierten Transportmessungen exemplarischer Proben zeigen die erwartete Leitwertquantisierung in Schritten von ΔG ≈ 2e^2/h im Bereich des Leitungsbandes -- sowohl für eine topologische als auch für eine triviale (d_QW < d_c) QPC-Probe. Mit dem Erreichen der Bandlücke saturiert der Leitwert für den topologischen QPC um G_QSH ≈ 2e^2/h, wohingegen ebenjener für den Fall des trivialen Bauteils auf G ≈ 0 abfällt. Darüber hinaus belegen durchgeführte Messungen des differentiellen Leitwertes einer invertierten QPC-Probe in Abhängigkeit einer Biasspannung die stabile Koexistenz von topologischen und trivialen Transportmoden. Gegenstand von Kapitel 3 ist die Beschreibung der Ausbildung eines QSH-Interferometers in QPCs mit geringer Weite, welche unter Verwendung von Quantentrögen mit einer Trogdicke von d_QW = 7 nm hergestellt werden. Die Diskussion von Bandstrukturrechnungen legt dar, dass die räumliche Ausdehnung der Randkanäle von der jeweiligen Position der Fermi-Energie im Bereich der Bandlücke abhängt. Hieraus resultiert eine Transportsituation, in welcher -- unter bestimmten Voraussetzungen -- Reservoir-Elektronen mit randomisiertem Spin an beide QSH-Randkanäle mit gleicher Wahrscheinlichkeit koppeln, was in der Ausbildung eines QSH-Rings resultiert. Diese Ringbildung wird im Rahmen eines durch Plausibilitätsüberprüfung getesteten Modells erklärt und spezifiziert. Danach erfolgt eine theoretische Einführung von drei relevanten Quantenphasen, deren Akkumulation in der Folge für mehrere geeignete QPC-Proben nachgewiesen wird. Es handelt sich hierbei um die Aharonov-Bohm-Phase, um die dynamische Aharonov-Casher-Phase sowie um eine Spin-Bahn-Berry-Phase mit einem Wert von π. Diese experimentellen Ergebnisse stehen darüber hinaus im Einklang mit analytischen Modellbetrachtungen. Das anschließende Kapitel 4 stellt den letzten Teil der Arbeit dar und beschäftigt sich mit der Beobachtung einer anomalen Leitwertsignatur, welche für QPC-Proben basierend auf einer Quantentrogdicke von d_QW = 10.5 nm auftritt. Diese Proben zeigen neben der durch die QSH-Phase bedingten Leitwertquantisierung von G_QSH ≈ 2e^2/h ein weiteres Leitwertplateau mit einem Wert von G ≈ e^2/h = 0.5 x G_QSH. Diese sogenannte 0.5-Anomalie ist nur für ein kleines Intervall von QPC-Weiten beobachtbar und wird mit zunehmender Bauteilweite abgeschwächt. Weiterführende Untersuchungen in Abhängigkeit der Temperatur sowie einer angelegten Biasspannung deuten darüber hinaus darauf hin, dass das Auftreten der 0.5-Anomalie mit einem modifizierten topologischen Zustand einhergeht. Überdies wird eine zusätzliche sowie vervollständigende Charakterisierung dieses Transportregimes durch die Realisierung eines neuartigen Bauteilkonzeptes möglich, welches einen QPC in eine standardisierte Hall-Bar-Geometrie integriert. Das Ergebnis der experimentellen Analyse einer solchen Probe verknüpft das Auftreten der 0.5-Anomalie mit der Rückstreuung eines QSH-Randkanals. Demgemäß wird aus Sicht des Einteilchenbildes geschlussfolgert, dass im Kontext der 0.5-Anomalie lediglich ein Randkanal transmittiert wird. Zudem werden zwei theoretische Modelle basierend auf Elektron-Elektron-Wechselwirkungen diskutiert, welche beide jeweils als ursächlicher Mechanismus für das Auftreten der 0.5-Anomalie in Frage kommen. Abschließend ist zu deduzieren, dass die Implementierung einer QPC-Technologie in einem QSH-System eine bedeutende Entwicklung im Bereich der Erforschung von zweidimensionalen topologischen Isolatoren darstellt, welche eine Vielzahl zukünftiger Experimente ermöglicht. So existieren beispielsweise theoretische Vorhersagen, dass QPCs in einem QSH-System die Detektion von Majorana- sowie Para-Fermionen ermöglichen. Überdies ist die nachgewiesene Ausbildung eines QSH-Interferometers in geeigneten QPC-Proben eine Beobachtung von großer Folgewirkung. So ermöglicht die beobachtete dynamische Aharonov-Casher-Phase im QSH-Regime die kontrollierbare Modulation des topologischen Leitwertes, was die konzeptionelle Grundlage eines topologischen Transistors darstellt. Eine weitere Anwendungsmöglichkeit wird durch die Widerstandsfähigkeit geometrischer Phasen gegenüber Dephasierung eröffnet, wodurch die nachgewiesene Spin-Bahn-Berry-Phase mit einem Wert von π im Kontext potentieller Quantencomputerkonzepte von Interesse ist. Darüber hinaus ist die Transmission von nur einem QSH-Randkanal im Zuge des Auftretens der 0.5-Anomalie äquivalent zu 100 % Spinpolarisierung, was einen Faktor essentieller Relevanz für die Realisierung spintronischer Anwendungen darstellt. Demgemäß beinhaltet die vorliegende Arbeit den experimentellen Nachweis von drei unterschiedlichen Effekten, von welchen jedem einzelnen eine fundamentale Rolle im Rahmen der Entwicklung neuer Generationen logischer Bauelemente zukommen kann -- ermöglicht durch die Realisierung von QPCs in topologischen HgTe-Quantentrögen. N2 - Quantum point contacts (QPCs) are one-dimensional constrictions in an otherwise extended two-dimensional electron or hole system. Since their first realization in GaAs based two-dimensional electron gases, QPCs have become basic building blocks of mesoscopic physics and are used in manifold experimental contexts. A so far unrealized goal however is the implementation of QPCs in the new material class of two-dimensional topological insulators, which host the emergence of the so-called quantum spin Hall (QSH) effect. The latter is characterized by the formation of conducting one-dimensional spin-polarized states at the device edges, while the bulk is insulating. Consequently, an implemented QPC technology can be utilized to bring the QSH edge channels in close spatial proximity, thus for example enabling the study of interaction effects between the edge states. The thesis at hand describes the technological realization as well as the subsequent experimental characterization and analysis of QPCs in a QSH system for the first time. After an introduction is given in Chapter 1, the subsequent Chapter 2 starts with discussing the peculiar band structure of HgTe. The emergence of the QSH phase for HgTe quantum wells with an inverted band structure is explained. For the band inversion to occur, the quantum wells have to exhibit a well thickness d_QW above a critical value (d_QW > d_c = 6.3 nm). Subsequently, the concept of QPCs is explicated and the corresponding transport behaviour is analytically described. Following the discussion of relevant constraints when realizing a QPC technology in a QSH system, a newly developed lithography process utilizing a multi-step wet etching technique for fabricating QPC devices based on HgTe quantum wells is presented. Transport measurements of exemplary devices show the expected conductance quantization in steps of ΔG ≈ 2e^2/h within the conduction band for a topological as well as for a trivial (d_QW < d_c) QPC. For the topological case, the residual conductance within the bulk band gap saturates at G_QSH ≈ 2e^2/h due to presence of the QSH state, while it drops to G ≈ 0 for the trivial device. Moreover, bias voltage dependent measurements of the differential conductance of an inverted sample provide explicit proof of the unperturbed coexistence of topological and trivial transport modes. In a next step, Chapter 3 describes the emergence of a QSH interferometer state in narrow QPC devices with a quantum well thickness of d_QW = 7 nm. Presented band structure calculations reveal that the spatial extension of the QSH edge states depends on the position of the Fermi energy within the bulk band gap. As a consequence, reservoir electrons with randomized spin couple to both edge channels with the same probability under certain conditions, thus causing the formation of a QSH ring. A straightforward model capturing and specifying the occurrence of such a QSH interferometer is provided as well as substantiated by two experimental plausibility checks. After relevant quantum phases are theoretically introduced, the discussion of the obtained data reveals the accumulation of an Aharonov-Bohm phase, of a dynamical Aharonov-Casher phase as well as of a spin-orbit Berry phase of π in appropriate QPC devices. These results are consistent with analytic model considerations. The last part of this thesis, Chapter 4, covers the observation of an unexpected conductance pattern for QPC samples fabricated from quantum wells with d_QW = 10.5 nm. In these devices, an anomalous plateau at G ≈ e^2/h = 0.5 x G_QSH emerges in addition to the QSH phase entailed residual conductance of G_QSH ≈ 2e^2/h. This so-called 0.5 anomaly occurs only for a specific interval of QPC width values, while it starts to get lost for too large sample widths. Furthermore, presented temperature and bias voltage dependent measurements insinuate that the emergence of the 0.5 anomaly is related to a gapped topological state. Additional characterization of this peculiar transport regime is provided by the realization of a novel device concept, which integrates a QPC within a standard Hall bar geometry. The results of the experimental analysis of such a sample link the occurrence of the 0.5 anomaly to a backscattered QSH channel. Thus, following a single particle perspective argumentation, it is reasoned that only one edge channel is transmitted in the context of the 0.5 anomaly. Two theoretic models possibly explaining the emergence of the 0.5 anomaly -- based on electron-electron interactions -- are discussed. To conclude, the implementation of a working QPC technology in a QSH system represents a paramount development in the context of researching two-dimensional topological insulators and enables a multitude of future experiments. QPC devices realized in a QSH system are for example envisaged to allow for the detection of Majorana fermions and parafermions. Furthermore, the reported formation of a QSH interferometer state in appropriate QPC devices is of high interest. The observed dynamical Aharonov-Casher phase in the QSH regime enables a controllable modulation of the topological conductance, thus providing the conceptual basis for a topological transistor. Moreover, due to the resilience of geometric phases against dephasing, the presence of a spin-orbit Berry phase of π represents a promising perspective with regard to possible quantum computation concepts. Besides that, the transmission of only one QSH edge channel due to the emergence of the 0.5 anomaly is equivalent to 100 % spin polarization, which is an essential ingredient for realizing spintronic applications. Hence, the thesis at hand covers the experimental detection of three effects of fundamental importance in the context of developing new generations of logic devices -- based on QPCs fabricated from topological HgTe quantum wells. KW - Topologischer Isolator KW - Quecksilbertellurid KW - Elektronentransport KW - HgTe KW - topological insulator KW - quantum point contact KW - quantum interference Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-274594 ER - TY - JOUR A1 - Müller, Ulrich A1 - Spenst, Peter A1 - Kagerer, Philipp A1 - Stolte, Matthias A1 - Würthner, Frank A1 - Pflaum, Jens T1 - Photon‐Correlation Studies on Multichromophore Macrocycles of Perylene Dyes JF - Advanced Optical Materials N2 - Organic dyes offer unique properties for their application as room temperature single photon emitters. By means of photon‐correlation, the emission characteristics of macrocyclic para‐xylylene linked perylene bisimide (PBI) trimers and tetramers dispersed in polymethyl methacrylate matrices are analyzed. The optical data indicate that, despite of the strong emission enhancement of PBI trimers and tetramers according to their larger number of chromophores, the photon‐correlation statistics still obeys that of single photon emitters. Moreover, driving PBI trimers and tetramers at higher excitation powers, saturated emission behavior for monomers is found while macrocycle emission is still far‐off saturation but shows enhanced fluctuations. This observation is attributed to fast singlet–singlet annihilation, i.e., faster than the radiative lifetime of the excited S1 state, and the enlarged number of conformational arrangements of multichromophores in the polymeric host. Finally, embedding trimeric PBI macrocycles in active organic light‐emitting diode matrices, electrically driven bright fluorescence together with an indication for antibunching at room temperature can be detected. This, so far, has only been observed for phosphorescent emitters that feature much longer lifetimes of the excited states and, thus, smaller radiative recombination rates. The results are discussed in the context of possible effects on the g(2) behavior of molecular emitters. KW - multichromophores KW - organic light emitting diodes KW - perylene dyes KW - photon‐correlation KW - single photon emission Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-287219 VL - 10 IS - 14 ER - TY - THES A1 - Schmitt, Fabian Bernhard T1 - Transport properties of the three-dimensional topological insulator mercury telluride T1 - Transporteigenschaften des dreidimensionalen topologischen Isolators Quecksilbertellurid N2 - The subject of this thesis is the investigation of the transport properties of topological and massive surface states in the three-dimensional topological insulator Hg(Mn)Te. These surface states give rise to a variety of extraordinary transport phenomena, making this material system of great interest for research and technological applications. In this connection, many physical properties of the topological insulator Hg(Mn)Te still require in-depth exploration. The overall aim of this thesis is to analyze the quantum transport of HgTe-based devices ranging from hundreds of micrometers (macroscopic) down to a few micrometers in size (microscopic) in order to extend the overall understanding of surface states and the possibilities of their manipulation. In order to exploit the full potential of our high-quality heterostructures, it was necessary to revise and improve the existing lithographic fabrication process of macroscopic three-dimensional Hg(Mn)Te samples. A novel lithographic standard recipe for the fabrication of the HgTe-based macrostructures was developed. This recipe includes the use of an optimized Hall bar design and wet etching instead of etching with high-energy \(\mathrm{{Ar^{+}}}\)-ions, which can damage the samples. Further, a hafnium oxide insulator is applied replacing the SiO\(_{2}\)/Si\(_{3}\)N\(_{4}\) dielectric in order to reduce thermal load. Moreover, the devices are metallized under an alternating angle to avoid discontinuities of the metal layers over the mesa edges. It was revealed that the application of gate-dielectric and top-gate metals results in n-type doping of the devices. This phenomenon could be attributed to quasi-free electrons tunneling from the trap states, which form at the interface cap layer/insulator, through the cap into the active layer. This finding led to the development of a new procedure to characterize wafer materials. It was found that the optimized lithographic processing steps do not unintentionally react chemically with our heterostructures, thus avoiding a degradation of the quality of the Hg(Mn)Te layer. The implementation of new contact structures Ti/Au, In/Ti/Au, and Al/Ti/Au did not result in any improvement compared to the standard structure AuGe/Au. However, a novel sample recipe could be developed, resulting in an intermixing of the contact metals (AuGe and Au) and fingering of metal into the mesa. The extent of the quality of the ohmic contacts obtained through this process has yet to be fully established. This thesis further deals with the lithographic realization of three-dimensional HgTe-based microstructures measuring only a few micrometer in size. Thus, these structures are in the order of the mean free path and the spin relaxation length of topological surface state electrons. A lithographic process was developed enabling the fabrication of nearly any desired microscopic device structure. In this context, two techniques suitable for etching microscopic samples were realized, namely wet etching and the newly established inductively coupled plasma etching. While wet etching was found to preserve the crystal quality of the active layer best, inductively coupled plasma etching is characterized by high reproducibility and excellent structural fidelity. Hence, the etching technique employed depends on the envisaged type of experiment. Magneto-transport measurements were carried out on the macroscopic HgTe-based devices fabricated by means of improved lithographic processing with respect to the transport properties of topological and massive surface states. It was revealed that due to the low charge carrier density present in the leads to the ohmic contacts, these regions can exhibit an insulating behavior at high magnetic fields and extremely low temperatures. As soon as the filling factor of the lowest Landau levels dropped below a critical value (\(\nu_{\mathrm{{c}}}\approx0.8\)), the conductance of the leads decreased significantly. It was demonstrated that the carrier density in the leads can be increased by the growth of modulation doping layers, a back-gate-electrode, light-emitting diode illumination, and by the application of an overlapping top-gate layout. This overlapping top-gate and a back-gate made it possible to manipulate the carrier density of the surface states on both sides of the Hg(Mn)Te layer independently. With this setup, it was identified that topological and massive surface states contribute to transport simultaneously in 3D Hg(Mn)Te. A model could be developed allowing the charge carrier systems populated in the sample to be determined unambiguously. Based on this model, the process of the re-entrant quantum Hall effect observed for the first time in three-dimensional topological insulators could be explained by an interplay of n-type topological and p-type massive surface states. A well-pronounced \(\nu=-1\rightarrow\nu=-2\rightarrow\nu=-1\) sequence of quantum Hall plateaus was found in manganese-doped HgTe-based samples. It is postulated that this is the condensed-matter realization of the parity anomaly in three-dimensional topological insulators. The actual nature of this phenomenon can be the subject of further research. In addition, the measurements have shown that inter-scattering occurs between counter-propagating quantum Hall edge states. The good quantization of the Hall conductance despite this inter-scattering indicates that only the unpaired edge states determine the transport properties of the system as a whole. The underlying inter-scattering mechanism is the topic of a publication in preparation. Furthermore, three-dimensional HgTe-based microstructures shaped like the capital letter "H" were investigated regarding spin transport phenomena. The non-local voltage signals occurring in the measurements could be attributed to a current-induced spin polarization of the topological surface states due to electrons obeying spin-momentum locking. It was shown that the strength of this non-local signal is directly connected to the magnitude of the spin polarization and can be manipulated by the applied top-gate voltage. It was found that in these microstructures, the massive surface and bulk states, unlike the topological surface states, cannot contribute to this spin-associated phenomenon. On the contrary, it was demonstrated that the population of massive states results in a reduction of the spin polarization, either due to the possible inter-scattering of massive and topological surface states or due to the addition of an unpolarized electron background. The evidence of spin transport controllable by a top-gate-electrode makes the three-dimensional material system mercury telluride a promising candidate for further research in the field of spintronics. N2 - Die vorliegende Dissertation beschäftigt sich mit der Untersuchung der Transporteigenschaften von topologischen und massiven Oberflächenzuständen in dem dreidimensionalen topologischen Isolator Hg(Mn)Te. Da diese Oberflächenzustände zu einer Vielzahl von außergewöhnlichen Transportphänomenen führen, ist dieses Materialsystem für die Grundlagenforschung und technologische Anwendungen von großem Interesse. Der Bereich der dreidimensionalen topologischen Isolatoren stellt ein relativ junges Forschungsgebiet dar. Daher bedürfen noch viele physikalische Eigenschaften des topologischen Isolators Hg(Mn)Te ein tiefergehendes Verständnis. Das übergeordnete Ziel dieser Arbeit ist die Analyse des Quantentransports von HgTe-basierten Proben, deren Abmessungen von mehreren hundert Mikrometern (makroskopisch) bis hin zu wenigen Mikrometern (mikroskopisch) reichen. Auf diese Weise soll das allgemeine Verständnis der Oberflächenzustände und die Möglichkeiten ihrer Manipulation erweitert werden. Um das volle Potential unserer hochqualitativen Heterostrukturen, welche durch Molekularstrahlepitaxie gewachsen werden, ausschöpfen zu können, musste das bestehende lithographische Herstellungsverfahren für makroskopische dreidimensionale Hg(Mn)Te-Proben überarbeitet und verbessert werden. Es konnte ein neuartiges lithographisches Standardrezept für die Herstellung von HgTe-basierten Makrostrukturen entwickelt werden. Dieses Rezept beinhaltet die Verwendung eines optimierten Probendesigns und verwendet nasschemisches Ätzen anstelle von Ätzen mit hochenergetischen \(\mathrm{{Ar^{+}}}\)-Ionen, welches die Proben beschädigen kann. Außerdem wird ein Isolator aus Hafniumoxid verwendet, der das SiO\(_{2}\)/Si\(_{3}\)N\(_{4}\)-Dielektrikum ersetzt, um die thermische Belastung der Proben zu verringern. Darüber hinaus werden die Proben unter einem veränderlichen Winkel metallisiert, um Diskontinuitäten der Metallschichten entlang der Ränder der Mesa zu vermeiden. Es zeigte sich, dass das Aufbringen des Isolators und der Feldeffektelektrode zu einer Erhöhung der Elektronendichte in der Hg(Mn)Te-Schicht führt. Dieses Phänomen konnte darauf zurückgeführt werden, dass quasifreie Elektronen aus sogenannten Fallenzuständen, welche sich an der Grenzfläche zwischen der Cd\(_{0.7}\)Hg\(_{0.3}\)Te Deckschicht und dem Dielektrikum bilden, durch die Deckschicht in die aktive Schicht tunneln können. Dieser neue Einblick führte zu der Entwicklung einer neuen Prozedur zur Charakterisierung von Wafermaterialien. Es stellte sich heraus, dass die optimierten lithographischen Prozessschritte nicht unbeabsichtigt mit unseren Heterostrukturen chemisch reagieren, was eine Verringerung der Qualität der Hg(Mn)Te-Schicht verhindert. Die Implementierung der neuen Kontaktstrukturen Ti/Au, In/Ti/Au und Al/Ti/Au führte zu keiner Verbesserung im Vergleich zur Standardstruktur AuGe/Au. Es konnte jedoch ein neuartiges Probenrezept entwickelt werden, dessen Anwendung zu einer Vermischung der Kontaktmetalle (AuGe und Au) und zu einem Eindiffundieren von Metall in die Mesa führt. Das Ausmaß der Qualität der ohmschen Kontakte, welche durch dieses Verfahren erhalten werden, muss noch vollständig ermittelt werden. Zudem befasst sich diese Dissertation mit der lithographischen Realisierung dreidimensionaler HgTe-basierter Mikrostrukturen, die nur wenige Mikrometer groß sind. Somit liegen diese Strukturen in der Größenordnung der mittleren freien Weglänge und der Spinrelaxationslänge von Elektronen, welche sich in den topologischen Oberflächenzuständen befinden. Es wurde ein lithographischer Prozess entwickelt, der die Herstellung nahezu jeder gewünschten mikroskopischen Struktur ermöglicht. In diesem Zusammenhang wurden zwei für das Ätzen mikroskopischer Proben geeignete Techniken vorgestellt, nämlich nasschemisches Ätzen mit einer flüssigen KI:I\(_{2}\):HBr Lösung und das Ätzen unter Verwendung eines induktiv gekoppelten Methan-Plasmas. Während nasschemisches Ätzen die Kristallqualität der Hg(Mn)Te-Schicht am besten erhält, zeichnet sich das Plasmaätzen durch eine hohe Reproduzierbarkeit und ausgezeichnete Strukturtreue aus. Die Wahl der zu bevorzugenden Ätztechnik hängt daher von der Art des geplanten Experiments ab. An den makroskopischen Bauelementen auf HgTe-Basis, welche durch Anwendung der verbesserten lithographischen Prozessierung hergestellt wurden, wurden magnetfeldabhängige Transportmessungen hinsichtlich der Transporteigenschaften von topologischen und massiven Oberflächenzuständen durchgeführt. Es zeigte sich, dass die Zuleitungen zu den ohmschen Kontakten bei hohen Magnetfeldern (\(B>4\,\mathrm{{T}}\)) und extrem tiefen Temperaturen (\(T\ll1\,\mathrm{K}\)) ein isolierendes Verhalten aufweisen können. Eine geringe Ladungsträgerdichte in diesen Bereichen wurde als Ursache identifiziert. Sobald der Füllfaktor der untersten Landau-Niveaus unter einen kritischen Wert fiel, nahm die Leitfähigkeit der Zuleitungen deutlich ab. Es wurde festgestellt, dass der Betrag dieses kritischen Füllfaktors für alle untersuchten Proben ungefähr 0,8 beträgt und unabhängig davon ist, ob die untersten Landau-Niveaus elektronen- oder lochartig sind. Darüber hinaus konnte gezeigt werden, dass die Ladungsträgerdichte in den Zuleitungen durch das Wachstum von Modulationsdotierschichten, eine unterhalb des Bauelements angeordnete Feldeffektelektrode, die Bestrahlung mit einer Leuchtdiode und das Aufbringen einer mit den ohmschen Kontakten überlappenden Feldeffektelektrode erhöht werden kann. Diese beiden Feldeffektelektroden, welche sich unter- und oberhalb der Heterostruktur befinden, ermöglichten es die Ladungsträgerdichte der Oberflächenzustände auf beiden Seiten der Hg(Mn)Te-Schicht unabhängig voneinander zu manipulieren. Mit diesem Aufbau wurde festgestellt, dass topologische und massive Oberflächenzustände gleichzeitig zum Transport in 3D Hg(Mn)Te beitragen. Es konnte ein Modell entwickelt werden, welches die eindeutige Bestimmung der in der Probe besetzten Ladungsträgersysteme ermöglicht. Auf der Grundlage dieses Modells konnte ein magnetfeldabhängiger Prozess, welcher sich durch wiedereinkehrende Plateaus im Rahmen des Quanten-Hall-Effekts auszeichnet, erklärt werden. Dieser erstmals in dreidimensionalen topologischen Isolatoren beobachtete Prozess ist das Resultat des Zusammenspiels von zwei elektronenartigen topologischen Oberflächenzuständen und einem lochartigen massiven Oberflächenzustand. Eine besonders deutlich ausgeprägte \(\nu=-1\rightarrow\nu=-2\rightarrow\nu=-1\) Abfolge von Plateaus konnte in mit Mangan dotierten dreidimensionalen HgTe-basierten topologischen Isolatoren gefunden werden. Es wird postuliert, dass es sich dabei um die Realisierung der Paritätsanomalie in kondensierter Materie handelt. Die tatsächliche Natur dieses Phänomens kann Gegenstand weiterer Forschung sein. Darüber hinaus haben die Messungen gezeigt, dass entgegengesetzt verlaufende elektronen- und lochartige Randzustände miteinander streuen. Die gute Quantisierung der Hall-Leitfähigkeit, welche ungeachtet dieser Streuung beobachtet werden kann, deutet darauf hin, dass nur die ungepaarten Randzustände die Transporteigenschaften des Gesamtsystems bestimmen. Der zugrundeliegende Streumechanismus ist das Thema einer Publikation, welche sich in der Vorbereitung befindet. Des Weiteren wurden dreidimensionale HgTe-basierte Mikrostrukturen, die wie der Großbuchstabe “H” geformt sind, hinsichtlich Spintransportphänomene untersucht. Die bei den Messungen auftretenden nichtlokalen Spannungssignale konnten auf eine strominduzierte Spinpolarisation der topologischen Oberflächenzustände zurückgeführt werden. Ursache für diese strominduzierte Spinpolarisation ist die starke Kopplung des Elektronenspins an den Elektronenimpuls. Es wurde gezeigt, dass die Intensität dieses nichtlokalen Signals direkt mit der Stärke der Spinpolarisation zusammenhängt und durch eine Feldeffektelektrode manipuliert werden kann. Es wurde festgestellt, dass in diesen Mikrostrukturen die massiven Oberflächen- und Bulkzustände, im Gegensatz zu den topologischen Oberflächenzuständen, nicht zu diesem mit dem Spin assoziierten Phänomen beitragen können. Es wurde im Gegenteil gezeigt, dass eine Besetzung der massiven Zustände zu einer Verringerung der Spinpolarisation führt. Die verantwortlichen Mechanismen sind das Streuen von massiven und topologischen Oberflächenzuständen und das Hinzufügung eines großen Hintergrunds an unpolarisierten Elektronen. Der Nachweis des durch eine Feldeffektelektrode kontrollierbaren Spintransports macht das dreidimensionale Materialsystem Quecksilbertellurid zu einem vielversprechenden Kandidaten für weitere Forschungen auf dem Gebiet der Spintronik. KW - Topologischer Isolator KW - Quecksilbertellurid KW - Elektronentransport KW - HgTe KW - interplay of surface states KW - spin transport KW - topological insulator Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-291731 ER - TY - THES A1 - Fijalkowski, Kajetan Maciej T1 - Electronic Transport in a Magnetic Topological Insulator (V,Bi,Sb)\(_2\)Te\(_3\) T1 - Elektronischer Transport in einem magnetischen topologischen Isolator (V,Bi,Sb)\(_2\)Te\(_3\) N2 - This thesis focuses on investigating magneto-transport properties of a ferromagnetic topological insulator (V,Bi,Sb)2Te3. This material is most famously known for exhibiting the quantum anomalous Hall effect, a novel quantum state of matter that has opened up possibilities for potential applications in quantum metrology as a quantum standard of resistance, as well as for academic investigations into unusual magnetic properties and axion electrodynamics. All of those aspects are investigated in the thesis. N2 - Im Mittelpunkt dieser Arbeit steht die Untersuchung der Magneto-Transporteigenschaften des ferromagnetischen topologischen Isolators (V,Bi,Sb)2Te3. Dieses Material ist vor allem dafür bekannt, dass es den quantenanormalen Hall-Effekt aufweist, einen neuartigen Quantenzustand der Materie, der Möglichkeiten für potenzielle Anwendungen in der Quantenmetrologie als Quantenstandard des Widerstands sowie für wissenschaftliche Untersuchungen zu ungewöhnlichen magnetischen Eigenschaften und der Axion-Elektrodynamik eröffnet hat. All diese Aspekte werden in dieser Arbeit untersucht. KW - Topologischer Isolator KW - Axion KW - Bismutselenide KW - Transportprozess KW - Surface states KW - Magnetic Topological Insulator KW - Quantum anomalous Hall effect Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-282303 ER - TY - THES A1 - Graetz [geb. Dittmann], Jonas T1 - X-Ray Dark-Field Tensor Tomography : a Hitchhiker's Guide to Tomographic Reconstruction and Talbot Imaging T1 - Röntgen-Dunkelfeld-Tensor-Tomographie : ein Handbuch zur Tomographischen Rekonstruktion und Talbot-Bildgebung N2 - X-ray dark-field imaging allows to resolve the conflict between the demand for centimeter scaled fields of view and the spatial resolution required for the characterization of fibrous materials structured on the micrometer scale. It draws on the ability of X-ray Talbot interferometers to provide full field images of a sample's ultra small angle scattering properties, bridging a gap of multiple orders of magnitude between the imaging resolution and the contrasted structure scale. The correspondence between shape anisotropy and oriented scattering thereby allows to infer orientations within a sample's microstructure below the imaging resolution. First demonstrations have shown the general feasibility of doing so in a tomographic fashion, based on various heuristic signal models and reconstruction approaches. Here, both a verified model of the signal anisotropy and a reconstruction technique practicable for general imaging geometries and large tensor valued volumes is developed based on in-depth reviews of dark-field imaging and tomographic reconstruction techniques. To this end, a wide interdisciplinary field of imaging and reconstruction methodologies is revisited. To begin with, a novel introduction to the mathematical description of perspective projections provides essential insights into the relations between the tangible real space properties of cone beam imaging geometries and their technically relevant description in terms of homogeneous coordinates and projection matrices. Based on these fundamentals, a novel auto-calibration approach is developed, facilitating the practical determination of perspective imaging geometries with minimal experimental constraints. A corresponding generalized formulation of the widely employed Feldkamp algorithm is given, allowing fast and flexible volume reconstructions from arbitrary tomographic imaging geometries. Iterative reconstruction techniques are likewise introduced for general projection geometries, with a particular focus on the efficient evaluation of the forward problem associated with tomographic imaging. A highly performant 3D generalization of Joseph's classic linearly interpolating ray casting algorithm is developed to this end and compared to typical alternatives. With regard to the anisotropic imaging modality required for tensor tomography, X-ray dark-field contrast is extensively reviewed. Previous literature is brought into a joint context and nomenclature and supplemented by original work completing a consistent picture of the theory of dark-field origination. Key results are explicitly validated by experimental data with a special focus on tomography as well as the properties of anisotropic fibrous scatterers. In order to address the pronounced susceptibility of interferometric images to subtle mechanical imprecisions, an efficient optimization based evaluation strategy for the raw data provided by Talbot interferometers is developed. Finally, the fitness of linear tensor models with respect to the derived anisotropy properties of dark-field contrast is evaluated, and an iterative scheme for the reconstruction of tensor valued volumes from projection images is proposed. The derived methods are efficiently implemented and applied to fiber reinforced plastic samples, imaged at the ID19 imaging beamline of the European Synchrotron Radiation Facility. The results represent unprecedented demonstrations of X-ray dark-field tensor tomography at a field of view of 3-4cm, revealing local fiber orientations of both complex shaped and low-contrast samples at a spatial resolution of 0.1mm in 3D. The results are confirmed by an independent micro CT based fiber analysis. N2 - Die Röntgen-Dunkelfeld-Bildgung vermag den Widerspruch zwischen dem Bedarf nach großen Sichtfeldern im Zentimeterbereich und der nötigen Bildauflösung zur Charakterisierung von Fasermaterialien mit Strukturgrößen im Mikrometerbereich aufzulösen. Sie bedient sich dafür der Eigenschaft von Röntgen-Talbot-Interferometern, Ultrakleinwinkelstreueigenschaften einer Probe vollflächig abzubilden, womit eine Lücke von mehreren Größenordnung zwischen der Bildauflösung und der konstrastgebenden Strukturgröße überbrückt werden kann. Der Zusammenhang zwischen Strukturanisotropie und gerichteter Streuung ermöglicht dabei Rückschlüsse auf die Orientierung der Mikrostruktur einer Probe unterhalb der Bildauflösung. Erste Demonstrationen haben, basiered auf verschiedenen heuristischen Signalmodellen und Rekonstruktrionsansätzen, die grundsätzliche Erweiterbarkeit auf die Volumen-Bildgebung gezeigt. In der vorliegenden Arbeit wird, aufbauend auf einer umfassenden Analyse der Dunkelfeld-Bildgebung und tomographischer Rekonstruktionsmethoden, sowohl ein verifiziertes Modell der Signalanisotropie als auch eine Rekonstruktionstechnik entwickelt, die für große tensorwertige Volumina und allgemeine Abbildungsgeometrien praktikabel ist. In diesem Sinne wird ein weites interdisziplinäres Feld von Bildgebungs- und Rekonstruktionsmethoden aufgearbeitet. Zunächst werden anhand einer neuen Einführung in die mathematische Beschreibung perspektivischer Projektionen essenzielle Einsichten in die Zusammenhänge zwischen der greifbaren Realraum-Darstellung der Kegelstrahl-Geometrie und ihrer technisch relevanten Beschreibung mittels homogener Koordinaten und Projektionsmatrizen gegeben. Aufbauend auf diesen Grundlagen wird eine neue Methode zur Auto-Kalibration entwickelt, die die praktische Bestimmung von perspektivischen Abbildungsgeometrien unter minimalen Anforderungen an die experimentelle Ausführung ermöglicht. Passend dazu wird eine verallgemeinerte Formulierung des weit verbreiteten Feldkamp-Algorithmus gegeben, um eine schnelle und flexible Volumenrekonstruktion aus beliebigen tomographischen Bildgebungsgeometrien zu ermöglichen. Iterative Rekonstruktionsverfahren werden ebenfalls für allgemeine Aufnahmegeometrien eingeführt, wobei ein Schwerpunkt auf der effizienten Berechnung des mit der tomographischen Bildgebung assoziierten Vorwärtsproblems liegt. Zu diesem Zweck wird eine hochperformante 3D-Erweiterung des klassischen, linear interpolierenden Linienintegrationsalgorithmus von Joseph entwickelt und mit typischen Alternativen verglichen. In Bezug auf die anisotrope Bildmodalität, die die Grundlage der Tensortomographie bildet, wird der Röntgen-Dunkelfeld-Kontrast umfassend besprochen. Die vorhandende Literatur wird dazu in einen gemeinsamen Kontext und eine gemeinsame Nomenklatur gebracht und mit neuen Überlegungen zu einer konsistenten Darstellung der Theorie zur Dunkelfeldsignalentstehung vervollständigt. Zentrale Ergebnisse werden dabei explizit anhand experimenteller Daten verifiziert, wobei besonders die Tomographie und die Eigenschaften anisotroper, faseriger Streuer im Vordergrund stehen. Um die ausgeprägte Empfindlichkeit interferometrischer Bilder auf feinste mechanische Instabilitäten zu kompensieren, wird ein effizientes Optimierungsverfahren zur Auswertung der Rohdaten aus Talbot-Interferometern entwickelt. Schließlich wird die Anwendbarkeit von linearen Tensor-Modellen in Bezug auf die hergeleiteten Anisotropie-Eigenschaften des Dunkelfeld-Kontrastes diskutiert, und ein iteratives Verfahren für die Rekonstruktion tensorwertiger Volumen aus Projektionsbildern vorgeschlagen. Die entwickelten Methoden werden effizient implementiert und auf Proben aus faserverstärktem Kunstoff angewandt, die dafür an der Bildgebungs-Strahllinie ID19 des Europäischen Synchrotrons ESRF abgebildet wurden. Die Ergebnisse stellen eine bisher einmalige Demonstration von Röntgen-Dunkelfeld-Tensor-Tomographie mit einem Sichtfeld von 3-4cm dar, wobei lokale Faserorientierung sowohl für komplex geformte als auch kontrastarme Objekte mit einer räumlichen Auflösung von 0.1mm in 3D dargestellt werden kann. Ein unabhängiger Vergleich mit Mikro-CT basierter Faser-Analyse bestätigt die Ergebnisse. KW - Dreidimensionale Rekonstruktion KW - Tomografie KW - Faserorientierung KW - Tensor KW - Bildgebendes Verfahren KW - X-Ray Dark-Field KW - Tensor Tomography KW - Volume Reconstruction KW - Fiber Orientation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-281437 ER - TY - THES A1 - Wiest, Wolfram T1 - Entwicklung einer Apparatur zur In-situ-Ermüdungsprüfung von Zahnimplantaten mittels Synchrotron Micro-CT T1 - Development of an apparatus for in-situ fatigue testing of dental implants using synchrotron micro-CT N2 - Die vorliegende Arbeit beschäftigt sich mit der volumenbildgebenden Untersuchung von mechanischen Ermüdungsprozessen in Titan-Zahnimplantaten. Im Vordergrund steht die Entwicklung einer neuen Messmethode der In-situ-Mikrotomografie am Synchrotron. Zahnimplantate werden beim Gebrauch mechanisch wiederholt belastet (Wechsellast). Nach vielen zyklischen Belastungen können aufgrund von mikroplastische Verformungen Ermüdungsschäden auftreten. Diese können im Extremfall zum Versagen und Verlust eines Implantats führen. Die Computertomographie ist eine sehr geeignete zerstörungsfrei Prüfmethode, um Zahnimplantate zu untersuchen. Diese Arbeit erweitert die bisherige CT-Methode insofern, dass In-situ-Beobachtungen bei mechanischer Belastung möglich sind. Die in dieser Arbeit untersuchten Zahnimplantate weisen an der Implantat-Abutment-Grenzfläche bei eintretender Ermüdung einen Mikrospalt auf. Dieser wird als Indikator für einsetzende Fatigue- Prozesse benutzt. Der in der Synchrotron CT verfügbare Inlinephasenkontrast ermöglicht eine verbesserte Bestimmung der Mikrospaltgröße. Da die schnellen Bewegungen der Ermüdungsprüfung mittels Standard-CT-Verfahren schwer zu erfassen sind, war die stroboskopische Aufnahmemethode das zielführende Messverfahren, um in-situ-Prüfung zu ermöglichen. Die 4 kommerziellen Zahnimplantattypen werden neben der In-situ-Fatigue Prüfung auch mittels klassischer Ermüdungsprüfung untersucht und mit der Neuen Messmethode verglichen. Die hier entwickelte In-situ-Fatigue-Prüfstation kann Proben bis zu 345 N tomographisch untersuchen. Neben den experimentellen Untersuchungen wird eine statische FEM-Betrachtung durchgeführt und mit experimentellen Messdaten verglichen. Zuletzt wird mit der entwickelten Messtation Knochenrisse in der Implantat Umgebung untersucht. N2 - The present work deals with the volume imaging investigation of mechanical fatigue processes in titanium dental implants. The focus is on the development of a new measurement method of in-situ microtomography at the synchrotron. Dental implants are exposed to repeated mechanical loads. After many cyclic loads, fatigue damage can occur due to microplastic deformation. These can lead to failure and loss of an implant. Computed tomography is a very suitable non-destructive testing method to examine dental implants. This work extended the existing method to the point where in situ CT observations under mechanical loading are achievable. The dental implants investigated in this work exhibit a microgap at the implant-abutment interface when fatigue occurs. This is used as an indicator for the occurrence of fatigue processes. The inline phase contrast available in synchrotron CT can be used to determine the size of the microgap. Since the fast motions of fatigue testing are difficult to capture using standard CT techniques, the stroboscopic imaging method was the used measurement technique, to enable in-situ testing. In addition to in-situ fatigue testing, the 4 commercial dental implant types are also examined and compared with each other by means of classical fatigue testing. The developed in-situ fatigue test station can tomographically investigate specimens up to 345 N. In addition to the experimental investigations, a static FEM analysis is performed and compared with experimental measurement data. Finally, the developed measuring station is used to investigate bone cracks in the implant environment. KW - Mikrocomputertomographie KW - Fatigue KW - In situ KW - Zahnimplantat KW - In situ KW - fatigue KW - microtomography KW - dental implant Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257702 ER - TY - THES A1 - Ünzelmann, Maximilian T1 - Interplay of Inversion Symmetry Breaking and Spin-Orbit Coupling – From the Rashba Effect to Weyl Semimetals T1 - Zusammenspiel aus Inversionssymmetriebruch und Spin-Bahn-Kopplung – Vom Rashba-Effekt zu Weyl-Halbmetallen N2 - Breaking inversion symmetry in crystalline solids enables the formation of spin-polarized electronic states by spin-orbit coupling without the need for magnetism. A variety of interesting physical phenomena related to this effect have been intensively investigated in recent years, including the Rashba effect, topological insulators and Weyl semimetals. In this work, the interplay of inversion symmetry breaking and spin-orbit coupling and, in particular their general influence on the character of electronic states, i.e., on the spin and orbital degrees of freedom, is investigated experimentally. Two different types of suitable model systems are studied: two-dimensional surface states for which the Rashba effect arises from the inherently broken inversion symmetry at the surface, and a Weyl semimetal, for which inversion symmetry is broken in the three-dimensional crystal structure. Angle-resolved photoelectron spectroscopy provides momentum-resolved access to the spin polarization and the orbital composition of electronic states by means of photoelectron spin detection and dichroism with polarized light. The experimental results shown in this work are also complemented and supported by ab-initio density functional theory calculations and simple model considerations. Altogether, it is shown that the breaking of inversion symmetry has a decisive influence on the Bloch wave function, namely, the formation of an orbital angular momentum. This mechanism is, in turn, of fundamental importance both for the physics of the surface Rashba effect and the topology of the Weyl semimetal TaAs. N2 - Wird die Inversionssymmetrie kristalliner Festkörper gebrochen, ermöglicht dies die Ausbildung von spinpolarisierten elektronischen Zuständen durch Spin-Bahn-Kopplung ohne die Notwendigkeit von Magnetismus. In den vergangenen Jahren wurde eine Vielzahl interessanter physikalischer Phänomene diskutiert, die mit diesem Effekt zusammenhängen, darunter der Rashba-Effekt, topologische Isolatoren sowie Weyl-Halbmetalle. In dieser Arbeit wird das Zusammenspiel von Inversionssymetriebruch und Spin-Bahn-Kopplung sowie insbesondere deren Einfluss auf die Eigenschaften der elektronischen Zustände, also auf die Spin- und Orbital-Freiheitsgrade, experimentell untersucht. Zwei verschiedene Arten geeigneter Modellsysteme werden dazu betrachtet: zweidimensionale Oberflächenzustände, in denen der Rashba-Effekt aufgrund der an der Oberfläche inhärent gebrochenen Inverisonssymetrie auftritt, und ein Weyl-Halbmetall, dessen dreidimensionale Kristallstruktur kein Inversionszentrum besitzt. Winkelaufgelöste Photoelektronenspektroskopie bietet einen impulsaufgelösten Zugang zur Spinpolarisation sowie zur orbitalen Zusammensetzung der elektronischen Zustände mittels Photoelektronenspindetektion und Dichroismus mit polarisiertem Licht. Die in dieser Arbeit gezeigten experimentellen Ergebnisse werden außerdem durch ab-initio Dichtefunktionaltheorierechnungen sowie einfachen Modellbetrachtungen ergänzt und untermauert. Insgesamt zeigt sich, dass das Brechen von Inversionssymmetrie einen entscheidenden Einfluss auf die Bloch-Wellenfunktion hat, nämlich die Ausbildung eines orbitalen Bahndrehimpulses. Dieser Mechanismus ist wiederum von grundlegender Bedeutung sowohl für die Physik des Oberflächen- Rashba-Effekts als auch für die Topologie desWeyl-Halbmetalls TaAs. KW - Rashba-Effekt KW - Inversion Symmetry Breaking KW - Topologie KW - ARPES KW - Spin-Orbit Coupling KW - Orbital Angular Momentum Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-283104 ER - TY - JOUR A1 - Gram, Maximilian A1 - Gensler, Daniel A1 - Winter, Patrick A1 - Seethaler, Michael A1 - Arias-Loza, Paula Anahi A1 - Oberberger, Johannes A1 - Jakob, Peter Michael A1 - Nordbeck, Peter T1 - Fast myocardial T\(_{1P}\) mapping in mice using k-space weighted image contrast and a Bloch simulation-optimized radial sampling pattern JF - Magnetic Resonance Materials in Physics, Biology and Medicine N2 - Purpose T\(_{1P}\) dispersion quantification can potentially be used as a cardiac magnetic resonance index for sensitive detection of myocardial fibrosis without the need of contrast agents. However, dispersion quantification is still a major challenge, because T\(_{1P}\) mapping for different spin lock amplitudes is a very time consuming process. This study aims to develop a fast and accurate T\(_{1P}\) mapping sequence, which paves the way to cardiac T1ρ dispersion quantification within the limited measurement time of an in vivo study in small animals. Methods A radial spin lock sequence was developed using a Bloch simulation-optimized sampling pattern and a view-sharing method for image reconstruction. For validation, phantom measurements with a conventional sampling pattern and a gold standard sequence were compared to examine T\(_{1P}\) quantification accuracy. The in vivo validation of T\(_{1P}\) mapping was performed in N = 10 mice and in a reproduction study in a single animal, in which ten maps were acquired in direct succession. Finally, the feasibility of myocardial dispersion quantification was tested in one animal. Results The Bloch simulation-based sampling shows considerably higher image quality as well as improved T\(_{1P}\) quantification accuracy (+ 56%) and precision (+ 49%) compared to conventional sampling. Compared to the gold standard sequence, a mean deviation of - 0.46 ± 1.84% was observed. The in vivo measurements proved high reproducibility of myocardial T\(_{1P}\) mapping. The mean T\(_{1P}\) in the left ventricle was 39.5 ± 1.2 ms for different animals and the maximum deviation was 2.1% in the successive measurements. The myocardial T\(_{1P}\) dispersion slope, which was measured for the first time in one animal, could be determined to be 4.76 ± 0.23 ms/kHz. Conclusion This new and fast T\(_{1P}\) quantification technique enables high-resolution myocardial T\(_{1P}\) mapping and even dispersion quantification within the limited time of an in vivo study and could, therefore, be a reliable tool for improved tissue characterization. KW - TT\(_{1rho}\) mapping KW - small animal KW - KWIC KW - radial KW - cardiac KW - mice KW - spin lock KW - T\(_{1P}\) dispersion KW - T\(_{1P}\) mapping Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-268903 SN - 1352-8661 VL - 35 IS - 2 ER - TY - THES A1 - Müller, Valentin Leander T1 - Transport signatures of topological and trivial states in the three-dimensional topological insulator HgTe T1 - Transporteigenschaften von topologischen und trivialen Zuständen im dreidimensionalen topologischen Isolator HgTe N2 - The thesis at hand is concerned with improving our understanding of and our control over transport properties of the three-dimensional topological insulator HgTe. Topological insulators are characterized by an insulating bulk and symmetry-protected metallic surface states. These topological surface states hold great promise for research and technology; at the same time, many properties of experimentally accessible topological insulator materials still need to be explored thoroughly. The overall aim of this thesis was to experimentally investigate micrometer-sized HgTe transport devices to observe the ballistic transport regime as well as intercarrier scattering and possibly identify special properties of the topological surface states. Part I of the thesis presents lithographic developments concerned with etching small HgTe devices. The aim was to replace existing processes which relied on dry etching with high-energy \(\text{Ar}^+\) ions and an organic etch mask. This etching method is known to degrade the HgTe crystal quality. In addition, the etch mask turned out to be not durable for long etching processes and difficult to remove completely after etching. First, \(\text{BaF}_2\) was introduced as a new etch mask for dry etching to replace the organic etch mask. With common surface characterization techniques like SEM and XPS it was shown that \(\text{BaF}_2\) etch masks are easy to deposit, highly durable in common dry etching processes for \(\text{Hg}_{1-x}\text{Cd}_x\text{Te}\), and easy to remove in deionized water. Transport results of HgTe devices fabricated with the new etch mask are comparable to results obtained with the old process. At the same time, the new etch mask can withstand longer etching times and does not cause problems due to incomplete removal. Second, a new inductively coupled plasma dry etching process based on \(\text{CH}_4\) and Ar was introduced. This etching process is compatible with \(\text{BaF}_2\) etch masks and yields highly reproducible results. Transport results indicate that the new etching process does not degrade the crystal quality and is suitable to produce high-quality transport devices even in the micrometer range. A comparison with wet-etched samples shows that inductively coupled plasma etching introduces a pronounced edge roughness. This - usually undesirable - property is actually beneficial for some of the experiments in this study and mostly irrelevant for others. Therefore, most samples appearing in this thesis were fabricated with the new process. Part II of the thesis details the advancements made in identifying topological and trivial states which contribute to transport in HgTe three-dimensional topological insulators. To this end, macroscopic Hall bar samples were fabricated from high-quality tensilely strained HgTe layers by means of the improved lithographic processes. All samples were equipped with a top gate electrode, and some also with a modulation doping layer or a back gate electrode to modify the carrier density of the surface states on both sides of the HgTe layer. Due to the high sample quality, Landau levels could be well-resolved in standard transport measurements down to magnetic fields of less than 0.5T. High-resolution measurements of the Landau level dispersion with gate voltage and magnetic field allowed disentangling different transport channels. The main result here is that the upper (electron) branches of the two topological surface states contribute to transport in all experimentally relevant density regimes, while the hole branch is not accessible. Far in n-regime bulk conduction band states give a minor contribution to transport. More importantly, trivial bulk valence band holes come into play close to the charge neutrality point. Further in p-regime, the strong applied gate voltage leads to the formation of two-dimensional, massive hole states at the HgTe surface. The interplay of different states gives rise to rich physics: Top gate-back gate maps revealed that an anticrossing of Landau levels from the two topological surface states occurs at equal filling. A possible explanation for this effect is a weak hybridization of the surface states; however, future studies need to further clarify this point. Furthermore, the superposition of n-type topological and p-type trivial surface states leads to an intriguing Landau level dispersion. The good quantization of the Hall conductance in this situation indicates that the counterpropagating edge states interact with each other. The nature of this interaction will be the topic of further research. Part III of the thesis is focused on HgTe microstructures. These "channel samples" have a typical width of 0.5 to 4µm and a typical length of 5 to 80µm. The quality of these devices benefits particularly from the improved lithographic processes. As a result, the impurity mean free path of the topological surface state electrons is on the order of the device width and transport becomes semiballistic. This was verified by measuring the channel resistance in small magnetic fields in n-regime. The deflection of carriers towards the dissipative channel walls results in a pronounced peak in the magnetoresistance, which scales in a predictable manner with the channel width. To investigate transport effects due to mutual scattering of charge carriers, the differential resistance of channel samples was measured as a function of carrier temperature. Selective heating of the charge carriers - but not the lattice - was achieved by passing a heating current through the channel. Increasing the carrier temperature has two pronounced effects when the Fermi level is situated in proximity to the bulk valence band maximum where the density of states is large. First, when both topological surface state electrons and bulk holes are present, electron-hole scattering leads to a pronounced increase in resistance with increasing carrier temperature. Second, a thermally induced increase of the electron and hole carrier densities reduces the resistance again at higher temperatures. A model considering these two effects was developed, which can well reproduce the experimental results. Current heating experiments in zero-gap HgTe quantum wells and compressively strained HgTe layers are consistent with this model. These observations raise the question as to how electron-hole scattering may affect other transport properties of HgTe-based three-dimensional topological insulators, which is briefly discussed in the outlook. N2 - Die vorliegende Arbeit beschäftigt sich mit dem dreidimensionalen topologischen Isolator HgTe. Als topologische Isolatoren bezeichnet man Materialien, die in ihrem Inneren elektrisch isolierend sind, auf ihrer Oberfläche jedoch symmetriegeschützte metallische Zustände aufweisen. Diese topologischen Oberflächenzustände sind aufgrund ihrer speziellen Eigenschaften für die Grundlagenforschung und praktische Anwendungen von großem Interesse. Die Erforschung topologischer Isolatoren ist ein relativ junges Forschungsgebiet, sodass viele Eigenschaften dieser Materialien noch besser verstanden werden müssen. Das übergeordnete Anliegen dieser Arbeit war die experimentelle Untersuchung von HgTe Mikrostrukturen mithilfe von Transportexperimenten. Das Ziel war hier, sowohl das ballistische Transportregime als auch die Streuung von Ladungsträgern untereinander zu beobachten und möglicherweise Besonderheiten der topologischen Oberflächenzustände zu finden. Teil I der Arbeit stellt die Weiterentwicklung lithographischer Prozesse zur Herstellung von HgTe-Mikrostrukturen vor. Der zu Beginn dieser Arbeit genutzte Prozess basierte auf einem Trockenätzprozess mit hochenergetischen \(\text{Ar}^+\) Ionen. Dieses Ionenstrahlätzen beschädigt jedoch die HgTe-Kristallstruktur. Zudem war die verwendete organische Ätzmaske nicht sehr widerstandsfähig gegen Ionenbeschuss und nach dem Ätzvorgang nur schwer zu entfernen. Um diese Probleme zu umgehen, wurde zunächst \(\text{BaF}_2\) als mögliche Alternative zur bestehenden Ätzmaske untersucht. Mithilfe verschiedener Techniken zur Oberflächencharakterisierung wie SEM und XPS konnte gezeigt werden, dass \(\text{BaF}_2\) Ätzmasken einfach herzustellen, sehr widerstandsfähig gegenüber gängigen Trockenätzprozessen für \(\text{Hg}_{1-x}\text{Cd}_x\text{Te}\), und leicht in deionisiertem Wasser zu entfernen sind. Probenpaare, die entweder mit der alten oder der neuen Ätzmaske hergestellt wurden, haben vergleichbare Transporteigenschaften. Allerdings ist die neue \(\text{BaF}_2\) Ätzmaske deutlich robuster gegenüber Trockenätzprozessen und einfacher zu entfernen, was für die weitere Prozessierung eine entscheidende Verbesserung darstellt. Zusätzlich zur neuen Ätzmaske wurde auch induktiv gekoppeltes Plasmaätzen mit \(\text{CH}_4\) und Ar als Prozessgasen eingeführt. Dieses Trockenätzverfahren zeichnet sich durch sehr reproduzierbare Ergebnisse aus. Die Transporteigenschaften der so hergestellten Proben deuten darauf hin, dass induktiv gekoppeltes Plasmaätzen die Kristallqualität nicht merklich beeinträchtigt und dementsprechend auch zur Herstellung kleiner Proben geeignet ist. Der direkte Vergleich mit nasschemisch geätzten Proben zeigt, dass die Kanten der trockengeätzten Proben eine ausgeprägtere Rauigkeit aufweisen. Tatsächlich ist diese - meist unerwünschte - Eigenschaft für einige Experimente in dieser Arbeit von Vorteil oder zumindest nicht problematisch. Die meisten Proben wurden daher mit dem neuen Verfahren hergestellt. Teil II der Arbeit zeigt detailliert, welche topologischen und trivialen Zustände im dreidimensionalen topologischen Isolator HgTe für den Ladungstransport relevant sind. Die zugrundeliegenden Transportexperimente wurden an qualitativ hochwertigen, makroskopischen "Hall bar" Proben aus zugverspannten HgTe-Schichten durchgeführt. Auf alle diese Proben wurde eine "Top Gate"-Elektrode aufgebracht. Zusätzlich waren einige Proben mit einer Modulationsdotierung oder einer weiteren "Back Gate"-Elektrode unter der HgTe Schicht ausgestattet, sodass die Ladungsträgerdichte beider topologischer Oberflächenzustände beeinflusst werden konnte. Aufgrund der hohen Probenqualität konnten bereits bei kleinen Magnetfeldern von weniger als 0.5T Landau-Niveaus aufgelöst werden. Detaillierte Messungen der Landau-Niveaus mit veränderlichen Gatespannungen und Magnetfeldern ermöglichten es, die relevanten Transportkanäle einzeln zu identifizieren. Die wichtigste Erkenntnis ist hierbei, dass die elektronenartigen topologischen Oberflächenzustände in allen experimentell relevanten Dichtebereichen die Transporteigenschaften dominieren, der lochartige Teil dieser Bänder jedoch nicht erreicht werden kann. Weit im n-Bereich werden auch die volumenartigen Zustände des Leitungsbandes besetzt, die jedoch nur einen kleinen Einfluss auf die Transporteigenschaften haben. Die volumenartigen Zustände des Valenzbandes haben hingegen einen großen Einfluss auf Transporteigenschaften, wenn die Gesamtladungsträgerdichte des Systems klein wird. Das Anlegen einer hohen Gatespannung führt weiter im p-Bereich zur Bildung von zweidimensionalen, lochartigen Zuständen an der dem Gate zugewandten HgTe Oberfläche. Aus dem Zusammenspiel dieser Zustände ergeben sich mehrere interessante Effekte: Top- und Back-Gate-abhängige Messungen zeigen deutlich, dass bei gleicher Besetzungszahl die Landau-Niveaus der beiden topologischen Oberflächenzustände nicht direkt kreuzen. Eine mögliche Erklärung für dieses Phänomen ist eine schwache Hybridisierung der Oberflächenzustände, die in weiterführenden Studien genauer untersucht werden sollte. Darüber hinaus führt die Überlagerung von elektronenartigen und lochartigen Zuständen zu einem komplexen Verlauf der Landau-Niveaus im Magnetfeld. Die Hall-Leitfähigkeit ist in dieser Situation exakt quantisiert, was auf eine Wechselwirkung zwischen den gegenläufigen Randzuständen schließen lässt. Eine weiterführende Studie wird sich detaillierter mit dieser Wechselwirkung auseinandersetzen. Teil III der Arbeit konzentriert sich auf HgTe Mikrostrukturen. Diese "Kanalproben" haben üblicherweise eine Breite von 0.5 bis 4µm und eine Länge von 5 bis 80µm. Die weiterentwickelten lithographischen Prozesse erlauben die Herstellung solcher Strukturen mit ausreichend hoher Qualität, um im n-Bereich das quasi-ballistische Transportregime zu erreichen. Hier liegt die mittlere freie Weglänge von Elektronen in den topologischen Oberflächenzuständen in derselben Größenordnung wie die Kanalbreite. Dies konnte durch Messung des Kanalwiderstands in kleinen Magnetfeldern nachgewiesen werden. Die Ladungsträger werden hierbei zu den Kanalwänden hin abgelenkt und streuen dort vermehrt. Der Magnetowiderstand zeigt dann ein ausgeprägtes Maximum, was vorhersagbar mit der Kanalbreite skaliert. Die Ladungsträger können auch untereinander streuen. Um diesen Effekt zu untersuchen, wurde der differentielle Kanalwiderstand als Funktion der Ladungsträgertemperatur gemessen. Für diese Messungen wurde ein Heizstrom direkt durch den Kanal geschickt, um die Ladungsträgertemperatur - nicht jedoch die Gittertemperatur - zu erhöhen. Wenn das Fermi-Niveau nah am Valenzbandmaximum mit seiner sehr großen Zustandsdichte liegt, hat die Erhöhung der Ladungsträgertemperatur zwei sehr ausgeprägte Konsequenzen: Zum einen kommt es zu einem starken Anstieg des Widerstands mit steigender Temperatur, verursacht durch die Streuung von Elektronen aus den topologischen Oberflächenzuständen mit Löchern aus dem Valenzband. Zum anderen führt die thermische Umverteilung von Ladungsträgen bei höheren Temperaturen zu einem Abfall des Widerstands. Basierend auf diesen beiden Effekten wurde ein Modell entwickelt, was die experimentellen Beobachtungen zufriedenstellend reproduziert. Dieses Modell fand weitere Bestätigung durch ähnliche Messungen an HgTe Quantentrögen und druckverspannten HgTe Schichten. Diese Ergebnisse führen zu der Frage, inwiefern die Elektronen-Loch Streuung andere Transporteigenschaften des dreidimensionalen topologischen Isolators HgTe beeinflusst. Ein kurzer Ausblick erörtert, wie diese Frage in weiterführenden Studien untersucht werden kann. KW - Topologischer Isolator KW - Quecksilbertellurid KW - Elektronentransport KW - topological insulator KW - HgTe KW - surface states KW - electron-hole scattering Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259521 ER - TY - THES A1 - Harder, Tristan H. T1 - Topological Modes and Flatbands in Microcavity Exciton-Polariton Lattices T1 - Topologische Moden und Flachbänder in Mikrokavitäts-Exziton-Polariton-Gittern N2 - The fascination of microcavity exciton-polaritons (polaritons) rests upon the combination of advanced technological control over both the III-V semiconductor material platform as well as the precise spectroscopic access to polaritonic states, which provide access to the investigation of open questions and complex phenomena due to the inherent nonlinearity and direct spectroscopic observables such as energy-resolved real and Fourier space information, pseudospin and coherence. The focus of this work was to advance the research area of polariton lattice simulators with a particular emphasis on their lasing properties. Following the brief introduction into the fundamental physics of polariton lattices in chapter 2, important aspects of the sample fabrication as well as the Fourier spectroscopy techniques used to investigate various features of these lattices were summarized in chapter 3. Here, the implementation of a spatial light modulator for advanced excitation schemes was presented. At the foundation of this work is the capability to confine polaritons into micropillars or microtraps resulting in discrete energy levels. By arranging these pillars or traps into various lattice geometries and ensuring coupling between neighbouring sites, polaritonic band structures were engineered. In chapter 4, the formation of a band structure was visualised in detail by investigating ribbons of honeycomb lattices. Here, the transition of the discrete energy levels of a single chain of microtraps to the fully developed band structure of a honeycomb lattice was observed. This study allows to design the size of individual domains in more complicated lattice geometries such that a description using band structures becomes feasible, as it revealed that a width of just six unit cells is sufficient to reproduce all characteristic features of the S band of a honeycomb lattice. In particular in the context of potential technological applications in the realms of lasing, the laser-like, coherent emission from polariton microcavities that can be achieved through the excitation of polariton condensates is intriguing. The condensation process is significantly altered in a lattice potential environment when compared to a planar microcavity. Therefore, an investigation of the polariton condensation process in a lattice with respect to the characteristics of the excitation laser, the exciton-photon detuning as well as the reduced trap distance that represents a key design parameter for polaritonic lattices was performed. Based on the demonstration of polariton condensation into multiple bands, the preferred condensation into a desired band was achieved by selecting the appropriate detuning. Additionally, a decreased condensation threshold in confined systems compared to a planar microcavity was revealed. In chapter 5, the influence of the peculiar feature of flatbands arising in certain lattice geometries, such as the Lieb and Kagome lattices, on polaritons and polariton condensates was investigated. Deviations from a lattice simulator described by a tight binding model that is solely based on nearest neighbour coupling cause a remaining dispersiveness of the flatbands along certain directions of the Brillouin zone. Therefore, the influence of the reduced trap distance on the dispersiveness of the flatbands was investigated and precise technological control over the flatbands was demonstrated. As next-nearest neighbour coupling is reduced drastically by increasing the distance between the corresponding traps, increasing the reduced trap distance enables to tune the S flatbands of both Lieb and Kagome lattices from dispersive bands to flatbands with a bandwidth on the order of the polariton linewidth. Additionally to technological control over the band structures, the controlled excitation of large condensates, single compact localized state (CLS) condensates as well as the resonant excitation of polaritons in a Lieb flatband were demonstrated. Furthermore, selective condensation into flatbands was realised. This combination of technological and spectroscopic control illustrates the capabilities of polariton lattice simulators and was used to study the coherence of flatband polariton condensates. Here, the ability to tune the dispersiveness from a dispersive band to an almost perfect flatband in combination with the selectivity of the excitation is particularly valuable. By exciting large flatband condensates, the increasing degree of localisation to a CLS with decreasing dispersiveness was demonstrated by measurements of first order spatial coherence. Furthermore, the first order temporal coherence of CLS condensates was increased from τ = 68 ps for a dispersive flatband, a value typically achieved in high-quality microcavity samples, to a remarkable τ = 459 ps in a flatband with a dispersiveness below the polarion linewidth. Corresponding to this drastic increase of the first order coherence time, a decrease of the second order temporal coherence function from g(2)(τ =0) = 1.062 to g(2)(0) = 1.035 was observed. Next to laser-like, coherent emission, polariton condensates can form vortex lattices. In this work, two distinct vortex lattices that can form in polariton condensates in Kagome flatbands were revealed. Furthermore, chiral, superfluid edge transport was realised by breaking the spatial symmetry through a localised excitation spot. This chirality was related to a change in the vortex orientation at the edge of the lattice and thus opens the path towards further investigations of symmetry breaking and chiral superfluid transport in Kagome lattices. Arguably the most influential concept in solid-state physics of the recent decades is the idea of topological order that has also provided a new degree of freedom to control the propagation of light. Therefore, in chapter 6, the interplay of topologically non-trivial band structures with polaritons, polariton condensates and lasing was emphasised. Firstly, a two-dimensional exciton-polariton topological insulator based on a honeycomb lattice was realised. Here, a topologically non-trivial band gap was opened at the Dirac points through a combination of TE-TM splitting of the photonic mode and Zeeman splitting of the excitonic mode. While the band gap is too small compared to the linewidth to be observed in the linear regime, the excitation of polariton condensates allowed to observe the characteristic, topologically protected, chiral edge modes that are robust against scattering at defects as well as lattice corners. This result represents a valuable step towards the investigation of non-linear and non-Hermitian topological physics, based on the inherent gain and loss of microcavities as well as the ability of polaritons to interact with each other. Apart from fundamental interest, the field of topological photonics is driven by the search of potential technological applications, where one direction is to advance the development of lasers. In this work, the starting point towards studying topological lasing was the Su-Schrieffer-Heeger (SSH) model, since it combines a simple and well-understood geometry with a large topological gap. The coherence properties of the topological edge defect of an SSH chain was studied in detail, revealing a promising degree of second order temporal coherence of g(2)(0) = 1.07 for a microlaser with a diameter of only d = 3.5 µm. In the context of topological lasing, the idea of using a propagating, topologically protected mode to ensure coherent coupling of laser arrays is particularly promising. Here, a topologically non-trivial interface mode between the two distinct domains of the crystalline topological insulator (CTI) was realised. After establishing selective lasing from this mode, the coherence properties were studied and coherence of a full, hexagonal interface comprised of 30 vertical-cavity surface-emitting lasers (VCSELs) was demonstrated. This result thus represents the first demonstration of a topological insulator VCSEL array, combining the compact size and convenient light collection of vertically emitting lasers with an in-plane topological protection. Finally, in chapter 7, an approach towards engineering the band structures of Lieb and honeycomb lattices by unbalancing the eigenenergies of the sites within each unit cell was presented. For Lieb lattices, this technique opens up a path towards controlling the coupling of a flatband to dispersive bands and could enable a detailed study of the influence of this coupling on the polariton flatband states. In an unbalanced honeycomb lattice, a quantum valley Hall boundary mode between two distinct, unbalanced honeycomb domains with permuted sites in the unit cells was demonstrated. This boundary mode could serve as the foundation for the realisation of a polariton quantum valley Hall effect with a truly topologically protected spin based on vortex charges. Modifying polariton lattices by unbalancing the eigenenergies of the sites that comprise a unit cell was thus identified as an additional, promising path for the future development of polariton lattice simulators. N2 - Die Faszination von Exziton-Polaritonen (Polaritonen) basiert auf der einzigartigen Kombination aus technologischer Kontrolle über die III-V Halbleiterplattform und umfassendem spektroskopischen Zugang zu polaritonischen Zuständen, die aufgrund ihrer inhärenten Nichtlinearität und vielfältigen Observablen, wie zum Beispiel Real- und Fourierraumspektren, Pseudospin und Kohärenz, Zugang zu diversen offenen Fragen und komplexen physikalischen Phänomenen bieten. Im Fokus dieser Arbeit lag die Weiterentwicklung von Polaritongittern als Simulatoren für diverse physikalische Phänomene. Dabei wurde insbesondere die das kohärente, Laser-artige Licht, das von Polaritonkondensaten ausgesendet wird, untersucht. Die Arbeit beginnt mit einer kurzen Zusammenfassung der für das Verständnis relevanten physikalischen Grundlagen in Kapitel 2, gefolgt von einer Beschreibung der Probenherstellung sowie der spektroskopischen Methoden, die für die Untersuchung der polaritonischen Gitter verwendet wurden, in Kapitel 3. Hier wurde insbesondere die Implementierung eines Spatial Light Modulators für die Erzeugung beliebig definierbarer Anregungsmuster präsentiert. Diese Arbeit basiert auf der Fähigkeit, Einschlusspotentiale in Form von Mikrotürmchen oder Mikrofallen für Polaritonen zu erzeugen, die zu einem diskretisierten Modenspektrum führen. Wird nun ein Gitter aus solchen Türmchen oder Fallen hergestellt, führt die Kopplung zwischen benachbarten Gitterpositionen zur Ausbildung von Bandstrukturen. Die Ausbildung einer solchen Bandstruktur wurde in Kapitel 4 anhand von Streifen eines Honigwabengitters veranschaulicht. Dabei konnte der Übergang vom diskreten Energiespektrum einer eindimensionalen Kette bis hin zur vollständig ausgebildeten Bandstruktur eines Honigwabengitters dargestellt werden. Diese systematische Untersuchung ermöglicht das gezielte Design neuer, komplizierterer Gittergeometrien, die aus verschiedenen Domänen bestehen, da gezeigt werden konnte, dass eine Domänengröße von sechs Einheitszellen ausreicht, um eine Bandstruktur zu erzeugen. Neben der Ausbildung von Bandstrukturen in Gittern ist das Phänomen der Polaritonkondensation, das zur Emission von kohärenter Strahlung führt, besonders spannend, da es in direktem Bezug zu möglichen technologischen Anwendungen als Laser steht. Da sich der Kondensationsprozess in einem Gitter grundsätzlich vom Kondensationsprozess in einer planaren Kavität unterscheidet, wurde dieser detailliert untersucht. Hierbei wurde insbesondere der Einfluss des Anregungslasers, der Verstimmung zwischen Exziton und Photon, sowie des reduzierten Fallenabstandes, der einen wichtigen Parameter im Design neuer Gitter darstellt, untersucht. Im Rahmen dieser Untersuchung konnte die Polaritonkondensation in mehrere Bänder nachgewiesen werden. Außerdem wurde selektive Kondensation in ein gewünschtes Band durch die Wahl einer geeigneten Verstimmung zwischen Exziton und Photon erreicht. Abschließend konnte eine Verringerung der Kondensationsschwelle in einem Gitter gegenüber einer planaren Kavität nachgewiesen werden. Ein bemerkenswertes Phänomen, das zum Beispiel in den Bandstrukturen von Lieb- und Kagomegittern auftritt, sind Flachbänder, deren Einfluss auf Polaritonen und Polaritonkondensate, insbesondere in Bezug zu ihren Kohärenzeigenschaften, in Kapitel 5 untersucht wurde. Abweichungen von einem Gittersimulator, der sich mit einem Tight Binding Modell, das nur Kopplung zwischen nächsten Nachbarn berücksichtigt, beschreiben lässt, führen dazu, dass Flachbänder entlang bestimmter Richtungen in der Brillouinzone dispersiv werden. Mit einer Untersuchung des Einflusses des reduzierten Fallenabstandes auf Flachbänder konnte technologische Kontrolle über diese Dispersivität gezeigt werden. Da die Kopplung zwischen übernächsten Nachbarn mit steigendem Abstand zwischen den Fallen stark abnimmt, lassen sich die Flachbänder in den S Bändern von Lieb und Kagomegittern von dispersiven in nahezu perfekte Flachbänder, deren Bandbreite in der Größenordnung der polaritonischen Linienbreite liegt, überführen, indem der reduzierte Fallenabstand vergrößert wird. Zusätzlich zur technologischen Kontrolle über die Dispersivität der Flachbänder wurde die kontrollierte Anregung von großen Flachbandkondensaten, Kondensaten in einzelnen Compact Localised States (CLS), sowie die resonante Anregung von Polaritonen in einem Lieb Flachband demonstriert. Insbesondere für das Flachband des Kagomegitters konnte selektive Kondensation realisiert werden. Diese Kombination aus technologischer und spektroskopischer Kontrolle verdeutlicht das Potential polaritonischer Gittersimulatoren. Aufbauend auf der Kontrolle über polaritonische Flachbänder wurde die Kohärenz von Flachbandkondensaten untersucht. In diesem Zusammenhang erwies sich die Kombination aus der Möglichkeit, die Dispersivität des Flachbandes zu beeinflussen, und der selektiven Kondensation als besonders wertvoll. Durch interferometrische Messungen an großen Flachbandkondensaten konnte gezeigt werden, dass sich die Kohärenz mit abnehmender Dispersivität des Flachbandes auf einen CLS lokalisiert. Außerdem konnte eine Steigerung der Kohärenzzeit von τ = 68 ps, einem für hochwertige Mikrokavitäten typischen Wert, in einem dispersiven Flachband zu beeindruckenden τ = 459 ps in einem Flachband, dessen Dispersivität kleiner als die polaritonische Linienbreite ist, gezeigt werden. Passend zu dieser deutlichen Steigerung der Kohärenzzeit erster Ordnung konnte eine Abnahme der Kohärenzfunktion zweiter Ordnung von g(2)(τ =0) = 1.062 zu g(2)(0) = 1.035 beobachtet werden. Neben den mit einem Laser vergleichbaren Emissionseigenschaften können Polaritonkondensate Gitter aus Vortices ausbilden. Im Rahmen dieser Arbeit wurden zwei verschiedene Vortexgitter nachgewiesen. Außerdem konnte durch Symmetriebrechung mittels eines lokalisierten Anregungslasers chiraler, superfluider Randtransport realisiert werden. Diese Chiralität konnte mit einer Änderung der Vortexausrichtung am Rand des Gitters in Verbindung gebracht werden und motiviert daher weitere Untersuchungen zu Symmetriebrechung und chiralem, superfluidem Transport in Kagomegittern. Das vermutlich einflussreichste Konzept in der Festkörperphysik der letzten Jahrzehnte ist die Idee einer topologischen Ordnung, die auch einen neuen Freiheitsgrad zur Kontrolle der Propagation von Licht bietet. Daher wurde in Kapitel 6 das Zusammenspiel aus topologisch nicht-trivialen Bandstrukturen und Polaritonen, Polarionkondensaten und Lasern untersucht. Zuerst wurde ein zweidimensionaler, polaritonischer, topologischer Isolator, der auf einem Honigwabengitter basiert, realisiert. Die topologisch nicht-triviale Bandlücke wurde durch eine Kombination aus einer Modenaufspaltung zwischen der transversal-elektrischen und der transversal-magnetischen Komponente der photonischen Mode sowie einer Zeeman-Aufspaltung der exzitonischen Mode geöffnet. Da die Bandlücke zu klein gegenüber der Linienbreite war, um sie im linearen Regime nachweisen zu können, wurden Polaritonkondensate angeregt. Mithilfe dieser Kondensate war es möglich, die charakteristischen, topologisch geschützten, chiralen Randmoden, die robust gegenüber Rückstreuung und Streuung an Defekten sowie den Ecken des Gitters sind, nachzuweisen. Dieses Ergebnis stellt einen wichtigen Schritt in der Untersuchung nicht-linearer und nichthermitischer, topologischer Systeme dar, da Mikrokavitäten eine intrinsische Nichtlinearität aufweisen und Polaritonen untereinander wechselwirken können. Neben dem fundamentalen Interesse wird das Feld der topologischen Photonik vor allem durch die Suche nach neuen technologischen Anwendungen vorangetrieben. Eine wichtige Forschungsrichtung ist dabei die Entwicklung neuer Laser. In dieser Arbeit war der Ausgangspunkt für die Untersuchung topologischer Laser das Su-Schrieffer-Heeger (SSH) Modell, da es eine einfache, gut verstandene Geometrie und eine große topologische Bandlücke bietet. Die Kohärenzeigenschaften des topologischen Randdefekts in SSH Ketten wurden detailliert untersucht und ein Grad zeitlicher Kohärenz zweiter Ordnung von g(2)(0) = 1.07 erreicht. Für einen Mikrolaser mit einem Durchmesser von nur d = 3.5 µm ist dies ein sehr gutes Ergebnis. Besonders vielversprechend in der Entwicklung topologischer Laser ist allerdings vor allem die kohärente Kopplung vieler Laser mithilfe einer propagierenden, topologisch geschützten Mode. Um diese Kopplung zu untersuchen wurde eine topologisch nichttriviale Mode an der Domänengrenze zwischen zwei kristallinen, topologischen Isolatoren implementiert. Nachdem selektive Laseremission aus dieser Mode erreicht wurde, wurden insbesondere die Kohärenzeigenschaften untersucht. Dabei konnte gezeigt werden, dass 30 vertikal emittierende Laser, die eine geschlossene, hexagonale Domänengrenze bilden, kohärent gekoppelt werden können. Dieser erste Nachweis eines topologisch geschützten Gitters aus gekoppelten, vertikal emittieren Lasern überzeugt vor allem durch die Kombination der kompakten Bauform und einfachen Bündelung der Laseremission vertikal emittierenden Laser mit dem topologischen Schutz der zwischen den Lasern propagierenden Mode. Zuletzt wurde in Kapitel 7 untersucht, wie die Bandstrukturen von Lieb- und Honigwabengittern durch die Einführung eines Energieunterschiedes zwischen den Untergittern gezielt verändert werden können. In Liebgittern bietet diese Technologie einen Weg, die Kopplungsumgebung des Flachbandes drastisch zu ändern, da das Flachband nun nicht mehr einen Dirac-Punkt mit linearer Dispersion schneidet, sondern ein dispersives Band an einem Potentialminimum berührt. In Honigwabengittern konnte eine Quantum Valley Hall Mode an der Grenzfläche zwischen zwei Domänen mit invertiertem Untergitter gezeigt werden. Diese Mode könnte die Basis für die Entwicklung eines Quantum Valley Hall Zustandes mit echtem topologischem Schutz auf der Basis von Vortizes bilden. Eine Variation der Eigenenergien der Untergitter stellt also einen vielversprechenden, weiteren Weg für zukünftige Experimente mit polaritonischen Gittersimulatoren dar. KW - Exziton-Polariton KW - Topologie KW - Laser KW - Fourier-Spektroskopie KW - Topologische Laser KW - Gittersimulator Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259008 ER - TY - JOUR A1 - Herz, Stefan A1 - Stefanescu, Maria R. A1 - Lohr, David A1 - Vogel, Patrick A1 - Kosmala, Aleksander A1 - Terekhov, Maxim A1 - Weng, Andreas M. A1 - Grunz, Jan-Peter A1 - Bley, Thorsten A. A1 - Schreiber, Laura M. T1 - Effects of image homogeneity on stenosis visualization at 7 T in a coronary artery phantom study: With and without B1-shimming and parallel transmission JF - PloS One N2 - Background To investigate the effects of B\(_1\)-shimming and radiofrequency (RF) parallel transmission (pTX) on the visualization and quantification of the degree of stenosis in a coronary artery phantom using 7 Tesla (7 T) magnetic resonance imaging (MRI). Methods Stenosis phantoms with different grades of stenosis (0%, 20%, 40%, 60%, 80%, and 100%; 5 mm inner vessel diameter) were produced using 3D printing (clear resin). Phantoms were imaged with four different concentrations of diluted Gd-DOTA representing established arterial concentrations after intravenous injection in humans. Samples were centrally positioned in a thorax phantom of 30 cm diameter filled with a custom-made liquid featuring dielectric properties of muscle tissue. MRI was performed on a 7 T whole-body system. 2D-gradient-echo sequences were acquired with an 8-channel transmit 16-channel receive (8 Tx / 16 Rx) cardiac array prototype coil with and without pTX mode. Measurements were compared to those obtained with identical scan parameters using a commercially available 1 Tx / 16 Rx single transmit coil (sTX). To assess reproducibility, measurements (n = 15) were repeated at different horizontal angles with respect to the B0-field. Results B\(_1\)-shimming and pTX markedly improved flip angle homogeneity across the thorax phantom yielding a distinctly increased signal-to-noise ratio (SNR) averaged over a whole slice relative to non-manipulated RF fields. Images without B\(_1\)-shimming showed shading artifacts due to local B\(_1\)\(^+\)-field inhomogeneities, which hampered stenosis quantification in severe cases. In contrast, B\(_1\)-shimming and pTX provided superior image homogeneity. Compared with a conventional sTX coil higher grade stenoses (60% and 80%) were graded significantly (p<0.01) more precise. Mild to moderate grade stenoses did not show significant differences. Overall, SNR was distinctly higher with B\(_1\)-shimming and pTX than with the conventional sTX coil (inside the stenosis phantoms 14%, outside the phantoms 32%). Both full and half concentration (10.2 mM and 5.1 mM) of a conventional Gd-DOTA dose for humans were equally suitable for stenosis evaluation in this phantom study. Conclusions B\(_1\)-shimming and pTX at 7 T can distinctly improve image homogeneity and therefore provide considerably more accurate MR image analysis, which is beneficial for imaging of small vessel structures. KW - stenosis KW - magnetic resonance imaging KW - thorax KW - in vivo imaging KW - coronary arteries KW - image processing KW - 3D printing KW - signal to noise ratio Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300129 VL - 17 IS - 6 ER - TY - THES A1 - Grüne, Jeannine T1 - Spin States and Efficiency-Limiting Pathways in Optoelectronic Materials and Devices T1 - Spinzustände und Effizienz-limitierende Pfade in optoelektronischen Materialien und Bauelementen N2 - This thesis addresses the identification and characterization of spin states in optoelectronic materials and devices using multiple spin-sensitive techniques. For this purpose, a systematic study focussing on triplet states as well as associated loss pathways and excited state kinetics was carried out. The research was based on comparing a range of donor:acceptor systems, reaching from organic light emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) to organic photovoltaics (OPV) employing fullerene and multiple non-fullerene acceptors (NFAs). By developing new strategies, e.g., appropriate modeling, new magnetic resonance techniques and experimental frameworks, the influence of spin states in the fundamental processes of organic semiconductors has been investigated. Thereby, the combination of techniques based on the principle of electron paramagnetic resonance (EPR), in particular transient EPR (trEPR) and optically detected magnetic resonance (ODMR), with all-optical methods, such as transient electroluminescence (trEL) and transient absorption (TA), has been employed. As a result, excited spin states, especially molecular and charge transfer (CT) states, were investigated in terms of kinetic behavior and associated pathways, which revealed a significant impact of triplet states on efficiency-limiting processes in both optoelectronic applications. N2 - Diese Dissertation befasst sich mit der Identifizierung und Charakterisierung von Spinzuständen in optoelektronischen Materialien und Bauelementen unter Verwendung mehrerer spinsensitiver Techniken. Dazu wurde eine systematische Studie mit Schwerpunkt auf Triplett-Zuständen sowie den damit verbundenen Verlustpfaden und der Kinetik der zugehörigen angeregten Zustände durchgeführt. Der Schwerpunkt lag auf dem Vergleich einer Reihe von Donor:Akzeptor-Systemen, die von organischen Leuchtdioden (engl. organic light emitting diodes, OLEDs), basierend auf thermisch aktivierter verzögerter Fluoreszenz (engl. thermally activated delayed fluorescence, TADF), bis hin zu organischer Photovoltaik (OPV), unter Verwendung von Fulleren- und mehreren Nicht-Fulleren-Akzeptoren (NFAs), reichten. Durch die Entwicklung neuer Strategien, z.B. adäquater Modellierung, neuer Techniken im Bereich der Magnetresonanz und experimenteller Konzepte, konnte der Einfluss von Spinzuständen auf die grundlegenden Prozesse organischer Halbleiter untersucht werden. Dabei wurden Techniken, die auf dem Prinzip der Elektronenspinresonanz (engl. electron paramagnetic resonance, EPR) basieren, insbesondere transientes EPR (trEPR) und optisch detektierte Magnetresonanz (ODMR), mit rein optischen Methoden, wie transienter Elektrolumineszenz (trEL) und transienter Absorption (TA), kombiniert. Resultierend wurden angeregte Spinzustände, insbesondere molekulare und Ladungstransferzustände, im Hinblick auf das kinetische Verhalten und assoziierten Exzitonpfaden untersucht, wobei ein bedeutender Einfluss von Triplett-Zuständen auf Effizienz-limitierende Prozesse in beiden optoelektronischen Anwendungen aufgezeigt wurde. KW - Elektronenspinresonanz KW - Organischer Halbleiter KW - Organic Light Emitting Diode KW - Organic Photovoltaic KW - Electron Paramagnetic Resonance Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-293405 ER - TY - THES A1 - Kißner, Katharina T1 - Manipulation of electronic properties in strongly correlated Cerium-based surface alloys T1 - Manipulation der elektronischen Eigenschaften in stark korrelierten Cer-basierten Oberflächenlegierungen N2 - Photoelectron spectroscopy proves as a versatile tool for investigating various aspects of the electronic structure in strongly correlated electron systems. Influencing the manifestation of strong correlation in Ce-based surface alloys is the main task of this work. It is shown, that the manifestation of the Kondo ground state is influenced by a multitude of parameters such as the choice of the metal binding partner in binary Ce compounds, the surface alloy layer thickness and accompanying variations in the lattice structure as well as the interfaces to substrate or vacuum. Gaining access to these parameters allows to directly influence essential state variables, such as the f level occupancy nf or the Kondo temperature TK. The center of this work are the intermetallic thin films of CePt5/Pt(111) and CeAgx/Ag(111). By utilizing different excitation energies, photoemission spectroscopy provides access to characteristic features of Kondo physics in the valence band, such as the Kondo resonance and its spin-orbit partner at the Fermi level, as well as the multiplet structure of the Ce 3d core levels. In this work both approaches are applied to CePt5/Pt(111) to determine nf and TK for a variety of surface alloy layer thicknesses. A temperature dependent study of the Ce 3d core levels allows to determine the systems TK for the different layer thicknesses. This leads to TK ≈200–270K in the thin layer thickness regime and TK >280K for larger layer thicknesses. These results are confirmed by fitting the Ce 3d multiplet based on the Gunnarsson-Schönhammer formalism for core level spectroscopy and additionally by valence band photoemission spectra of the respective Kondo resonances. The influence of varying layer thickness on the manifestation of strong correlation is subsequently studied for the surface alloy CeAgx/Ag(111). Furthermore, the heavy element Bi is added, to investigate the effects of strong spin-orbit coupling on the electronic structure of the surface alloy. N2 - Photoelektronenspektroskopie eignet sich auf vielerlei Weise verschiedenste Aspekte der elektronischen Struktur stark korrelierter Elektronensysteme zu untersuchen. Die vorliegende Arbeit zeigt, wie gezielt Einfluss auf die Ausprägung starker Korrelation in Cer-basierten Oberflächenlegierungen genommen werden kann. Die Ausbildung des Kondo-Grundzustandes wird dabei durch eine Vielzahl von Parametern beeinfluss. Diese sind beispielsweise der metallische Bindungspartner, die Schichtdicke der Legierung und die dadurch bedingten Änderungen der Gitterstruktur sowie die Grenzen zu Substrat oder Vakuum. Durch Kontrolle dieser Parameter hat man die Möglichkeit, entscheidende Zustandsgrößen des Systems, wie die effektive Besetzung des f-Niveaus nf oder die Kondo-Temperatur TK, zu beeinflussen. Im Zentrum dieser Arbeit stehen dabei die intermetallischen Verbindungen CePt5/Pt(111) und CeAgx/Ag(111). Verschiedene Anregungsenergien bieten in der Photoemission Zugang zu den Merkmalen des Kondo-Effekts im Valenzband, aber auch in den Rumpfniveauspektren. Diese sind die Kondo-Resonanz und ihr Spin-Bahn-Partner nahe der Fermienergie sowie die Multiplettstruktur der Ce 3d Rumpfniveaus. Es werden beide Ansätze verfolgt um, für eine Reihe verschiedener Schichtdicken von CePt5/Pt(111), nf und TK zu bestimmen. Die Auswertung der Ce 3d-Spektren in Abhängigkeit der Probentemperatur ermöglicht zudem die Bestimmung von TK. Für dünne Schichten CePt5/Pt(111) ergibt sich TK≈200–270K, für dickere Schichten TK>280K. Diese Ergebnisse wurden durch Simulation der Spektren auf Basis des Gunnarsson-Schönhammer-Formalismus für Rumpfniveauspektren sowie durch Analyse der Kondo-Resonanz im Valenzband bestätigt. Durch Variation der Schichtdicke des CeAgx-Films, wurde auch im Materialsystem CeAgx/Ag(111) Einfluss auf die elektronische Struktur genommen. Zudem wird die Oberflächenlegierung mit dem schweren Element Bi versetzt, um das Zusammenspiel von Spin-Bahn-Kopplung und starker Korrelation zu untersuchen. KW - Korrelation KW - Cerlegierung KW - Photoelektronenspektroskopie KW - Röntgen-Photoelektronenspektroskopie KW - Ultraviolett-Photoelektronenspektroskopie KW - correlation KW - CePt5 KW - XPS KW - Gunnarsson Schönhammer KW - Kondo KW - Oberflächenlegierung Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-273067 ER - TY - JOUR A1 - Wyborski, Paweł A1 - Podemski, Paweł A1 - Wroński, Piotr Andrzej A1 - Jabeen, Fauzia A1 - Höfling, Sven A1 - Sęk, Grzegorz T1 - Electronic and optical properties of InAs QDs grown by MBE on InGaAs metamorphic buffer JF - Materials N2 - We present the optical characterization of GaAs-based InAs quantum dots (QDs) grown by molecular beam epitaxy on a digitally alloyed InGaAs metamorphic buffer layer (MBL) with gradual composition ensuring a redshift of the QD emission up to the second telecom window. Based on the photoluminescence (PL) measurements and numerical calculations, we analyzed the factors influencing the energies of optical transitions in QDs, among which the QD height seems to be dominating. In addition, polarization anisotropy of the QD emission was observed, which is a fingerprint of significant valence states mixing enhanced by the QD confinement potential asymmetry, driven by the decreased strain with increasing In content in the MBL. The barrier-related transitions were probed by photoreflectance, which combined with photoluminescence data and the PL temperature dependence, allowed for the determination of the carrier activation energies and the main channels of carrier loss, identified as the carrier escape to the MBL barrier. Eventually, the zero-dimensional character of the emission was confirmed by detecting the photoluminescence from single QDs with identified features of the confined neutral exciton and biexciton complexes via the excitation power and polarization dependences. KW - molecular beam epitaxy KW - quantum dot KW - metamorphic buffer layer KW - band structure KW - photoluminescence KW - photoreflectance Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-297037 SN - 1996-1944 VL - 15 IS - 3 ER - TY - THES A1 - Suchomel, Holger Maximilian T1 - Entwicklung elektrooptischer Bauteile auf der Basis von Exziton-Polaritonen in Halbleiter-Mikroresonatoren T1 - Development of electro-optical devices based on exciton polaritons in semiconductor microresonators N2 - Exziton-Polaritonen (Polaritonen), hybride Quasiteilchen, die durch die starke Kopplung von Quantenfilm-Exzitonen mit Kavitätsphotonen entstehen, stellen auf Grund ihrer vielseitigen und kontrollierbaren Eigenschaften einen vielversprechenden Kandidaten für die Entwicklung einer neuen Generation von nichtlinearen und integrierten elektrooptischen Bauteilen dar. Die vorliegende Arbeit beschäftigt sich mit der Entwicklung und Untersuchung kompakter elektrooptischer Bauelemente auf der Basis von Exziton-Polaritonen in Halbleitermikrokavitäten. Als erstes wird die Implementierung einer elektrisch angeregten, oberflächenemittierenden Polariton-Laserdiode vorgestellt, die ohne ein externes Magnetfeld arbeiten kann. Dafür wird der Schichtaufbau, der Q-Faktor, das Dotierprofil und die RabiAufspaltung der Polariton-Laserdiode optimiert. Der Q-Faktor des finalen Aufbaus beläuft sich auf Q ~ 16.000, während die Rabi-Aufspaltung im Bereich von ~ 11,0 meV liegt. Darauf aufbauend werden Signaturen der Polariton-Kondensation unter elektrischer Anregung, wie ein nichtlinearer Anstieg der Intensität, die Reduktion der Linienbreite und eine fortgesetzte Verschiebung der Emission zu höheren Energien oberhalb der ersten Schwelle, demonstriert. Ferner werden die Kohärenzeigenschaften des Polariton-Kondensats mittels Interferenzspektroskopie untersucht. Basierend auf den optimierten Halbleiter-Mikroresonatoren wird eine Kontaktplattform für die elektrische Anregung ein- und zweidimensionaler Gitterstrukturen entwickelt. Dazu wird die Bandstrukturbildung eines Quadrat- und Graphen-Gitters unter elektrischer Anregung im linearen Regime untersucht und mit den Ergebnissen der optischen Charakterisierung verglichen. Die erhaltenen Dispersionen lassen sich durch das zugehörige Tight-Binding-Modell beschreiben. Ferner wird auch eine elektrisch induzierte Nichtlinearität in der Emission demonstriert. Die untersuchte Laser-Mode liegt auf der Höhe des unteren Flachbandes und an der Position der Γ-Punkte in der zweiten Brillouin-Zone. Die zugehörige Modenstruktur weist die erwartete Kagome-Symmetrie auf. Abschließend wird die Bandstrukturbildung eines SSH-Gitters mit eingebautem Defekt unter elektrischer Anregung untersucht und einige Eigenschaften des topologisch geschützten Defektzustandes gezeigt. Dazu gehört vor allem die Ausbildung der lokalisierten Defektmode in der Mitte der S-Bandlücke. Die erhaltenen Ergebnisse stellen einen wichtigen Schritt in der Realisierung eines elektrisch betriebenen topologischen Polariton-Lasers dar. Abschließend wird ein elektrooptisches Bauteil auf der Basis von Polaritonen in einem Mikrodrahtresonator vorgestellt, in dem sich die Propagation eines PolaritonKondensats mittels eines elektrostatischen Feldes kontrollieren lässt. Das Funktionsprinzip des Polariton-Schalters beruht auf der Kombination einer elektrostatischen Potentialsenke unterhalb des Kontaktes und der damit verbundenen erhöhten ExzitonIonisationsrate. Der Schaltvorgang wird sowohl qualitativ als auch quantitativ analysiert und die Erhaltenen Ergebnisse durch die Modellierung des Systems über die GrossPitaevskii-Gleichung beschrieben. Zusätzlich wird ein negativer differentieller Widerstand und ein bistabiles Verhalten in der Strom-Spannungs-Charakteristik in Abhängigkeit von der Ladungsträgerdichte im Kontaktbereich beobachtet. Dieses Verhalten wird auf gegenseitig konkurrierende Kondensats-Zustände innerhalb der Potentialsenke und deren Besetzung und damit direkt auf den räumlichen Freiheitsgrad der PolaritonZustände zurückgeführt. N2 - Exciton-polaritons (polaritons), hybrid quasi-particles formed by the strong coupling between quantum well excitons and microcavity photons, are promising candidates for the realization of a new generation of nonlinear and integrated electrooptical devices. Compared to photonic or electrical approaches distinguishing advantages of Polaritons are their versatile and tuneable properties that allow electrical excitation and easy manipulation, which is both advantageous for on-chip applications. The present thesis deals with the development, implementation, and improvement of compact electrooptical devices based on exciton-polaritons in semiconductor microcavities. At first the implementation of an electrically driven vertically emitting polariton laser diode, which operates without the need of an applied magnetic field, is presented. For this purpose, the layer structure, quality factor, doping profile and Rabi-splitting of the polariton laser diode is optimized. The final design consists of a high-quality factor Al0.20Ga0.80As/AlAs microcavity (Q ~ 16,000) and features a Rabi-splitting of ~ 11.0 meV. Signatures for polariton condensation under electrical excitation are shown in the processed device. It features a clear nonlinearity in its input-output characteristic, a well-pronounced drop in the emission linewidth and a persisting blueshift above the first threshold with increasing pump-power. On top of that, evidence of the systems coherence properties in the condensed phase is provided directly by utilizing interference spectroscopy. Based on the optimized microcavity structures a process for the electrical excitation of one- and two-dimensional potential landscapes is developed. At first, the linear band structures of polaritonic square as well as honeycomb lattices are studied under electrical injection and compared to the results acquired by optical excitation. The obtained dispersions are reproduced by a tight-binding model. Moreover, the capability of the device to facilitate an electrically induced nonlinear emission is demonstrated. The investigated laser mode at the high symmetry Γ points in the second Brillouin zone, is located at the low energy flatband, as verified by the kagome geometry of the measured mode structure. Subsequent, the results of a one-dimensional SSH chain are presented under electrical excitation. In addition, the properties of a built-in lattice defect, forming a topological protected state in the middle of the S band gap, are investigated, paving the way towards the realization of electrically driven topological polariton lasers. Finally, an electrooptical polariton switch is demonstrated as a prototype of a polaritonic field-effect transistor. Here, an optical generated polariton condensate propagating along a one-dimensional channel is controlled by an electrical gate. The operation of the device relies on the combination of an electrostatic potential trap underneath the contact, and the associated exciton ionization. The switching behaviour is analysed in a qualitative as well as in a quantitative manner and verified by modelling the experimental findings with the Gross-Pitaevskii equation. Furthermore, a pronounced negative differential resistance and a strong bistability is observed in the photocurrent response as a function of the carrier density. This is attributed to competing transitions of trapped condensate modes and thus directly to the spatial degree of freedom of the polariton states, which represents a completely new way to create bistability. KW - Drei-Fünf-Halbleiter KW - AlGaAs KW - Exziton-Polariton KW - Optischer Resonator KW - Quantenwell KW - Mikroresonator KW - Polariton Lasing Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-271630 ER - TY - JOUR A1 - Gottscholl, Andreas A1 - Wagenhöfer, Maximilian A1 - Klimmer, Manuel A1 - Scherbel, Selina A1 - Kasper, Christian A1 - Baianov, Valentin A1 - Astakhov, Georgy V. A1 - Dyakonov, Vladimir A1 - Sperlich, Andreas T1 - Superradiance of spin defects in silicon carbide for maser applications JF - Frontiers in Photonics N2 - Masers as telecommunication amplifiers have been known for decades, yet their application is strongly limited due to extreme operating conditions requiring vacuum techniques and cryogenic temperatures. Recently, a new generation of masers has been invented based on optically pumped spin states in pentacene and diamond. In this study, we pave the way for masers based on spin S = 3/2 silicon vacancy (V\(_{Si}\)) defects in silicon carbide (SiC) to overcome the microwave generation threshold and discuss the advantages of this highly developed spin hosting material. To achieve population inversion, we optically pump the V\(_{Si}\) into their m\(_S\) = ±1/2 spin sub-states and additionally tune the Zeeman energy splitting by applying an external magnetic field. In this way, the prerequisites for stimulated emission by means of resonant microwaves in the 10 GHz range are fulfilled. On the way to realising a maser, we were able to systematically solve a series of subtasks that improved the underlying relevant physical parameters of the SiC samples. Among others, we investigated the pump efficiency as a function of the optical excitation wavelength and the angle between the magnetic field and the defect symmetry axis in order to boost the population inversion factor, a key figure of merit for the targeted microwave oscillator. Furthermore, we developed a high-Q sapphire microwave resonator (Q ≈ 10\(^4\)–10\(^5\)) with which we find superradiant stimulated microwave emission. In summary, SiC with optimized spin defect density and thus spin relaxation rates is well on its way of becoming a suitable maser gain material with wide-ranging applications. KW - stimulated emission KW - maser KW - population inversion KW - silicon vacancy KW - spin polarization KW - superradiance Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284698 SN - 2673-6853 VL - 3 ER - TY - THES A1 - Gottscholl, Andreas Paul T1 - Optical Accessible Spin Defects in Hexagonal Boron Nitride: Identification, Control and Application of the Negatively Charged Boron Vacancy VB- T1 - Optisch zugängliche Spin-Defekte in hexagonalem Bornitrid: Identifizierung, Kontrolle und Anwendung der negativ geladenen Bor-Fehlstelle VB- N2 - In this work, a bridge was built between the so-far separate fields of spin defects and 2D systems: for the first time, an optically addressable spin defect (VB-) in a van der Waals material (hexagonal boron nitride) was identified and exploited. The results of this thesis are divided into three topics as follows: 1.) Identification of VB-: In the scope of this chapter, the defect ,the negatively charged boron vacancy VB-, is identified and characterized. An initialization and readout of the spin state can be demonstrated optically at room temperature and its spin Hamiltonian contributions can be quantified. 2.) Coherent Control of VB-: A coherent control is required for the defect to be utilized for quantum applications, which N2 - Im Rahmen dieser Arbeit konnte zum allerersten Mal ein optisch addressierbarer Spin Defekt in einem Van-der-Waals Material (hexagonales Bornitrid) nachgewiesen wer- den. Hervorzuheben ist hierbei der 2D Charakter des Materials hBN, welches als das Standardmaterial zur Verkapselung anderer 2D Materialien verwendet wird und somit unterschiedlichste Anwendungen des neu entdeckten Spindefektes denkbar macht. ... KW - Bornitrid KW - Boron Nitride Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-274326 ER - TY - THES A1 - Betzold, Simon T1 - Starke Licht-Materie-Wechselwirkung und Polaritonkondensation in hemisphärischen Mikrokavitäten mit eingebetteten organischen Halbleitern T1 - Strong light-matter interaction and polariton condensation in hemispherical microcavities with embedded organic semiconductors N2 - Kavitäts-Exziton-Polaritonen (Polaritonen) sind hybride Quasiteilchen, die sich aufgrund starker Kopplung von Halbleiter-Exzitonen mit Kavitätsphotonen ausbilden. Diese Quasiteilchen weisen eine Reihe interessanter Eigenschaften auf, was sie einerseits für die Grundlagenforschung, andererseits auch für die Entwicklung neuartiger Bauteile sehr vielversprechend macht. Bei Erreichen einer ausreichend großen Teilchendichte geht das System in den Exziton-Polariton-Kondensationszustand über, was zur Emission von laserartigem Licht führt. Organische Halbleiter als aktives Emittermaterial zeigen in diesem Kontext großes Potential, da deren Exzitonen neben großen Oszillatorstärken auch hohe Bindungsenergien aufweisen. Deshalb ist es möglich, unter Verwendung organischer Halbleiter selbst bei Umgebungsbedingungen äußerst stabile Polaritonen zu erzeugen. Eine wichtige Voraussetzung zur Umsetzung von integrierten opto-elektronischen Bauteilen basierend auf Polaritonen ist der kontrollierte räumliche Einschluss sowie die Realisierung von frei konfigurierbaren Potentiallandschaften. Diese Arbeit beschäftigt sich mit der Entwicklung und der Untersuchung geeigneter Plattformen zur Erzeugung von Exziton-Polaritonen und Polaritonkondensaten in hemisphärischen Mikrokavitäten, in die organische Halbleiter eingebettet sind. N2 - Cavity exciton-polaritons (polaritons) are hybrid quasiparticles which are formed due to the strong coupling of excitons with cavity photons. These quasiparticles exhibit a variety of interesting properties, rendering them very promising for both fundamental research and the development of novel opto-electronic devices. Once a suitably high particle density is reached, the system undergoes the transition into a state of exciton-polariton condensation, which leads to the emission of laser-like light. Organic semiconductors as active emitter material hold enormous potential in this context, as their excitons show both large oscillator strengths and high binding energies. Therefore it is possible to generate extremely stable polaritons using organic semiconductors even at ambient conditions. An important prerequisite for the implementation of integrated devices based on polaritons is the controlled spatial confinement and the realization of arbitrary potential landscapes. The present work deals with the development and investigation of suitable platforms for the generation of exciton-polaritons and polariton condensates in hemispheric microcavities with embedded organic semiconductors. KW - Exziton-Polariton KW - Organischer Halbleiter KW - Fourier-Spektroskopie KW - Laser KW - Optischer Resonator KW - FDTD Simulation KW - Hemisphärische Kavität Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-266654 ER - TY - JOUR A1 - Sperlich, Andreas A1 - Auth, Michael A1 - Dyakonov, Vladimir T1 - Charge transfer in ternary solar cells employing two fullerene derivatives: where do electrons go? BT - Dedicated to Prof. Sariciftci on the occasion of his 60th birthday JF - Israel Journal of Chemistry N2 - Earlier reports demonstrated that ternary organic solar cells (OSC) made of donor polymers (D) blended with different mixtures of fullerene acceptors (A : A) performed very similarly. This finding is surprising, as the corresponding fullerene LUMO levels are slightly different, which might result in decisive differences in the charge transfer step. We investigate ternary OSC (D : A : A) made of the donor polymer P3HT with stoichiometric mixtures of different fullerene derivatives, PC\(_{60}\)BM : PC\(_{70}\)BM and PC\(_{70}\)BM : IC\(_{60}\)BA, respectively. Using quantitative electron paramagnetic resonance (EPR) we can distinguish between positive and negative polarons, localized on the specific molecules. We found that after the initial charge transfer step, the electrons are re-distributed over two nearby acceptors in agreement with their stoichiometry and their relative LUMO energy difference. Remarkably, the measured ΔLUMO differences in fullerene mixtures are reduced by an order of magnitude compared to that of the pristine materials, i. e., below 1 meV for PC\(_{60}\)BM : PC\(_{70}\)BM and (20±5) meV for PC\(_{70}\)BM : IC\(_{60}\)BA. Furthermore, we found that this reduced ΔLUMO explains the shift in open circuit voltage for D : A : A organic solar cells. We attribute these findings to hybridization, leading to an effective fullerene LUMO. Consequently, multi-acceptor blends are indeed a viable option for photodetectors and solar cells, as they combine the best electron acceptor and light absorbing properties. KW - ternary organic solar cells Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257506 VL - 62 IS - 7-8 ER - TY - THES A1 - Youssef, Almoatazbellah T1 - Fabrication of Micro-Engineered Scaffolds for Biomedical Application T1 - Fabrikation von Scaffolds mit optimierter Mikroarchitektur für biomedizinische Anwendungen N2 - Thermoplastic polymers have a history of decades of safe and effective use in the clinic as implantable medical devices. In recent years additive manufacturing (AM) saw increased clinical interest for the fabrication of customizable and implantable medical devices and training models using the patients’ own radiological data. However, approval from the various regulatory bodies remains a significant hurdle. A possible solution is to fabricate the AM scaffolds using materials and techniques with a clinical safety record, e.g. melt processing of polymers. Melt Electrowriting (MEW) is a novel, high resolution AM technique which uses thermoplastic polymers. MEW produces scaffolds with microscale fibers and precise fiber placement, allowing the control of the scaffold microarchitecture. Additionally, MEW can process medical-grade thermoplastic polymers, without the use of solvents paving the way for the production of medical devices for clinical applications. This pathway is investigated in this thesis, where the layout is designed to resemble the journey of a medical device produced via MEW from conception to early in vivo experiments. To do so, first, a brief history of the development of medical implants and the regenerative capability of the human body is given in Chapter 1. In Chapter 2, a review of the use of thermoplastic polymers in medicine, with a focus on poly(ε-caprolactone) (PCL), is illustrated, as this is the polymer used in the rest of the thesis. This review is followed by a comparison of the state of the art, regarding in vivo and clinical experiments, of three polymer melt AM technologies: melt-extrusion, selective laser sintering and MEW. The first two techniques already saw successful translation to the bedside, producing patient-specific, regulatory-approved AM implants. To follow in the footsteps of these two technologies, the MEW device parameters need to be optimized. The MEW process parameters and their interplay are further discussed in Chapter 3 focusing on the importance of a steady mass flow rate of the polymer during printing. MEW reaches a balance between polymer flow, the stabilizing electric field and moving collector to produce reproducible, high-resolution scaffolds. An imbalance creates phenomena like fiber pulsing or arcing which result in defective scaffolds and potential printer damage. Chapter 4 shows the use of X-ray microtomography (µCT) as a non-destructive method to characterize the pore-related features: total porosity and the pore size distribution. MEW scaffolds are three-dimensional (3D) constructs but have long been treated in the literature as two-dimensional (2D) ones and characterized mainly by microscopy, including stereo- and scanning electron microscopy, where pore size was simply reported as the distance between the fibers in a single layer. These methods, together with the trend of producing scaffolds with symmetrical pores in the 0/90° and 0/60/120° laydown patterns, disregarded the lateral connections between pores and the potential of MEW to be used for more complex 3D structures, mimicking the extracellular matrix. Here we characterized scaffolds in the aforementioned symmetrical laydown patterns, along with the more complex 0/45/90/135° and 0/30/60/90/120/150° ones. A 2D pore size estimation was done first using stereomicroscopy, followed by and compared to µCT scanning. The scaffolds with symmetrical laydown patterns resulted in the predominance of one pore size, while those with more complex patterns had a broader distribution, which could be better shown by µCT scans. Moreover, in the symmetrical scaffolds, the size of 3D pores was not able to reach the value of the fiber spacing due to a flattening effect of the scaffold, where the thickness of the scaffold was less than the fiber spacing, further restricting the pore size distribution in such scaffolds. This method could be used for quality assurance of fabricated scaffolds prior to use in in vitro or in vivo experiments and would be important for a clinical translation. Chapter 5 illustrates a proof of principle subcutaneous implantation in vivo experiment. MEW scaffolds were already featured in small animal in vivo experiments, but to date, no analysis of the foreign body reaction (FBR) to such implants was performed. FBR is an immune reaction to implanted foreign materials, including medical devices, aimed at protecting the host from potential adverse effects and can interfere with the function of some medical implants. Medical-grade PCL was used to melt electrowrite scaffolds with 50 and 60 µm fiber spacing for the 0/90° and 0/60/120° laydown patterns, respectively. These implants were implanted subcutaneously in immunocompetent, outbred mice, with appropriate controls, and explanted after 2, 4, 7 and 14 days. A thorough characterization of the scaffolds before implantation was done, followed by a full histopathological analysis of the FBR to the implants after excision. The scaffolds, irrespective of their pore geometry, induced an extensive FBR in the form of accumulation of foreign body giant cells around the fiber walls, in a manner that almost occluded available pore spaces with little to no neovascularization. This reaction was not induced by the material itself, as the same reaction failed to develop in the PCL solid film controls. A discussion of the results was given with special regard to the literature available on flat surgical meshes, as well as other hydrogel-based porous scaffolds with similar pore sizes. Finally, a general summary of the thesis in Chapter 6 recapitulates the most important points with a focus on future directions for MEW. N2 - Thermoplastische Polymere werden seit Jahrzehnten erfolgreich in der Klinik eingesetzt und für die Herstellung von Medizinprodukten verwendet. Vorangetrieben durch das zunehmende klinische Interesse an additiven Fertigungsverfahren, z.B. zur Herstellung patientenspezifischer Trainingsmodelle und implantierbarer Medizinprodukte, rücken thermoplastische Materialien noch mehr in den Fokus der klinischen Forschung. Allerdings stellt die Marktzulassung durch die verschiedenen Gesundheitsbehörden eine große Hürde dar. Eine mögliche Lösung ist die Gerüstfabrikation mit Materialien und Verfahren, die bereits etablierte Sicherheitsstandards durchlaufen haben, z. B. die Schmelzverarbeitung der Polymere. Ein neuartiges und hochauflösendes additives Fertigungsverfahren, welches die Verarbeitung von Thermoplasten ermöglicht, ist Melt Electrowriting (MEW). Mittels MEW lassen sich Gerüste, die aus Fasern mit Durchmessern im Mikrometerbereich zusammengesetzt sind, herstellen. Neben der hohen Kontrolle über den Faserdurchmesser ermöglicht MEW auch eine genaue Ablage der Fasern und erlaubt dadurch, die Mikroarchitektur der Konstrukte vorzugeben. Zudem kann das Verfahren medizinisch zugelassene thermoplastische Polymere ohne die Verwendung von Lösungsmitteln verarbeiten und ist somit für die Herstellung medizinischer Produkte sehr relevant. Diese Relevanz sollte im Rahmen der vorliegenden Dissertation evaluiert werden, indem der Weg, den ein Medizinprodukt von der Konzeption bis hin zu in vivo Vorversuchen durchlaufen muss, anhand von Konstrukten, die mittels MEW hergestellt wurden, nachgeahmt wurde. Um eine Basis für das Verständnis dieses Prozesses zu schaffen, wird in Kapitel 1 erst die Geschichte der Entwicklung medizinischer Implantate zusammengefasst sowie ein Einblick in die regenerativen Fähigkeiten des menschlichen Körpers gegeben. Das zweite Kapitel befasst sich mit der Anwendung von thermoplastischen Polymeren im Bereich implantierbarer Medizinprodukte, wobei der Hauptfokus auf Poly(ε-caprolactone) (PCL) liegt, da dies der in der vorliegenden Arbeit verwendete Thermoplast ist. Es folgt ein Vergleich von in vivo sowie klinischen Versuchen dreier für die Biomedizin relevanten additiven Fertigungsverfahren, mit denen sich thermoplastische Polymere verarbeiten lassen: Die Mikro-Schmelzextrusion, das selektive Lasersintern und das MEW. Die ersten zwei Verfahren sind bereits erfolgreich in klinischen Anwendungen etabliert und ermöglichen die routinemäßige Herstellung von additiv gefertigten, patientenspezifischen, auf dem Markt zugelassenen Implantaten. Damit MEW in diese Fußstapfen treten kann, müssen die Prozessparameter und deren Zusammenspiel genau analysiert werden. Dieser Thematik widmet sich Kapitel 3, wobei die Untersuchung des Massendurchsatzes des Polymers während des Druckens diskutiert wird. Um den MEW-Prozess kontrollieren zu können, muss eine Balance zwischen Polymerdurchsatz, dem stabilisierenden elektrischen Feld und dem beweglichen Kollektor erreicht werden. Dies ist Grundlage für die reproduzierbare Herstellung hochaufgelöster Konstrukte. Ein Ungleichgewicht der Prozessparameter verursacht Phänomene wie Fiber Pulsing oder sogar elektrischen Durchschlag, welche zu defekten Konstrukten oder sogar zur Schädigung des Druckers führen können. Kapitel 4 zeigt die Anwendung der Röntgenmikrocomputertomographie (µCT) als eine zerstörungsfreie Charakterisierungsmethode für MEW-Konstrukte, die die Quantifizierung charakteristischer Eigenschaften wie der Porosität und der Porengrößenverteilung ermöglicht. MEW-Konstrukte wurden in der Literatur lange als zweidimensional behandelt und hauptsächlich durch mikroskopische Verfahren wie die Stereo- und Rasterelektronmikroskopie charakterisiert. Die zweidimensionale Porengröße wurde hauptsächlich durch die Bestimmung des Faserabstands definiert und daraus errechnet, mit einer Tendenz der Herstellung der Konstrukte mit symmetrischen Poren in 0/90° und 0/60/120° Ablagemustern. Da es sich bei den Konstrukten jedoch um dreidimensionale (3D) Fasergerüste handelt, wurden die seitlichen Verbindungen zwischen den Poren und das Potential der Anwendung des MEW für die Herstellung von komplexeren 3D-Strukturen, wie bei der extrazellulären Matrix mit interkonnektierenden Poren, vernachlässigt. Aus diesem Grund wurden in der vorliegenden Arbeit µCT-Scans verwendet, um die Porosität der Konstrukte besser wiedergeben zu können. Hierzu wurden verschiedene Ablagemuster mit symmetrischen Poren in 0/90° und 0/60/120° Mustern und komplexere Porenstrukturen durch Ablagen von 0/45/90/135° und 0/30/60/90/120/150° Geometrien hergestellt. Diese Konstrukte wurden dann mittels mikroskopischer und tomographischer Aufnahmen charakterisiert und die Ergebnisse miteinander verglichen. Es zeigte sich, dass symmetrische Ablagemuster zu Konstrukten mit der Prädominanz einer Porengröße geführt haben. Bei den komplexeren Strukturen ergab sich jedoch ein klarer Unterschied, weil die interkonnektierenden Poren nur mit Hilfe von µCT-Scans erfasst werden konnten. Dies zeigte sich durch eine breitere Porenverteilung bei der Auswertung der rekonstruierten Scans. Die Porengrößen in den Konstrukten mit den symmetrischen Mustern konnten aufgrund einer Verflachungswirkung nicht die des Faserabstands erreichen. Die Dicke der Konstrukte war geringer als der Faserabstand mit einer weiteren einschränkenden Wirkung auf die Porenverteilung in den symmetrischen Konstrukten. µCT kann deshalb für die Qualitätssicherung von medizinischen Produkten, die mittels MEW hergestellt wurden, eingesetzt werden. Da die Methode zerstörungsfrei ist, könnte sie auch vor in vitro oder in vivo Versuchen verwendet werden. Kapitel 5 präsentiert eine Machbarkeitsstudie eines subkutanen in vivo Implantationsversuchs. Aus der Literatur ist zwar bekannt, dass MEW-Konstrukte bereits in vivo in Kleintierversuchen verwendet wurden, eine Analyse der Fremdkörperreaktion (FKR) zu solchen Implantaten wurde bisher jedoch noch nicht durchgeführt. FKR ist eine Immunreaktion gegen fremde, implantierte Materialien, einschließlich medizinischer Geräte, um den Wirt vor potenziellen Nebenwirkungen zu schützen. Allerdings könnte sie die Funktion verschiedener medizinischer Implantate beeinträchtigen Um dieser Fragestellung nachzugehen, wurde im Rahmen der vorliegenden Dissertation PCL mittels MEW zu Konstrukten mit 50 und 60 µm Fiberabstand in 0/90° bzw. 0/60/120° Ablagemuster verarbeitet. Diese Konstrukte wurden subkutan in immunkompetente, fremdgezüchtete Mäuse mit entsprechenden Kontrollen implantiert und nach 2, 4, 7 und 14 Tagen explantiert. Vor der Implantation wurde die Konstrukte ausführlich charakterisiert, gefolgt von einer vollen histopathologischen Analyse des FKR. Unabhängig von der Porengeometrie haben die Konstrukte eine deutliche Immunreaktion im Sinne einer Ansammlung von Fremdkörperriesenzellen um die Fasern der Konstrukte hervorgerufen. Hierbei wurden die Poren fast komplett verschlossen, ohne dass es zu einer Neovaskularisation kam. Es konnte nachgewiesen werden, dass die deutliche Immunantwort nicht durch das Material hervorgerufen wurde, da sie bei der Implantation von dichtem PCL-Film nicht beobachtet wurde. Eine Diskussion der Ergebnisse erfolgte unter Berücksichtigung aktueller Literatur zu klinischen Versuchen von flachen chirurgischen Netzen sowie porösen Hydrogel-basierten Implantaten mit vergleichbarer Porengröße. Abschließend wird die Arbeit in Kapitel 6 zusammengefasst und die wichtigsten Punkte rekapituliert. Der Fokus des Kapitels liegt hierbei auf dem zukünftigen Potential des MEW als Fabrikationsmethode für medizinische Produkte. KW - melt electrowriting KW - medical device KW - biomaterials KW - subcutaneous implanation KW - x-ray micro computed tomography Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-235457 ER - TY - THES A1 - Groß, Lennart T1 - Point-spread function engineering for single-molecule localization microscopy in brain slices T1 - Modulation der Punktspreizfunktion für Einzelmolekül-Lokalisationsmikroskopie in Hirnschnitten N2 - Single-molecule localization microscopy (SMLM) is the method of choice to study biological specimens on a nanoscale level. Advantages of SMLM imply its superior specificity due to targeted molecular fluorescence labeling and its enhanced tissue preservation compared to electron microscopy, while reaching similar resolution. To reveal the molecular organization of protein structures in brain tissue, SMLM moves to the forefront: Instead of investigating brain slices with a thickness of a few µm, measurements of intact neuronal assemblies (up to 100 µm in each dimension) are required. As proteins are distributed in the whole brain volume and can move along synapses in all directions, this method is promising in revealing arrangements of neuronal protein markers. However, diffraction-limited imaging still required for the localization of the fluorophores is prevented by sample-induced distortion of emission pattern due to optical aberrations in tissue slices from non-superficial planes. In particular, the sample causes wavefront dephasing, which can be described as a summation of Zernike polynomials. To recover an optimal point spread function (PSF), active shaping can be performed by the use of adaptive optics. The aim of this thesis is to establish a setup using a deformable mirror and a wavefront sensor to actively shape the PSF to correct the wavefront phases in a super-resolution microscope setup. Therefore, fluorescence-labeled proteins expressed in different anatomical regions in brain tissue will be used as experiment specimen. Resolution independent imaging depth in slices reaching tens of micrometers is aimed. N2 - Einzelmolekül-Lokalisationsmikroskopie ist die Methode der Wahl zur Untersuchung biologische Proben im Bereich von Nanometern. Vorteile von Einzelmolekül-Lokalisationsmikroskopie sind vor allem ihre hohe Spezifität von molekularen Farbstoffbindungen sowie die erreichte hohe Auflösung, die vergleichbar ist mit der elektronenmikroskopischen Auflösung, wobei in der Einzelmolekül-Lokalisationsmikroskopie keine Konservierung der Probe vorgenommen werden muss. Vor allem in der Untersuchung der molekularen Organisation von Proteinstrukturen konnte sich die Einzelmolekül-Lokalisationsmikroskopie bewähren. Die Verteilung von Proteinen im gesamten Gehirn, sowie ihre Eigenschaft, sich entlang neuronaler Strukturen zu bewegen, kann mithilfe der Einzelmolekül-Lokalisationsmikroskopie untersucht werden und zu einem besseren Verständnis neuronaler Prozesse beitragen. Proben induzieren optische Aberrationen: Diese Dephasierungen der Wellenfront, welche als Summe von Zernike-Polynomen beschrieben werden kann, verhindert das Erreichen der Auflösungsgrenze. Zur Wiederherstellung einer optimalen Punktspreizfunktion kann die Wellenfront mittels adaptiver Optik aktiv geformt werden. Ziel dieser Arbeit ist der Aufbau eines Einzelmolekül-Lokalisationsmikroskopes mit integrierter adaptiver Optik, bestehend aus einem deformierbaren Spiegel und einem Wellenfrontsensor, um aktiv die Wellenfront zu formen und die Dephasierung zu korrigieren. Zu diesem Zweck werden fluoreszenzmarkierte Proteine, welche in verschiedenen Hirnregionen exprimiert werden, als Proben herangezogen. Optimalerweise könnte so in verschiedenen Tiefen eine ähnliche Auflösung wie bei einer oberflächlichen Messung erreicht werden. Um die Möglichkeiten des Setups zu evaluieren, welches im Verlauf dieser Arbeit aufgebaut wurde, wurden artifizielle Proben erstellt, indem eine Einzelzellschicht hippocampaler Neuronen der Maus, in welchen α-tubulin mit Alexa Fluor 647 angefärbt ist, auf einem 100 µm Maushirnschnitt plaziert wurden. Da letzterer ein hochgradig diffuses Medium zwischen dem Objektiv und den Fluorophoren darstellt, induziert es verschiedene optische Aberrationen, vor allem Sphärische Aberration und Astigmatismus. Indem die Wellenfront und die Punktspreizfunktion von 4 µm Fluosphere Beads, welche eine maximale Emission bei 505 nm haben, und 0.1 µm Tetraspeck Beads, welche eine maximale Emission bei 505 nm zeigen, aufgenommen wurde, konnten die Aberrationen von 521 nm zu 116 nm Quadratmittel des Wellenfrontfehlers reduziert werden. Weiterhin konnten mithilfe der adaptiven Optik Bruchpilot-Anhäufungen in einem Hirnschnitt der Honigbiene in den Calyx der Pilzkörper in einer Messtiefe von 80 µm sichtbar gemacht werden, welche im unkorrigierten Bild nicht sichtbar waren, indem das Quadratmittel des Wellenfrontfehlers von 587 nm auf 196 nm reduziert wird. Insgesamt zeigt die Reduktion des Quadratmittels des Wellenfrontfehlers eine erfolgreiche Korrektur an, aber ist weit entfernt von einer Mikroskopiertechnik, die eine gewinnbringende Forschung in lebenswissenschaftlichen Bereichen garantiert. KW - Einzelmolekülmikroskopie KW - Adaptive Optik KW - dSTORM KW - Adaptive Optics KW - Single Molecule Localization Microscopy Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-282596 ER - TY - JOUR A1 - Noyalet, Laurent A1 - Ilgen, Lukas A1 - Bürklein, Miriam A1 - Shehata-Dieler, Wafaa A1 - Taeger, Johannes A1 - Hagen, Rudolf A1 - Neun, Tilmann A1 - Zabler, Simon A1 - Althoff, Daniel A1 - Rak, Kristen T1 - Vestibular aqueduct morphology and Meniere’s disease - development of the vestibular aqueduct score by 3D analysis JF - Frontiers in Surgery N2 - Improved radiological examinations with newly developed 3D models may increase understanding of Meniere's disease (MD). The morphology and course of the vestibular aqueduct (VA) in the temporal bone might be related to the severity of MD. The presented study explored, if the VA of MD and non-MD patients can be grouped relative to its angle to the semicircular canals (SCC) and length using a 3D model. Scans of temporal bone specimens (TBS) were performed using micro-CT and micro flat panel volume computed tomography (mfpVCT). Furthermore, scans were carried out in patients and TBS by computed tomography (CT). The angle between the VA and the three SCC, as well as the length of the VA were measured. From these data, a 3D model was constructed to develop the vestibular aqueduct score (VAS). Using different imaging modalities it was demonstrated that angle measurements of the VA are reliable and can be effectively used for detailed diagnostic investigation. To test the clinical relevance, the VAS was applied on MD and on non-MD patients. Length and angle values from MD patients differed from non-MD patients. In MD patients, significantly higher numbers of VAs could be assigned to a distinct group of the VAS. In addition, it was tested, whether the outcome of a treatment option for MD can be correlated to the VAS. KW - vestibular aqueduct (VA) KW - 3D analysis KW - temporal bone KW - saccotomy KW - computed tomography KW - Meniere’s disease Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312893 SN - 2296-875X VL - 9 ER - TY - JOUR A1 - Christ, Andreas A1 - Härtl, Patrick A1 - Kloster, Patrick A1 - Bode, Matthias A1 - Leisegang, Markus T1 - Influence of band structure on ballistic transport revealed by molecular nanoprobe JF - Physical Review Research N2 - In this study we characterize the tautomerization of HPc on Cu(111) as a charge-carrier-induced reversible one-electron process. An analysis of the bias-dependent tautomerization rate finds an energy threshold that corresponds to the energy of the N-H stretching mode. By using the tautomerization of the molecule as a detector for charge carrier transport in the so-called molecular nanoprobe (MONA) technique, we provide evidence for an inhomogeneous coupling between the fourfold-symmetric molecule and sixfold-symmetric surface. We conclude the study by comparing the energy dependence of charge carrier transport on the Cu(111) to the Ag(111) surface. While the MONA technique is limited to the detection of hot-electron transport for Ag(111), our data reveal that the lower onset energy of the Cu surface state also allows for the detection of hot-hole transport. The influence of surface and bulk transport on the MONA technique is discussed. KW - tautomerization KW - HPc KW - Cu(111) Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300855 VL - 4 IS - 4 ER - TY - THES A1 - Weißenseel, Sebastian Günter T1 - Spin-Spin Interactions and their Impact on Organic Light-Emitting Devices T1 - Spin-Spin-Wechselwirkungen und ihre Einflüsse auf organische Leuchtdioden N2 - This work investigates the correlations between spin states and the light emission properties of organic light-emitting diodes (OLEDs), which are based on the principle of thermally activated delayed fluorescence. The spin-spin interactions responsible for this mechanism are investigated in this work using methods based on spin-sensitive electron paramagnetic resonance (EPR). In particular, this method has been applied to electrically driven OLEDs. The magnetic resonance has been detected by electroluminescence, giving this method its name: electroluminescence detected magnetic resonance (ELDMR). Initial investigations on a novel deep blue TADF emitter were performed. Furthermore, the ELDMR method was used in this work to directly detect the spin states in the OLED. These measurements were further underlined by time-resolved experiments such as transient electro- and photoluminescence. N2 - Diese Arbeit untersucht die Zusammenhänge zwischen Spinzuständen und den Lichtemissions Eigenschaften von Organischen Leuchtdioden (OLEDs), welche auf dem Prinzip der thermisch aktivierten verzögerten Fluoreszenz basieren. Die für diesen Mechanismus verantwortlichen Spin-Spin-Wechselwirkungen werden im Rahmen der Arbeit mit Methoden untersucht, die auf der spinsensitiven Elektron Paramagnetische Resonanz (EPR) basieren. Insbesondere wurde diese Methode auf elektrisch betriebene OLEDs angewendet und die magnetische Resonanz durch Elektrolumineszenz nachgewiesen, was dieser Methode ihren Namen verleiht: Elektrolumineszenz detektierte magnetische Resonanz (ELDMR). Erste Untersuchungen an einem neuartigen tiefblauen TADF-Emitters wurden durchgeführt. Ebenfalls konnte in dieser Arbeit mit Hilfe der ELDMR-Methode direkt die Spinzustände in der OLED detektiert werden. Unterstützt wurden diese Messungen von Zeit-aufgelösten Experimenten wie transiente Elektro- und Photolumineszenz. KW - Elektronenspinresonanz KW - Technische Optik KW - Nanometerbereich KW - Organische Leuchtdioden KW - OLED Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257458 ER - TY - THES A1 - Heinrich, Robert T1 - Multi-species gas detection based on an external-cavity quantum cascade laser spectrometer in the mid-infrared fingerprint region T1 - Multikomponenten Gasdetektion basierend auf einem Externen-Kavitäts-Quantenkaskadenlaser im mittleren Infrarot-Fingerprint-Bereich N2 - Laser spectroscopic gas sensing has been applied for decades for several applications as atmospheric monitoring, industrial combustion gas analysis or fundamental research. The availability of new laser sources in the mid-infrared opens the spectral fingerprint range to the technology where multiple molecules possess their fundamental ro-vibrational absorption features that allow very sensitive detection and accurate discrimination of the species. The increasing maturity of quantum cascade lasers that cover this highly interesting spectral range motivated this research to gain fundamental knowledge about the spectra of hydrocarbon gases in pure composition and in complex mixtures as they occur in the petro-chemical industry. The long-term target of developing accurate and fast hydrocarbon gas analyzers, capable of real-time operation while enabling feedback-loops, would lead to a paradigm change in this industry. This thesis aims to contribute to a higher accuracy and more comprehensive understanding of the sensing of hydrocarbon gas mixtures. This includes the acquisition of yet unavailable high resolution and high accuracy reference spectra of the respective gases, the investigation of their spectral behavior in mixtures due to collisional broadening of their transitions and the verification of the feasibility to quantitatively discriminate the spectra when several overlapping species are simultaneously measured in gas mixtures. To achieve this knowledge a new laboratory environment was planned and built up to allow for the supply of the individual gases and their arbitrary mixing. The main element was the development of a broadly tunable external-cavity quantum cascade laser based spectrometer to record the required spectra. This also included the development of a new measurement method to obtain highly resolved and nearly gap-less spectral coverage as well as a sophisticated signal post-processing that was crucial to achieve the high accuracy of the measurements. The spectroscopic setup was used for a thorough investigation of the spectra of the first seven alkanes as of their mixtures. Measurements were realized that achieved a spectral resolution of 0.001 cm-1 in the range of 6-11 µm while ensuring an accuracy of 0.001 cm-1 of the spectra and attaining a transmission sensitivity of 2.5 x 10-4 for long-time averaging of the acquired spectra. These spectral measurements accomplish a quality that compares to state-of-the art spectral databases and revealed so far undocumented details of several of the investigated gases that have not been measured with this high resolution before at the chosen measurement conditions. The results demonstrate the first laser spectroscopic discrimination of a seven component gas mixture with absolute accuracies below 0.5 vol.% in the mid-infrared provided that a sufficiently broad spectral range is covered in the measurements. Remaining challenges for obtaining improved spectral models of the gases and limitations of the measurement accuracy and technology are discussed. N2 - Laserspektroskopie ist eine seit Jahrezehnten verbreitete Methodik zur Gasmessung. Zu den Anwendungen zählen Atmosphärenuntersuchungen, die Analyse von industriellen Verbrennungsgasen oder Grundlagenforschung der Gasspektren. Die Verfügbarkeit neuer Laserquellen im mittleren Infrarotbereich eröffnet den sogenannten spektralen "Fingerprint-Bereich", in welchem eine Vielzahl von Molekülen ihre spezifischen Rotations- Vibrations-Grundschwingungen haben, und damit sehr genaue Konzentrationsbestimmung und exakte Unterscheidung der Gase ermöglicht. Die zunehmende Reife von Quantenkaskadenlasern motivierte diese Forschungsarbeit, um Grundlagenwissen über pure Kohlenwasserstoffspektren und deren Mischungen, wie sie beispielsweise in der petrochemischen Industrie auftreten, zu erlangen. Das langfristige Ziel der Entwicklung eines hochgenauen und schnellen Analysators für Kohlenwasserstoffgemische, welcher Echtzeit-Messungen und damit direkte Rückkopplungsschleifen ermöglicht, würde zu einem Paradigmenwechsel in der Prozesskontrolle vieler Industriebereiche führen. Diese Doktorarbeit leistet einen Beitrag für ein umfassenderes Verständnis und höhere Genauigkeit der Messung von Kohlenwasserstoffgemischen. Dies beinhaltet die Aufnahme bisher nicht verfügbarer hochaufgelöster und hochgenauer Referenzspektren der untersuchten Gase, die Untersuchung ihres spektralen Verhaltens bei Stoßverbreiterung in Mischungen und der quantitativen Unterscheidbarkeit, wenn Moleküle mit überlappenden Spektren gleichzeitig gemessen werden. Um dieses Wissen zu erlangen, wurde ein neuer Laboraufbau zur Untersuchung einzelner Gase sowie deren Gemische geplant und aufgebaut. Die Hauptkomponente bildet eine weit abstimmbares Externe-Kavität- Quantenkaskadenlaser-Spektrometer. Weitere Teile der Entwicklung waren zudem eine neue Messmethodik, um hochaufgelöste und im untersuchten Spektralbereich nahezu lückenlose Spektren zu erhalten, sowie eine umfangreiche Nachverarbeitung der Messdaten, welche essentiell war, um die hohe Genauigkeit der Messungen zu ermöglichen. Der Spektrometeraufbau wurde zur Untersuchung der Spektren der ersten sieben Alkane und ihrer Mischungen verwendet. Die Messungen erreichen eine spektrale Auslösung von 0.001 cm-1 im Spektralbereich von 6-11 µm und garantieren gleichzeitig eine Genauigkeit von 0.001 cm-1. Eine Sensitivität von 2.5x10-4 konnte durch das Mitteln mehrer Messungen erreicht werden. Die Qualität der Spektren ist damit vergleichbar zu aktuellen Spektren-Datenbanken und zeigt zudem bisher undokumentierte Details in mehreren Spektren der gemessenen Gase auf, welche unter den gewählten Messbedingungen bisher nicht so hochaufgelöst gemessen wurden. Die Ergebnisse demonstrieren die erste laserspektrokopische Unterscheidung eines Siebenkomponentengemisches von Kohlenwasserstoffen im mittleren Infrarotbereich mit einer absoluten Konzentrationsgenauigkeit von unter 0.5 vol.% je Komponenten. Weitere Herausforderungen zur Verbesserung spektraler Modelle der Gase sowie die Grenzen der Messgenauigkeit und der verwendeten Technologie werden diskutiert. KW - Quantenkaskadenlaser KW - Laserspektroskopie KW - Absorptionsspektroskopie KW - Externer-Kavitäts-Quanten-Kaskaden-Laser KW - Laserabsorptionspektroskopie KW - Gasförmige Kohlenwasserstoffe KW - Gasgemisch KW - MIR-Spektroskopie KW - External-Cavity Quantum Cascade Laser KW - Laser absorption spectroscopy KW - Gaseous Hydrocarbons KW - Gas mixtures KW - MIR spectroscopy Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-268640 ER - TY - THES A1 - Hajer, Jan T1 - Mercury Telluride Nanowires for Topological Quantum Transport T1 - Quecksilbertellurid-Nanodrähte für Quantentransport-Untersuchungen N2 - Novel appraches to the molecular beam epitaxy of core-shell nanowires in the group II telluride material system were explored in this work. Significant advances in growth spurred the development of a flexible and reliable platform for a charge transport characterization of the topological insulator HgTe in a tubular nanowire geometry. The transport results presented provide an important basis for the design of future studies that strive for the experimental realization of topological charge transport in the quantum wire limit. N2 - Die vorliegende Arbeit befasst sich mit der Herstellung und Charakterisierung von Nanodraht-Heterostrukturen, die den Topologischen Isolator HgTe enthalten. Bedeutende Fortschritte bei der Probenherstellung ermöglichten die Entwicklung einer flexiblen und zuverlässigen Plattform für Ladungstransportuntersuchungen. Die Ergebnisse dieser Transportuntersuchung bieten eine wichtige Grundlage für die Planung zukünftiger Studien, die den experimentellen Nachweis von topologischem Ladungstransport in quasi-eindimensionalen HgTe-Nanostrukturen zum Ziel haben. KW - Quecksilbertellurid KW - Nanodraht KW - Halbleiter-Supraleiter-Kontakt KW - Topologischer Isolator KW - Core-shell KW - Nanowires KW - Vapor-liquid-solid KW - Molecular beam epitaxy KW - HgTe KW - CdTe KW - ZnTe KW - Aharonov-Bohm KW - Shapiro Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-293222 ER - TY - JOUR A1 - Pfenning, Andreas A1 - Krüger, Sebastian A1 - Jabeen, Fauzia A1 - Worschech, Lukas A1 - Hartmann, Fabian A1 - Höfling, Sven T1 - Single-photon counting with semiconductor resonant tunneling devices JF - Nanomaterials N2 - Optical quantum information science and technologies require the capability to generate, control, and detect single or multiple quanta of light. The need to detect individual photons has motivated the development of a variety of novel and refined single-photon detectors (SPDs) with enhanced detector performance. Superconducting nanowire single-photon detectors (SNSPDs) and single-photon avalanche diodes (SPADs) are the top-performer in this field, but alternative promising and innovative devices are emerging. In this review article, we discuss the current state-of-the-art of one such alternative device capable of single-photon counting: the resonant tunneling diode (RTD) single-photon detector. Due to their peculiar photodetection mechanism and current-voltage characteristic with a region of negative differential conductance, RTD single-photon detectors provide, theoretically, several advantages over conventional SPDs, such as an inherently deadtime-free photon-number resolution at elevated temperatures, while offering low dark counts, a low timing jitter, and multiple photon detection modes. This review article brings together our previous studies and current experimental results. We focus on the current limitations of RTD-SPDs and provide detailed design and parameter variations to be potentially employed in next-generation RTD-SPD to improve the figure of merits of these alternative single-photon counting devices. The single-photon detection capability of RTDs without quantum dots is shown. KW - single-photon detectors KW - resonant tunneling diode KW - photon counting KW - III–V semiconductor devices Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-281922 SN - 2079-4991 VL - 12 IS - 14 ER - TY - JOUR A1 - Vogel, Patrick A1 - Rückert, Martin Andreas A1 - Friedrich, Bernhard A1 - Tietze, Rainer A1 - Lyer, Stefan A1 - Kampf, Thomas A1 - Hennig, Thomas A1 - Dölken, Lars A1 - Alexiou, Christoph A1 - Behr, Volker Christian T1 - Critical Offset Magnetic PArticle SpectroScopy for rapid and highly sensitive medical point-of-care diagnostics JF - Nature Communications N2 - Magnetic nanoparticles (MNPs) have been adapted for many applications, e.g., bioassays for the detection of biomarkers such as antibodies, by controlled engineering of specific surface properties. Specific measurement of such binding states is of high interest but currently limited to highly sensitive techniques such as ELISA or flow cytometry, which are relatively inflexible, difficult to handle, expensive and time-consuming. Here we report a method named COMPASS (Critical-Offset-Magnetic-Particle-SpectroScopy), which is based on a critical offset magnetic field, enabling sensitive detection to minimal changes in mobility of MNP ensembles, e.g., resulting from SARS-CoV-2 antibodies binding to the S antigen on the surface of functionalized MNPs. With a sensitivity of 0.33 fmole/50 µl (≙7 pM) for SARS-CoV-2-S1 antibodies, measured with a low-cost portable COMPASS device, the proposed technique is competitive with respect to sensitivity while providing flexibility, robustness, and a measurement time of seconds per sample. In addition, initial results with blood serum demonstrate high specificity. KW - biochemical assays KW - characterization and analytical techniques KW - magnetic properties and materials KW - nanoparticles Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300893 VL - 13 ER - TY - JOUR A1 - Stühler, R. A1 - Kowalewski, A. A1 - Reis, F. A1 - Jungblut, D. A1 - Dominguez, F. A1 - Scharf, B. A1 - Li, G. A1 - Schäfer, J. A1 - Hankiewicz, E. M. A1 - Claessen, R. T1 - Effective lifting of the topological protection of quantum spin Hall edge states by edge coupling JF - Nature Communications N2 - The scientific interest in two-dimensional topological insulators (2D TIs) is currently shifting from a more fundamental perspective to the exploration and design of novel functionalities. Key concepts for the use of 2D TIs in spintronics are based on the topological protection and spin-momentum locking of their helical edge states. In this study we present experimental evidence that topological protection can be (partially) lifted by pairwise coupling of 2D TI edges in close proximity. Using direct wave function mapping via scanning tunneling microscopy/spectroscopy (STM/STS) we compare isolated and coupled topological edges in the 2D TI bismuthene. The latter situation is realized by natural lattice line defects and reveals distinct quasi-particle interference (QPI) patterns, identified as electronic Fabry-Pérot resonator modes. In contrast, free edges show no sign of any single-particle backscattering. These results pave the way for novel device concepts based on active control of topological protection through inter-edge hybridization for, e.g., electronic Fabry-Pérot interferometry. KW - topological insulators KW - two-dimensional materials Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300886 VL - 13 ER - TY - JOUR A1 - Karak, Suvendu A1 - Stepanenko, Vladimir A1 - Addicoat, Matthew A. A1 - Keßler, Philipp A1 - Moser, Simon A1 - Beuerle, Florian A1 - Würthner, Frank T1 - A Covalent Organic Framework for Cooperative Water Oxidation JF - Journal of the American Chemical Society N2 - The future of water-derived hydrogen as the “sustainable energy source” straightaway bets on the success of the sluggish oxygen-generating half-reaction. The endeavor to emulate the natural photosystem II for efficient water oxidation has been extended across the spectrum of organic and inorganic combinations. However, the achievement has so far been restricted to homogeneous catalysts rather than their pristine heterogeneous forms. The poor structural understanding and control over the mechanistic pathway often impede the overall development. Herein, we have synthesized a highly crystalline covalent organic framework (COF) for chemical and photochemical water oxidation. The interpenetrated structure assures the catalyst stability, as the catalyst’s performance remains unaltered after several cycles. This COF exhibits the highest ever accomplished catalytic activity for such an organometallic crystalline solid-state material where the rate of oxygen evolution is as high as ∼26,000 μmol L\(^{–1}\) s\(^{–1}\) (second-order rate constant k ≈ 1650 μmol L s\(^{–1}\) g\(^{–2}\)). The catalyst also proves its exceptional activity (k ≈ 1600 μmol L s\(^{–1}\) g\(^{–2}\)) during light-driven water oxidation under very dilute conditions. The cooperative interaction between metal centers in the crystalline network offers 20–30-fold superior activity during chemical as well as photocatalytic water oxidation as compared to its amorphous polymeric counterpart. KW - water oxidation KW - sustainable energy source KW - covalent organic framework KW - catalyst KW - crystalline KW - catalysis KW - nanoparticles Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-287591 UR - https://pubs.acs.org/doi/10.1021/jacs.2c07282 SN - 0002-7863 VL - 144 IS - 38 ER - TY - JOUR A1 - Rothmayr, Florian A1 - Guarin Castro, Edgar David A1 - Hartmann, Fabian A1 - Knebl, Georg A1 - Schade, Anne A1 - Höfling, Sven A1 - Koeth, Johannes A1 - Pfenning, Andreas A1 - Worschech, Lukas A1 - Lopez-Richard, Victor T1 - Resonant tunneling diodes: mid-infrared sensing at room temperature JF - Nanomaterials N2 - Resonant tunneling diode photodetectors appear to be promising architectures with a simple design for mid-infrared sensing operations at room temperature. We fabricated resonant tunneling devices with GaInAsSb absorbers that allow operation in the 2–4 μm range with significant electrical responsivity of 0.97 A/W at 2004 nm to optical readout. This paper characterizes the photosensor response contrasting different operational regimes and offering a comprehensive theoretical analysis of the main physical ingredients that rule the sensor functionalities and affect its performance. We demonstrate how the drift, accumulation, and escape efficiencies of photogenerated carriers influence the electrostatic modulation of the sensor's electrical response and how they allow controlling the device's sensing abilities. KW - resonant tunneling diode KW - mid-infrared sensing KW - photosensor Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-267152 SN - 2079-4991 VL - 12 IS - 6 ER - TY - JOUR A1 - Gabel, Judith A1 - Pickem, Matthias A1 - Scheiderer, Philipp A1 - Dudy, Lenart A1 - Leikert, Berengar A1 - Fuchs, Marius A1 - Stübinger, Martin A1 - Schmitt, Matthias A1 - Küspert, Julia A1 - Sangiovanni, Giorgio A1 - Tomczak, Jan M. A1 - Held, Karsten A1 - Lee, Tien–Lin A1 - Claessen, Ralph A1 - Sing, Michael T1 - Toward Functionalized Ultrathin Oxide Films: The Impact of Surface Apical Oxygen JF - Advanced Electronic Materials N2 - Thin films of transition metal oxides open up a gateway to nanoscale electronic devices beyond silicon characterized by novel electronic functionalities. While such films are commonly prepared in an oxygen atmosphere, they are typically considered to be ideally terminated with the stoichiometric composition. Using the prototypical correlated metal SrVO\(_{3}\) as an example, it is demonstrated that this idealized description overlooks an essential ingredient: oxygen adsorbing at the surface apical sites. The oxygen adatoms, which are present even if the films are kept in an ultrahigh vacuum environment and not explicitly exposed to air, are shown to severely affect the intrinsic electronic structure of a transition metal oxide film. Their presence leads to the formation of an electronically dead surface layer but also alters the band filling and the electron correlations in the thin films. These findings highlight that it is important to take into account surface apical oxygen or—mutatis mutandis—the specific oxygen configuration imposed by a capping layer to predict the behavior of ultrathin films of transition metal oxides near the single unit-cell limit. KW - transition metal oxides KW - correlated oxides KW - electronic phase transitions KW - photoelectron spectroscopy KW - thin films Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318914 SN - 2199-160X VL - 8 IS - 4 ER - TY - JOUR A1 - Frank, Maximilian A1 - Pflaum, Jens T1 - Tuning Electronic and Ionic Transport by Carbon–Based Additives in Polymer Electrolytes for Thermoelectric Applications JF - Advanced Functional Materials N2 - Thermoelectric materials utilizing ionic transport open-up entirely new possibilities for the recuperation of waste heat. Remarkably, solid state electrolytes which have entered the focus of battery research in recent years turn-out to be promising candidates also for ionic thermoelectrics. Here, the dynamics of ionic transport and thermoelectric properties of a methacrylate based polymer blend in combination with a lithium salt is analyzed. Impedance spectroscopy data indicates the presence of just one transport mechanism irrespective of lithium salt concentration. In contrast, the temperature dependent ionic conductivity increases with salt concentration and can be ascribed to a Vogel–Fulcher–Tammann (VFT) behavior. The obtained Seebeck coefficients of 2 mV K\(^{−1}\) allow for high power outputs while the polymer matrix maintains the temperature gradient by its low thermal conductivity. Adding multi-walled carbon nanotubes to the polymer matrix allows for variation of the Seebeck coefficient as well as the ionic and electronic conductivities. As a result, a transition between a high temperature VFT regime and a low temperature Arrhenius regime appears at a critical temperature, T\(_{c}\), shifting upon addition of salt. The observed polarity change in Seebeck voltage at T\(_{c}\) suggests a new mode of thermoelectric operation, which is demonstrated by a proof-of-concept mixed electronic-ionic-thermoelectric generator. KW - carbon nanotubes KW - thermoelectric generators KW - thermoelectric characterization KW - polymer electrolytes KW - impedance spectroscopy KW - electrochemistry Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318908 SN - 1616-301X VL - 32 IS - 32 ER - TY - JOUR A1 - Li, Donghai A1 - Shan, Hangyong A1 - Rupprecht, Christoph A1 - Knopf, Heiko A1 - Watanabe, Kenji A1 - Taniguchi, Takashi A1 - Qin, Ying A1 - Tongay, Sefaattin A1 - Nuß, Matthias A1 - Schröder, Sven A1 - Eilenberger, Falk A1 - Höfling, Sven A1 - Schneider, Christian A1 - Brixner, Tobias T1 - Hybridized exciton-photon-phonon states in a transition-metal-dichalcogenide van-der-Waals heterostructure microcavity JF - Physical Review Letters N2 - Excitons in atomically thin transition-metal dichalcogenides (TMDs) have been established as an attractive platform to explore polaritonic physics, owing to their enormous binding energies and giant oscillator strength. Basic spectral features of exciton polaritons in TMD microcavities, thus far, were conventionally explained via two-coupled-oscillator models. This ignores, however, the impact of phonons on the polariton energy structure. Here we establish and quantify the threefold coupling between excitons, cavity photons, and phonons. For this purpose, we employ energy-momentum-resolved photoluminescence and spatially resolved coherent two-dimensional spectroscopy to investigate the spectral properties of a high-quality-factor microcavity with an embedded WSe\(_2\) van-der-Waals heterostructure at room temperature. Our approach reveals a rich multi-branch structure which thus far has not been captured in previous experiments. Simulation of the data reveals hybridized exciton-photon-phonon states, providing new physical insight into the exciton polariton system based on layered TMDs. KW - strong coupling KW - laser spectroscopy KW - transition metal dichalcogenide KW - coherent multidimensional spectroscopy KW - exciton Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-351303 UR - https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.087401 SN - 1079-7114 ET - accepted version ER - TY - THES A1 - Kasper, Christian Andreas T1 - Engineering of Highly Coherent Silicon Vacancy Defects in Silicon Carbide T1 - Erzeugung hochkohärenter Silizium Fehlstellen in Siliziumkarbid N2 - In this work the creation of silicon vacancy spin defects in silicon carbide with predictable properties is demonstrated. Neutron and electron irradiation was used to create silicon vacancy ensembles and proton beam writing to create isolated vacancies at a desired position. The coherence properties of the created silicon vacancies as a function of the emitter density were investigated and a power-law function established. Sample annealing was implemented to increase the coherence properties of existing silicon vacancies. Further, spectral hole burning was used to implement absolute dc-magnetometry. N2 - In dieser Arbeit wird die Erzeugung von Silizium Fehlstellen in Siliziumkarbid mit vorhersagbaren Eigenschaften nachgewiesen. Neutronen- und Elektronenbestrahlung wurden zur Erzeugung von Ensembles von Silizium Fehlstellen verwendet, während isolierte Fehlstellen an einer gewünschten Position mit Hilfe eines Protonenstrahls erzeugt wurden. Die Kohärenz der erzeugten Silizium Fehlstellen wurde in Abhängigkeit der Emitterdichte untersucht und eine Gesetzmäßigkeit hierfür eingeführt. Um die Kohärenz der Silizium Fehlstellen zu erhöhen, wurden Annealing Experimente durchgeführt. Des Weiteren wurde spektrales Holeburning verwendet, um absolute DC-Magnetometrie nachzuweisen. KW - Störstelle KW - Siliciumcarbid KW - Kohärenz KW - Irradiation KW - Color Center KW - Spin defect KW - Bestrahlung KW - Farbzentrum KW - Spin Defekt Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-237797 ER - TY - THES A1 - Zipf, Matthias T1 - Berührungslose Temperaturmessung an Gasen und keramisch beschichteten Oberflächen bei hohen Temperaturen T1 - Non-contact temperature measurement of gases and ceramic coated surfaces N2 - Stationäre Gasturbinen können von großer Bedeutung für die Verlangsamung des Klima-wandels und bei der Bewältigung der Energiewende sein. Für die Weiterentwicklung von Gasturbinen zu höheren Betriebstemperaturen und damit einhergehend zu höheren Wirkungs-graden werden berührungslose Messverfahren zur Ermittlung der Oberflächentemperatur von Turbinenschaufeln und der Gastemperatur der heißen Verbrennungsgase während des Be-triebs benötigt. Im Rahmen dieser Arbeit werden daher Methoden der berührungslosen Tem-peraturmessung unter Verwendung von Infrarotstrahlung untersucht. Die berührungslose Messung der Oberflächentemperatur moderner Turbinenschaufeln muss aufgrund derer infrarot-optischer Oberflächeneigenschaften im Wellenlängenbereich des mitt-leren Infrarots durchgeführt werden, in welchem die Turbinenbrenngase starke Absorptions-banden aufweisen. Zur Entwicklung eines adäquaten Strahlungsthermometers für diesen Zweck wurden im Rahmen dieser Arbeit daher durch Ermittlung von Transmissionsspektren von Kohlenstoffdioxid und Wasserdampf bei hohen Temperaturen und Drücken in einer ei-gens hierfür konstruierten Heißgas-Messzelle zunächst Wellenlängenbereiche identifiziert, in welchen die geplanten Messungen möglich sind. Anschließend wurde der Prototyp eines ent-sprechend konfigurierten Strahlungsthermometers im Zuge des Testlaufes einer vollskaligen Gasturbine erfolgreich erprobt. Weiterhin wurden im Rahmen dieser Arbeit zwei mögliche Verfahren zur berührungslosen Gastemperaturmessung untersucht. Das erste untersuchte Verfahren setzt ebenfalls auf Strah-lungsthermometrie. Dieses Verfahren sieht vor, aufgrund der Temperaturabhängigkeit des spektralen Transmissionsgrades in den Randbereichen von gesättigten Absorptionsbanden von Gasen aus der in diesen Bereichen transmittierten spektralen Strahldichte auf die Gastempera-tur zu schließen. Im Rahmen dieser Arbeit wurden Voruntersuchungen für dieses Tempera-turmessverfahren durchgeführt. So konnten auf der Grundlage von experimentell ermittelten Transmissionsspektren von Kohlenstoffdioxid bei Drücken zwischen 5 kPa und 600 kPa und Gastemperaturen zwischen Raumtemperatur und 1073 K für das geplante Verfahren nutzbare Wellenlängenintervalle insbesondere im Bereich der Kohlenstoffdioxid-Bande bei 4,26 µm identifiziert werden. Das zweite im Rahmen dieser Arbeit untersuchte Verfahren zur berührungslosen Gastem-peraturmessung basiert auf der Temperaturabhängigkeit der Wellenlängenposition der Trans-missionsminima der Absorptionsbanden von infrarot-aktiven Gasen. Im Hinblick darauf wur-de dieses Phänomen anhand von experimentell bestimmten hochaufgelösten Transmissions-spektren von Kohlenstoffdioxid überprüft. Weiterhin wurden mögliche Wellenlängenbereiche identifiziert und hinsichtlich ihrer Eignung für das geplante Verfahren charakterisiert. Als am vielversprechendsten erwiesen sich hierbei Teilbanden in den Bereichen um 2,7 µm und um 9,2 µm. Unter Beimischung von Stickstoff mit Partialdrücken von bis zu 390 kPa erwies sich zudem auch die Bande bei 4,26 µm als geeignet. Die im Rahmen dieser Arbeit experimentell ermittelten Transmissionsspektren konnten dar-über hinaus schließlich durch Vergleich mit entsprechenden HITRAN-Simulationen verifiziert werden. N2 - Stationary gas turbines can be of significant importance for slowing down climate change and for the handling of the energy transition. The goal of the further development of gas tur-bines is to increase the operating temperatures and in consequence the efficiency factor. For this purpose, non-contact measurement methods are required to determine the surface temper-ature of turbine blades and the gas temperature of the hot combustion gases during operation. Therefore, methods of non-contact temperature measurement using infrared radiation are in-vestigated in this work. Due to the infrared-optical surface properties of modern turbine blades, non-contact tem-perature measurement has to be carried out in the mid-infrared wavelength range, where com-bustion gases of gas turbines have strong absorption bands. In order to develop an adequate radiation thermometer for this purpose, as a first step in this work, wavelength ranges were identified by determining the transmission spectra of carbon dioxide and water vapor at high temperatures and pressures in which the planned measurements are possible. Therefore, a spe-cial high-temperature high-pressure gas cell was developed. Then the prototype of a radiation thermometer, which was configured for measurements in the wavelength region identified before, was successfully tested in a full-scale gas turbine. Furthermore, two possible methods for non-contact gas temperature measurement were in-vestigated in the scope of this work. The first method examined also relies on radiation ther-mometry. Within this method, it is planned to obtain the gas temperature from the measure-ment of the spectral radiance that is transmitted in the wavelength region of the edge of a sat-urated absorption band of the gas, due to the temperature dependence of the spectral transmit-tance in this wavelength region. In this work, preliminary investigations for this temperature measurement method were carried out. Based on experimentally determined transmission spectra of carbon dioxide at pressures between 5 kPa and 600 kPa and at temperatures be-tween room temperature and 1073 K, wavelength intervals were identified that are suitable for the planned measurement method. Especially in the region of the carbon dioxide band at 4.26 µm, appropriate intervals could be found. The second method for non-contact gas temperature measurement investigated in this the-sis is based on the temperature dependence of the wavelength position of the transmission minima of the absorption bands of infrared-active gases. Therefore, this phenomenon was in-vestigated using experimentally determined high-resolution transmission spectra of carbon dioxide. Furthermore, suitable wavelength ranges with appropriate absorption bands were identified and characterized. The most promising sub-bands were found in the wavelength regions around 2.7 µm and 9.2 µm. Under addition of nitrogen with partial pressures up to 390 kPa, the carbon dioxide band at 4.26 µm also turned out to be suitable for the planned temperature measurement method. Finally, the experimentally gathered transmission spectra, which were obtained in the scope of this work, could be verified by a comparison with corresponding HITRAN-simulations. KW - Pyrometrie KW - Gas KW - thermal barrier coating Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-240248 ER - TY - THES A1 - Hammer, Sebastian Tobias T1 - Influence of Crystal Structure on Excited States in Crystalline Organic Semiconductors T1 - Einfluss der Kristallstruktur auf angeregte Zustände in kristallinen organischen Halbleitern N2 - This thesis focused on the influence of the underlying crystal structure and hence, of the mutual molecular orientation, on the excited states in ordered molecular aggregates. For this purpose, two model systems have been investigated. In the prototypical donor-acceptor complex pentacene-perfluoropentacene (PEN-PFP) the optical accessibility of the charge transfer state and the possibility to fabricate highly defined interfaces by means of single crystal templates enabled a deep understanding of the spatial anisotropy of the charge transfer state formation. Transferring the obtained insights to the design of prototypical donor-acceptor devices, the importance of interface control to minimize the occurrence of charge transfer traps and thereby, to improve the device performance, could be demonstrated. The use of zinc phthalocyanine (ZnPc) allowed for the examination of the influence of molecular packing on the excited electronic states without a change in molecular species by virtue of its inherent polymorphism. Combining structural investigations, optical absorption and emission spectroscopy, as well as Franck-Condon modeling of emission spectra revealed the nature of the optical excited state emission in relation to the structural \(\alpha \) and \(\beta \) phase over a wide temperature range from 4 K to 300 K. As a results, the phase transition kinetics of the first order \(\alpha \rightarrow \beta\) phase transition were characterized in depth and applied to the fabrication of prototypical dual luminescent OLEDs. N2 - Ziel dieser Arbeit war es, den Einfluss der zugrunde liegenden Kristallstruktur und der damit einhergehenden molekularen Anordnung auf die angeregten Zustände in molekularen Aggregaten zu untersuchen. Zu diesem Zweck wurden zwei Modellsysteme ausgewählt. Der optisch anregbare und detektierbare Ladungstransferzustand im Donor-Akzeptor Komplex Pentacen-Perfluoropentacen (PEN-PFP) und die Möglichkeit, hoch definierte kristalline Grenzflächen herzustellen, ermöglichten detaillierte Einblicke in die räumlich anisotrope Ausbildung des Ladungstransferzustands. Durch Ausnutzen der gewonnenen Erkenntnisse beim Design von Bauteilen auf Basis dieser Donor-Akzeptor Grenzflächen konnte gezeigt werden, wie wichtig die morphologische Kontrolle ist, um das Auftreten von Fallenzuständen in Zusammenhang mit solchen Ladungstransferprozessen zu minimieren und damit die elektronischen Bauteileigenschaften zu verbessern. Für Zinkphthalocyanin (ZnPc) und dem ihm eigenen Polymorphismus konnte der Einfluss der molekularen Packung auf angeregte Zustände untersucht werden, ohne die chemische Struktur zu verändern. Durch die Kombination von Strukturuntersuchungen, optischer Absorptions- und Emissionsspektroskopie und Franck-Condon Modellierungen wurde der Ursprung der Emission der angeregten Zustände in der strukturellen \(\alpha \) und \(\beta \)Phase über einen großen Temperaturbereich von 4 K bis 300 K offen gelegt. Mithilfe der erlangten Einsichten wurde die Kinetik des \(\alpha \rightarrow \beta\) Phasenübergangs erster Ordnung charakterisiert und zur Herstellung von dual-lumineszenten OLEDs verwendet. KW - Organischer Halbleiter KW - Phthalocyanin KW - Pentacen KW - Ladungstransfer KW - Optoelektronik KW - Exziton KW - Charge-Transfer KW - Donor-Acceptor Interface Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-244019 ER - TY - THES A1 - Elias dos Santos, Graciely T1 - Spin-Orbit Torques and Galvanomagnetic Effects Generated by the 3D Topological Insulator HgTe T1 - Spin-Orbit Torques und galvanomagnetische Effekte, erzeugt durch den 3D-topologischen Isolator HgTe N2 - In meiner Dissertation beschäftigte ich mich mit der Frage, ob der 3D topologische Isolator Quecksilbertellurid (3D TI HgTe) ein geeignetes Material für Spintronik-Anwendungen ist. Wir untersuchten Spin-Bahn-Drehmomente, die auf Elektronen beim Tunneln zwischen HgTe und einem angrenzenden Ferromagneten (Permalloy) einwirken. Zunächst setzten wir die Methode der Ferromagnetresonanz (SOT-FMR) für diese Untersuchungen ein. Im ersten Teil der Dissertation werden die Leser in die mathematische Beschreibung von Spin- Bahn-Drehmomenten in einem Hybridsystem bestehend aus topologischem Isolator (TI) und Ferromagnet (FM) eingeführt. Des Weiteren werden die Probenherstellung und der Messaufbau für SOT-FMR Messungen besprochen. Unsere SOT-FMR Messungen ergaben, dass bei tiefen Temperaturen (T = 4.2 K) die Normalkomponente (bezogen auf der TI-Oberfläche) des Drehmoments groß war. Bei Raumtemperatur konnten im Signal beide Komponenten (parallel und normal zur TI-Oberfläche) beobachtet werden. Aus der Symmetrie der Mixing-Spannung (Abbildungen 3.14 und 3.15) schlossen wir, dass 3D TI HgTe ein Spin-Bahn-Drehmoment auf das Elektronensystem des Permalloys überträgt. Unsere Untersuchungen zeigten darüber hinaus, dass die Effizienz dieser Übertragung mit der anderer vorhandener topologischen Isolatoren vergleichbar ist (siehe Abb. 3.17). Abschließend wurden parasitäre Effekte bei der Abschätzung des Spin-Bahn-Drehmoments bzw. andere Interpretationen des Messsignals und seiner Komponenten (z.B., Thermospannungen) ausführlich diskutiert. Obwohl die hier gezeigten Ergebnisse vermehrt darauf hinweisen, dass der 3D TI HgTe möglicherweise effizient für die Anwendung von Spin-Drehmomenten in angrezenden Ferromagneten ist [1], wird dem Leser weiderholt klargemacht, dass parasitäre Effekte eventuelle das korrekte Schreiben und Lesen der Information in Ferromagneten verunreignigt. Diese sollten auch bei der Interpretation von publizierten Resultaten besonders hohen Spin-Bahn-Drehmomentübertragungen in der Literatur berücksichtigt werden [1–3]. Die Nachteile der SOT-FMR-Messmethode führten zu einerWeiterentwicklung unseres Messkonzepts, bei dem der Ferromagnet durch eine Spin-Valve-Struktur ersetzt wurde. In dieser Messanordnung ist der Stromfluss durch den 3D TI im Gegensatz zu den vorangegangenen Messungen bekannt und die Widerstandsänderung der Spin-Valve-Struktur kann durch den GMR-Effekt ausgelesen werden. Die Ausrichtung der Magnetisierung des Ferromagneten in den SOT-FMR-Experimenten erforderte es, ein magnetisches Feld von bis zu 300 mT parallel zur TI-Oberfläche anzulegen. Motiviert durch diesen Umstand, untersuchten wir den Einfluss eines parallelen Magnetfelds auf den Magnetowiderstand in 3D TI HgTe. Die überraschenden Resultate dieser Messungen werden im zweiten Teil der Dissertation beschrieben. Obwohl nichtmagnetisches Quecksilbertellurid untersucht wurde, oszillierte der transversale Magnetowiderstand (Rxy) mit dem Winkel � zwischen der Magnetfeldrichtung (parallel zur Oberfläche) und der elektrischen Stromflussrichtung im topologischen Isolator. Dieser Effekt ist eine typische Eigenschaft von ferromagnetischen Materialien und wird planarer Hall-Effekt (PHE) genannt[4, 5]. Magnetowiderstands- (MR-)Oszillationen wurden ebenfalls sowohl im Längswiderstand (Rxx) und im transversalen Widerstand (Rxy) über einen weiten Bereich von magnetischen Feldstärken und Ladungsträgerdichten des topologischen Isolators beobachtet. Der PHE wurde bereits zuvor in einem anderen TI-Material (Bi2−xSbxTe3) beschrieben [6]. Als physikalischer Mechanismus wurde von den Autoren Elektronenstreuung an magnetisch polarisierten Streuzentren vorgeschlagen. Wir diskutierten sowohl diesen Erklärungsansatz als auch andere Theorievorschläge in der Literatur [7, 8] kritisch. In dieser Doktorarbeit haben wir versucht, der PHE des 3D TI HgTe durch die Asymmetrie in der Bandstruktur dieses Materials zu erklären. In k.p Bandstrukturrechnungen mit einer 6-Orbital-Basis zeigten wir, dass das Zwischenspiel von Rashba- und Dresselhaus-Spin-Bahn- Wechselwirkung mit dem magnetischen Feld parallel zur TI-Oberfläche zu einer Verformung der Fermikontur des Valenzbands von 3D TI-HgTe führt, welche ihrerseits eine Anisotropie des Leitfähigkeit bedingt. Die benötigten Magnetfeldstärken in diesem Modell waren mit bis zu 40 T jedoch etwa eine Größenordnung größer als jene in unseren Experimenten. Des Weiteren lieferte eine direkte Berechnung der Zustandsdichten für Bin k I und Bin ? I bisher keine klaren Resultate. Die komplizierte Abhängigkeit der Rashba-Spin-Bahn-Kopplung für p-leitendes HgTe [9] machte es außerdem schwierig, diesen Term in die Bandstrukturrechnung zu inkludieren. Trotz umfangreicher Bemühungen, den Ursprung der galvanomagnetischen Effekte im 3D TI HgTe zu verstehen, konnte in dieser Arbeit der Mechanismus des PHE und der MR-Oszillationen nicht eindeutig bestimmt werden. Es gelang jedoch, einige aus der Literatur bekannte Theorien für den PHE und die MR-Oszillationseffekte in topologischen Isolatoren auszuschließen. Die Herausforderung, eine vollständige theoretische Beschreibung zu entwickeln, die allen experimentellen Aspekten (PHE, Gatespannungsabhängigkeit und MR-Oszillationen) gerecht wird, bleibt weiter bestehen. Abschließend möchte die Autorin ihre Hoffnung ausdrücken, den Lesern die Komplexität der Fragestellung näher gebracht zu haben und sie in die Kunst elektrischer Messungen an topologischen Isolatoren bei angelegtem parallelem Magnetfeld initiiert zu haben. N2 - Nature shows us only the tail of the lion. But I have no doubt that the lion belongs with it even if he cannot reveal himself all at once. Albert Einstein In my dissertation, I addressed the question of whether the 3D topological insulator mercury telluride (3D TI HgTe) is a suitable material for spintronics applications. This question was addressed by investigating the SOTs generated by the 3D TI HgTe in an adjacent ferromagnet (Permalloy) by using the ferromagnetic resonance technique (SOT-FMR). In the first part of the dissertation, the reader was introduced to the mathematical description of the SOTs of a hybrid system consisting of a topological insulator (TI) and a ferromagnet (FM). Furthermore, the sample preparation and the measurement setup for the SOT-FMR measurements were discussed. Our SOT-FMR measurements showed that at low temperatures (T = 4.2 K) the out-of-plane component of the torque is dominant. At room temperature, both in-plane and out-of-plane components of the torque could be observed. From the symmetry of the mixing voltage (Figs. 3.14 and 3.15) we could conclude that the 3D TI HgTe may be efficient for the generation of spin torques in the permalloy [1]. The investigations reported here showed that the SOT efficiencies generated by the 3D TI HgTe are comparable with other existent topological insulators (see Fig. 3.17). We also discussed in detail the parasitic effects (such as thermovoltages) that can contribute to the correct interpretation of the spin torque efficiencies. Although the results reported here provide several indications that the 3D TI HgTe might be efficient in exerting spin-torques in adjacent ferromagnets [2], the reader was repeatedly made aware that parasitic effects might contaminate the correct writing and reading of the information in the ferromagnet. These effects should be taken into consideration when interpreting results in the published literature claiming high spin-orbit torque efficiencies [2–4]. The drawbacks of the SOT-FMR measurement method led to a further development of our measurement concept, in which the ferromagnet on top of the 3D TI HgTe was replaced by a spin-valve structure. In contrast with our measurements, in this measurement setup, the current flowing through the HgTe is known and changes in the spin-valve resistance can be read via the GMR effect. Moreover, the SOT-FMR experiments required the application of an in-plane magnetic field up to 300 mT to define the magnetization direction in the ferromagnet. Motivated by this fact, we investigated the influence of an in-plane magnetic field in the magnetoresistance of the 3D TI HgTe. The surprising results of these measurements are described in the second part of the dissertation. Although the TI studied here is non-magnetic, its transversal MR (Rxy) showed an oscillating behavior that depended on the angle between the in-plane magnetic field and the electrical current. This effect is a typical property of ferromagnetic materials and is called planar Hall effect (PHE) [5, 6]. Moreover, it was also shown that the PHE amplitude (Rxy) and the longitudinal resistance (Rxx) oscillate as a function of the in-plane magnetic field amplitude for a wide range of carrier densities of the topological insulator. The PHE was already described in another TI material (Bi2−xSbxTe3) [7]. The authors suggested as a possible mechanism the scattering of the electron off impurities that are polarized by an in-plane magnetic field. We critically discussed this and other theoretical proposed mechanisms existent in the literature [8, 9]. In this thesis, we attempted to explain the origin of the PHE in the 3D TI HgTe by anisotropies in the band structure of this material. The k.p calculations based on 6-orbitals were able to demonstrate that an interplay between Rashba, Dresselhaus, and in-plane magnetic field deforms the Fermi contours of the camel back band of the 3D TI HgTe, which could lead to anisotropies in its conductivity. However, the magnetic fields needed to experimentally observe this effect are as high as 40 T, i.e., one order of magnitude higher than reported in our experiments. Additionally, calculations of the DoS to assess if there is a difference in the states for Bin parallel and Bin perpendicular to the current were, so far, inconclusive. Moreover, the complicated dependence of Rashba in the p-conducting regime of HgTe [10] makes it not straightforward the inclusion of this term in the band structure calculations. Despite the extensive efforts to understand the origin of the galvanomagnetic effects in the 3D TI HgTe, we could not determine a clear mechanism for the origin of the PHE and the MR oscillations studied in this thesis. However, our work clarifies and excludes a few mechanisms reported in the literature as the origin of these effects in the 3D TI HgTe. The major challenge, which still needs to be overcome, is to find a model that simultaneously explains the PHE, the gate dependence, and the oscillations in the magnetoresistance of the 3D TI HgTe as a function of the in-plane magnetic field. To conclude, the author would like to express her hope to have brought the reader closer to the complexity of the questions addressed in this thesis and to have initiated them into the art of properly conducting electrical transport measurements on topological insulators with in-plane magnetic fields. KW - Electrical transport KW - Topologischer Isolator KW - Spintronics KW - Topological Insulators KW - Spin-Orbit-Torque Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-247971 ER - TY - JOUR A1 - Opolka, Alexander A1 - Müller, Dominik A1 - Fella, Christian A1 - Balles, Andreas A1 - Mohr, Jürgen A1 - Last, Arndt T1 - Multi-lens array full-field X-ray microscopy JF - Applied Sciences N2 - X-ray full-field microscopy at laboratory sources for photon energies above 10 keV suffers from either long exposure times or low resolution. The photon flux is mainly limited by the objectives used, having a limited numerical aperture NA. We show that this can be overcome by making use of the cone-beam illumination of laboratory sources by imaging the same field of view (FoV) several times under slightly different angles using an array of X-ray lenses. Using this technique, the exposure time can be reduced drastically without any loss in terms of resolution. A proof-of-principle is given using an existing laboratory metal-jet source at the 9.25 keV Ga K\(_α\)-line and compared to a ray-tracing simulation of the setup. KW - X-ray microscopy KW - full-field microscopy KW - compound refractive X-ray lenses KW - CRLs Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-244974 SN - 2076-3417 VL - 11 IS - 16 ER - TY - THES A1 - Ullherr, Maximilian T1 - Optimization of Image Quality in High-Resolution X-Ray Imaging T1 - Optimierung von Bildqualität in der hochauflösenden Röntgenbildgebung N2 - The SNR spectra model and measurement method developed in this work yield reliable application-specific optima for image quality. This optimization can either be used to understand image quality, find out how to build a good imaging device or to (automatically) optimize the parameters of an existing setup. SNR spectra are here defined as a fraction of power spectra instead of a product of device properties. In combination with the newly developed measurement method for this definition, a close correspondence be- tween theory and measurement is achieved. Prior approaches suffer from a focus on theoretical definitions without fully considering if the defined quantities can be measured correctly. Additionally, discrepancies between assumptions and reality are common. The new approach is more reliable and complete, but also more difficult to evaluate and interpret. The signal power spectrum in the numerator of this fraction allows to model the image quality of different contrast mechanisms that are used in high-resolution x-ray imaging. Superposition equations derived for signal and noise enable understanding how polychromaticity (or superposition in general) affects the image quality. For the concept of detection energy weighting, a quantitative model for how it affects im- age quality was found. It was shown that—depending on sample properties—not detecting x-ray photons can increase image quality. For optimal computational energy weighting, more general formula for the optimal weight was found. In addition to the signal strength, it includes noise and modulation transfer. The novel method for measuring SNR spectra makes it possible to experimentally optimize image quality for different contrast mechanisms. This method uses one simple measurement to obtain a measure for im- age quality for a specific experimental setup. Comparable measurement methods typically require at least three more complex measurements, where the combination may then give a false result. SNR spectra measurements can be used to: • Test theoretical predictions about image quality optima. • Optimize image quality for a specific application. • Find new mechanisms to improve image quality. The last item reveals an important limitation of x- ray imaging in general: The achievable image quality is limited by the amount of x-ray photons interacting with the sample, not by the amount incident per detector area (see section 3.6). If the rest of the imaging geometry is fixed, moving the detector only changes the field of view, not the image quality. A practical consequence is that moving the sample closer to the x-ray source increases image quality quadratically. The results of a SNR spectra measurement represent the image quality only on a relative scale, but very reliable. This relative scale is sufficient for an optimization problem. Physical effects are often already clearly identifiable by the shape of the functional relationship between input parameter and measurement result. SNR spectra as a quantity are not well suited for standardization, but instead allow a reliable optimization. Not satisfying the requirements of standardization allows to use methods which have other advantages. In this case, the SNR spectra method describes the image quality for a specific application. Consequently, additional physical effects can be taken into account. Additionally, the measurement method can be used to automate the setting of optimal machine parameters. The newly proposed image quality measure detection effectiveness is better suited for standardization or setup comparison. This quantity is very similar to measures from other publications (e.g. CNR(u)), when interpreted monochromatically. Polychromatic effects can only be modeled fully by the DE(u). The measurement processes of both are different and the DE(u) is fundamentally more reliable. Information technology and digital data processing make it possible to determine SNR spectra from a mea- sured image series. This measurement process was designed from the ground up to use these technical capabilities. Often, information technology is only used to make processes easier and more exact. Here, the whole measurement method would be infeasible without it. As this example shows, using the capabilities of digital data processing much more extensively opens many new possibilities. Information technology can be used to extract information from measured data in ways that analog data processing simply cannot. The original purpose of the SNR spectra optimization theory and methods was to optimize high resolution x-ray imaging only. During the course of this work, it has become clear that some of the results of this work affect x-ray imaging in general. In the future, these results could be applied to MI and NDT x-ray imaging. Future work on the same topic will also need to consider the relationship between SNR spectra or DE(u) and sufficient image quality.This question is about the minimal image quality required for a specific measurement task. N2 - Das in dieser Arbeit entwickelte Modell und die Messmethode für SNR Spektren ergeben zuverlässige anwendungsspezifische Optima für die Bildqualität. Diese Optimierung kann verwendet werden, entweder um Bildqualität zu verstehen, um herauszufinden wie ein gutes Bildgebungsgerät gebaut werden kann oder um die Parameter eines existierenden Aufbaus (automatisch) festzulegen. ... KW - Bildqualität KW - Bildgebendes Verfahren KW - Computertomografie KW - x-ray imaging KW - x-ray microscopy KW - image quality KW - signal to noise ratio KW - computed tomography KW - x-ray inline phase contrast Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-231171 ER - TY - THES A1 - Schummer, Bernhard T1 - Stabilisierung von CdS Nanopartikeln mittels Pluronic P123 T1 - Stabilization of CdS nanoparticles using Pluronic P123 N2 - Ziel dieser Arbeit war die Stabilisierung von Cadmiumsulfid CdS mit Pluronic P123, einem Polymer. CdS ist ein Halbleiter, der zum Beispiel in der Photonik und bei optischen Anwendungen eingesetzt wird und ist deshalb äußerst interessant, da seine Bandlücke als Nanopartikel verschiebbar ist. Für die Photovoltaik ist es ein attraktives Material, da es im sichtbaren Licht absorbiert und durch die Bandlückenverschiebung effektiver absorbieren kann. Dies ist unter dem Namen Quantum Size Effekt bekannt. Als Feststoff ist CdS für einen solchen Anwendungsbereich weniger geeignet, zumal der Effekt der Bandlückenverschiebung dort nicht auftritt. Wissenschaftler bemühen sich deshalb CdS als Nanopartikeln zu stabilisieren, weil CdS in wässrigen Lösungen ein stark aggregierendes System, also stark hydrophob ist. Es wurden zwei Kriterien für die erfolgreiche Stabilisierung von CdS festgelegt. Zum einen muss das Cds homogen im Medium verteilt sein und darf nicht agglomerieren. Zum anderen, müssen die CdS Nanopartikel kleiner als 100 A sein. In meiner Arbeit habe ich solche Partikel hergestellt und stabilisiert, d.h. verhindert, dass die Partikel weiterwachsen und gleichzeitig ihre Bandlücke verschoben wird. Die Herausforderung liegt nicht in der Herstellung, aber in der Lösung von CdS im Trägerstoff, da CdS in den meisten Flüssigkeiten nicht löslich ist und ausfällt. Die Stabilisierung in wässrigen Lösungen wurde das erste Mal durch Herrn Prof. Dr. Rempel mit Ethylendiamintetraessigsäure EDTA erfolgreich durchgeführt. Mit EDTA können jedoch nur sehr kleine Konzentrationen stabilisiert werden. Zudem können Parameter wie Größe und Geschwindigkeit der Reaktion beim Stabilisieren der CdS-Nanopartikel nicht angepasst oder beeinflusst werden. Dieses Problem ist dem, vieler medizinischer Wirkstoffe sehr ähnlich, die in hohen Konzentrationen verabreicht werden sollen, aber nicht oder nur schwer in Wasser löslich sind (Bsp. Kurkumin). Ein vielversprechender Lösungsweg ist dort, die Wirkstoffe in große Trägerpartikel (sog. Mizellen) einzuschleusen, die ihrerseits gut löslich sind. In meiner Arbeit habe ich genau diesen Ansatz für CdS verfolgt. Als Trägerpartikel/Mizelle wurde das bekannte Copolymer Pluronic P123 verwendet. Aus dieser Pluronic Produktreihe wird P123 gewählt, da es die größte Masse bei gleichzeitig höchstem Anteil von Polypropylenoxid PPO im Vergleich zur Gesamtkettenlänge hat. P123 ist ein ternäres Polyether oder Dreiblockkopolymer und wird von BASAF industriell produziert. Es besteht aus drei Böcken, dem mittlere Block Polypropylenoxid PPO und den beiden äußeren Blöcken Polyethylenoxid PEO. Der Buchstabe P steht für pastös, die ersten beiden Ziffern in P123 mit 300 multipliziert ergeben das molare Gewicht und die letzte Ziffer mit 10 multipliziert entspricht dem prozentualen Gewichtsanteil PEO. Die Bildung von Mizellen aus den P123 Molekülen kann bewusst über geringe Temperaturänderungen gesteuert werden. Bei ungefähr Raumtemperatur liegen Mizellen vor, die sich bei höheren Temperaturen von sphärischen in wurmartige Mizellen umwandeln. Oberhalb einer Konzentration von 30 Gewichtsprozent wtp bilden die Mizellen außerdem einen Flüssigkristall. Ich habe in meiner Arbeit zunächst P123 mit Hilfe von Röntgenstreuung untersucht. Anders als andere Methoden gibt Röntgenstreuung direkten Aufschluss über die Morphologie der Stoffe. Röntgenstreuung kann die Mischung von P123 mit CdS abbilden und lässt darauf schließen, ob das Ziel erreicht werden konnte, stabile CdS Nanopartikel in P123 zu binden. Für die Stabilisierung der Nanopartikel ist es zunächst notwendig die richtigen Temperaturen für die Ausgangslösungen und gemischten Lösungen zu finden. Dazu muss P123 viel genauer untersucht werden, als der momentane Kenntnisstand in der Literatur. Zu diesem Zweck als auch für die Analyse des stabilisierten CdS habe ich ein neues Instrument am LRM entwickelt, sowie eine temperierbare Probenumgebung für Flüssigkeiten fürs Vakuum, um morphologische Eigenschaften aus Streuamplituden und -winkeln zu entschlüsseln. Diese Röntgenstreuanlage wurde konzipiert und gebaut, um auch im Labor P123 in kleinen Konzentrationen messen zu können. Röntgenkleinwinkelstreuung eignet sich besonders als Messmethode, da die Probe mit einer hohen statistischen Relevanz in Flüssigkeit und in verschiedenen Konzentrationen analysiert werden kann. Für die Konzentrationen 5, 10 und 30 wtp konnte das temperaturabhängige Verhalten von P123 präzise mit Röntgenkleinwinkelstreuung SAXS gemessen und dargestellt werden. Für 5 wtp konnten die Größen der Unimere und Mizellen bestimmt werden. Trotz der nicht vorhandenen Absolutkalibration für diese Konzentration konnten dank des neu eingeführten Parameters kappa eine Dehydrierung der Mizellen mit steigender Temperatur abgeschätzt, sowie eine Hysterese zwischen dem Heizen und Abkühlen festgestellt werden. Für die Konzentration von 10 wtp wurden kleinere Temperaturschritte gewählt und die Messungen zusätzlich absolut kalibriert. Es wurden die Größen und Streulängendichten SLD der Unimere und Mizellen präzise bestimmt und ein vollständiges Form-Phasendiagramm erstellt. Auch für diese Konzentration konnte eine Hysterese eindeutig an der Größe, SLD und am Parameter kappa gezeigt werden, sowie eine Dehydrierung des Mizellenkerns. Dies beweist, dass der Parameter kappa geeignet ist, um bei nicht absolut kalibrierten Messungen, Aussagen über die Hydrierung und Hysterese komplexer Kern-Hülle Modelle zu machen. Für die Konzentration von 30 wtp konnte zwischen 23°C und 35°C eine FCC Struktur nachgewiesen werden. Dabei vergrößert sich die Gitterkonstante der FCC Struktur von 260 A auf 289 A in Abhängigkeit der Temperatur. Durch das Mischen zweier Lösungen, zum einen CdCl2 und 30 wtp P123 und zum anderen Na2S und 30 wtp P123, konnte CdS erfolgreich stabilisiert werden. Mit einer Kamera wurde die Gelbfärbung der Lösung, und somit die Bildung des CdS, in Abhängigkeit der Zeit untersucht. Es konnte festgestellt werden, dass das Bilden der CdS Nanopartikel je nach Konzentration und Temperierprogramm zwischen 30 und 300 Sekunden dauert und einer logistischen Wachstumsfunktion folgt. Höhere Konzentrationen CdS bewirken einen schnelleren Anstieg der Wachstumsfunktion. Mittels UV-Vis Spektroskopie konnte gezeigt werden, dass die Bandlücke von CdS mit steigender Konzentration konstant bei 2,52 eV bleibt. Eine solche Verschiebung der Bandlücke von ungefähr 0,05 eV im Vergleich zum Festkörper, deutet auf einen CdS Partikeldurchmesser von 80A hin. Mit SAXS konnte gezeigt werden, dass sich die flüssigkristalline Struktur des P123 bei zwei verschiedenen Konzentrationen CdS, von 0,005 und 0,1 M, nicht ändert. Das CdS wird zwischen den Mizellen, also durch die Bildung des Flüssigkristalls, und im Kern der Mizelle aufgrund seiner Hydrophobizität stabilisiert. Die Anfangs definierten Kriterien für eine erfolgreiche Stabilisierung wurden erfüllt. P123 ist ein hervorragend geeignetes Polymer, um hydrophobes CdS, sowohl durch die Bildung eines Flüssigkristalls, als auch im Kern der Mizelle zu stabilisieren. N2 - Aim of this work was the stabilization of cadmium sulphide CdS with Pluronic P123, a polymer. CdS is a semiconductor, which is used for photonics and for optical applications. It is highly interesting since its band gap can be shifted if it has the size of a nanoparticle. Due to this band gap shift and the fact that CdS is absorbing in the visible range, it is highly attractive material. This is known as the quantum size effect. As a solid, CdS is less interesting in this area because of the non-existing band gap shift. Scientists endeavor to stabilize CdS as a nanoparticle, since CdS is hydrophobic in aqueous solutions and thus a strongly aggregating system. Two criteria of a successful stabilization process were set. Firstly, CdS has to be homogeneously distributed in the solution and must not aggregate. Secondly, the nanoparticles must be smaller then 100A. During my thesis I produced such particles and stabilized them homogeneously in an aqueous solution, which meant to hinder the further growth of those nanopaticles while shifting their band gap. The challenge is not the production, but the encapsulation of CdS in a carrier, since CdS is not soluble in most solutions and precipitates. Such a stabilization in an aqueous solution was succeeded by Prof. Dr. Rempel with ethylenediaminetetraacetic acid EDTA as a stabilizer for the first time. But with EDTA only very small concentrations of CdS can be stabilized. Moreover, properties like size and reaction speed during the stabilization of the CdS nanoparticles cannot be adjusted or influenced. This problem is also known from medical agents, which should be administered in high doses, but are not or barely soluble in water like Curcumin. A promising solution is to encapsulate these medical agents in big carrier, so-called micelles, which themselves are soluble in water. In my thesis I followed this approach for CdS. As a carrier/micelle the well known copolymer Pluronic P123 was used. Compared to other Pluronics, P123 was chosen since it offers the biggest mass with the highest proportion of polypropylene oxide PPO compared to the total chain length. P123 is a ternary polyether and is produced industrially by BASF. It consists of three blocks, where the middle one is PPO and the outer blocks are polyethylene oxide PEO. The letter P stands for pasty while the first two numbers in P123 multiplied with 300 equal the molar mass and the last number multiplied with 10 equals the mass proportion of PEO. The formation of micelles can be triggered on purpose with a change in temperature. Micelles are present at approximately room temperature \cite{Manet2011}, which transform from spherical to worm-like micelles at higher temperatures. Above a certain concentration of 30 weight percent, the micelles will form a liquid crystal. In my work I first examined P123 with X-ray scattering. Unlike other methods, X-ray scattering gives direct information about the morphology of the substances. X-ray scattering can also be used to study the mixture of P123 with CdS and indicates, whether the goal of encapsulate stable CdS nanoparticles in P123 could be achieved. To stabilize the nanoparticles, it is first necessary to find the right temperatures for both the staring point and the end point of the stabilization process. For this purpose, P123 has to be examined much more precisely than the current state of knowledge in the literature. For this purpose as well as for the analysis of the stabilized CdS, I have developed a new instrument at the chair of X-ray microscopy, as well as a temperature controllable sample holder for liquids in vacuum to decipher morphological properties from scattering amplitudes and angles. This X-ray scattering system was designed and built in order to be able to measure P123 in small concentrations in the laboratory. Small-angle X-ray scattering is particularly suitable as a measurement method, since the sample can be analyzed with a high statistical relevance in liquid and in various concentrations. For the concentrations 5, 10 and 30 wtp, the temperature-dependent behavior of P123 could be precisely measured and presented using small-angle X-ray scattering. The sizes of the unimers and micelles could be determined for 5 wtp without an absolute calibration. With a newly introduced parameter kappa, the dehydration of the micelles with increasing temperature could be estimated, despite the lack of the absolute calibration for this concentration, as well as a hysteresis between heating and cooling. Smaller temperature steps were chosen for the concentration of 10 wtp, furthermore the measurements were also absolutely calibrated. The sizes and scattering length densities SLDs of the unimers and micelles were precisely determined and a complete shape-phase diagram was created. Also for this concentration, a hysteresis was clearly shown in terms of size, SLD and the parameter kappa, as well as dehydration of the micellar nucleus. This proves that the parameter kappa is suitable for making statements about the hydrogenation and hysteresis of complex core-shell models in the case of measurements that are not absolutely calibrated. For the concentration of 30 wtp an FCC structure could be detected between 23°C and 35°C. The lattice constant of the FCC structure increases from 260 A to 289 A depending on the temperature. By mixing two solutions, CdCl2 in a 30 wtp P123 and Na2S in 30 wtp P123, CdS could be successfully stabilized. The yellow coloration of the solution, and thus the formation of CdS, was examined as a function of time with the help of a camera. It was found that the formation of the CdS nanoparticles takes between 30 and 300 seconds, depending on the concentration and temperature protocol and follows a logistical growth function. Higher concentrations of CdS cause a more rapid increase in growth function. Using UV-Vis spectroscopy it could be shown that the band gap of CdS remains constant at 2.52 eV with increasing concentration. The shift in the band gap of approximately 0.05 eV compared to the solid state, indicates a CdS particle diameter of 80 A. With SAXS it could be shown that the liquid-crystalline structure of the P123 does not change at two different concentrations of CdS, of 0.005 and 0.1 M. The CdS is stabilized between the micelles due to the formation of the liquid crystal and in the core of the micelles due to their hydrophobicity. The initially defined criteria for successful stabilization were met. P123 is an excellent polymer to stabilize hydrophobic CdS nanoparticles, both through the formation of a liquid crystal and in the core of the micelles. KW - Röntgen-Kleinwinkelstreuung KW - Polymere KW - Cadmiumsulfid KW - Röntgen-Weitwinkelstreuung KW - Nanopartikel KW - Stabilisierung Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-238443 ER - TY - THES A1 - Metzger, Christian Thomas Peter T1 - Development of photoemission spectroscopy techniques for the determination of the electronic and geometric structure of organic adsorbates T1 - Entwicklung von Photoemissionsmethoden zur Bestimmung der elektronischen und geometrischen Struktur von organischen Adsorbaten N2 - The projects presented in this thesis cover the examination of the electronic and structural properties of organic thin films at noble metal-organic interfaces. Angle-resolved photoemission spectroscopy is used as the primary investigative tool due to the connection of the emitted photoelectrons to the electronic structure of the sample. The surveyed materials are of relevance for fundamental research and practical applications on their own, but also serve as archetypes for the photoemission techniques presented throughout the four main chapters of this thesis. The techniques are therefore outlined with their adaptation to other systems in mind and a special focus on the proper description of the final state. The most basic description of the final state that is still adequate for the evaluation of photoemission data is a plane wave. Its simplicity enables a relatively intuitive interpretation of photoemission data, since the initial and final state are related to one another by a Fourier transform and a geometric factor in this approximation. Moreover, the initial states of some systems can be reconstructed in three dimensions by combining photoemission measurements at various excitation energies. This reconstruction can even be carried out solely based on experimental data by using suitable iterative algorithms. Since the approximation of the final state in the photoemission process by a plane wave is not valid in all instances, knowledge on the limitations of its applicability is indispensable. This can be gained by a comparison to experimental data as well as calculations with a more detailed description of the photoemission final state. One possible appraoch is based on independently emitting atoms where the coherent superposition of partial, atomic final states produces the total final state. This approach can also be used for more intricate studies on organic thin films. To this end, experimental data can be related to theoretical calculations to gain extensive insights into the structural and electronic properties of molecules in organic thin films. N2 - Die in dieser Arbeit vorgestellten Projekte behandeln die Untersuchung der elektronischen und strukturellen Eigenschaften organischer Dünnschichtfilme an Grenzflächen zwischen Edelmetallen und organischen Materialien. Als maßgebliche Messmethode wird die winkelaufgelöste Photoelektronenspektroskopie aufgrund der Verbindung der emittierten Photoelektronen mit der elektronischen Struktur der untersuchten Probe angewandt. Die verwendeten Materialien sind sowohl in der Grundlagenforschung als auch für praktische Anwendungen relevant, und dienen gleichzeitig auch als Beispiele für die Photoemissionstechniken, die in den vier Hauptkapiteln der Arbeit präsentiert werden. Diese Techniken werden daher auch bezüglich ihrer Ubertragbarkeit auf andere Systeme dargestellt, wobei besonders auf die korrekte Beschreibung des Endzustands in der Photoemission eingegangen wird. Die simpelste Beschreibung des Endzustands, die für die Auswertung von Photoemissionsdaten noch sinnvoll verwendet werden kann, stellt eine ebene Welle dar. Ihre Einfachheit ermöglicht eine relativ intuitive Interpretation von Photoemissionsdaten, da Anfangs- und Endzustand in dieser Näherung lediglich durch eine Fourier-Transformation und einen geometrischen Faktor verknüpft sind. Kombiniert man die Photoemissionsmessungen bei unterschiedlichen Anregungsenergien, lassen sich zusätzlich die Anfangszustände bestimmter Systeme in guter Näherung dreidimensional rekonstruieren. Mit Hilfe geeigneter iterativer Algorithmen ist diese Rekonstruktion darüber hinaus mit ausschließlich experimentellen Daten realisierbar. Da die Näherung des Endzustands mit einer ebenen Welle nur unter bestimmten Bedingungen ausreichend präzise das reale System widerspiegelt, ist die Kenntnis über die Grenzen ihrer Anwendbarkeit von Bedeutung. Dies kann über den Vergleich mit experimentellen Daten sowie Rechnungen mit detailierteren Beschreibungen des Endzustands in der Photoemission geschehen. Ein möglicher Ansatz basiert auf unabhängig voneinander emittierenden Atomen, deren kohärent überlagerte, partielle Endzustände den gesamten Endzustand formen. Dieser Ansatz kann des Weiteren für komplexere Untersuchungen an organischen Dünnschichten verwendet werden. So können über den Vergleich von experimentellen Messung mit theoretischen Rechnungen umfangreiche Einblicke auf die strukturellen und elektronischen Eigenschaften der Moleküle in organischen Dünnschichten gewonnen werden. KW - ARPES KW - Molekülphysik KW - Organisches Molekül KW - Photoelektronenspektroskopie KW - LEED KW - Angle-resolved Photoemission Spectroscopy KW - Winkelaufgelöste Photoemissionspektroskopie KW - Molecular Physics KW - Molekülphysik Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-229525 ER - TY - JOUR A1 - Müller, Dominik A1 - Graetz, Jonas A1 - Balles, Andreas A1 - Stier, Simon A1 - Hanke, Randolf A1 - Fella, Christian T1 - Laboratory-Based Nano-Computed Tomography and Examples of Its Application in the Field of Materials Research JF - Crystals N2 - In a comprehensive study, we demonstrate the performance and typical application scenarios for laboratory-based nano-computed tomography in materials research on various samples. Specifically, we focus on a projection magnification system with a nano focus source. The imaging resolution is quantified with common 2D test structures and validated in 3D applications by means of the Fourier Shell Correlation. As representative application examples from nowadays material research, we show metallization processes in multilayer integrated circuits, aging in lithium battery electrodes, and volumetric of metallic sub-micrometer fillers of composites. Thus, the laboratory system provides the unique possibility to image non-destructively structures in the range of 170–190 nanometers, even for high-density materials. KW - nano CT KW - laboratory KW - X-ray KW - 3D reconstruction KW - instrumentation KW - integrated circuits KW - nondestructive testing KW - 3D X-ray microscopy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241048 SN - 2073-4352 VL - 11 IS - 6 ER - TY - JOUR A1 - Ünzelmann, M. A1 - Bentmann, H. A1 - Figgemeier, T. A1 - Eck, P. A1 - Neu, J. N. A1 - Geldiyev, B. A1 - Diekmann, F. A1 - Rohlf, S. A1 - Buck, J. A1 - Hoesch, M. A1 - Kalläne, M. A1 - Rossnagel, K. A1 - Thomale, R. A1 - Siegrist, T. A1 - Sangiovanni, G. A1 - Di Sante, D. A1 - Reinert, F. T1 - Momentum-space signatures of Berry flux monopoles in the Weyl semimetal TaAs JF - Nature Communications N2 - Since the early days of Dirac flux quantization, magnetic monopoles have been sought after as a potential corollary of quantized electric charge. As opposed to magnetic monopoles embedded into the theory of electromagnetism, Weyl semimetals (WSM) exhibit Berry flux monopoles in reciprocal parameter space. As a function of crystal momentum, such monopoles locate at the crossing point of spin-polarized bands forming the Weyl cone. Here, we report momentum-resolved spectroscopic signatures of Berry flux monopoles in TaAs as a paradigmatic WSM. We carried out angle-resolved photoelectron spectroscopy at bulk-sensitive soft X-ray energies (SX-ARPES) combined with photoelectron spin detection and circular dichroism. The experiments reveal large spin- and orbital-angular-momentum (SAM and OAM) polarizations of the Weyl-fermion states, resulting from the broken crystalline inversion symmetry in TaAs. Supported by first-principles calculations, our measurements image signatures of a topologically non-trivial winding of the OAM at the Weyl nodes and unveil a chirality-dependent SAM of the Weyl bands. Our results provide directly bulk-sensitive spectroscopic support for the non-trivial band topology in the WSM TaAs, promising to have profound implications for the study of quantum-geometric effects in solids. Weyl semimetals exhibit Berry flux monopoles in momentum-space, but direct experimental evidence has remained elusive. Here, the authors reveal topologically non-trivial winding of the orbital-angular-momentum at the Weyl nodes and a chirality-dependent spin-angular-momentum of the Weyl bands, as a direct signature of the Berry flux monopoles in TaAs. KW - electronic properties and materials KW - topological insulators Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260719 VL - 12 IS - 1 ER - TY - JOUR A1 - Weissenseel, Sebastian A1 - Gottscholl, Andreas A1 - Bönnighausen, Rebecca A1 - Dyakonov, Vladimir A1 - Sperlich, Andreas T1 - Long-lived spin-polarized intermolecular exciplex states in thermally activated delayed fluorescence-based organic light-emitting diodes JF - Science Advances N2 - Spin-spin interactions in organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) are pivotal because radiative recombination is largely determined by triplet-to-singlet conversion, also called reverse intersystem crossing (RISC). To explore the underlying process, we apply a spin-resonance spectral hole-burning technique to probe electroluminescence. We find that the triplet exciplex states in OLEDs are highly spin-polarized and show that these states can be decoupled from the heterogeneous nuclear environment as a source of spin dephasing and can even be coherently manipulated on a spin-spin relaxation time scale T-2* of 30 ns. Crucially, we obtain the characteristic triplet exciplex spin-lattice relaxation time T-1 in the range of 50 mu s, which far exceeds the RISC time. We conclude that slow spin relaxation rather than RISC is an efficiency-limiting step for intermolecular donor:acceptor systems. Finding TADF emitters with faster spin relaxation will benefit this type of TADF OLEDs. KW - detected magnetic-resonance KW - population oscillations KW - polaron delocalization KW - charge separation KW - hole KW - phosphorescence KW - singlet KW - absorption KW - tryptophan KW - emission Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265508 VL - 7 IS - 47 ER - TY - JOUR A1 - Winter, Patrick M. A1 - Andelovic, Kristina A1 - Kampf, Thomas A1 - Hansmann, Jan A1 - Jakob, Peter Michael A1 - Bauer, Wolfgang Rudolf A1 - Zernecke, Alma A1 - Herold, Volker T1 - Simultaneous measurements of 3D wall shear stress and pulse wave velocity in the murine aortic arch JF - Journal of Cardiovascular Magnetic Resonance N2 - Purpose Wall shear stress (WSS) and pulse wave velocity (PWV) are important parameters to characterize blood flow in the vessel wall. Their quantification with flow-sensitive phase-contrast (PC) cardiovascular magnetic resonance (CMR), however, is time-consuming. Furthermore, the measurement of WSS requires high spatial resolution, whereas high temporal resolution is necessary for PWV measurements. For these reasons, PWV and WSS are challenging to measure in one CMR session, making it difficult to directly compare these parameters. By using a retrospective approach with a flexible reconstruction framework, we here aimed to simultaneously assess both PWV and WSS in the murine aortic arch from the same 4D flow measurement. Methods Flow was measured in the aortic arch of 18-week-old wildtype (n = 5) and ApoE\(^{−/−}\) mice (n = 5) with a self-navigated radial 4D-PC-CMR sequence. Retrospective data analysis was used to reconstruct the same dataset either at low spatial and high temporal resolution (PWV analysis) or high spatial and low temporal resolution (WSS analysis). To assess WSS, the aortic lumen was labeled by semi-automatically segmenting the reconstruction with high spatial resolution. WSS was determined from the spatial velocity gradients at the lumen surface. For calculation of the PWV, segmentation data was interpolated along the temporal dimension. Subsequently, PWV was quantified from the through-plane flow data using the multiple-points transit-time method. Reconstructions with varying frame rates and spatial resolutions were performed to investigate the influence of spatiotemporal resolution on the PWV and WSS quantification. Results 4D flow measurements were conducted in an acquisition time of only 35 min. Increased peak flow and peak WSS values and lower errors in PWV estimation were observed in the reconstructions with high temporal resolution. Aortic PWV was significantly increased in ApoE\(^{−/−}\) mice compared to the control group (1.7 ± 0.2 versus 2.6 ± 0.2 m/s, p < 0.001). Mean WSS magnitude values averaged over the aortic arch were (1.17 ± 0.07) N/m\(^2\) in wildtype mice and (1.27 ± 0.10) N/m\(^2\) in ApoE\(^{−/−}\) mice. Conclusion The post processing algorithm using the flexible reconstruction framework developed in this study permitted quantification of global PWV and 3D-WSS in a single acquisition. The possibility to assess both parameters in only 35 min will markedly improve the analyses and information content of in vivo measurements. KW - 4D flow KW - pulse wave velocity KW - wall shear stress KW - radial KW - self-navigation KW - mouse KW - aortic arch KW - atherosclerosis KW - mice KW - flow KW - plaque KW - CMR KW - quantification KW - microscopy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259152 VL - 23 IS - 1 ER - TY - THES A1 - Adler, Florian Rudolf T1 - Electronic Correlations in Two-dimensional Triangular Adatom Lattices T1 - Elektronische Korrelationen in zweidimensionalen Adatom-Dreiecksgittern N2 - Two-dimensional triangular lattices of group IV adatoms on semiconductor substrates provide a rich playground for the investigation of Mott-Hubbard physics. The possibility to combine various types of adatoms and substrates makes members of this material class versatile model systems to study the influence of correlation strength, band filling and spin-orbit coupling on the electronic structure - both experimentally and with dedicated many-body calculation techniques. The latter predict exotic ground states such as chiral superconductivity or spin liquid behavior for these frustrated lattices, however, experimental confirmation is still lacking. In this work, three different systems, namely the \(\alpha\)-phases of Sn/SiC(0001), Pb/Si(111), and potassium-doped Sn/Si(111) are investigated with scanning tunneling microscopy and photoemission spectroscopy in this regard. The results are potentially relevant for spintronic applications or quantum computing. For the novel group IV triangular lattice Sn/SiC(0001), a combined experimental and theoretical study reveals that the system features surprisingly strong electronic correlations because they are boosted by the substrate through its partly ionic character and weak screening capabilities. Interestingly, the spectral function, measured for the first time via angle-resolved photoemission, does not show any additional superstructure beyond the intrinsic \(\sqrt{3} \times \sqrt{3} R30^{\circ}\) reconstruction, thereby raising curiosity regarding the ground-state spin pattern. For Pb/Si(111), preceding studies have noted a phase transition of the surface reconstruction from \(\sqrt{3} \times \sqrt{3} R30^{\circ}\) to \(3 \times 3\) at 86 K. In this thesis, investigations of the low-temperature phase with high-resolution scanning tunneling microscopy and spectroscopy unveil the formation of a charge-ordered ground state. It is disentangled from a concomitant structural rearrangement which is found to be 2-up/1-down, in contrast to previous predictions. Applying an extended variational cluster approach, a phase diagram of local and nonlocal Coulomb interactions is mapped out. Based on a comparison of theoretical spectral functions with scattering vectors found via quasiparticle interference, Pb/Si(111) is placed in said phase diagram and electronic correlations are found to be the driving force of the charge-ordered state. In order to realize a doped Mott insulator in a frustrated geometry, potassium was evaporated onto the well-known correlated Sn/Si(111) system. Instead of the expected insulator-to-metal transition, scanning tunneling spectroscopy data indicates that the electronic structure of Sn/Si(111) is only affected locally around potassium atoms while a metallization is suppressed. The potassium atoms were found to be adsorbed on empty \(T_4\) sites of the substrate which eventually leads to the formation of two types of K-Sn alloys with a relative potassium content of 1/3 and 1/2, respectively. Complementary measurements of the spectral function via angle-resolved photoemission reveal that the lower Hubbard band of Sn/Si(111) gradually changes its shape upon potassium deposition. Once the tin and potassium portion on the surface are equal, this evolution is complete and the system can be described as a band insulator without the need to include Coulomb interactions. N2 - Zweidimensionale Dreiecksgitter aus Adatomen der vierten Hauptgruppe auf Halbleitersubstraten bieten eine reichhaltige Spielwiese für die Untersuchung von Mott-Hubbard-Physik. Die Möglichkeit, verschiedene Adatomsorten und Substrate zu kombinieren, macht die Mitglieder dieser Materialklasse zu vielseitigen Modellsystemen, um den Einfluss von Korrelationsstärke, Bandfüllung und Spin-Bahn-Kopplung auf die elektronische Struktur zu untersuchen - sowohl im Experiment als auch mit Vielkörper-Rechnungen. Letztere prognostizieren exotische Grundzustände, wie z.B. chirale Supraleitung oder eine Spin-Flüssigkeit, wobei eine experimentelle Bestätigung jeweils noch aussteht. In dieser Dissertation werden drei derartige Systeme, nämlich die \(\alpha\)-Phasen von Sn/SiC(0001), Pb/Si(111) und kaliumdotiertem Sn/Si(111) mittels Rastertunnelmikroskopie und Photoemissionsspektroskopie diesbezüglich untersucht. Die Resultate sind potentiell relevant für Anwendungen im Bereich der Spintronik oder Quantencomputer. Für das erst kürzlich realisierte Gruppe-IV-Dreiecksgitter Sn/SiC(0001) zeigt diese Studie, bei der experimentelle und theoretische Methoden kombiniert werden, dass das System unerwartet starke Korrelationen aufweist, weil sie durch den teilweise ionischen Charakter und das geringe Abschirmungsvermögen des Substrats verstärkt werden. Die Spektralfunktion, die erstmals mit winkelaufgelöster Photoemission gemessen wird, zeigt keine überstruktur außer der intrinsischen \(\sqrt{3} \times \sqrt{3} R30^{\circ}\) Rekonstruktion des Gitters, was die Frage nach der Anordnung der Spins im Grundzustand aufwirft. Bei Pb/Si(111) haben bereits frühere Veröffentlichungen einen Phasenübergang bei der Oberflächenrekonstruktion von \(\sqrt{3}\times\sqrt{3}R30^{\circ}\) auf \(3 \times 3\) bei 86 K festgestellt. In dieser Arbeit zeigen Untersuchungen der Niedrigtemperaturphase mit hochaufgelöster Rastertunnelmikroskopie und -spektroskopie die Entstehung eines ladungsgeordneten Zustands. Dieser wird von der begleitend auftretenden strukturellen Neuordnung getrennt, welche entgegen bisheriger Voraussagen eine 2-hoch/1-tief-Anordnung aufweist. Mit Hilfe einer neu entwickelten Cluster-Rechenmethode wird ein Phasendiagramm erstellt, in dem die lokale und nichtlokale Coulomb-Wechselwirkung gegeneinander aufgetragen sind. Durch einen Vergleich zwischen theoretischen Spektralfunktionen mit Streuvektoren, die mittels Quasiteilchen-Interferenz bestimmt werden, kann Pb/Si(111) in besagtem Phasendiagramm platziert werden. Dadurch stellt sich heraus, dass elektronische Korrelationen die treibende Kraft für den ladungsgeordneten Zustand in Pb/Si(111) sind. Um einen dotierten Mott-Isolator in einem frustrierten System zu verwirklichen, wird Kalium auf das bekannte, korrelierte System Sn/Si(111) aufgebracht. Statt des erwarteten Isolator-Metall übergangs zeigen Messungen mit Rastertunnelspektroskopie, dass die elektronische Struktur von Sn/Si(111) nur lokal in der unmittelbaren Umgebung der Kaliumatome beeinflusst wird, ohne dass das System metallisch wird. Die Kaliumatome werden auf freien \(T_4\)-Plätzen des Substrats adsorbiert, was letztendlich zur Ausbildung von zwei unterschiedlichen Kalium-Zinn-Legierungen mit einem Kaliumanteil von 1/3 bzw. 1/2 führt. Komplementäre Messungen der Spektralfunktion mit winkelaufgelöster Photoemission zeigen, dass das untere Hubbardband von Sn/Si(111) durch die Kalium-Deposition allmählich seine Form verändert. Sobald Zinn und Kalium zu gleichen Teilen auf der Oberfläche vorliegen, ist diese Transformation beendet und das System kann als einfacher Bandisolator ohne die Notwendigkeit, elektronische Korrelationen zu berücksichtigen, beschrieben werden. KW - Rastertunnelmikroskopie KW - ARPES KW - Elektronenkorrelation KW - Oberflächenphysik Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241758 ER - TY - JOUR A1 - Graetz, Jonas T1 - Simulation study towards quantitative X-ray and neutron tensor tomography regarding the validity of linear approximations of dark-field anisotropy JF - Scientific Reports N2 - Tensor tomography is fundamentally based on the assumption of a both anisotropic and linear contrast mechanism. While the X-ray or neutron dark-field contrast obtained with Talbot(-Lau) interferometers features the required anisotropy, a preceding detailed study of dark-field signal origination however found its specific orientation dependence to be a non-linear function of the underlying anisotropic mass distribution and its orientation, especially challenging the common assumption that dark-field signals are describable by a function over the unit sphere. Here, two approximative linear tensor models with reduced orientation dependence are investigated in a simulation study with regard to their applicability to grating based X-ray or neutron dark-field tensor tomography. By systematically simulating and reconstructing a large sample of isolated volume elements covering the full range of feasible anisotropies and orientations, direct correspondences are drawn between the respective tensors characterizing the physically based dark-field model used for signal synthesization and the mathematically motivated simplified models used for reconstruction. The anisotropy of freely rotating volume elements is thereby confirmed to be, for practical reconstruction purposes, approximable both as a function of the optical axis' orientation or as a function of the interferometer's grating orientation. The eigenvalues of the surrogate models' tensors are found to exhibit fuzzy, yet almost linear relations to those of the synthesization model. Dominant orientations are found to be recoverable with a margin of error on the order of magnitude of 1 degrees. Although the input data must adequately address the full orientation dependence of dark-field anisotropy, the present results clearly support the general feasibility of quantitative X-ray dark-field tensor tomography within an inherent yet acceptable statistical margin of uncertainty. KW - applied mathematics KW - applied physics KW - imaging techniques Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261844 VL - 11 ER - TY - THES A1 - Leisegang, Markus T1 - Eine neue Methode zur Detektion ballistischen Transports im Rastertunnelmikroskop: Die Molekulare Nanosonde T1 - A new method for detecting ballistic transport in the scanning tunneling microscope: The molecular nanoprobe N2 - Verlustarmer Ladungsträgertransport ist für die Realisierung effizienter und kleiner elektronischer Bauteile von großem Interesse. Dies hilft entstehende Wärme zu minimieren und den Energieverbrauch gleichzeitig zu reduzieren. Einzelne Streuprozesse, die den Verlust bei Ladungsträgertransport bestimmen, laufen jedoch auf Längenskalen von Nano- bis Mikrometern ab. Um diese detailliert untersuchen zu können, bedarf es Messmethoden mit hoher zeitlicher oder örtlicher Auflösung. Für Letztere gibt es wenige etablierte Experimente, häufig basierend auf der Rastertunnelmikroskopie, welche jedoch verschiedenen Einschränkungen unterliegen. Um die Möglichkeiten der Detektion von Ladungsträgertransport auf Distanzen der mittleren freien Weglänge und damit im ballistischen Regime zu verbessern, wurde im Rahmen dieser Dissertation die Molekulare Nanosonde charakterisiert und etabliert. Diese Messmethode nutzt ein einzelnes Molekül als Detektor für Ladungsträger, welche mit der Sondenspitze des Rastertunnelmikroskops (RTM) wenige Nanometer entfernt vom Molekül in das untersuchte Substrat injiziert werden. Die hohe Auflösung des RTM in Kombination mit der geringen Ausdehnung des molekularen Detektors ermöglicht dabei atomare Kontrolle von Transportpfaden über wenige Nanometer. Der erste Teil dieser Arbeit widmet sich der Charakterisierung der Molekularen Nanosonde. Hierfür werden zunächst die elektronischen Eigenschaften dreier Phthalocyanine mittels Rastertunnelspektroskpie untersucht, welche im Folgenden zur Charakterisierung des Moleküls als Detektor Anwendung finden. Die anschließende Analyse der Potentiallandschaft der Tautomerisation von H2Pc und HPc zeigt, dass die NH- Streckschwinung einem effizienten Schaltprozess zu Grunde liegt. Darauf basierend wird der Einfluss der Umgebung anhand von einzelnen Adatomen sowie des Substrats selbst auf den molekularen Schalter analysiert. In beiden Fällen zeigt sich eine signifikante Änderung der Potentiallandschaft der Tautomerisation. Anschließend wird der Einfluss geometrischer Eigenschaften des Moleküls selbst untersucht, wobei sich eine Entkopplung vom Substrat auf Grund von dreidimensionalen tert-Butyl-Substituenten ergibt. Zusätzlich zeigt sich bei dem Vergleich von Naphthalocyanin zu Phthalocyanin der Einfluss lateraler Ausdehnung auf die Detektionsfläche, was einen nicht-punktförmigen Detektor bestätigt. Im letzten Abschnitt werden zwei Anwendungen der Molekularen Nanosonde präsentiert. Zunächst wird mit Phthalocyanin auf Ag(111) demonstriert, dass die Interferenz von ballistischen Ladungsträgern auf Distanzen von wenigen Nanometern mit dieser Technik detektierbar ist. Im zweiten Teil zeigt sich, dass der ballistische Transport auf einer Pd(110)-Oberfläche durch die anisotrope Reihenstruktur auf atomarer Skala moduliert wird. N2 - Low-loss charge carrier transport is of great interest for the realization of efficient and small electronic components. Improvements would minimize heat generation and reduce energy consumption at the same time. However, individual scattering processes that determine the loss in charge carrier transport occur on length scales from nanometers to micrometers. To study these in detail, measurement methods with high temporal or spatial resolution are required. For the latter, few established experiments exist, often based on scanning tunneling microscopy, which are however subject to various limitations. In order to improve the possibilities of detecting charge carrier transport at distances of the mean free path and thus in the ballistic regime, the molecular nanoprobe was characterized and established in this dissertation. This measurement technique uses a single molecule as a detector for charge carriers, which are injected into the substrate under investigation with the scanning tunneling microscope (STM) tip a few nanometers away from the molecule. The high resolution of the STM combined with the small size of the molecular detector allows atomic control of transport paths over a few nanometers. The first part of this work is devoted to the characterization of the molecular nanoprobe. For this purpose, the electronic properties of three phthalocyanines are first investigated by scanning tunneling spectroscopy, which will be applied in the following studies to characterize the molecular detector. The subsequent analysis of the potential landscape for tautomerization within H2Pc and HPc reveals that the N-H stretching mode underlies an efficient switching process. Based on these findings, the influence of the direct environment on the molecular switch is analyzed by means of individual adatoms as well as the substrate itself. In both cases, a significant change in the potential landscape of the tautomerization is shown. Subsequently, the influence of geometric properties of the molecule itself is investigated, revealing a decoupling from the substrate due to three-dimensional tert-butyl substituents. In addition, the comparison through naphthalocyanine to phthalocyanine reveals the influence of lateral expansion on the detection area, confirming a non-point molecular detector. In the last section, two applications of the molecular nanoprobe are presented. First, using phthalocyanine on Ag(111), it is demonstrated that the interference of ballistic charge carriers at distances of a few nanometers is detectable with this technique. In the second part, it is shown that the anisotropic Pd(110) surface structure leads to a strong modulation of the ballistic transport on the atomic scale. KW - Rastertunnelmikroskopie KW - Ladungstransport KW - Molekül KW - Nanosonde KW - Ballistischer Transport KW - Molekulare Sonde KW - Tautomerisation KW - Molekularer Schalter Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-250762 ER - TY - THES A1 - Sochor, Benedikt T1 - Aggregation behavior of Pluronic P123 in bulk solution and under confinement at elevated temperatures near its cloud point T1 - Aggregationsverhalten von Pluronic P123 in Lösung und an Grenzflächen bei hohen Temperaturen nahe des Trübungspunktes N2 - This thesis aims to investigate the form-phase diagram of aqueous solutions of the triblock copolymer Pluronic P123 focusing on its high-temperature phases. P123 is based on polyethylene as well as polypropylene oxide blocks and shows a variety of di erent temperaturedependent micelle morphologies or even lyotropic liquid crystal phases in aqueous solutions. Besides the already well-studied spherical aggregates at intermediate temperatures, the size and internal structure of both worm-like and lamellar micelles, which appear near the cloud point, is determined using light, neutron and X-ray scattering. By combining the results of time-resolved dynamic light as well as small-angle neutron and X-ray scattering experiments, the underlying structural changes and kinetics of the sphere-to-worm transition were studied supporting the random fusion process, which is proposed in literature. For temperatures near the cloud point, it was observed that aqueous P123 solutions below the critical crystallization concentration gelate after several hours, which is linked to the presence and structure of polymeric surface layers on the sample container walls as shown by neutron re ectometry measurements. Using a hierarchical model for the lamellar micelles including their periodicity as well as domain and overall size, it is possible to unify the existing results in literature and propose a direct connection between the near-surface and bulk properties of P123 solutions at temperatures near the cloud point. N2 - Ziel dieser Dissertation ist die Untersuchung des Form-Phasendiagrams des Dreiblock-Co- polymers Pluronic P123 mit dem besonderen Fokus auf dessen Phasenverhalten bei hohen Temperaturen. P123 besteht aus Polyethylen- und Polypropylenoxid-Blöcken und zeigt in wässriger Lösung vielfältige, temperaturabhängige Mizellformen oder sogar Flüssigkristallphasen. Neben den bereits intensiv untersuchten sphärischen Aggregaten bei mittleren Temperaturen, werden die Größen und inneren Strukturen der wurmartigen und lamellearen Aggregate mittels Licht-, Neutronen- und Röntgenstreumethoden untersucht, welche nahe des Trübungspunktes der Lösungen auftreten. Durch die Kombination von zeitaufgelösten dynamischen Licht- und Kleinwinkelstreuung-Experimenten wurden die strukturellen Änderungen und kinetischen Prozesse während des Kugel-Wurm-Übergangs untersucht, welche den bereits in der Literatur vorgeschlagenen zufälligen Fusionsprozess weiter bestätigen. Es wurde beobachtet, dass wässrige P123-Lösungen unterhalb der kritischen Kristallisationskonzentration nach mehreren Stunden gelieren, was durch Neutronenreflektometrie mit dem Auftreten und der Struktur von oberflächennahen Monolagen auf den Messzellwänden in Verbindung gebracht wurde. Wenn ein hierarchisches Model für die lamellaren Mizellen verwendet wird, das deren Periodizität, Domänen- und Gesamtgröße berücksichtigt, ist es außerdem möglich, die bisherigen Ergebnisse in der Literatur zu vereinigen und eine direkte Verbindung zwischen dem Aggregationsverhalten von P123 auf Oberflächen und in Lösung bei Temperaturen nahe des Trübungspunktes zu ziehen. KW - Weiche Materie KW - Polymerlösung KW - Micelle KW - Röntgenstreuung KW - Neutronenstreuung KW - Soft matter KW - worm-like micelles KW - lamellar micelles KW - neutron reflectometry KW - SAXS KW - SANS KW - DLS KW - Pluronic KW - P123 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246070 ER - TY - THES A1 - Bathon, Thomas T1 - Gezielte Manipulation Topologischer Isolatoren T1 - Deliberate manipulation of topological insulators N2 - Neue physikalische Erkenntnisse vervollständigen die Sicht auf die Welt und erschließen gleichzeitig Wege für Folgeexperimente und technische Anwendungen. Das letzte Jahrzehnt der Festkörperforschung war vom zunehmenden Fokus der theoretischen und experimentellen Erkundung topologischer Materialien geprägt. Eine fundamentale Eigenschaft ist ihre Resistenz gegenüber solchen Störungen, welche spezielle physikalische Symmetrien nicht verletzen. Insbesondere die Topologischen Isolatoren - Halbleiter mit isolierenden Volumen- sowie gleichzeitig leitenden und spinpolarisierten Oberflächenzuständen - sind vielversprechende Kandidaten zur Realisierung breitgefächerter spintronischer Einsatzgebiete. Bis zur Verwirklichung von Quantencomputern und anderer, heute noch exotisch anmutender Konzepte bedarf es allerdings ein umfassenderes Verständnis der grundlegenden, physikalischen Zusammenhänge. Diese kommen vor allem an Grenzflächen zum Tragen, weshalb oberflächensensitive Methoden bei der Entdeckung der Topologischen Isolatoren eine wichtige Rolle spielten. Im Rahmen dieser Arbeit werden daher strukturelle, elektronische und magnetische Eigenschaften Topologischer Isolatoren mittels Tieftemperatur-Rastertunnelmikroskopie und -spektroskopie sowie begleitenden Methoden untersucht. Die Veränderung der Element-Ausgangskonzentration während dem Wachstum des prototypischen Topologischen Isolators Bi2Te3 führt zur Realisierung eines topologischen p-n Übergangs innerhalb des Kristalls. Bei einem spezifischen Verhältnis von Bi zu Te in der Schmelze kommt es aufgrund unterschiedlicher Erstarrungstemperaturen der Komponenten zu einer Ansammlung von Bi- und Te-reichen Gegenden an den gegenüberliegenden Enden des Kristalls. In diesen bildet sich infolge des jeweiligen Elementüberschusses durch Kristallersetzungen und -fehlstellen eine Dotierung des Materials aus. Daraus resultiert die Existenz eines Übergangsbereiches, welcher durch Transportmessungen verifiziert werden kann. Mit der räumlich auflösenden Rastertunnelmikroskopie wird diese Gegend lokalisiert und strukturell sowie elektronisch untersucht. Innerhalb des Übergangsbereiches treten charakteristische Kristalldefekte beider Arten auf - eine Defektunterdrückung bleibt folglich aus. Dennoch ist dort der Beitrag der Defekte zum Stromtransport aufgrund ihres gegensätzlichen Dotiercharakters vernachlässigbar, sodass der topologische Oberflächenzustand die maßgeblichen physikalischen Eigenschaften bestimmt. Darüber hinaus tritt der Übergangsbereich in energetischen und räumlichen Größenordnungen auf, die Anwendungen bei Raumtemperatur denkbar machen. Neben der Veränderung Topologischer Isolatoren durch den gezielten Einsatz intrinsischer Kristalldefekte bieten magnetische Störungen die Möglichkeit zur Prüfung des topologischen Oberflächenzustandes auf dessen Widerstandsfähigkeit sowie der gegenseitigen Wechselwirkungen. Die Zeitumkehrinvarianz ist ursächlich für den topologischen Schutz des Oberflächenzustandes, weshalb magnetische Oberflächen- und Volumendotierung diese Symmetrie brechen und zu neuartigem Verhalten führen kann. Die Oberflächendotierung Topologischer Isolatoren kann zu einer starken Bandverbiegung und einer energetischen Verschiebung des Fermi-Niveaus führen. Bei einer wohldosierten Menge der Adatome auf p-dotiertem Bi2Te3 kommt die Fermi-Energie innerhalb der Volumenzustands-Bandlücke zum Liegen. Folglich wird bei Energien rund um das Fermi-Niveau lediglich der topologische Oberflächenzustand bevölkert, welcher eine Wechselwirkung zwischen den Adatomen vermitteln kann. Für Mn-Adatome kann Rückstreuung beobachtet werden, die aufgrund der Zeitumkehrinvarianz in undotierten Topologischen Isolatoren verboten ist. Die überraschenderweise starken und fokussierten Streuintensitäten über mesoskopische Distanzen hinweg resultieren aus der ferromagnetischen Kopplung nahegelegener Adsorbate, was durch theoretische Berechnungen und Röntgendichroismus-Untersuchungen bestätigt wird. Gleichwohl wird für die Proben ein superparamagnetisches Verhalten beobachtet. Im Gegensatz dazu führt die ausreichende Volumendotierung von Sb2Te3 mit V-Atomen zu einem weitreichend ferromagnetischen Verhalten. Erstaunlicherweise kann trotz der weitläufig verbreiteten Theorie Zeitumkehrinvarianz-gebrochener Dirac-Zustände und der experimentellen Entdeckung des Anormalen Quanten-Hall-Effektes in ähnlichen Probensystemen keinerlei Anzeichen einer spektroskopischen Bandlücke beobachtet werden. Dies ist eine direkte Auswirkung der dualen Natur der magnetischen Adatome: Während sie einerseits eine magnetisch induzierte Bandlücke öffnen, besetzen sie diese durch Störstellenresonanzen wieder. Ihr stark lokaler Charakter kann durch die Aufnahme ihrer räumlichen Verteilung aufgezeichnet werden und führt zu einer Mobilitäts-Bandlücke, deren Indizien durch vergleichende Untersuchungen an undotiertem und dotiertem Sb2Te3 bestätigt werden. N2 - New physical insights make up for a more complete vision onto the world and allow for subsequent experiments and technical implementations. The last decade in solid state physics was increasingly focusing on the theoretical and experimental discovery and investigation of topological materials. A very basic property is their robustness against perturbations not violating certain physical symmetries. Especially Topological Insulators - semiconductors with insulating bulk but conducting and spin-polarized surface states - are promising candidates for the attainment of a wide spectrum of spintronics applications. Till realization of quantum computing and up to now futuristically sounding concepts a deeper understanding of the fundamental physics is required. Since topological properties usually manifest at boundaries, surface sensitive techniques played a substantial role in the exploration of Topological Insulators. Within this thesis structural, electronic and magnetic properties of Topological Insulators are investigated by means of scanning tunneling microscopy and spectrocopy and supporting methods. Variation of the initial elemental concentration in the crystal growth process of the prototypical Topological Insulator Bi2Te3 leads to the realization of a topological p-n junction within the crystal. At a certain elemental ratio in the melt excess of Bi and Te will be obtained at the opposing ends of the crystal due to the different solidification temperatures. In these areas vacancies and substitutions give rise to p- and n-type doping, respectively. This implies the very existence of an intrinsic transition area, which can by verified by transport experiments. The junction area can be localized and structurally as well as spectroscopically examined by means of scanning tunneling microscopy. It can be shown that in the vicinity of this transition region both types of characteristic defects are present. This indicates that defects are not suppressed but compensated in this region. Nevertheless their contribution to bulk transport is minimal because of their opposite doping character, letting the topological surface state dominate the relevant physical properties. Furthermore the transition region meets the energetic and spatial dimensions that are promising for applications at room temperature. Besides the manipulation of Topological Insulators by using intrinsic crystallographic defects, magnetic perturbations are a powerful method to test the robustness of and the interaction with the topological surface state. Since Topological Insulators are initially protected by the time-reversal symmetry, magnetic surface and bulk doping can lift this protection and give rise to novel phenomena. Surface magnetic doping of Topological Insulators with Co- and Mn-adatoms can yield for a rigid band bending and a shift of the Fermi level. At a well defined amount of dopants in the p-type Bi2Te3 the Fermi energy lies in the bulk bandgap. Therefore, at energies close to the Fermi level only the topological surface state is occupied and can mediate inter-adsorbate interactions. In the case of Mn-doping backscattering is observed that is forbidden on undoped Topological Insulators due to the time-reversal symmetry. As evidenced by theory and x-ray magnetic circular dichroism ferromagnetic coupling between adsorbates gives rise to surprisingly strong and focused scattering intensities. However, long-ranging ferromagnetic order is absent but superparamagnetic characteristics can be detected. In contrast to surface doping sufficient bulk doping of Sb2Te3 with V-atoms can give rise to long-range ferromagnetic order. Surprisingly, a spectral bandgap is absent despite the general assumed theoretical framework of time-reversal symmetry gapped Dirac states and the discovery of the quantum anomalous hall effect in similar sample systems. This is figured out to be a direct consequence of the dual nature of the magnetic dopants: while on the one hand opening up a magnetization induced gap, they fill it by creating intragap states. Their local character, visualized by mapping of their spatial distribution, leads to a mobility gap that is confirmed by direct comparison of the undoped and V-doped Topological Insulator by means of Landau level spectroscopy. KW - Rastertunnelmikroskopie KW - Topologischer Isolator KW - Dotierung KW - Magnetismus KW - Röntgendichroismus Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239204 ER - TY - THES A1 - Martin, Konstantin T1 - Current-induced Magnetization Switching by a generated Spin-Orbit Torque in the 3D Topological Insulator Material HgTe T1 - Strom-Induzierte Umorientierung einer Magnetisierung mit Hilfe eines Spin-Bahn Drehmoments auf der Oberfläche des 3D topologischen Isolators HgTe N2 - Magnetic random access memory (MRAM) technology aims to replace dynamic RAM (DRAM) due to its significantly lower power consumption and non-volatility [Dong08]. During the last couple of years the commercial focus was set on spin-transfer torque MRAM (STT-MRAM) systems, where a current is pushed through a ferromagnetic (FM) free layer and a reference layer which are separated by an insulator. The free layer can be set to parallel or anti-parallel depending on the current direction [Kim11]. Unfortunately these currents have to be quite high which could lead to damages of the tunnel barrier of the magnetic tunnel junction resulting in higher power consumption as well as reliability issues. At this point a new effect, where the current is passed below the ferromagnetic layer stack, can be exploited to change the direction of the free layer magnetization. The effect is known as spin-orbit torque (SOT) and describes the transfer of angular momentum onto an adjacent magnetization either by the spin Hall effect (SHE) or inverse spin galvanic effect (iSGE) [Manchon19]. The latter describes a spin accumulation due to a current. This is similar to the process of spin accumulation in TIs, where a current corresponds to an effective spin due to spin-momentum locking [Qi11]. Thus TIs exhibit a high current-to-spin conversion rate, which makes them a promising material system for SOT experiments. Among all TIs it is HgTe, which can be reliably grown as an insulator. This thesis covers the development of a working device for SOT measurements (SOT-device) in a CdTe/CdHgTe/HgTe/CdHgTe heterostructure. It involves the development of a tunnel barrier (ZrOx) as well as the investigation of the behavior of a ferromagnetic layer stack on top of etched HgTe. The main result of this work is the successful construction and evaluation of a working SOT-device, which exhibits the up to date most efficient switching of in-plane magnetized ferromagnetic layer stacks. In order to avoid hybridization between HgTe and the adjacent ferromagnetic atoms, which would cause a breakdown of the topological surface state, it is necessary to implement a thin tunnel barrier in between the TI and free layer [Zhang16]. Aside from hybridization a tunnel barrier avoids shunting of the current, that is pushed on the surface of the HgTe/CdHgTe interface. Thus a bigger part of the current can be used for spin accumulation and, at the same time, the resistance measurement of the ferromagnetic layer stack is not perturbed. In chapter 3 the focus is set on investigating the tunneling characteristics of ZrOx on top of dry etched HgTe. Thin barriers are used as the interaction of the current generated spin and the adjacent magnetization decreases with distance. On the other hand too small insulator thicknesses lead to leakage currents which disturb heavily the measurement of the resistance of the ferromagnetic layer stack. Thus an optimum thickness of 10 ALD cycles (\(d\approx 1.6\rm\, nm\)) is determined which yields a resistance area product of \(R\cdot A \approx 3\rm\, k\Omega\mu m^{2}\). This corresponds to a tunneling resistance of \(R_{T}\approx 20\rm\, k\Omega\) over a structure surface of \(A_{T} = 0.12\rm\, \mu m^2\). Multiple samples with different thicknesses have been produced. All samples have been examined on their tunneling behavior. The resistance area product as a function of thickness shows a linear behavior on a logarithmic scale. Furthermore all working samples show non-linear I-V curves as well as parabolic dI/dV-curves. Additionally the tunneling resistance \(R_{T}\) increases with decreasing temperature. All above mentioned properties are typical for tunnel barriers which do not include pinholes [Jonsson00]. The last part of chapter 3 deals with thermal properties of HgTe. By measuring the second harmonic of a biasing AC current in the channel below the tunnel barrier it is attempted to extract the diffusion thermopower of the heated electrons. Unfortunately the measured signal showed a far superior contribution of the first harmonic. According to electric circuit simulations a small asymmetry in the barrier (penetration and leaving point of electrons) could be responsible for this behavior. A ferromagnetic layer stack, consisting of PY/Cu/CoFe, serves as a sensor for magnetization changes due to external fields and current induced spin accumulations. The layer stack exhibits a giant magnetoresistance (GMR) which has been measured by a resistance bridge. The biggest peculiarity in depositing a GMR stack on top of HgTe is that its easy axis forms along only one of the crystal axes (\((110)\) or \((1\overline{1}0)\)). The reason for this anisotropy is still unclear. Sources such as an influence of the terminating material, miscut, furrows during IBE or sputter ripples have been ruled out. It can be speculated that the surface states due to HgTe might have an influence on the development of this easy axis but this would need further investigation. A consequence of this unexpected anisotropy is that every CdTe/CdHgTe/HgTe/CdHgTe wafer has first to be characterized in SQUID in order to find the easy axis. A ferromagnetic resonance (FMR) measurement confirmed this observation. The shape of the ferromagnetic layer stack is chosen to be an ellipse in order to support the easy axis direction by shape anisotropy. Over 8 million ellipses are used to generate a SQUID signal of \(m > 10^{-5}\rm\, emu\). This is sufficient to extract the main characteristics of an average nano pillar under the influence of an external magnetic field. As in the case of bigger structures the ellipse shaped structure shows a step-like behavior. A measured minor loop confirms the existence of the irreversible anti-parallel stable magnetic state. Furthermore this state persists for both directions at \(m=0\) resulting in an anti-ferromagnetic coupling between Py and CoFe. The geometry of the SOT-device is chosen in such a way that the current induced spin aligns either parallel or anti-parallel to the effective magnetic field \(\vec{B}_{eff}=\vec{B}_{ext}+\vec{B}_{aniso}+\vec{B}_{shape}\), which acts on the pillar. Due to interaction of the spin with the adjacent magnetization of Py the magnetization direction gets changed by a torque \(\vec{T}\). In general this torque can be decomposed into two components a field-like torque \(\vec{\tau}_{FL}\) and a damping-like torque \(\vec{\tau}_{DL}\) [Manchon19]. In the case of TIs \(\vec{T}\) is additionally depending on the z-component of \(\vec{m}\) [Ndiaye17]. In our case the magnetization is lying in the sample plane (\(m_{z}=0\)) which results in \(\vec{\tau}_{DL}=0\). Thus, in the case of \(\vec{S}\parallel\left(\vec{\hat{z}}\times\vec{j}\right)\) and \(\vec{j}\parallel\vec{\hat{y}}\), the only spin dependent effective magnetic field is \(\vec{B}_{FL}=\tau_{FL}\cdot\vec{\hat{x}}\) which is lying parallel or anti-parallel to \(\vec{B}_{eff}\). The evaluation of \(\vec{B}_{FL}\) can therefore be done in the following manner. First a high \(B_{ext}\) has to be set along the easy axis of the pillar. Then \(B_{ext}\) has to be reduced just a few \(\rm\, Oe\) before the switching occurs at the magnetic field \(B_{ext,0}\). At the magnetic field \(\Delta B = B_{ext}-B_{ext,0}\approx 0.5\rm\, Oe\) the lower resistive state should be stable over a longer time range (\(10-30\rm\, min\)) in order to exclude switching due to fluctuations. Now a positive or negative current can be pushed through the channel below the pillar. For one of the two current directions the magnetization of Py switches. It is therefore not a thermal effect that drives the change of \(\vec{m}\). Current densities that are able to switch \(\vec{m}\) at small \(\Delta B\neq 0\) lie in the range of \(j\approx 10^{4}\rm\, A/cm^{2}\). In all experiments the switching efficiency \(\Delta B/j\) decreases with rising \(j\). Furthermore the efficiency as a function of \(j\) depends on the temperature as \(\Delta B/j\) values tend to be up to 20 times higher at \(T=1.8\rm\, K\) and \(j\approx 0\) than at \(T=4.2\rm\, K\). This temperature dependence suggests that switching occurs not due to Oersted fields. Furthermore the Biot-Savart fields had been calculated for four different models: an infinite long rectangular wire, two infinite planes, a full volume and two thin volume planes. Every model shows an efficiency, which is at least three times lower than the observation. The highest efficiencies in our samples show up to 10 times higher values than in heavy-metal/ferromagnets heterostructures. In contrast to measurement procedures of most other groups our method leads to direct determination of SOT parameters like the effective magnetic field \(\vec{B}_{FL}\). Other groups make use of spin-transfer FMR (ST-FMR) where they AC bias their structure and extract SOT parameters (like \(\tau_{FL}\) and \(\tau_{DL}\)) from second harmonics by fitting theoretical models. Material systems consisting of TIs and magnetic insulators (MIs) on the other hand show 10 times higher efficiencies [Khang18,Li19]. In those cases the magnetization points out of the sample plane which is conceptually different from in-plane magnetic anisotropy geometries like in our case. The greatest benefit in-plane magnetic anisotropy systems is its easy realisation [Bhatti17]. Here only an elliptical shape has to be lithographically implemented instead of conducting research on the appropriate combination of material systems that result in perpendicular magnetic anisotropies [Apalkov16]. Despite the fact that in our case only \(\vec{\tau}_{FL}\) acts as the driving force for changing \(m\) our device still exhibits the up to date highest efficiencies in the class of in-plane magnetized anisotropies of all material classes ever recorded. N2 - Magnetic random access memory (MRAM) ist eine Technologie, die darauf abzielt dynamic RAM (DRAM) aufgrund der geringeren Energieaufnahme und ihrer magnetischen Beständigkeit zu ersetzen [Dong08]. In den letzten Jahren wurde der kommerzielle Fokus auf spin-transfer MRAM (STT-MRAM) gelegt. Bei diesen Systemen wird der Strom an zwei durch einen Isolator getrennte Ferromagneten (FM), einer freien Schicht und einer Referenzschicht gelegt. Je nach Stromrichtung kann sich die freie Schicht parallel oder anti-parallel zur Referenzschicht anordnen [Kim11]. Jedoch können die zur Ummagnetisierung notwendigen Ströme so hoch ausfallen, dass die Tunnelbarriere schaden nimmt, wodurch ein höherer Energieverbrauch und unzuverlässiges Verhalten hervorgerufen werden. An dieser Stelle besteht die Möglichkeit einen anderen Effekt auszunutzen, für den der Strom unter der freien Schicht angelegt wird, um die nächstgelegene Magnetisierung zu beeinflussen. Beim sogenannten spin-orbit torque (SOT) wird das magnetische Moment eines zur elektrischen Leitung beitragenden Elektrons auf die darüber liegende Magnetisierung übertragen. Dies geschieht entweder anhand des spin Hall effect (SHE) oder inverse spin galvanic effect (iSGE) [Manchon19]. Letzteres beschreibt eine Spinakkumulation aufgrund eines elektrischen Stromflusses, welche auch bei topologischen Isolatoren (TI) auftritt. Diese speziellen Materialsysteme besitzen leitende Oberflächenzustände, bei denen Impuls- und Spinvektor senkrecht aufeinander stehen (spin-momentum locking) und in der Probenebene liegen [Qi11]. Hieraus resultiert eine hohe Strom-zu-Spin Umwandlungsrate, wodurch sich TIs besonders gut für SOT Experimente eignen. Unter allen TIs ist HgTe das Materialsystem, welches zuverläassig als Isolator gewachsen werden kann. Die vorliegende Arbeit befasst sich mit der Entwicklung und dem Aufbau einer mikrostrukturierten Apparatur zur Bestimmung von SOT Parametern (SOT-Struktur) in einem CdTe/CdHgTe/HgTe/CdHgTe Materialsystem. Es umfasst die Entwicklung einer Tunnelbarriere (ZrOx), sowie die Untersuchung des Verhaltens ferromagnetischer Strukturen auf der Oberfläche von trockengeätztem HgTe. Die Kernaussage dieser Arbeit ist, dass das vorliegende erfolgreich realisierte SOT-device die höchsten bis dato bekannten Effizienzen in der Ummagnetisierung von planar anisotropischen ferromagnetischen Strukturen aufweist. Um die Hybridisierung zwischen HgTe und dem darüber liegenden FM und somit einen Zusammenbruch der Oberflächenzustände zu vermeiden, muss zwischen den beiden Materialien eine Tunnelbarriere eingefügt werden [Zhang16]. Neben der Verhinderung der Hybridisierung, sorgt die Tunnelbarriere für eine Verminderung des Leckstromes, wodurch der größte Teil des elektrischen Stroms zur Spinakkumulation beitragen kann. Zudem werden Störungen bei der Widerstandsmessung des ferromagnetischen Schichtsystems reduziert. Kapitel 3 befasst sich mit der Erforschung von Tunnelcharakteristiken von ZrOx auf trockengeätztem HgTe. Es werden dünne Schichten verwendet, da die Wechselwirkung zwischen Spin und Magnetisierung mit dem Abstand zueinander abnimmt. Andererseits führt eine zu dünne Isolatorschicht zu einem hohen Leckstrom, welcher die Widerstandsmessung der ferromagnetischen Schichtstruktur stark beeinflusst. Folglich wurde eine optimale Isolatordicke bestimmt, die 10 ALD Zyklen (\(d\approx1,6\rm\, nm\)) entspricht und ein Widerstandsflächenprodukt von \(R\cdot A \approx 3\rm\, k\Omega\mu m^{2}\) ergibt. Dies entspricht einem Tunnelwiderstand von \(R_{T}\approx 20\rm\, k\Omega\) bei einer Strukturfläche von \(A_{T} = 0.12\rm\, \mu m^2\). Es werden mehrere Proben unterschiedlicher Dicke hergestellt und auf ihre Tunnelcharakteristiken untersucht. Das Widerstandsflächenprodukt in Abhängigkeit von der Barrierendicke zeigt lineares Verhalten auf einer logarithmischen Skala. Darüber hinaus weisen alle funktionierenden Proben nicht-lineare I-V Kurven und parabolische dI/dV Verläufe auf. Der Tunnelwiderstand \(R_{T}\) steigt mit abnehmender Temperatur. Die genannten Eigenschaften sind typisch für Tunnelbarrieren ohne lokal stark ausgedünnte Stellen (pinholes) [Jonsson00]. Am Ende von Kapitel 3 wird die Möglichkeit zur Bestimmung thermischer Eigenschaften von HgTe erörtert. Hierbei wird das Signal der zweiten Harmonischen eines AC Anregungsstromes, der unterhalb der Tunnelbarriere verläuft, gemessen, um den diffusiven Seebeck Effekt durch die geheizten Elektronen zu bestimmen. Messungen zeigen jedoch, dass das gemessene Signal zum größten Teil aus der ersten Harmonischen besteht. Mit Hilfe von Schaltkreissimulationen kann gezeigt werden, dass dieses Verhalten vor allem der Asymmetrie der Tunnelbarriere (Ein- und Ausstiegspunkt der Elektronen) geschuldet ist. Eine ferromagnetische Schichtstruktur, bestehend aus PY/Cu/CoFe, dient als ein Sensor zur Erfassung von Magnetisierungsänderungen, die durch externe magnetische Felder und Spinakkumulationen hervorgerufen werden. Die erwähnte Schichtstruktur weist einen Riesenmagnetowiderstand (GMR) auf, der mit Hilfe einer Widerstandsbrücke gemessen wird. Die größte Besonderheit bei der Ablagerung einer GMR Schichtstruktur auf trockengeätztem \mt ist die Ausbildung einer leichten Richtung (easy axis) entlang nur einer bestimmten Kristallachse (\((110)\) oder \((1\overline{1}0)\)). Der Grund für diese Anisotropie ist weiterhin unbekannt. Mögliche Ursachen wie der Einfluss des terminierenden Materials, miscut, Furchenbildung während des IBE und Wellenbildung durch Magnetronsputtern konnten ausgeschlossen werden. Es besteht die vage Vermutung, dass die Oberflächenzustände von \mt in Verbindung mit der Ausbildung der easy axis stehen. Dies gilt es jedoch in zukünftigen Studien kritisch zu prüfen. Als Folge dieser unwerwarteten Anisotropie muss jeder neue CdTe/CdHgTe/HgTe/CdHgTe wafer zunächst im SQUID charakterisiert werden, um die easy axis einmalig zu bestimmen. Anhand von ferromagnetischen Resonanzmessungen (FMR) konnten die obigen Beobachtungen bestätigt werden. Die Schichtstrukturen (pillars) weisen eine elliptische Form auf, sodass die Formanisotropie die Bildung einer easy axis entlang einer bestimmten Richtung begünstigt. Über 8 Millionen Ellipsen werden verwendet, um ein SQUID Signal von \(m > 10^{-5}\rm\, emu\) zu generieren. Hierdurch werden die charakteristischen Merkmale eines durchschnittlichen nano pillars unter dem Einfluss eines externen Magnetfeldes bestimmt. Wie auch bei größeren Strukturen weist ein durchschnittlicher pillar eine stufenförmige Hysterese auf. Durch Umkehrung des Magnetfelds am Ort des Zwischenzustandes lässt sich beweisen, dass es sich um einen tatsächlichen irreversiblen stabilen anti-ferromagnetischen Zustand handelt. Dieser Zustand liegt bei beiden Magnetfeldrichtungen für \(m=0\) vor, was zeigt, dass Py und CoFe anti-ferromagnetisch koppeln. Die Geometrie der SOT-Struktur ist so gewählt, dass die strominduzierte Spinakkumulation entweder parallel oder anti-parallel zum effektiven Magnetfeld \(\vec{B}_{eff}=\vec{B}_{ext}+\vec{B}_{aniso}+\vec{B}_{shape}\), welches auf den pillar wirkt. Dieser Spin wechselwirkt mit der Magnetisierung des Py, was eine Richtungsänderung der Magnetisierung durch ein Drehmoment \(\vec{T}\) (torque) bewirkt. Im Allgemeinem lässt sich diese torque in zwei Komponenten, eine feldähnliche (field-like) torque \(\vec{\tau}_{FL}\) und eine dämpfende (damping-like) torque \(\vec{\tau}_{DL}\), aufspalten [Manchon19]. Im Falle von TIs hängt \(\vec{T}\) zusätzlich von der z-Komponente des magnetischen Moments \(\vec{\hat{m}}\) ab [Ndiaye17]. Im hier vorliegenden Fall liegt die Magnetisierung von Py in der Probenebene (\(m_{z}=0\)), wodurch \(\tau_{DL} = 0\). Folglich ergibt sich, unter der Annahme \(\vec{S}\parallel\left(\vec{\hat{z}}\times\vec{j}\right)\) und \(\vec{j}\parallel\vec{\hat{y}}\), als einziges spinabhängiges Magnetfeld \(\vec{B}_{FL}=\tau_{FL}\cdot\vec{\hat{x}}\), welches parallel oder anti-parallel zu \(\vec{B}_{eff}\) liegt. Die Bestimmung von \(\vec{B}_{FL}\) erfolgt somit auf folgende Art und Weise. Zunächst wird ein hohes \(B_{ext}\) entlang der easy axis des nano pillars angelegt. Anschließend muss \(B_{ext}\) soweit reduziert werden bis der magnetische Zustand nur wenige Oe vor dem Umklappprozess bei \(B_{ext,0}\) liegt. An der Stelle \(\Delta B = B_{ext}-B_{ext,0}\approx 0.5\rm\, Oe\) sollte der Zustand mit geringerem GMR für eine längere Zeitspanne (\(10-30\rm\, min\)) erhalten bleiben, um eine Ummagnetisierung aufgrund von Schwankungen auszuschließen. Nun wird ein positiver oder negativer Strom an den unter der GMR-Struktur liegenden Kanal angelegt. Der Umklapprozess der Py Magnetisierung erfolgt für nur eine der beiden Stromrichtungen, wodurch eine Beteiligung thermischer Effekte ausgeschlossen werden kann. Bei \(\Delta B\neq 0\) reichen bereits Stromdichten in der Größenordnung von \(j\approx 10^{4}\rm\, A/cm^{2}\) aus, um eine Ummagnetisierung herbeizuführen. In allen Versuchen sinkt die Effizienz \(\Delta B/j\) mit der Stromdichte. Zudem zeigt \(\Delta B/j\) eine starke Temperaturabhängigkeit, bei der \(\Delta B/j\) Werte für \(T=1.8\rm\, K\) und \(j\approx0\) bis zu 20 mal höher sind als bei \(T=4.2\rm\, K\). Eine solche Temperaturabhängigkeit weist stark darauf hin, dass die Ummagnetisierung nicht durch Biot-Savart Felder hervorgerufen wird. Zudem wurde das durch einen elektrischen Strom generierten Biot-Savart Feld auf vier verschiedene Weisen berechnet. Die hierbei verwendeten Modelle umfassen: einen unendlich langen im Querschnitt rechteckigen Draht, zwei unendlich ausgebreitete Ebenen, ein komplettes Volumen, sowie zwei Ebenen mit geringer Dicke. Bei jedem Modell ist die berechnete Effizienz mindestens drei mal kleiner als die Beobachtung. Die höchsten in dieser Arbeit gemessenen Effizienzen sind bis zu 10 mal höher als in Materialsystemen, die aus Schwermetallen und FM bestehen. Im Gegensatz zu anderen Gruppen werden in dieser Arbeit direkte Messmethoden zur Ermittlung von SOT Parametern (wie \(B_{FL}\)) verwendet. Die meisten dieser Gruppen verlassen sich auf spin-transfer FMR (ST-FMR) Messungen. Dabei wird ein AC Signal zur Anregung verwendet und zeitgleich die zweite Harmonische als Antwort gemessen. Hieraus werden anhand eines theoretischen Modells SOT Parameter (wie \(\tau_{FL}\) und \(\tau_{DL}\)) durch Fits bestimmt. Materialsysteme, die aus TIs und magnetischen Isolatoren (MI) bestehen, weisen dagegen bis zu 10 mal höhere Effizienzen auf [Khang18,Li19]. In diesen Fällen zeigt die Magnetisierung der MI aus der Ebene heraus, was sich konzeptionell von planar anisotropische Magnetisierungen unterscheidet, welche in unseren Geometrien vorliegt. Der Vorteil von planar anisotropischen Magnetisierungen ist ihre einfache Realisierbarkeit [Bhatti17]. Hierbei müssen lediglich elliptische Strukturen lithographisch implementiert werden, während bei Systemen mit senkrechter Magnetisierung eine passende Materialkombination erforscht werden muss [Apalkov16]. Trotz der Tatsache, dass in unserem Fall nur \(\tau_{FL}\) zum Umklappen der Magnetisierung \(m\) beiträgt, weisen unsere SOT-devices die bis dato höchsten gemessenen Effizienzen in der Klasse von in-der-Ebene magnetisierten Schichtstrukturen aller Materialsysteme auf. KW - spin-orbit-torque KW - magnetization KW - mram KW - topological insulator Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-240490 ER - TY - THES A1 - Scheuermann, Julian T1 - Interbandkaskadenlaser für Anwendungen in der Absorptionsspektroskopie T1 - Interband cascade lasers for applications in absorption spectroscopy N2 - Das Ziel dieser Arbeit war die Entwicklung und Weiterentwicklung von Laserlichtquellen basierend auf der Interbandkaskadentechnologie in einem Wellenlängenbereich von ca. 3 bis 6 µm. Der Fokus lag dabei auf der Entwicklung von Kantenemitter-Halbleiterlasern, welche bei verschiedensten Emissionswellenlängen erfolgreich hergestellt werden konnten. Dabei wurde auf jeweilige Herausforderungen eingegangen, welche entweder durch die Herstellung selbst oder der anwendungstechnischen Zielsetzung bedingt war. Im Rahmen dieser Arbeit wurden verschiedene, spektral einzelmodige Halbleiterlaser im angesprochenen Wellenlängenbereich entwickelt und hergestellt. Basierend auf dem jeweiligen Epitaxiematerial und der angestrebten Emissionswellenlänge wurden Simulationen der optischen Lasermode durchgeführt und die grundlegenden für die Herstellung notwendigen Parameter bestimmt und experimentell umgesetzt. Des Weiteren wurden die verwendeten Verfahren für den jeweiligen Herstellungsprozess angepasst und optimiert. Das umfasst die in den ersten Kapiteln beschriebenen Schritte wie optische Lithografie, Elektronenstrahllithografie, reaktives Trockenätzen und verschiedene Arten der Materialdeposition. Mit einer Emissionswellenlänge von 2,8 µm wurde beispielsweise der bislang kurzwelligste bei Raumtemperatur im Dauerstrichbetrieb betriebene einzelmodige Interbandkaskadenlaser hergestellt. Dessen Leistungsmerkmale sind mit Diodenlasern im entsprechenden Emissionsbereich vergleichbar. Somit ergänzt die Interbandkaskadentechnologie bestehende Technologien nahtlos und es ist eine lückenlose Wellenlängenabdeckung bis in den mittleren Infrarotbereich möglich. Je nach Herstellungsprozess wurde außerdem auf die verteilte Rückkopplung eingegangen und die Leistungsfähigkeit des verwendeten Metallgitterkonzeptes anhand von Messungen an spektral einzelmodigen Bauteile aufgezeigt. Es wurden aber auch die je nach Zielsetzung unterschiedlichen Herausforderungen aufgezeigt und diskutiert. Für eine Anwendung wurden spezielle Laserchips mit zwei einzelmodigen Emissionswellenlängen bei 3928 nm und 4009 nm entwickelt. Die beiden Wellenlängen sind für die Detektion von Schwefeldioxid und Schwefelwasserstoff geeignet, welche zur Überwachung und Optimierung der Schwefelgewinnung durch das Claus-Verfahren notwendig sind. Bei der Umsetzung wurden auf einzelnen Chips zwei Laseremitter in einem Abstand von 70 µm platziert und mit je einem Metallgitter versehen. Das verwendete Epitaxiematerial war so konzipiert, dass es optimal für beide Zielwellenlängen verwendet werden kann. Die geforderten Eigenschaften wurden erfüllt und die Bauteile konnten erfolgreich hergestellt werden. Die Emissionseigenschaften und das spektrale Verhalten wurde bei beiden Zielwellenlängen bestimmt. Einzeln betrachtet erfüllen beide Emitter die notwendigen Eigenschaften um für spektroskopische Anwendungen eingesetzt werden zu können. Ergänzend wurde zum einen das Abstimmverhalten der Emissionswellenlänge in Abhängigkeit der Modulationsfrequenz des Betriebsstromes untersucht und zusätzlich die thermische Abhängigkeit der Betriebsparameter beider Kanäle zueinander bestimmt. Diese Abhängigkeit ist für eine simultane Messung mit beiden Kanälen notwendig. Das Konzept mit mehreren Stegwellenleitern pro Laserchip wurde in einem weiteren Fall noch stärker ausgearbeitet. Denn je nach Komplexität eines Gasgemisches sind zur Bestimmung der einzelnen Komponenten mehr Messpunkte bzw. Wellenlängen notwendig. Im zweiten Fall ist die Analyse der Kohlenwasserstoffe Methan, Ethan, Propan, Butan, Iso-Butan, Pentan und Iso-Pentan von Interesse, welche als Hauptbestandteile von Erdgas z.B. in Erdgasaufbereitungsanlagen oder zur Bestimmung des Heizwertes analysiert werden müssen. Die genannten Kohlenwasserstoffe zeigen ein starkes Absorptionsverhalten im Wellenlängenbereich von 3,3 bis 3,5 µm. Auf dem entsprechend angepassten Interbandkaskadenmaterial wurden Bauteile mit neun Wellenleitern pro Laserchip hergestellt. Mithilfe der neun einzelmodigen Emissionskanäle konnte ein Bereich von bis zu 190 nm (21 meV, 167 cm-1) adressiert werden. Außerdem wurde der sich mit zunehmender Wellenlänge ändernde Schichtaufbau und dessen Einfluss auf die Bauteileigenschaften diskutiert. Die Leistungsdaten der langwelligsten Epitaxie waren im Vergleich deutlich schwächer. Um diesen Nachteil zu kompensieren, wurde eine spezielle Wellenleitergeometrie mit doppeltem Steg genutzt. Die Eigenschaften des Konzeptes wurden zuerst mittels Simulation untersucht und ein entsprechendes Herstellungsverfahren entwickelt. Mit der Simulation als Grundlage wurden die verschiedenen Prozessparameter über mehrere Prozessläufe iterativ optimiert und somit die Performance der Laser verbessert. Auch mit diesem Verfahren konnte ausreichende Kopplung an das Metallgitter erzielt werden. Abschließend wurden mit diesem Herstellungsverfahren einzelmodige Laser im Wellenlängenbereich von 5,9 bis über 6 Mikrometern realisiert. Diese Laser emittierten im Dauerstrichbetrieb bei einer maximalen Betriebstemperatur von -2 °C. Insgesamt wurde anhand der im Rahmen dieser Arbeit entwickelten Bauteilen und de ren Charakterisierung gezeigt, dass diese die Anforderungen von TLAS Anwendungen erfüllen. Jedoch konnte nur auf einen Teil der Möglichkeiten eingegangen werden, den die Interbandkaskadentechnologie bietet, denn die angesprochenen Einsatzgebiete stellen nur einzelne grundlegende Möglichkeiten dieser Technologie mit Schwerpunkt auf laserbasierte Lichtquellen dar. Zusammenfassend kann allerdings gesagt werden, dass sich die Interbandkaskadentechnologie etabliert hat. Gerade durch die gezeigten Leistungsdaten bei den Wellenlängen um 2,9 µm, 3,4 µm und 4,0 µm im Dauerstrichbetrieb bei Raumtemperatur wird ersichtlich, dass im Bereich der Sensorik die ICL Technologie in Bezug auf niedriger Strom- bzw. Leistungsaufnahme quasi konkurrenzlos ist. Sicherlich werden die Anwendungsgebiete in Zukunft noch vielfältiger. Denn es sind auf jeden Fall weitere Fortschritte in Richtung höherer Emissionswellenlängen, deutlich höherer Betriebstemperaturen, verbreiterte Emissionsbereiche oder gänzlich andere Bauteil Konzepte wie z.B. für Frequenzkämme bzw. Terahertz Anwendungen zu erwarten. Diese Entwicklung betrifft nicht nur den Einsatz als Lichtquelle, denn auch Interbandkaskadendetektoren bzw. Solarzellen wurden schon realisiert und werden weiterentwickelt. N2 - The work aimed for the development and enhancement of laser sources in the wavelength range from 3 to 6 μm, based on the interband cascade technology. The focus here was to work on edge-emitting semiconductor lasers, which were successfully realized at various wavelengths. In each chapter, the respective challenges were discussed, resulting either from the fabrication process itself or from the underlying application requirements. Within the scope of this work, various spectrally single-mode semiconductor lasers were developed and fabricated within the abovementioned wavelength range. Based on the particular epitaxial material and the targeted emission wavelength, optical mode simulations were performed, the basic processing parameters were derived and later experimentally realized. Furthermore, the methods for the respective manufacturing processes were varied and optimized. This includes processing steps like optical lithography, electron lithography, reactive ion etching and various kinds of material deposition, as described in the first chapters. For example, with an emission wavelength of 2.8 μm in continuous wave mode at room temperature, we demonstrated the shortest ICL DFB emission [SWE+15]. Its performance characteristics are comparable to conventional diode lasers in the same wavelength region. Therefore, the interband cascade technology supplements existing technologies and enables gap-free wavelength coverage up to the mid infrared region. Depending on the fabrication process, the distributed feedback and the efficiency of the used metal grating approach was shown by the demonstration of various spectrally singe mode devices and their performance figures. The various challenges were highlighted in terms of their individual requirements. Customized laser chips with two single-mode emission wavelengths at 3928 nm and 4009 nm were developed for one application [SWB+17]. Both wavelengths are useful for the detection of sulfur oxide and hydrogen sulfide within the Claus process, allowing monitoring and optimization when the concentration levels of these gases are known. Both emitters were realized on single chips, with a distance of 70 μm between each other and each ridge was provided with an individual metal grating. The underlying epitaxial material was designed that it could be optimally used for both target wavelengths. Ultimately, the requirements were met and the devices were fabricated successfully. The performance figures and the spectral behavior were determined at both target wavelengths. Individually, both emitters are capable of being used in spectroscopic applications. In addition, the tuning rate of the emission wavelength depending on the current modulation frequency and the thermal crosstalk between both emitters were investigated. Knowledge of the thermal crosstalk is of interest, when both emitters are used simultaneously. The concept of multiple ridge waveguides per laser chip was further elaborated in another case. Depending on the complexity of the gas mixture, more measurement points/wavelengths are required, to determine the individual components. In a second approach, mixtures of hydrocarbons such as methane, ethane, propane, butane, isobutene, pentane and isopentane are of interest. These main components of natural gas are tracked in natural gas processing plants, for example, or used to determine the calorific value. These hydrocarbons show strong absorption features in the 3.3 to 3.5 μm wavelength range. Devices with nine emitters per chip were fabricated on the appropriately adjusted epitaxial material. These nine single mode emission channels were able to cover a range of 190 nm (21 meV, 167 cm-1). In addition, the changes of the epitaxial structure with respect to increasing emission wavelength and their influence on the device behavior are discussed. The performance data of the longest wavelength epitaxy were significantly weaker in comparison. To compensate for that drawback, a special waveguide design with a double ridge structure was used. The properties of this concept were first investigated by means of simulation and an appropriate processing route was determined. Using the simulation as a basis, the design parameters were iteratively optimized over multiple fabrication runs and the performance of the lasers was improved. With this approach, sufficient coupling of the laser mode to the metal grating was also realized. Finally, single-mode lasers in the wavelength range from 5.9 to over 6 μm were realized using the double ridge fabrication technique. These lasers were operated in continuous wave mode at a maximum operation temperature of -2 °C. Overall, the devices developed within this work and their characteristics show, that the requirements for TLAS applications are met. However, only a part of the possibilities of the interband cascade technology could be addressed, since the discussed application areas are focused on laser-based light sources. In summary, interband cascade technology has established itself. In particular, the performance data at 2.9 μm, 3.4 μm and 4.0 μm in continuous wave operation at room temperature show that the ICL technology is almost unrivaled in terms of low current/power consumption. Certainly, the areas of application will be even more diverse in the future. Further progress in terms of higher emission wavelengths, higher operation temperatures, and broadband wavelength emission can be expected. Other concepts such as frequency combs [BFS+18, SWP+17] or terahertz [VM99] emission can also be realized. This development does not only concern the light sources, also interband cascade detectors or solar cells [YTK+10, HTR+13, TK15, HLL+18, LLL+17a, LLL+17b] have already been realized and are being further developed. KW - Halbleiterlaser KW - Interbandkaskadenlaser KW - Absorptionsspektroskopie Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-251797 ER - TY - JOUR A1 - Kiermasch, David A1 - Fischer, Mathias A1 - Gil-Escrig, Lidón A1 - Baumann, Andreas A1 - Bolink, Henk J. A1 - Dyakonov, Vladimir A1 - Tvingstedt, Kristofer T1 - Reduced Recombination Losses in Evaporated Perovskite Solar Cells by Postfabrication Treatment JF - Solar RRL N2 - The photovoltaic perovskite research community has now developed a large set of tools and techniques to improve the power conversion efficiency (PCE). One such arcane trick is to allow the finished devices to dwell in time, and the PCE often improves. Herein, a mild postannealing procedure is implemented on coevaporated perovskite solar cells confirming a substantial PCE improvement, mainly attributed to an increased open-circuit voltage (V\(_{OC}\)). From a V\(_{OC}\) of around 1.11 V directly after preparation, the voltage improves to more than 1.18 V by temporal and thermal annealing. To clarify the origin of this annealing effect, an in-depth device experimental and simulation characterization is conducted. A simultaneous reduction of the dark saturation current, the ideality factor (n\(_{id}\)), and the leakage current is revealed, signifying a substantial impact of the postannealing procedure on recombination losses. To investigate the carrier dynamics in more detail, a set of transient optoelectrical methods is first evaluated, ascertaining that the bulk carrier lifetime is increased with device annealing. Second, a drift-diffusion simulation is used, confirming that the beneficial effect of the annealing has its origin in effective bulk trap passivation that accordingly leads to a reduction of Shockley–Read–Hall recombination rates. KW - defects KW - heating KW - lifetimes KW - passivation KW - perovskite solar cells KW - recombination KW - Shockley–Read–Hall Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258003 VL - 5 IS - 11 ER - TY - THES A1 - Bunzmann, Nikolai Eberhard T1 - Excited State Pathways in 3rd Generation Organic Light-Emitting Diodes T1 - Pfade angeregter Zustände in Organischen Leuchtdioden dritter Generation N2 - This work revealed spin states that are involved in the light generation of organic light-emitting diodes (OLEDs) that are based on thermally activated delayed fluorescence (TADF). First, several donor:acceptor-based TADF systems forming exciplex states were investigated. Afterwards, a TADF emitter that shows intramolecular charge transfer states but also forms exciplex states with a proper donor molecule was studied. The primary experimental technique was electron paramagnetic resonance (EPR), in particular the advanced methods electroluminescence detected magnetic resonance (ELDMR), photoluminescence detected magnetic resonance (PLDMR) and electrically detected magnetic resonance (EDMR). Additional information was gathered from time-resolved and continuous wave photoluminescence measurements. N2 - In dieser Arbeit wurden Spinzustände identifiziert, die an der Lichterzeugung von organischen Leuchtdioden beteiligt sind, welche auf thermisch aktivierter verzögerter Fluoreszenz (engl. TADF) basieren. Zuerst wurden mehrere Donor:Akzeptor basierte TADF Systeme untersucht. Danach wurde ein TADF Emitter studiert, welcher intramolekulare Ladungstransfer Zustände (engl. CT states) zeigt, aber auch Exziplex Zustände mit einem geeigneten Donor Molekül bildet. In erster Linie wurde die experimentelle Methode der Elektronenspinresonanz (ESR) genutzt, insbesondere die erweiterten Techniken Elektrolumineszenz detektierte Magnetresonanz (ELDMR), Photolumineszenz detektierte Magnetresonanz (PLDMR) und elektrisch detektierte Magnetresonanz (EDMR). Zusätzliche Informationen wurden aus zeitaufgelösten und dauerstrich Photolumineszenz Messungen gewonnen. KW - Elektronenspinresonanz KW - Technische Optik KW - Nanometerbereich KW - OLEDs Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-220786 ER - TY - JOUR A1 - Bunzmann, Nikolai A1 - Krugmann, Benjamin A1 - Weissenseel, Sebastian A1 - Kudriashova, Liudmila A1 - Ivaniuk, Khrystyna A1 - Stakhira, Pavlo A1 - Cherpak, Vladyslav A1 - Chapran, Marian A1 - Grybauskaite‐Kaminskiene, Gintare A1 - Grazulevicius, Juozas Vidas A1 - Dyakonov, Vladimir A1 - Sperlich, Andreas T1 - Spin‐ and Voltage‐Dependent Emission from Intra‐ and Intermolecular TADF OLEDs JF - Advanced Electronic Materials N2 - Organic light emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) utilize molecular systems with a small energy splitting between singlet and triplet states. This can either be realized in intramolecular charge transfer states of molecules with near‐orthogonal donor and acceptor moieties or in intermolecular exciplex states formed between a suitable combination of individual donor and acceptor materials. Here, 4,4′‐(9H,9′H‐[3,3′‐bicarbazole]‐9,9′‐diyl)bis(3‐(trifluoromethyl) benzonitrile) (pCNBCzoCF\(_{3}\)) is investigated, which shows intramolecular TADF but can also form exciplex states in combination with 4,4′,4′′‐tris[phenyl(m‐tolyl)amino]triphenylamine (m‐MTDATA). Orange emitting exciplex‐based OLEDs additionally generate a sky‐blue emission from the intramolecular emitter with an intensity that can be voltage‐controlled. Electroluminescence detected magnetic resonance (ELDMR) is applied to study the thermally activated spin‐dependent triplet to singlet up‐conversion in operating devices. Thereby, intermediate excited states involved in OLED operation can be investigated and the corresponding activation energy for both, intra‐ and intermolecular based TADF can be derived. Furthermore, a lower estimate is given for the extent of the triplet wavefunction to be ≥ 1.2 nm. Photoluminescence detected magnetic resonance (PLDMR) reveals the population of molecular triplets in optically excited thin films. Overall, the findings allow to draw a comprehensive picture of the spin‐dependent emission from intra‐ and intermolecular TADF OLEDs. KW - color tuning KW - exciplexes KW - organic light emitting diodes KW - spin KW - triplets Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224434 VL - 7 IS - 3 ER - TY - THES A1 - Swirski, Thorben T1 - Studies on the Effect of Gas Contaminations in Micromegas Detectors and Production of Micromegas Detectors for the New Small Wheel of the ATLAS Detector T1 - Untersuchung des Einflusses von Gasverunreinigungen auf Micromegas Detektoren und Produktion von Micromegas Detektoren für das New Small Wheel des ATLAS Detektors N2 - This work consists of two parts. On the one hand, it describes simulation and measurement of the effect of contaminations of the detector gas on the performance of particle detectors, with special focus on Micromegas detectors. On the other hand, it includes the setup of a production site for the finalization of drift panels which are going to be used in the ATLAS NSW. The first part augments these two parts to give an introduction into the theoretical foundations of gaseous particle detectors. N2 - Diese Arbeit beinhaltet zwei Teile. Zum einen behandelt sie die Simulation und die Messung des Effekts von Verunreinigungen des Detektorgases auf Teilchen- detektoren, im speziellen vom Typ Micromegas. Zum anderen beinhaltet sie den Aufbau einer Produktionsstätte zur Vollendung von Driftpaneelen, die im ATLAS NSW Einsatz finden werden. Der erste Teil dieser Arbeit nimmt die Rolle eines Einführungsteiles ein, der die theoretischen Grundlagen von gasgefüllten Detekto- ren bespricht. KW - Gasionisationsdetektor KW - ATLAS KW - Micromegas KW - MPGD Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246405 ER - TY - THES A1 - Balles, Andreas T1 - In-line phase contrast and grating interferometry at a liquid-metal-jet source with micrometer resolution T1 - In-line Phasenkontrast und Gitterinterferometrie an einer Flüssigmetallanodenröhre mit Mikrometerauflösung N2 - As a non-destructive testing method, X-ray imaging has proved to be suitable for the examination of a variety of objects. The measurement principle is based on the attenuation of X-rays caused by these objects. This attenuation can be recorded as shades of intensity using X-ray detectors and thus contains information about the inner structure of the investigated object. Since X-rays are electromagnetic waves, they also experience a change of phase in addition to their attenuation while penetrating an object. In general, imaging methods based on this effect are referred to as phase contrast imaging techniques. In the laboratory, the two mainly used methods are the propagation based phase contrast or in-line phase contrast and the grating interferometry. While in-line phase contrast - under certain conditions - shows edge enhancement at interfaces due to interference, phase contrast in the grating interferometry is only indirectly measurable by the use of several gratings. In addition to phase contrast, grating interferometry provides access to the so-called dark-field imaging contrast, which measures the scattering of X-rays caused by an object. These two imaging techniques, together with a novel concept of laboratory X-ray sources, the liquid-metal-jet, form the main part of this work. Compared to conventional X-ray sources, the liquid-metal-jet source offers higher brightness. The term brightness is defined by the number of X-ray photons per second, emitting area (area of the X-ray spot) and solid angle at which they are emitted. On the basis of this source, a high resolution in-line phase contrast setup was partially developed in the scope of this work. Several computed tomographies show the feasibility of in-line phase contrast and the improvement of image quality by applying phase retrieval algorithms. Moreover, the determination of optimized sample positions for in-line phase contrast imaging is treated at which the edge enhancement is maximized. Based on primitive fiber objects, this optimization has proven to be a good approximation. With its high brightness in combination with a high spatial coherence, the liquid-metal-jet source is also interesting for grating interferometry. The development of such a setup is also part of this work. The overall concept and the characterization of the setup is presented as well as the applicability and its limits for the investigation of various objects. Due to the very unique concept of this grating interferometer it was possible to realize a modified interferometer system by using a single grating only. Its concept and results are also presented in this work. Furthermore, a grating interferometer based on a microfocus X-ray tube was tested regarding its performance. Thereby, parameters like the anode material, acquisition geometry and gratings were altered in order to find the advantages and disadvantages of each configuration. N2 - Als zerstörungsfreie Prüfmethode hat sich die Röntgenbildgebung zur Untersuchung unterschiedlichster Prüfobjekte bewährt. Das Messprinzip beruht dabei auf der durch das Prüfobjekt verursachten Schwächung der Röntgenstrahlung. Diese Schwächung kann als Helligkeitsschattierungen mittels eines Detektors aufgenommen werden und beinhaltet somit Informationen über das Innere des untersuchten Objekts. Da Röntgenstrahlen elektromagnetische Wellen sind, erfahren sie beim Durchdringen eines Objekts neben der Schwächung auch eine Veränderung ihrer Phase. Bildgebungsmethoden auf Grundlage dieses Effekts werden allgemein als Phasenkontrastbildgebungsverfahren zusammengefasst. Im Bereich von Laboraufbauten sind die zwei hauptsächlich genutzten Methoden der propagationsbasierte Phasenkontrast, auch In-line Phasenkontrast genannt, und die Gitterinterferometrie. Während sich beim In-line Phasenkontrast – unter gewissen Umständen – Kontrastüber-höhungen an Grenzflächen auf Grund von Interferenzen ausprägen, ist der Phasenkontrastbei der Gitterinterferometrie nur indirekt durch Verwendung mehrerer Gitter messbar. Neben dem Phasenkontrast ermöglicht die Gitterinterferometrie den Zugang zu einem weiteren Kontrastmodus, dem sogenannten Dunkelfeldkontrast, welcher ein Maß für die Streuung von Röntgenstrahlen an einer Probe darstellt. Diese beiden Bildgebungsmethoden im Zusammenhang mit einem neuartigen Konzept vonLaborröntgenquellen, der Flüssigmetallanodenröhre, bilden den Kern dieser Arbeit. Im Vergleich zu herkömmlichen Röntgenquellen bietet die Flüssigmetallanodenröhre eine höhere Brillanz. Der Begriff der Brillanz ist definiert durch die Anzahl von Röntgenphotonen pro Sekunde, emittierender Fläche (Fläche des Röntgenbrennflecks) und Raumwinkel, unter dem diese abgestrahlt werden. Auf Basis einer solchen Quelle wurde im Rahmen dieser Arbeit ein hochauflösender propagationsbasierter Phasenkontrastaufbau mitentwickelt. Ausgewählte Anwendungsbeispiele zeigen die Machbarkeit dieser Bildgebungsmethode und die Verbesserung der Bildqualität durch Anwendung von Phasenrückgewinnungsalgorithmen. Des Weiteren wird die Entwicklung einer Optimierung der Probenposition für den In-line Phasenkontrast behandelt, mit dem Ziel, die Kontrastüberhöhungen zu maximieren. Anhand experimenteller Überprüfung an Fasern erwies sich diese Optimierung als gute Näherung. Mit ihrer hohen Brillanz und räumlichen Kohärenz ist die Flüssigmetallanodenröhre eine vielversprechende Röntgenquelle für den Einsatz an einem Gitterinterferometer, weshalb auch die Entwicklung eines solchen Aufbaus im Fokus der Arbeit stand. Neben der Präsentation des Gesamtkonzepts und der Charakterisierung des Systems konnten die Anwendbarkeit aber auch die Grenzen dieses Aufbaus zur Untersuchung verschiedenster Materialiengezeigt werden. Auf Grund des sehr speziellen Gesamtkonzepts des Gitterinterferometers gelang es, ein abgewandeltes Interferometersystem mit nur einem Gitter zu realisieren. Dessen Konzeption und Ergebnisse werden im Rahmen dieser Arbeit ebenfalls dargestellt. Des Weiteren wurde ein Gitterinterferometer unter Verwendung einer Mikrofokusröntgenquelle hinsichtlich seiner Eigenschaften erprobt. Dabei wurden Systemparameter wie Anodenmaterial, Aufnahmegeometrie und Gitter variiert, um sowohl Vor- als auch Nachteile einer jeden Konfiguration zu finden. KW - Phasenkontrastverfahren KW - Röntgenmikroskopie KW - coherent imaging KW - grating interferometry KW - liquid-metal-jet KW - in-line phase contrast Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-235917 ER - TY - JOUR A1 - Andelovic, Kristina A1 - Winter, Patrick A1 - Kampf, Thomas A1 - Xu, Anton A1 - Jakob, Peter Michael A1 - Herold, Volker A1 - Bauer, Wolfgang Rudolf A1 - Zernecke, Alma T1 - 2D Projection Maps of WSS and OSI Reveal Distinct Spatiotemporal Changes in Hemodynamics in the Murine Aorta during Ageing and Atherosclerosis JF - Biomedicines N2 - Growth, ageing and atherosclerotic plaque development alter the biomechanical forces acting on the vessel wall. However, monitoring the detailed local changes in wall shear stress (WSS) at distinct sites of the murine aortic arch over time has been challenging. Here, we studied the temporal and spatial changes in flow, WSS, oscillatory shear index (OSI) and elastic properties of healthy wildtype (WT, n = 5) and atherosclerotic apolipoprotein E-deficient (Apoe\(^{−/−}\), n = 6) mice during ageing and atherosclerosis using high-resolution 4D flow magnetic resonance imaging (MRI). Spatially resolved 2D projection maps of WSS and OSI of the complete aortic arch were generated, allowing the pixel-wise statistical analysis of inter- and intragroup hemodynamic changes over time and local correlations between WSS, pulse wave velocity (PWV), plaque and vessel wall characteristics. The study revealed converse differences of local hemodynamic profiles in healthy WT and atherosclerotic Apoe\(^{−/−}\) mice, and we identified the circumferential WSS as potential marker of plaque size and composition in advanced atherosclerosis and the radial strain as a potential marker for vascular elasticity. Two-dimensional (2D) projection maps of WSS and OSI, including statistical analysis provide a powerful tool to monitor local aortic hemodynamics during ageing and atherosclerosis. The correlation of spatially resolved hemodynamics and plaque characteristics could significantly improve our understanding of the impact of hemodynamics on atherosclerosis, which may be key to understand plaque progression towards vulnerability. KW - atherosclerosis KW - mouse KW - 4D flow MRI KW - aortic arch KW - flow dynamics KW - WSS KW - mapping KW - PWV KW - plaque characteristics Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-252164 SN - 2227-9059 VL - 9 IS - 12 ER - TY - JOUR A1 - Tufarelli, Tommaso A1 - Friedrich, Daniel A1 - Groß, Heiko A1 - Hamm, Joachim A1 - Hess, Ortwin A1 - Hecht, Bert T1 - Single quantum emitter Dicke enhancement JF - Physical Review Research N2 - Coupling N identical emitters to the same field mode is a well-established method to enhance light-matter interaction. However, the resulting √N boost of the coupling strength comes at the cost of a “linearized” (effectively semiclassical) dynamics. Here, we instead demonstrate a new approach for enhancing the coupling constant of a single quantum emitter, while retaining the nonlinear character of the light-matter interaction. We consider a single quantum emitter with N nearly degenerate transitions that are collectively coupled to the same field mode. We show that in such conditions an effective Jaynes-Cummings model emerges with a boosted coupling constant of order √N. The validity and consequences of our general conclusions are analytically demonstrated for the instructive case N=2. We further observe that our system can closely match the spectral line shapes and photon autocorrelation functions typical of Jaynes-Cummings physics, proving that quantum optical nonlinearities are retained. Our findings match up very well with recent broadband plasmonic nanoresonator strong-coupling experiments and will, therefore, facilitate the control and detection of single-photon nonlinearities at ambient conditions. KW - Cavity quantum electrodynamics KW - Collective effects in quantum optics KW - Quantum optics with artificial atoms KW - Superradiance & subradiance Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261459 VL - 3 ER - TY - JOUR A1 - Andelovic, Kristina A1 - Winter, Patrick A1 - Jakob, Peter Michael A1 - Bauer, Wolfgang Rudolf A1 - Herold, Volker A1 - Zernecke, Alma T1 - Evaluation of plaque characteristics and inflammation using magnetic resonance imaging JF - Biomedicines N2 - Atherosclerosis is an inflammatory disease of large and medium-sized arteries, characterized by the growth of atherosclerotic lesions (plaques). These plaques often develop at inner curvatures of arteries, branchpoints, and bifurcations, where the endothelial wall shear stress is low and oscillatory. In conjunction with other processes such as lipid deposition, biomechanical factors lead to local vascular inflammation and plaque growth. There is also evidence that low and oscillatory shear stress contribute to arterial remodeling, entailing a loss in arterial elasticity and, therefore, an increased pulse-wave velocity. Although altered shear stress profiles, elasticity and inflammation are closely intertwined and critical for plaque growth, preclinical and clinical investigations for atherosclerosis mostly focus on the investigation of one of these parameters only due to the experimental limitations. However, cardiovascular magnetic resonance imaging (MRI) has been demonstrated to be a potent tool which can be used to provide insights into a large range of biological parameters in one experimental session. It enables the evaluation of the dynamic process of atherosclerotic lesion formation without the need for harmful radiation. Flow-sensitive MRI provides the assessment of hemodynamic parameters such as wall shear stress and pulse wave velocity which may replace invasive and radiation-based techniques for imaging of the vascular function and the characterization of early plaque development. In combination with inflammation imaging, the analyses and correlations of these parameters could not only significantly advance basic preclinical investigations of atherosclerotic lesion formation and progression, but also the diagnostic clinical evaluation for early identification of high-risk plaques, which are prone to rupture. In this review, we summarize the key applications of magnetic resonance imaging for the evaluation of plaque characteristics through flow sensitive and morphological measurements. The simultaneous measurements of functional and structural parameters will further preclinical research on atherosclerosis and has the potential to fundamentally improve the detection of inflammation and vulnerable plaques in patients. KW - atherosclerosis KW - mouse models KW - wall shear stress KW - pulse wave velocity KW - arterial elasticity KW - inflammation KW - magnetic resonance imaging Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228839 SN - 2227-9059 VL - 9 IS - 2 ER - TY - JOUR A1 - Wroński, Piotr Andrzej A1 - Wyborski, Paweł A1 - Musiał, Anna A1 - Podemski, Paweł A1 - Sęk, Grzegorz A1 - Höfling, Sven A1 - Jabeen, Fauzia T1 - Metamorphic Buffer Layer Platform for 1550 nm Single-Photon Sources Grown by MBE on (100) GaAs Substrate JF - Materials N2 - We demonstrate single-photon emission with a low probability of multiphoton events of 5% in the C-band of telecommunication spectral range of standard silica fibers from molecular beam epitaxy grown (100)-GaAs-based structure with InAs quantum dots (QDs) on a metamorphic buffer layer. For this purpose, we propose and implement graded In content digitally alloyed InGaAs metamorphic buffer layer with maximal In content of 42% and GaAs/AlAs distributed Bragg reflector underneath to enhance the extraction efficiency of QD emission. The fundamental limit of the emission rate for the investigated structures is 0.5 GHz based on an emission lifetime of 1.95 ns determined from time-resolved photoluminescence. We prove the relevance of a proposed technology platform for the realization of non-classical light sources in the context of fiber-based quantum communication applications. KW - single-photon source KW - quantum dots KW - telecommunication spectral range KW - metamorphic buffer layer Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246145 SN - 1996-1944 VL - 14 IS - 18 ER - TY - JOUR A1 - Beierlein, J. A1 - Egorov, O. A. A1 - Harder, T. H. A1 - Gagel, P. A1 - Emmerling, M. A1 - Schneider, C. A1 - Höfling, S. A1 - Peschel, U. A1 - Klembt, S. T1 - Bloch Oscillations of Hybrid Light‐Matter Particles in a Waveguide Array JF - Advanced Optical Materials N2 - Bloch oscillations are a phenomenon well known from quantum mechanics where electrons in a lattice experience an oscillatory motion in the presence of an electric field gradient. Here, the authors report on Bloch oscillations of hybrid light−matter particles, called exciton‐polaritons (polaritons), being confined in an array of coupled microcavity waveguides. To this end, the waveguide widths and their mutual couplings are carefully designed such that a constant energy gradient is induced perpendicular to the direction of motion of the propagating polaritons. This technique allows us to directly observe and study Bloch oscillations in real‐ and momentum‐space. Furthermore, the experimental findings are supported by numerical simulations based on a modified Gross–Pitaevskii approach. This work provides an important transfer of basic concepts of quantum mechanics to integrated solid state devices, using quantum fluids of light. KW - Bloch oscillations KW - exciton‐polaritons KW - polariton condensation KW - waveguides Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239814 VL - 9 IS - 13 ER - TY - JOUR A1 - Gottscholl, Andreas A1 - Diez, Matthias A1 - Soltamov, Victor A1 - Kasper, Christian A1 - Krauße, Dominik A1 - Sperlich, Andreas A1 - Kianinia, Mehran A1 - Bradac, Carlo A1 - Aharonovich, Igor A1 - Dyakonov, Vladimir T1 - Spin defects in hBN as promising temperature, pressure and magnetic field quantum sensors JF - Nature Communications N2 - Spin defects in solid-state materials are strong candidate systems for quantum information technology and sensing applications. Here we explore in details the recently discovered negatively charged boron vacancies (V\(_B\)\(^−\)) in hexagonal boron nitride (hBN) and demonstrate their use as atomic scale sensors for temperature, magnetic fields and externally applied pressure. These applications are possible due to the high-spin triplet ground state and bright spin-dependent photoluminescence of the V\(_B\)\(^−\). Specifically, we find that the frequency shift in optically detected magnetic resonance measurements is not only sensitive to static magnetic fields, but also to temperature and pressure changes which we relate to crystal lattice parameters. We show that spin-rich hBN films are potentially applicable as intrinsic sensors in heterostructures made of functionalized 2D materials. KW - electronic properties and materials KW - qubits Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261581 VL - 12 IS - 1 ER - TY - THES A1 - Winnerlein, Martin T1 - Molecular Beam Epitaxy and Characterization of the Magnetic Topological Insulator (V,Bi,Sb)\(_2\)Te\(_3\) T1 - Molekularstrahlepitaxie und Charakterisierung des magnetischen topologischen Isolators (V,Bi,Sb)\(_2\)Te\(_3\) N2 - The subject of this thesis is the fabrication and characterization of magnetic topological insulator layers of (V,Bi,Sb)\(_2\)Te\(_3\) exhibiting the quantum anomalous Hall effect. A major task was the experimental realization of the quantum anomalous Hall effect, which is only observed in layers with very specific structural, electronic and magnetic properties. These properties and their influence on the quantum anomalous Hall effect are analyzed in detail. First, the optimal conditions for the growth of pure Bi\(_2\)Te\(_3\) and Sb\(_2\)Te\(_3\) crystal layers and the resulting structural quality are studied. The crystalline quality of Bi\(_2\)Te\(_3\) improves significantly at higher growth temperatures resulting in a small mosaicity-tilt and reduced twinning defects. The optimal growth temperature is determined as 260\(^{\circ}\)C, low enough to avoid desorption while maintaining a high crystalline quality. The crystalline quality of Sb\(_2\)Te\(_3\) is less dependent on the growth temperature. Temperatures below 230\(^{\circ}\)C are necessary to avoid significant material desorption, though. Especially for the nucleation on Si(111)-H, a low sticking coefficient is observed preventing the coalescence of islands into a homogeneous layer. The influence of the substrate type, miscut and annealing sequence on the growth of Bi\(_2\)Te\(_3\) layers is investigated. The alignment of the layer changes depending on the miscut angle and annealing sequence: Typically, layer planes align parallel to the Si(111) planes. This can enhance the twin suppression due to transfer of the stacking order from the substrate to the layer at step edges, but results in a step bunched layer morphology. For specific substrate preparations, however, the layer planes are observed to align parallel to the surface plane. This alignment avoids displacement at the step edges, which would cause anti-phase domains. This results in narrow Bragg peaks in XRD rocking curve scans due to long-range order in the absence of anti-phase domains. Furthermore, the use of rough Fe:InP(111):B substrates leads to a strong reduction of twinning defects and a significantly reduced mosaicity-twist due to the smaller lattice mismatch. Next, the magnetically doped mixed compound V\(_z\)(Bi\(_{1−x}\)Sb\(_x\))\(_{2−z}\)Te\(_3\) is studied in order to realize the quantum anomalous Hall effect. The addition of V and Bi to Sb\(_2\)Te\(_3\) leads to efficient nucleation on the Si(111)-H surface and a closed, homogeneous layer. Magneto-transport measurements of layers reveal a finite anomalous Hall resistivity significantly below the von Klitzing constant. The observation of the quantum anomalous Hall effect requires the complete suppression of parasitic bulklike conduction due to defect induced carriers. This can be achieved by optimizing the thickness, composition and growth conditions of the layers. The growth temperature is observed to strongly influence the structural quality. Elevated temperatures result in bigger islands, improved crystallographic orientation and reduced twinning. On the other hand, desorption of primarily Sb is observed, affecting the thickness, composition and reproducibility of the layers. At 190\(^{\circ}\)C, desorption is avoided enabling precise control of layer thickness and composition of the quaternary compound while maintaining a high structural quality. It is especially important to optimize the Bi/Sb ratio in the (V,Bi,Sb)\(_2\)Te\(_3\) layers, since by alloying n-type Bi\(_2\)Te\(_3\) and p-type Sb\(_2\)Te\(_3\) charge neutrality is achieved at a specific mixing ratio. This is necessary to shift the Fermi level into the magnetic exchange gap and fully suppress the bulk conduction. The Sb content x furthermore influences the in-plane lattice constant a significantly. This is utilized to accurately determine x even for thin films below 10 nm thickness required for the quantum anomalous Hall effect. Furthermore, x strongly influences the surface morphology: with increasing x the island size decreases and the RMS roughness increases by up to a factor of 4 between x = 0 and x = 1. A series of samples with x varied between 0.56-0.95 is grown, while carefully maintaining a constant thickness of 9 nm and a doping concentration of 2 at.% V. Magneto-transport measurements reveal the charge neutral point around x = 0.86 at 4.2 K. The maximum of the anomalous Hall resistivity of 0.44 h/e\(^2\) is observed at x = 0.77 close to charge neutrality. Reducing the measurement temperature to 50 mK significantly increases the anomalous Hall resistivity. Several samples in a narrow range of x between 0.76-0.79 show the quantum anomalous Hall effect with the Hall resistivity reaching the von Klitzing constant and a vanishing longitudinal resistivity. Having realized the quantum anomalous Hall effect as the first group in Europe, this breakthrough enabled us to study the electronic and magnetic properties of the samples in close collaborations with other groups. In collaboration with the Physikalisch-Technische Bundesanstalt high-precision measurements were conducted with detailed error analysis yielding a relative de- viation from the von Klitzing constant of (0.17 \(\pm\) 0.25) * 10\(^{−6}\). This is published as the smallest, most precise value at that time, proving the high quality of the provided samples. This result paves the way for the application of magnetic topological insulators as zero-field resistance standards. Non-local magneto-transport measurements were conducted at 15 mK in close collaboration with the transport group in EP3. The results prove that transport happens through chiral edge channels. The detailed analysis of small anomalies in transport measurements reveals instabilities in the magnetic phase even at 15 mK. Their time dependent nature indicates the presence of superparamagnetic contributions in the nominally ferromagnetic phase. Next, the influence of the capping layer and the substrate type on structural properties and the impact on the quantum anomalous Hall effect is investigated. To this end, a layer was grown on a semi-insulating Fe:InP(111)B substrate using the previously optimized growth conditions. The crystalline quality is improved significantly with the mosaicity twist reduced from 5.4\(^{\circ}\) to 1.0\(^{\circ}\). Furthermore, a layer without protective capping layer was grown on Si and studied after providing sufficient time for degradation. The uncapped layer on Si shows perfect quantization, while the layer on InP deviates by about 5%. This may be caused by the higher crystalline quality, but variations in e.g. Sb content cannot be ruled out as the cause. Overall, the quantum anomalous Hall effect seems robust against changes in substrate and capping layer with only little deviations. Furthermore, the dependence of the quantum anomalous Hall effect on the thickness of the layers is investigated. Between 5-8 nm thickness the material typically transitions from a 2D topological insulator with hybridized top and bottom surface states to a 3D topological insulator. A set of samples with 6 nm, 8 nm, and 9 nm thickness exhibits the quantum anomalous Hall effect, while 5 nm and 15 nm thick layers show significant bulk contributions. The analysis of the longitudinal and Hall conductivity during the reversal of magnetization reveals distinct differences between different thicknesses. The 6 nm thick layer shows scaling consistent with the integer quantum Hall effect, while the 9 nm thick layer shows scaling expected for the topological surface states of a 3D topological insulator. The unique scaling of the 9 nm thick layer is of particular interest as it may be a result of axion electrodynamics in a 3D topological insulator. Subsequently, the influence of V doping on the structural and magnetic properties of the host material is studied systematically. Similarly to Bi alloying, increased V doping seems to flatten the layer surface significantly. With increasing V content, Te bonding partners are observed to increase simultaneously in a 2:3 ratio as expected for V incorporation on group-V sites. The linear contraction of the in-plane and out-of-plane lattice constants with increasing V doping is quantitatively consistent with the incorporation of V\(^{3+}\) ions, possibly mixed with V\(^{4+}\) ions, at the group-V sites. This is consistent with SQUID measurements showing a magnetization of 1.3 \(\mu_B\) per V ion. Finally, magnetically doped topological insulator heterostructures are fabricated and studied in magneto-transport. Trilayer heterostructures with a non-magnetic (Bi,Sb)\(_2\)Te\(_3\) layer sandwiched between two magnetically doped layers are predicted to host the axion insulator state if the two magnetic layers are decoupled and in antiparallel configuration. Magneto-transport measurements of such a trilayer heterostructure with 7 nm undoped (Bi,Sb)\(_2\)Te\(_3\) between 2 nm thick layers doped with 1.5 at.% V exhibit a zero Hall plateau representing an insulating state. Similar results in the literature were interpreted as axion insulator state, but in the absence of a measurement showing the antiparallel magnetic orientation other explanations for the insulating state cannot be ruled out. Furthermore, heterostructures including a 2 nm thin, highly V doped layer region show an anomalous Hall effect of opposite sign compared to previous samples. A dependency on the thickness and position of the doped layer region is observed, which indicates that scattering at the interfaces causes contributions to the anomalous Hall effect of opposite sign compared to bulk scattering effects. Many interesting phenomena in quantum anomalous Hall insulators as well as axion insulators are still not unambiguously observed. This includes Majorana bound states in quantum anomalous Hall insulator/superconductor hybrid systems and the topological magneto-electric effect in axion insulators. The limited observation temperature of the quantum anomalous Hall effect of below 1 K could be increased in 3D topological insulator/magnetic insulator heterostructures which utilize the magnetic proximity effect. The main achievement of this thesis is the reproducible growth and characterization of (V,Bi,Sb)2Te3 layers exhibiting the quantum anomalous Hall effect. The detailed study of the structural requirements of the quantum anomalous Hall effect and the observation of the unique axionic scaling behavior in 3D magnetic topological insulator layers leads to a better understanding of the nature of this new quantum state. The high-precision measurements of the quantum anomalous Hall effect reporting the smallest deviation from the von Klitzing constant are an important step towards the realization of a zero-field quantum resistance standard. N2 - Das Thema dieser Arbeit ist die Herstellung und Charakterisierung von Schichten des magnetischen topologischen Isolators (V,Bi,Sb)\(_2\)Te\(_3\), die den Quanten anomalen Hall-Effekt zeigen. Die Hauptaufgabe war die experimentelle Realisierung des Quanten anomalen Hall-Effekts, welcher nur in Schichten mit bestimmten strukturellen, elektronischen und magnetischen Eigenschaften beobachtet wird. Diese Eigenschaften wurden ermittelt und ihr Einfluss genau analysiert. Als Erstes wurden die optimalen Bedingungen für das Wachstum von reinen Bi\(_2\)Te\(_3\) und Sb\(_2\)Te\(_3\) Kristallschichten und die resultierende strukturelle Qualität untersucht. Die kristalline Qualität von Bi\(_2\)Te\(_3\) verbessert sich signifikant bei hohen Wachstumstemperaturen, welche die Neigung der Domänen verringern und Zwillingsdefekte reduzieren. Als optimale Wachstumstemperatur wurde 260\(^{\circ}\)C ermittelt, ausreichend niedrig um Desorption zu vermeiden während eine hohe Kristallqualität erhalten bleibt. Die Wachstumstemperatur von Sb\(_2\)Te\(_3\) hat einen geringeren Einfluss auf die Kristallqualität. Temperaturen unter 230\(^{\circ}\)C sind allerdings nötig um erhebliche Desorption zu vermeiden. Ein geringer Haftkoeffizient wurde besonders bei der Nukleation auf der Si(111)-H Oberfläche beobachtet und verhindert das Zusammenwachsen von Inseln zu einer homogenen Schicht. Der Einfluss des Substrattyps, der Fehlorientierung der Oberfläche und der Ausheizsequenz auf das Wachstum von Bi\(_2\)Te\(_3\) Schichten wurde untersucht. Die Ausrichtung der Schicht ändert sich je nach Winkel der Fehlorientierung und der Ausheilsequenz: Typischerweise orientieren sich die Ebenen der Schicht parallel zu den Si(111) Ebenen, was aufgrund des Transfers der Stapelfolge vom Substrat zur Schicht an den Stufenkanten die Unterdrückung von Zwillingsdefekte verbessert. Andererseits führt diese Orientierung zu Anti-Phasen-Domänen durch die Verschiebung an den Stufenkanten und zu einer gestuften Oberflächenmorphologie. Für bestimmte Substratpräparationen richtet sich die Schicht jedoch parallel zur Oberfläche aus. Diese Orientierung verhindert Verschiebungen an Stufenkanten und damit Anti-Phasen-Domänen. Dies führt aufgrund der langreichweitigen Ordnung zu sehr schmalen Bragg-Reflexen in XRD rocking curve Diffraktogrammen. Weiterhin führen raue Fe:InP(111):B Substrate zu einer starken Unterdrückung von Zwillingsdefekten und aufgrund der besseren Gitteranpassung zu einer deutlich verringerten Verdrehung der Domänen. Als Nächstes wurde das magnetisch dotierte V\(_z\)(Bi\(_{1−x}\)Sb\(_x\))\(_{2−z}\)Te\(_3\) untersucht mit dem Ziel den Quanten anomalen Hall-Effekt zu realisieren. Die Zugabe von V und Bi zu Sb\(_2\)Te\(_3\) führt zu einer effizienten Nukleation auf der Si(111)-H Oberfläche und einer geschlossenen, homogenen Schicht. Magnetotransport Messungen der Schichten ergeben einen messbaren anomalen Hall-Widerstand deutlich unter der von-Klitzing-Konstanten. Die Beobachtung des Quanten anomalen Hall-Effekts setzt eine vollständige Unterdrückung der defekt-induzierten, parasitären Leitfähigkeit im Inneren der Schicht voraus. Dies kann durch die Optimierung der Dicke, Zusammensetzung und Wachstumsbedingungen der Schicht erreicht werden. Beobachtungen zeigen, dass die Wachstumstemperatur die strukturelle Qualität stark beeinflusst. Erhöhte Temperaturen erzielen größere Inseln, eine verbesserte kristalline Orientierung und weniger Zwillingsdefekte. Andererseits wird Desorption von überwiegend Sb beobachtet, was sich auf die Dicke, Zusammensetzung und Reproduzierbarkeit der Schichten auswirkt. Bei 190\(^{\circ}\)C kann Desorption vermieden werden, was eine präzise Kontrolle über Schichtdicke und Zusammensetzung des quaternären Verbunds ermöglicht, während eine hohe strukturelle Qualität erhalten bleibt. Es ist besonders wichtig das Bi/Sb Verhältnis zu optimieren, da durch das Legieren des n-Typ Bi\(_2\)Te\(_3\) mit dem p-Typ Sb\(_2\)Te\(_3\) bei einem bestimmten Verhältnis Ladungsneutralität erzielt wird. Dies ist nötig um die Leitung im Inneren der Schicht vollständig zu unterdrücken und die Fermikante in die magnetische Austauschlücke zu schieben. Der Sb Gehalt x beeinflusst außerdem die Gitterkonstante a in der Ebene deutlich, im Gegensatz zur Gitterkonstante c in Wachstumsrichtung. Mit Hilfe dieses Zusammenhangs kann x selbst in dünnen Schichten unter 10 nm Dicke, wie sie für den Quantum anomalen Hall-Effekt benötigt werden, genau bestimmt werden. Der Sb Gehalt x beeinflusst weiterhin die Oberflächenmorphologie deutlich: mit steigenden x verringert sich die Inselgröße und die RMS Rauigkeit wächst um bis zu einem Faktor 4 zwischen x = 0 und x = 1. Eine Probenserie mit x zwischen 0,56−0,95 wurde hergestellt, wobei darauf geachtet wurde eine konstante Dicke von 9 nm und eine Dotierkonzentration von 2 at.% V beizubehalten. Magnetotransport Messungen bei 4,2K zeigen Ladungsneutra- lität bei x = 0,86. Der maximale anomale Hall-Widerstand von 0,44 h/e\(^2\) wird bei x = 0,77 nahe der Ladungsneutralität beobachtet. Wird die Messtemperatur auf 50 mK reduziert, steigt der anomale Hall-Widerstand signifikant an. Mehrere Proben mit x in einem schmalen Bereich von 0,76−0,79 zeigen den Quanten anomalen Hall-Effekt mit einem Hall-Widerstand, der die von-Klitzing-Konstante erreicht, und verschwindendem longitudinalen Widerstand. Die Realisierung des Quantum anomalen Hall-Effekts als erste Gruppe in Europa ermöglichte es uns die elektrischen und magnetischen Eigenschaften der Proben in Zusammenarbeit mit anderen Gruppen zu untersuchen. In Kollaboration mit der Physikalisch-Technische Bundesanstalt wurden Hochpräzisionsmessungen mit detaillierter Fehleranalyse durchgeführt und eine relative Abweichung von der von-Klitzing-Konstante von (0,17\(\pm\)0,25)*10\(^{−6}\) erzielt. Dieser Wert wurde als kleinster und genauester Wert publiziert, was die hohe Qualität der zur Verfügung gestellten Proben zeigt. Dieses Ergebnis ebnet den Weg für die Anwendung von magnetischen topologischen Isolatoren als Widerstand Standards ohne Magnetfeld. In enger Zusammenarbeit mit der Transport Gruppe in der EP3 wurden nichtlokale Magnetotransport Messungen bei 15mK durchgeführt. Das Ergebnis beweist, dass Transport durch chirale Randkanäle erfolgt. Die detaillierte Analyse kleiner Anomalien in Transport Messungen offenbart Instabilitäten in der magnetischen Phase selbst bei 15 mK. Der zeitabhängige Charakter dieser Anomalien weist auf superparamagnetische Anteile in der nominell ferromagnetischen Phase hin. Als nächstes wurde der Einfluss der Deckschicht und des Substrattyps auf die strukturellen Eigenschaften und die Auswirkungen auf den Quanten anomalen Hall-Effekt untersucht. Dazu wurde eine Schicht auf halbisolierendem Fe:InP(111)B Substrat unter den zuvor optimierten Wachstumsbedingungen gewachsen. Dies führt zu einer deutlich erhöhten kristallinen Qualität mit einem verringerten Verdrehungswinkel von 5,4\(^{\circ}\) auf 1,0\(^{\circ}\). Weiterhin wurde eine Schicht ohne schützende Deckschicht auf Si gewachsen und, nachdem ausreichend Zeit für mögliche Degradation vergangen war, gemessen. Die Schicht auf Si ohne Deckschicht zeigt perfekte Quantisierung, während die Schicht auf InP eine Abweichung von etwa 5% aufweist. Ursache könnte die höhere kristalline Qualität sein, Variationen in z.B. Sb Gehalt könnten jedoch auch eine Rolle spielen. Insgesamt scheint der Quanten anomale Hall-Effekt robust gegenüber Änderungen des Substrats und der Deckschicht zu sein. Des Weiteren wurde die Abhängigkeit des Quanten anomalen Hall-Effekts von der Schichtdicke untersucht. Zwischen 5−8 nm Dicke wechselt das Material typischerweise von einem 2D topologischen Isolator mit hybridisierten oberen und unteren Oberflächenzustand zu einem 3D topologischen Isolator. Eine Probenreihe mit 6 nm, 8 nm und 9 nm Schichtdicke zeigt den Quanten anomalen Hall- Effekt, während 5 nm und 15 nm dicke Schichten deutliche Beiträge aus dem Volumen haben. Die Analyse der longitudinalen- und Hall-Leitfähigkeit während der Umkehrung der Magnetisierung offenbart eindeutige Unterschiede. Die 6 nm dicke Schicht zeigt ein Skalierungsverhalten konsistent mit dem ganzzahligen Quanten- Hall-Effekt, die 9 nm dicke Schicht dagegen zeigt das erwartete Skalierungsverhalten für die topologischen Oberflächenzustände eines 3D topologischen Isolators. Das besondere Skalierungsverhalten der 9 nm dicken Schicht ist von besonderem Interesse, da es der axionischen Elektrodynamik in einem 3D topologischen Isolator entspringen könnte. Anschließend wird der Einfluss von V Dotierung auf die strukturellen und magnetischen Eigenschaften der Schichten systematisch untersucht. Ähnlich wie das Legieren mit Bi, scheint V Dotieren die Oberfläche deutlich zu glätten. Mit steigenden V Gehalt erhöht sich die Zahl der Te Bindungspartner simultan im 2:3 Verhältnis, wie erwartet für den Einbau von V auf Gruppe-V Plätzen. Die lineare Kontraktion der Gitterkonstanten in der Ebene und senkrecht dazu mit steigender V Dotierung ist quantitativ konsistent mit dem Einbau von V\(^{3+}\) Ionen, möglicherweise gemischt mit V\(^{4+}\) Ionen, auf Gruppe-V Plätzen. Dies ist konsistent mit SQUID Messungen die eine Magnetisierung von 1,3 \(\mu_B\) pro V Ion zeigen. Schließlich werden magnetisch dotierte topologische Isolator Heterostrukturen hergestellt und in Magnetotransport Messungen charakterisiert. Der Axion-Isolator Zustand wurde in dreischichtigen Heterostrukturen mit einer nichtmagnetischen (Bi,Sb)\(_2\)Te\(_3\) Lage zwischen zwei magnetischen Schichten vorhergesagt, falls die beiden magnetischen Lagen entkoppelt sind und in antiparalleler Ausrichtung vorliegen. Magnetotransport Messungen solcher dreischichtigen Heterostrukturen mit 7 nm undotiertem (Bi,Sb)\(_2\)Te\(_3\) zwischen jeweils 2 nm dicken dotierten Schichten mit 1,5 at.% V zeigen ein Null Hall-Plateau, das einen isolierenden Zustand repräsentiert. Ähnliche Ergebnisse in der Literatur wurden als Axion-Isolator Zustand interpretiert, jedoch können andere Erklärungen ohne eine direkten Messung der antiparallelen magnetischen Orientierung nicht ausgeschlossen werden. Weiterhin zeigen Heterostrukturen mit einer 2 nm dünnen, hoch V dotierten Schicht einen anomalen Hall-Effekt mit entgegengesetzten Vorzeichen im Vergleich zu vorhergehenden Proben. Die Abhängigkeit von der Dicke und Position dieser Schicht könnte darauf hindeuten, dass Streuprozesse an den Grenzflächen einen Beitrag zum anomalen Hall-Effekt entgegengesetzt zu den Volumenstreuprozessen verursachen. Viele interessante Phänomene in Quanten anomalen Hall Isolatoren sowie Axion- Isolatoren sind noch nicht eindeutig beobachtet worden. Dies schließt gebundene Majorana-Zustände in Quanten anomalen Hall Isolator/Supraleiter Hybridsystemen und den topologischen magneto-elektrischen Effekt in Axion-Isolatoren ein. Die limitierte Beobachtungstemperatur des Quanten anomalen Hall-Effekts von unter 1 K könnte in Heterostrukturen aus 3D topologischen Isolator und magnetischen Isolator Schichten welche den magnetischen Proximity-Effekt nutzen erhöht werden. Das wichtigste Ergebnis dieser Arbeit ist das reproduzierbare Wachstum und die Charakterisierung von (V,Bi,Sb)\(_2\)Te\(_3\) Schichten die den Quanten anomalen Hall-Effekt zeigen. Die detaillierte Untersuchung der strukturellen Voraussetzungen und die Beobachtung des besonderen axionischen Skalierungsverhaltens in 3D magnetischen Isolatorschichten führt zu einem besseren Verständnis dieses neuen Quantenzustands. Die Hochpräzisionsmessungen des Quanten anomalen Hall-Effekts mit der geringsten Abweichung von der von-Klitzing-Konstanten sind ein wichtiger Schritt zur Realisierung eines Widerstand-Standards basierend auf Quantisierung ohne magnetischem Feld. KW - Bismutverbindungen KW - Topologischer Isolator KW - Molekularstrahlepitaxie KW - Quanten anomalen Hall-Effekt KW - Quantum anomalous Hall effect Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-211666 ER - TY - THES A1 - Vogt, Matthias Guido T1 - Elektronische Eigenschaften von Wabengittern mit starker Spin-Bahn-Kopplung T1 - Electronic Properties of honeycomb lattices with strong spin-orbit coupling N2 - Im Rahmen dieser Arbeit wurden die elektronischen Eigenschaften von Graphen auf Metalloberflächen mittels Rastertunnelmikroskopie und Quasiteilcheninterferenz (englisch quasiparticle interference, QPI)-Messungen untersucht. Durch das Verwenden schwerer Substrate sollte die Spin-Bahn-Wechselwirkung des Graphen verstärkt werden und damit eine Bandlücke am K-Punkt der Bandstruktur mittels QPI beobachtet werden. Um das Messen von QPI auf Graphen zu testen, wurde auf der Oberfläche eines SiC(0001)-Kristalls durch Erhitzen Graphen erzeugt und mit dem Rastertunnelmikroskop untersucht. Dieses System wurde schon ausführlich in der Literatur beschrieben und bereits bekannte QPI-Messungen von Streuringen, die auf den Dirac-Kegeln des Graphen am K-Punkt basieren, konnte ich auf gr/SiC(0001) in guter Qualität erfolgreich reproduzieren. Anschließend wurde Graphen nach einem wohlbekannten Verfahren durch Aufbringen von Ethylen auf ein erhitztes Ir(111)-Substrat erzeugt. Dieses gr/Ir(111)-System diente auch als Grundlage für Interkalationsversuche von Bismut (gr/Bi/Ir(111)) und Gadolinium (gr/Gd/Ir(111)) zwischen das Graphen und das Substrat. Auf gr/Bi/Ir(111) wurde ein schon aus der Literatur bekanntes Netzwerk aus Versetzungslinien beobachtet, dem zusätzlich eine Temperaturabhängigkeit nachgewiesen werden konnte. Beim Versuch, Gadolinium zu interkalieren, wurden zwei verschieden Oberflächenstrukturen beobachtet, die auf eine unterschiedlich Anordnung bzw. Menge des interkalierten Gadoliniums zurückzuführen sein könnten. Auf keinem dieser drei Systeme konnten allerdings Streuringe mittels QPI beobachtet werden. Als Vorbereitung der Interkalation von Gadolinium wurden dessen Wachstum und magnetische Eigenschaften auf einem W(110)-Kristall untersucht. Dabei konnte eine aus der Literatur bekannte temperaturabhängige Austauschaufspaltung reproduziert werden. Darüber hinaus konnten sechs verschieden magnetische Domänen beobachtet werden. Zusätzlich sind auf der Oberfläche magnetische Streifen auszumachen, die möglicherweise auf einer Spinspirale basieren. Als Grundlage für die mögliche zukünftige Erzeugung Graphen-artiger Molekülgitter wurde das Wachstum von H-TBTQ und Me-TBTQ auf Ag(111) untersucht. Die Moleküle richten sich dabei nach der Oberflächenstruktur des Silber aus und bilden längliche Inseln, deren Kanten in drei Vorzugsrichtungen verlaufen. Auf H-TBTQ wurde zudem eine zweite, Windmühlen-artige Ausrichtung der Moleküle auf der Oberfläche beobachtet. Auf den mit den Molekülen bedeckten Stellen der Oberfläche wurde eine Verschiebung des Ag-Oberflächenzustands beobachtet, die mit einem Ladungstransfer vom Ag(111)-Substrat auf die TBTQ-Moleküle zu erklären sein könnte. N2 - In this thesis, the electronic properties of graphene on metal surfaces were investigated by scanning tunneling microscopy and quasiparticle interference (QPI) measurements. In order to enhance the spin orbital interaction of the graphene and possibly observe a band gap at the K-point of the band structure via QPI, substrates with heavy atoms were used. To test the ability to measure QPI on graphene, graphene was produced on the surface of a SiC(0001) crystal by heating and examined with a scanning tunneling microscope. This system has already been described in detail in the literature and I was able to successfully reproduce QPI measurements of clearly recognizable scattering rings, which are due to the Dirac cones of the graphene at the K-point Afterwards, graphene was produced by a well-known process by applying ethylene to a heated Ir(111) substrate. This gr/Ir(111) system also served as a basis for intercalation experiments of bismuth (gr/Bi/Ir(111)) and gadolinium (gr/Gd/Ir(111)) between the graphene and the substrate. On gr/Bi/Ir(111), a network of dislocation lines known from literature was observed, which also showed a temperature dependence. In the attempt to intercalate gadolinium, two different surface structures were observed which could be due to a different arrangement or quantity of the intercalated gadolinium. However, on none of these three systems scattering rings were observed by QPI. In preparation for the intercalation of gadolinium, its growth and magnetic properties were investigated on a W(110) substrate. A temperature-dependent exchange splitting of the surface density of states known from the literature could be reproduced. In addition, six different magnetic domains and magnetic stripes were observed on the surface, which may be based on a spin spiral. The growth of H-TBTQ and Me-TBTQ on Ag(111) was investigated as a basis for a possible subsequent generation of graphene-like molecular lattices in the future. The molecules are aligned to the surface structure of the silver and form elongated islands with edges in three preferred directions. H-TBTQ also appeared in a second, windmilllike orientation of the molecules on the surface. A shift of the Ag surface state was observed on the surface areas covered by the molecules, which might be explained by a charge transfer from the Ag(111) substrate to the TBTQ molecules. KW - Spin-Bahn-Wechselwirkung KW - Graphen KW - Rastertunnelmikroskopie KW - Wabengitter KW - Tribenzotriquinacen KW - Quasiteilcheninterferenz Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207506 ER - TY - THES A1 - Anneser, Katrin T1 - Elektrochemische Doppelschichtkondensatoren zur Stabilisierung fluktuierender photovoltaischer Leistung T1 - Electric double layer capacitors for stabilizing intermittent photovoltaic power N2 - Der Ausbau der regenerativen Energiequellen führt vermehrt zu unvorhersehbaren Schwankungen der erzeugten Leistung, da Windkraft und Photovoltaik von natürlichen Bedingungen abhängen. Gerade Kurzzeitfluktuationen im Sekunden- bis Minutenbereich, die bei Solarzellen durch die Verschattung von vorüberziehenden Wolken zustande kommen, wird bislang wenig Beachtung geschenkt. Kurzzeitspeicher müssen eine hohe Zyklenstabilität aufweisen, um zur Glättung dieser Leistungsfluktuationen in Frage zu kommen. Im Rahmen der vorliegenden Dissertation wurden elektrochemische Doppelschichtkondensatoren für die Kopplung mit Siliziumsolarzellen und organischen Solarmodulen mit Hilfe von Simulationen und Messungen untersucht. Zusätzlich wurden grundlegende Fragestellungen zur Prozessierung und Alterung von Doppelschichtkondensatoren im Hinblick auf ein in der Literatur bereits diskutiertes System betrachtet, das beide Komponenten in einem Bauteil integriert - den sogenannten photocapacitor. Um die Druckbarkeit des gesamten elektrochemischen Doppelschichtkondensators zu ermöglichen, wurde der konventionell verwendete Flüssigelektrolyt durch einen Polymer-Gel-Elektrolyten auf Basis von Polyvinylalkohol und einer Säure ersetzt. Durch eine Verbesserung der Prozessierung konnte ein größerer Anteil der spezifischen Fläche der porösen Kohlenstoffelektroden vom Elektrolyten benetzt und somit zur Speicherung genutzt werden. Die Untersuchungen zeigen, dass mit Polymer-Gel-Elektrolyten ähnliche Kapazitäten erreicht werden wie mit Flüssigelektrolyten. Im Hinblick auf die Anwendung im gekoppelten System muss der elektrochemische Doppelschichtkondensator den gleichen Umweltbedingungen hinsichtlich Temperatur und Luftfeuchte standhalten wie die Solarzelle. Hierzu wurden umfangreiche Alterungstests durchgeführt und festgestellt, dass die Kapazität zwar bei Austrocknung des wasserhaltigen Polymer-Gel-Elektrolyten sinkt, bei einer Wiederbefeuchtung aber auch eine Regeneration des Speichers erfolgt. Zur passenden Auslegung des elektrochemischen Doppelschichtkondensators wurde eine detaillierte Analyse der Leistungsfluktuationen durchgeführt, die mit einem eigens entwickelten MPP-Messgerät an organischen Solarmodulen gemessen wurden. Anhand der Daten wurde analysiert, welche Energiemengen für welche Zeit im Kurzzeitspeicher zwischengespeichert werden müssen, um eine effiziente Glättung der ins Netz einzuspeisenden Leistung zu erreichen. Aus der Statistik der Fluktuationen wurde eine Kapazität berechnet, die als Richtwert in die Simulationen einging und dann mit anderen Kapazitäten verglichen wurde. Neben einem idealen MPP-Tracking für verschiedene Arten von Solarzellen und Beleuchtungsprofilen konnte die Simulation auch die Kopplung aus Solarzelle und elektrochemischem Doppelschichtkondensator mit zwei verschiedenen Betriebsstrategien nachbilden. Zum einen wurde ein fester Lastwiderstand genutzt, zum anderen eine Zielspannung für den Kurzzeitspeicher und somit auch die Solarzelle vorgegeben und der Lastwiderstand variabel so angepasst, dass die Zielspannung gehalten wird. Beide Betriebsmethoden haben einen Energieverlust gegenüber der MPP-getrackten Solarzelle zu verzeichnen, führen aber zu einer Glättung der Leistung des gekoppelten Systems. Die Simulation konnte für Siliziumsolarzellen mit einem Demonstratorversuch im Labor und für organische Solarzellen unter realen Bedingungen validiert werden. Insgesamt ergibt sich eine vielversprechende Glättung der Leistungsfluktuationen von Solarzellen durch den Einsatz von elektrochemischen Doppelschichtkondensatoren. N2 - The increased usage of regenerative energy sources leads to more unpredictable fluctuations in power output, as wind power and photovoltaics depend on natural conditions. Especially short-term fluctuations in the range of seconds to minutes, which occur in solar cells due to the shading by passing clouds, have received little attention so far. Corresponding short-term storage units that can be used to smooth these power fluctuations must have a high cycle stability. In the scope of this thesis the suitability of electrochemical double layer capacitors for coupling with silicon solar cells and organic solar modules was investigated with simulations and measurements. Processing methods and aging of electrochemical double layer capacitors in respect to an integrated system consisting of both components - already discussed in the literature as the so-called photocapacitor - were considered. As the liquid electrolyte was replaced by a polymer gel electrolyte based on polyvinyl alcohol and an acid in order to enable printability of the entire electrochemical double-layer capacitor. An increase of the capacitance to the level of the capacitance for electrodes with liquid electrolytes was achieved by improved processing in which a larger proportion of the specific area of the porous carbon electrodes could be wetted by the electrolyte and thus used for storage. In the application as coupled system the electrochemical double-layer capacitor must withstand the same environmental conditions with regard to temperature and humidity as the solar cell. Extensive aging tests were carried out and it was found that, although the capacitance decreases when the water-containing polymer gel electrolyte dries out, remoistening also regenerates the storage capacitance. A detailed analysis of the power fluctuations, which were measured under real conditions with small organic solar modules using a specially developed MPP measuring device, was carried out to determine the appropriate characteristics of the electrochemical double layer capacitor. Using a mathematically smoothed mean curve, it was determined which amounts of energy have to be stored in the short-term storage device for which time in order to achieve the smoothed curve. From the statistics of the fluctuations a capacitance could be calculated which was used as a guide value in the simulations and could then be compared to the impact of other capacities. In addition to ideal MPP tracking for different types of solar cells and lighting profiles, the simulation was also able to model the coupling of solar cell and electrochemical double layer capacitor with two different operating strategies. On the one hand a fixed load resistance was used, on the other hand a target voltage for the short-term storage device and thus also for the solar cell was specified. The load resistance was variably adapted so that the target voltage was reached. Both operating methods show an energy loss compared to the MPP tracked solar cell without storage component, but lead to smoothing of the power output of the coupled system. The simulation could be validated for silicon solar cells with a demonstrator test in the laboratory and for organic solar cells on the external test setup under real conditions. Overall, the use of electrochemical double layer capacitors results in a promising smoothing of the power fluctuations of solar cells. KW - Energie KW - Photovoltaik KW - Energiespeicher Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-199339 ER - TY - THES A1 - Schlereth, Raimund T1 - New techniques and improvements in the MBE growth of Hg-containing narrow gap semiconductors T1 - Neue Techniken und Verbesserung des MBE Wachstums Hg-haltiger Halbleiter mit schmaler Bandlücke N2 - The subject of this thesis is the growth of Hg\(_{1-x}\)Cd\(_2\)Te layers via molecular beam epitaxy (MBE). This material system gives rise to a number of extraordinary physical phenomena related to its electronic band structure and therefore is of fundamental interest in research. The main results can be divided into three main areas, the implementation of a temperature measurement system based on band edge thermometry (BET), improvements of CdTe virtual substrate growth and the investigation of Hg\(_{1-x}\)Cd\(_2\)Te for different compositions. N2 - Gegenstand dieser Arbeit ist das Wachstum von Hg\(_{1-x}\)Cd\(_2\)Te-Schichten mittels Molekularstrahlepitaxie (MBE). Die elektronische Bandstruktur dieses Materials führt zu einer Reihe außergewöhnlicher physikalischer Phänomene. Es ist daher für die Forschung von grundlegendem Interesse. Die Ergebnisse lassen sich in drei Hauptbereiche unterteilen: die Implementierung eines Temperaturmessgeräts basierend auf dem Prinzip der Bandkantenthermometrie (BET), die Verbesserung des Wachstums von virtuellen CdTe-Substraten und die Untersuchung von Hg\(_{1-x}\)Cd\(_2\)Te-Schichten für verschiedene Materialkonzentrationen. KW - Halbleiter KW - Band edge thermometry KW - Molekularstrahlepitaxie KW - Molecular Beam Epitaxy KW - Semiconductor Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200790 ER -