TY - THES A1 - Tylek, Tina T1 - Establishment of a Co-culture System of human Macrophages and hMSCs to Evaluate the Immunomodulatory Properties of Biomaterials T1 - Etablierung eines Co-Kultur-Systems von humanen Makrophagen und hMSCs zur Bewertung der Immunmodulatorischen Eigenschaften von Biomaterialien N2 - The outcome of the innate immune response to biomaterials mainly determines whether the material will be incorporated in the body to fulfill its desired function or, when it gets encapsulated, will be rejected in the worst case. Macrophages are key players in this process, and their polarization state with either pro- (M1), anti-inflammatory (M2), or intermediate characteristics is crucial for deciding on the biomaterial’s fate. While a transient initial pro-inflammatory state is helpful, a prolonged inflammation deteriorates the proper healing and subsequent regeneration. Therefore, biomaterial-based polarization may aid in driving macrophages in the desired direction. However, the in vivo process is highly complex, and a mono-culture of macrophages in vitro displays only one part of the cellular system, but, to this date, there is a lack of established co-cultures to assess the immune response to biomaterials. Thus, this thesis aimed to establish a functional co-culture system of human macrophages and human mesenchymal stromal cells (hMSCs) to improve the assessment of the immune response to biomaterials in vitro. Together with macrophages, hMSCs are involved in tissue regeneration and inflammatory reactions and can modulate the immune response. In particular, endogenously derived hMSCs considerably contribute to the successful engrafting of biomaterials. This thesis focused on poly(ε-caprolactone) (PCL) fiber-based scaffolds produced by the technique of melt electrowriting (MEW) as biomaterial constructs. Via this fabrication technique, uniform, precisely ordered scaffolds varying in geometry and pore size have been created in-house. To determine the impact of scaffold geometries and pore sizes on macrophages, mono-cultures incubated on scaffolds were conducted. As a pre-requisite to achieve a functional co-culture system on scaffolds, setups for direct and indirect systems in 2D have initially been established. These setups were analyzed for the capability of cell-cell communication. In parallel, a co-culture medium suitable for both cell types was defined, prior to the establishment of a step-by-step procedure for the co-cultivation of human macrophages and hMSCs on fiber-based scaffolds. Regarding the scaffold morphologies tested within this thesis to improve M2-like polarization, box-shaped scaffolds outperformed triangular-, round- or disordered-shaped ones. Upon further investigation of scaffolds with box-shaped pores and precise inter-fiber spacing from 100 µm down to only 40 µm, decreasing pore sizes facilitated primary human macrophage elongation accompanied by their differentiation towards the M2 type, which was most pronounced for the smallest pore size of 40 µm. To the best of my knowledge, this was the first time that the elongation of human macrophages in a 3D environment has been correlated to their M2-like polarization. Thus, these results may set the stage for the design, the assessment, and the selection of new biomaterials, which can positively affect the tissue regeneration. The cell communication of both cell types, detected via mitochondria exchange in direct and indirect co-cultures systems, took place in both directions, i.e., from hMSCs to macrophages and vice versa. Thereby, in direct co-culture, tunneling nanotubes enabled the transfer from one cell type to the respective other, while in indirect co-culture, a non-directional transfer through extracellular vesicles (EVs) released into the medium seemed likely. Moreover, the phagocytic activity of macrophages after 2D co-cultivation and hence immunomodulation by hMSCs increased with the highest phagocytic rate after 48 h being most pronounced in direct co-cultivation. As the commonly used serum supplements for macrophages and hMSCs, i.e., human serum (hS) and fetal calf serum (FCS), respectively, failed to support the respective other cell type during prolonged cultivation, these sera were replaced by human platelet lysate (hPL), which has been proven to be the optimal supplement for the co-cultivation of human macrophages with hMSCs within this thesis. Thereby, the phenotype of both cell types, the distribution of both cell populations, the phagocytic activity of macrophages, and the gene expression profiles were maintained and comparable to the respective standard mono-culture conditions. This was even true when hPL was applied without the anticoagulant heparin in all cultures with macrophages, and therefore, heparin was omitted for further experiments comprising hPL and macrophages. Accordingly, a step-by-step operating procedure for the co-cultivation on fiber-based scaffolds has been established comprising the setup for 3D cultivation as well as the description of methods for the analysis of phenotypical and molecular changes upon contact with the biomaterial. The evaluation of the macrophage response depending on the cultivation with or without hMSCs and either on scaffolds or on plastic surfaces has been successfully achieved and confirmed the functionality of the suggested procedures. In conclusion, the functional co-culture system of human macrophages and hMSCs established here can now be employed to assess biomaterials in terms of the immune response in a more in vivo-related way. Moreover, specifically designed scaffolds used within the present thesis showed auspicious design criteria positively influencing the macrophage polarization towards the anti-inflammatory, pro-healing type and might be adaptable to other biomaterials in future approaches. Hence, follow-up experiments should focus on the evaluation of the co-culture outcome on promising scaffolds, and the suggested operating procedures should be adjusted to further kinds of biomaterials, such as cements or hydrogels. N2 - Der Verlauf der angeborene Immunantwort auf Biomaterialien bestimmt maßgebend, ob das Material vom Körper angenommen wird, um so seine gewünschte Funktion zu erfüllen, oder ob es zur Einkapselung und im schlimmsten Fall zur Abstoßung kommt. Makrophagen spielen in diesem Prozess eine Schlüsselrolle, und ihr Polarisationszustand, entweder pro (M1), antiinflammatorisch (M2) oder ein dazwischenliegender Subtyp, ist dabei von entscheidender Bedeutung. Während ein vorübergehender proinflammatorischer Anfangszustand hilfreich ist, verschlechtert eine anhaltende Entzündung eine zeitnahe Heilung und die anschließende Regeneration. Daher könnte eine durch Biomaterialien beeinflusste Polarisation hilfreich sein, um die Makrophagen in die gewünschte Richtung zu lenken. Die in vivo Reaktion ist jedoch äußerst komplex und die Kultivierung von Makrophagen in vitro stellt nur einen Teil des Prozesses dar. An etablierten Co-Kultursystem zur Untersuchung der immunmodulierenden Eigenschaften von Biomaterialien mangelt es jedoch. Daher war es Ziel dieser Arbeit ein funktionelles Co-Kultursystem von humanen Makrophagen und humanen mesenchymalen Stromazellen (hMSCs) zu etablieren um die in vitro Bewertung der Immunantwort nach Kontakt mit Biomaterialien zu verbessern. Von Interesse sind hMSCs hierbei, da sie zusammen mit Makrophagen an der Geweberegeneration und an Entzündungsreaktionen beteiligt sind. Zudem weisen MSCs immunmodulierende Eigenschaften in Hinblick auf Makrophagen auf und sind aktiv am Verlauf der Fremdkörperreaktion nach der Transplantation von Biomaterial beteiligt. Im Rahmen dieser Arbeit wurden Poly(ε-caprolactone) (PCL)-Scaffolds auf Faserbasis als Biomaterialkonstrukte verwendet, welche mit der Technik des Melt Electrowriting (MEW) hergestellt wurden. Mit dieser Technik kann sowohl die Form der Scaffolds als auch die Porengröße variiert werden. Um Unterschiede der Scaffoldgeometrien und Porengrößen in Hinblick auf die Makrophagenreaktion zu untersuchen, wurden zunächst Versuche mit Makrophagen-Monokulturen durchgeführt. Zur Etablierung eines funktionellen Co-Kultursystem, wurde zu Beginn ein Aufbau für ein direktes und indirektes System in 2D erstellt. Dieser Aufbau wurde anschließend auf die Möglichkeit der Zell-Zell-Kommunikation darin analysiert. Weiterhin wurde ein, für beide Zelltypen, geeignetes Kulturmedium definiert, gefolgt von der Etablierung eines Protokoll für die Co-Kultivierung beider Zelltypen auf faserbasierten Scaffolds. Im Bezug zu dieser Arbeit wurden Scaffolds mit unterschiedlicher Geometrie mittels der Technik des Melt Electrowriting hergestellt um die Veränderung der Makrophagenpolarisation zu untersuchen. Dabei zeigte sich eine verstärkte M2-Polarisation auf Scaffolds mit einer kastenförmigen Morphologie, verglichen mit dreieckigen, runden oder ungeordnet-strukturierten Scaffolds. Die weitere Untersuchung von Scaffolds mit kastenförmigen Poren und präzisen Faserabständen von 100 µm bis zu 40 µm zeigte das kleinere Porengrößen die Elongation primärer menschlicher Makrophagen förderten. Begleitet wurde die verstärkte Elongation mit einer gesteigerten Polarisation in Richtung des M2 Typs. Dieser Effekt war nach Kultivierung von Makrophagen auf Scaffolds mit 40 µm Poren am stärksten ausgeprägt. Im Rahmen dieser Arbeit konnte damit erstmals eine länglichen Morphologie humaner Makrophagen mit einer Polarisierung in den M2 Typ korreliert werden. Diese Ergebnisse könnten daher für das Design neuer Biomaterialien, welche sich positiv auf die Geweberegeneration auswirken sollen, von Bedeutung sein. Die Zellkommunikation beider Zelltypen, welche über Mitochondrienaustausch im direkten und indirekten Co-Kultur-System nachgewiesen wurde, fand sowohl ausgehend von Makrophagen als auch von hMSCs statt. Dabei ermöglichten „Tunneling Nanotubes“ in der direkten Co-Kultur den Transfer von Mitochondrien von einem Zelltyp zum jeweils anderen, während in der indirekter Co-Kultur ein ungerichteter Transfer durch in das Medium freigesetzte extrazelluläre Vesikel (EVs) stattfand. Darüber hinaus wurde die phagozytotische Aktivität von Makrophagen nach Co-Kultivierung untersucht, um die immunmodulatorischen Eigenschaften von hMSCs nachzuweisen, wobei die höchste phagozytotische Aktivität nach 48 stündiger Co-Kultivierung festgestellt wurde. Da die üblicherweise verwendeten Serumzusätze für Makrophagen (humanes Serum (hS)) und hMSCs (fötales Kälberserum (FCS)) bei längerer Kultivierung den jeweils anderen Zelltyp nicht unterstützen konnten, wurden diese Seren durch humanes Thrombozytenlysat (hPL) ersetzt. Dieses erwies sich im Rahmen dieser Arbeit als optimale Ergänzung für die gemeinsame Kultivierung beider Zelltypen in der Co-Kultur. Dabei wurden der Phänotyp und die Populationsverteilung beider Zelltypen, sowie die phagozytotische Aktivität und die Veränderung des Genexpressionsprofils von Makrophagen untersucht und mit den jeweiligen Standard-Monokulturbedingungen verglichen. Des Weiteren konnte gezeigt werde, dass eine Zugabe von Heparin in Zellkulturen mit Makrophagen und hPL nicht nötig ist. Daher wurde auf den Zusatz von Heparin für alle weitere Experimente, die hPL und Makrophagen umfassten, verzichtet. Im letzten Teil der Arbeit wurde ein Protokoll für die Co-Kultivierung auf MEW Scaffolds erstellt. Neben der Etablierung eines Setups für die 3D-Kultivierung wurden sowohl Protokolle zur Bewertung phänotypischer als auch molekularer Veränderungen entwickelt. Durch Feststellung von Unterschieden in der Makrophagenreaktion in Abhängigkeit zu der Kultivierung mit / ohne hMSCs und entweder auf Scaffolds oder Plastik-Kulturschalen konnte die Funktionalität der Protokolle nachgewiesen werden. Mit dem in dieser Arbeit etabliertem funktionellen Co-Kultursystem von humanen Makrophagen und hMSCs können zukünftig Biomaterialien mit einem stärkeren in vivo -Bezug in Hinblick auf die Immunantwort bewertet werden. Darüber hinaus deuten Ergebnisse auf speziell konstruierte MEW-Scaffolds ein vielversprechendes Designkriterium für neu entwickelte Biomaterialien an, wobei die Polarisation der Makrophagen in Richtung des entzündungshemmenden, heilungsfördernden Typens durch eine gesteuerte Morphologieänderung beeinflusst werden kann. An diese Arbeit anschließende Experimente sollten sich auf die Untersuchung vielversprechender Scaffolds mittels Co-Kultivierung sowie auf die Anpassung der etablierten Protokolle an andere Biomaterialgruppen, wie beispielsweiße für Zemente oder Hydrogele, konzentrieren. KW - Makrophage KW - Biomaterial KW - Co-culture system KW - Mesenchymal stromal cells KW - Macrophages Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203570 ER - TY - THES A1 - Jannasch, Maren Annika T1 - In vitro Fremdkörpermodellsysteme zur Vorhersage von biomaterialinduzierten Immunreaktionen T1 - In vitro foreign body model systems for prediction of immune reactions to biomaterials N2 - Die Implantation eines Medizinprodukts in den menschlichen Körper ruft eine Immunreaktion hervor, die zur fibrösen Einkapselung führen kann. Makrophagen in direktem Kontakt mit der Oberfläche des Implantats erfassen sensorisch den Fremdkörper und übersetzten das Signal in die Freisetzung zahlreicher löslicher Mediatoren. Das generierte Entzündungsmilieu moduliert die Heilungsreaktion und kann zur Anreicherung von Fibroblasten sowie zur Erhöhung der Matrixsyntheserate in der Wundumgebung führen. Eine dichte fibröse Kapsel um ein Medizinprodukt beeinträchtigt den Ersatz von Körperstrukturen, das Unterstützen physiologischer Körperfunktionen sowie die Effizienz einer medizinischen Therapie. Zur Identifizierung potenzieller Biomaterialkandidaten mit optimalen Eigenschaften ist jedoch eine evidenzbasierte Entscheidungsfindung notwendig und diese wiederum muss durch geeignete Testmethoden unterstützt werden. Zur Erfassung lokaler Effekte nach Implantation eines Biomaterials begründet die Komplexi-tät der ablaufenden Fremdkörperreaktion die Anwendung von Tiermodellen als Goldstandard. Die Eingliederung von in vitro Modellsystemen in standardisierte Testverfahren scheitert oft an der Verfügbarkeit validierter, verlässlicher und reproduzierbarer Methoden. Demnach ist kein standardisiertes in vitro Testverfahren beschrieben, das die komplexen dreidimensionalen Gewebsstrukturen während einer Fremdkörperreaktion abbildet und sich zur Testung über längere Kontaktphasen zwischen Blutkomponenten und Biomaterialien eignet. Jedoch können in vitro Testungen kosten- und zeiteffizienter sein und durch die Anwendung humaner Zellen eine höhere Übertragbarkeit auf den Menschen aufweisen. Zusätzlich adressiert die Präferenz zu in vitro Testmethoden den Aspekt „Reduzierung“ der 3R-Prinzipien „Replacement, Reduction, Refinement“ (Ersatz, Reduzierung, Verbesserung) von Russel und Burch (1959) zu einer bewussten und begründeten Anwendung von Tiermodellen in der Wissenschaft. Ziel von diesem Forschungsvorhaben war die Entwicklung von humanen in vitro Modellsystemen, die den Kontakt zu Blutkomponenten sowie die Reaktion des umliegenden Bindegewebes bei lokaler Implantation eines Biomaterials abbilden. Referenzmaterialien, deren Gewebsantwort nach Implantation in Tiere oder den Menschen bekannt ist, dienten als Validierungskriterium für die entwickelten Modellsysteme. Die Anreicherung von Zellen sowie die Bildung extrazellulärer Matrix in der Wundumgebung stellen wichtige Teilprozesse während einer Fremdkörperreaktion dar. Für beide Teilprozesse konnte in einem indirekten zellbasierten Modellsystem der Einfluss einer zellvermittelten Konditionierung wie die Freisetzung von löslichen Mediatoren durch materialadhärente Makrophagen auf die gerichtete Wanderung von Fibroblasten sowie den Umbau eines dreidimensionalen Bindegewebsmodells aufgezeigt werden. Des Weiteren ließ sich das Freisetzungsprofil von Zytokinen durch materialständige Makrophagen unter verschiedenen Testbedingungen wie der Kontamination mit LPS, der Oberflächenbehandlung mit humanem Blutplasma und der Gegenwart von IL-4 bestimmen. Die anschließende vergleichende statistische Modellierung der generierten komplexen multifaktoriellen Datenmatrix ermöglichte die Übersetzung in eine Biomaterialbewertung. Dieses entwickelte Testverfahren eignete sich einerseits zur Validierung von in vitro Testbedingungen sowie andererseits zur Bewertung von Biomaterialien. Darüber hinaus konnte in einem dreidimensionalen Fremdkörpermodell die komplexe dreidimensionale Struktur der extrazellulären Matrix in einer Wunde durch die Kombination unterschiedlicher Zell- und Matrixkomponenten biomimetisch nachgebaut werden. Diese neuartigen dreidimensionalen Fremdkörpermodelle ermöglichten die Testung von Biomaterialien über längere Testphasen und können in anschließenden Studien angewandt werden, um dynamische Prozesse zu untersuchen. Zusammenfassend konnten in dieser Arbeit drei unterschiedliche Teststrategien entwickelt werden, die (I) die Bewertung von Teilprozessen ermöglichen, (II) die Identifizierung verlässlicher Testbedingungen unterstützen und (III) biomimetisch ein Wundgewebe abbilden. Wesentlich ist, dass biomimetisch ein dreidimensionales Gewebemodell entwickelt werden konnte, das eine verlässliche Unterscheidungskapazität zwischen Biomaterialien aufweist. N2 - The implantation of a medical product into the human body induces an immune reaction, which may lead to its fibrous encapsulation. Macrophages in direct contact to the surface sense the foreign body and translate the signal in the secretion of multiple soluble mediators. This generated inflammatory milieu modulates the healing reaction, may induce the accumulation of fibroblasts and lead in the wound microenvironment to an increased matrix synthesis rate. A dense fibrous capsule surrounding a medical product is able to impair the replacement of body structures, the support of physiological body functions as well as the efficiency of a medical therapy. To identify potential biomaterial candidates with optimal characteristics an evidence-based decision making process is necessary and furthermore affords the support by appropriate test procedures. To study local effects after implantation of biomaterials, the complexity of the foreign body reaction justifies the application of animal models as gold standard. The integration of in vitro test procedures into standardized test strategies often fails by the availability of validated, reliable and reproducible methods. According to that there is no standardized test procedure, which resembles the three-dimensional tissue structures during a foreign body reaction and is suited for longer contact phases in between blood components and biomaterials. In vitro tests are often more cost and time efficient and show as well by applying human cells a high transferability on human beings. Additionally the preference to in vitro test procedures addresses the “reduction” aspect of the Russel and Burch’s (1959) 3R-principles “replace-ment, reduction and refinement” to a conscious and reasoned use of animal models in science. Aim of this research project was the development of human in vitro model systems, which resemble the contact to blood components and the reaction of the surrounding soft tissue following implantation of a biomaterial. Reference materials, whose tissue integration after implantation in animals or humans is described, were applied for the developed model systems as validation criterion. The accumulation of cells and the synthesis of extracellular matrix in the surrounding wound are relevant sub processes during a foreign body reaction. In an indirect cell-based model system the influence of the cell-mediated conditioning initiated by the material-induced and macrophage-mediated liberation of soluble mediators was shown on both sub processes the aligned migration of fibroblasts as well as the remodeling of a three-dimensional tissue model. Additionally, the cytokine secretion profile by material-adherent macrophages was characterized under different test conditions such as the contamination with LPS, the surface treatment with human plasma and the presence of IL-4. The following comparative statistical modelling allowed a transformation of the generated complex multi-factorial data matrix to a biomaterial ranking. The here developed test procedure was suitable for the validation of in vitro test conditions as well as the evaluation of the reference biomaterials. Last, by the combination of different cells and matrix structures the complex three-dimensional structure of the extracellular matrix in a wound was biomimetically reconstructed. Those novel three-dimensional foreign body models enabled the testing of biomaterials over longer test phases and might be applied in following studies to investigate dynamic processes. Summarizing in this research project three different test strategies were developed, which (I) enable the evaluation of sub processes, (II) support the identification of reliable test conditions and (III) biomimetically reconstruct a wound tissue. Most important is, that a three-dimensional tissue model was biomimetically developed, which showed a reliable discriminatory capacity in between biomaterials. KW - Biomaterial KW - Zellkultur KW - In vitro KW - Fremdkörpermodell KW - Gewebemodell Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162893 ER - TY - THES A1 - Schürlein, Sebastian T1 - Entwicklung von Technologien zur Optimierung von Tissue Engineering Prozessen am Beispiel der Herstellung von kardialem Gewebe T1 - Development of technologies to optimize tissue engineering processes, documented on the example of the generation of cardiac tissue N2 - Kardiovaskuläre Erkrankungen, wie beispielsweise der Herzinfarkt, sind die häufigste Todesursache weltweit. Bei einem Herzinfarkt sterben Areale des Herzens aufgrund einer Unterversorgung mit Blut ab. Da das Herzmuskelgewebe ein sogenanntes terminal differenziertes Gewebe ist, kommt es zu keiner Regeneration des Gewebes, mit der Folge einer Herzinsuffizienz beziehungsweise dem Tod des Patienten. Eine alternative Behandlungsmöglichkeit zu einer Herztransplantation stellt das Tissue Engineering dar. Mit Hilfe des Tissue Engineerings können dreidimensionale Gewebe aufgebaut und kultiviert werden, um auf diese Weise ein funktionelles Gewebe zu erhalten, durch welches das abgestorbene Gewebeareal des Herzens zukünftig auch ersetzt werden könnte. In der vorliegenden Arbeit wurden notwendige Technologien für den Aufbau von Geweben entwickelt sowie erste Versuche für die Erzeugung eines funktionellen Herzmuskelgewebes durchgeführt. Beim Aufbau von dreidimensionalen Geweben finden Trägerstrukturen Anwendung, die mit Zellen besiedelt werden. Solche Trägerstrukturen können aus biologischen oder synthetischen Polymeren hergestellt sein oder aus der extrazellulären Matrix eines dezellularisierten Gewebes bestehen. Für eine standardisierte Dezellularisierung von Geweben wurde eine computergesteuerte Pumpeneinheit, für die Herstellung von Nanofaserscaffolds eine Elektrospinninganlage entwickelt. Mit Hilfe der Dezellularisierungseinheit können komplexe Organe, wie ein Herz im Ganzen, reproduzierbar dezellularisiert werden. Untersuchungen der mittels Elektrospinning hergestellten Nanofaserscaffolds, welche als Alternative zu der dezellularisierten, natürlichen Matrix eingesetzt werden können, zeigten bei allen hergestellten Zusammensetzungen eine Orientierung der Zellen entlang der Fasern. Die Kultivierung von Zellmatrixkonstrukten erfolgt im Tissue Engineering häufig unter dynamischen Bedingungen. Hierfür wurde ein mobiler Stand Alone Inkubator mit der erforderlichen Peripherie für eine Kultur unter Perfusion des Gewebes entwickelt. Als Weiterentwicklung des Stand Alone Inkubators ist eine modulare Bioreaktorplattform, bestehend aus Wärmetauscher, Beutelpumpe und Gasaustauscher, aufgebaut worden. In dieses System kann über Standard Anschlüsse jegliche Art von Bioreaktor in das System eingebunden werden. Durch die Kompaktheit des Systems ist es möglich mehrere Ansätze parallel auf engem Raum durchzuführen. Die Funktion der Plattform, wurde in der vorliegenden Arbeit durch die Gewebekultur einer nativen porzinen Karotis nachgewiesen. Für den Aufbau des kardialen Gewebes dient die small intestinal submucosa ohne Serosa (SISser) als Trägerstruktur. Der Aufbau des Gewebekonstrukts erfolgte in verschiedenen Ansätzen unter Einsatz verschiedener Zellarten. Native, aus Herzbiopsien generierte Cardiosphere derived cells (CDCs) verteilten sich gleichmäßige über die Oberfläche der Matrix, jedoch konnten immunhistologisch keine spezifischen kardialen Marker bei den artifiziellen Geweben nachgewiesen werden. Zellmatrixkonstrukte aus einer Mono Kultur von Kardiomyozyten, differenziert aus induzierten pluripotenten Stammzellen (iPS Zellen) sowie einer Co Kultur dieser Kardiomyozyten mit mesenchymalen Stammzellen und Zellen aus einer Herzbiopsie zeigten nach wenigen Tagen in Kultur ein kontraktiles Verhalten. Immunhistologische Färbungen der beiden Gewebe bestätigten die Expression der spezifischen kardialen Marker, wie beispielsweise kardiales Troponin T, kardiales Troponin C und alpha Actinin. Die Kardiomyozyten der Mono Kultur sind jedoch nicht über die gesamte Matrixoberfläche verteilt, sondern bilden Aggregate. Bei der Co Kultur kann eine gleichmäßige Verteilung der Zellen auf der Matrix beobachtet werden. Der vielversprechendste Ansatz für den Aufbau eines Herzmuskelgewebes, welches als Implantat oder Testsystem eingesetzt werden kann, bildet nach den in dieser Arbeit erzielten Ergebnissen, ein Konstrukt aus der SISser und der Co Kultur der Zellen. Allerdings muss die Zusammensetzung der Co Kultur sowie das Verhältnis der Zellzahlen optimiert werden. N2 - Cardiovascular diseases as myocardial infarction are the most frequent cause of death worldwide. During a myocardial infarction, areas of the heart are being damaged because of an insufficient nutrient supply. Heart tissue is a terminal differentiated tissue, this means that it can’t be regenerated by itself. The consequence of this characteristic is a heart insufficiency or the death of the patient. An alternative treatment to heart transplantation is promised by tissue engineering. By using the methods of tissue engineering, cells can be cultured on a scaffold to generate a mature tissue, which can be used to replace the damaged areas of the heart. In the present work systems for the generation of tissues have been developed and first experiments to build up a functional cardiac patch were performed. To generate three-dimensional tissues, scaffolds colonized with cells are necessary. These scaffolds can be produced with biological or synthetic polymers or even decellularized tissues can be used. A computer controlled decellularization platform was designed to ensure a standardized, reproducible decellularization of complex organs like hearts. Furthermore, an electrospinning device was developed for the production of nanofiber scaffolds. On such matrices, seeded cells grow along the fibers. Most cell-matrix-constructs are cultured under dynamic conditions in tissue engineering. A stand alone incubator system containing the required periphery to apply different culture conditions was developed. As further development a compact modular bioreactor platform consisting of a heat exchanger, a bag pump and a gas exchanger was established. All kinds of bioreactors can be enclosed to the system via standard Luer Lock Connectors. Due to the compactness of the system, it is possible to parallelize and run experiments easily on narrow space. The functionality of the platform was demonstrated by a tissue culture of a native porcine carotid artery. The small intestinal submucosa without serosa (SISser) was employed as matrix for the development of a functional cardiac patch. In different experiments diverse cell types were used to generate a cardiac construct. Cardiosphere derived cells (CDC) seeded on the SISser showed an equal distribution all over the surface of the matrix, but no expression of specific cardiac markers. Constructs consisting of a mono culture of induced pluripotent stem cell derived cardiomyocytes (CM iPS cells) or a co culture of CM iPS cells, mesenchymal stem cells and cells isolated form a heart biopsy showed a contraction of the whole matrix after a few days in culture. Furthermore, cardiac markers like cardiac troponin T, cardiac troponin C and alpha actinin could be observed by immunohistological staining. Regarding the morphology of the different tissues, the mono culture of the CM iPS cells formed agglomerates on the surface of the matrix whereas the co culture showed a well distribution of the cells all over the surface of the matrix. Consequently, the co culture on the SISser is the most promising approach for the development of a functional cardiac patch. However, the combination of cell types within the co culture and their ratio has to be optimized. KW - Tissue Engineering KW - Herzmuskel KW - Bioreaktorplattform KW - Elektrospinning KW - kardiales Tissue Engineering KW - kardiales Gewebe KW - bioreactor plattform KW - electrospinning KW - cardiac tissue engineering KW - Biomaterial KW - Gewebekultur Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142432 ER - TY - THES A1 - Weyhmüller Reboredo, Jenny T1 - Tissue Engineering eines Meniskus - Vom Biomaterial zum Implantat T1 - Tissue Engineering of a meniscus - from a biomaterial to the implant N2 - Der Meniskus, ein scheibenförmiger Faserknorpel, spielt im Kniegelenk eine bedeutende Rolle, weil er Kräfte und Druck im Kniegelenk gleichmäßig verteilt, Stöße dämpft sowie der Kraftübertragung und Stabilisierung dient. Durch die Entfernung des Gewebes, der sogenannten Totalmeniskektomie, nach einer Meniskusverletzung oder einem Riss, verändern sich die mechanischen Eigenschaften des Gelenks stark und verursachen durch die erhöhte Belastung der Gelenkflächen Arthrose. Arthrose ist weltweit die Häufigste aller Gelenkerkrankungen. Der Erhalt der körperlichen Leistungsfähigkeit und Mobilität bis ins hohe Alter sowie die Bewahrung der Gesundheit von Herz-Kreislauf- und Stoffwechselorganen zählen aufgrund des demografischen Wandels zu den großen medizinischen Herausforderungen. Die Erkrankung des muskuloskelettalen Systems stellte 2010 im Bundesgebiet die am häufigsten vorkommende Krankheitsart dar. Während Risse in den äußeren Teilen des Meniskus aufgrund des Anschlusses an das Blutgefäßsystem spontan heilen können, können sie dies in tieferen Zonen nicht. Durch die begrenzte Heilungsfähigkeit des Knorpels bleibt langfristig der Einsatz eines Ersatzgewebes die einzige therapeutische Alternative. In der vorliegenden Arbeit wurde als therapeutische Alternative erfolgreich ein vaskularisiertes Meniskusersatzgewebe mit Methoden des Tissue Engineering entwickelt. Es soll in Zukunft als Implantat Verwendung finden. Tissue Engineering ist ein interdisziplinäres Forschungsfeld, in dem Gewebe außerhalb des Körpers generiert werden. Schlüsselkomponenten sind Zellen, die aus einem Organismus isoliert werden, und Trägerstrukturen, die mit Zellen besiedelt werden. Die Biomaterialien geben den Zellen eine geeignete Umgebung, die die Extrazelluläre Matrix (EZM) ersetzen soll, um die Funktion der Zellen beizubehalten, eigene Matrix zu bilden. Zum Erhalt eines funktionelles Gewebes werden oftmals dynamische Kultursysteme, sogenannte Bioreaktoren, verwendet, die natürliche Stimuli wie beispielsweise den Blutfluss oder mechanische Kompressionskräfte während der in vitro Reifungsphase des Gewebes, zur Verfügung stellen. Das Gewebekonstrukt wurde auf Basis natürlicher Biomaterialien aufgebaut, unter Verwendung ausschließlich primärer Zellen, die später direkt vom Patienten gewonnen werden können und damit Abstoßungsreaktionen auszuschließen sind. Da der Meniskus teilvaskularisiert ist und die in vivo Situation des Gewebes bestmöglich nachgebaut werden sollte, wurden Konstrukte mit mehreren Zelltypen, sogenannte Ko-Kulturen aufgebaut. Neben mikrovaskulären Endothelzellen (mvEZ) und Meniskuszellen (MZ) erfolgten Versuche mit mesenchymalen Stammzellen (MSZ). Zur Bereitstellung einer zelltypspezifischen Matrixumgebung, diente den mvEZ ein Stück Schweinedarm mit azellularisierten Gefäßstrukturen (BioVaSc®) und den MZ diente eine geeig- nete Kollagenmatrix (Kollagen Typ I Hydrogel). Die Validierung und Charakterisierung des aufgebauten 3D Meniskuskonstrukts, welches in einem dynamischen Perfusions-Bioreaktorsystem kultiviert wurde, erfolgte mit knorpeltypischen Matrixmarkern wie Aggrekan, Kollagen Typ I, II und X sowie mit den Transkriptionsfaktoren RunX2 und Sox9, die in der Knorpelentstehung von großer Bedeutung sind. Zusätzlich erfolgten Auswertungen mit endothelzellspezifischen Markern wie vWF, CD31 und VEGF, um die Vaskularisierung im Konstrukt nachzuweisen. Analysiert wurden auch die Zellvitalitäten in den Konstrukten. Aufgrund einer nur geringen Verfügbarkeit von MZ wurden Kulturansätze mit alternativen Zellquellen, den MSZ, durchgeführt. Dafür erfolgte zunächst deren Isolation und Charakterisierung und die Auswahl einer geeigneten 3D Kollagenmatrix. Die beste Zellintegration der MSZ konnte auf einer eigens hergestellten elektrogesponnenen Matrix beobachtet werden. Die Matrix besteht aus zwei unterschiedlichen Kollagentypen, die auf insgesamt fünf Schichten verteilt sind. Die Fasern besitzen weiter unterschiedliche Ausrichtungen. Während die Kollagen Typ I Fasern in den äußeren Schichten keiner Ausrichtung zugehören, liegen die Kollagen Typ II Fasern in der mittleren Schicht parallel zueinander. Der native Meniskus war für den Aufbau einer solchen Kollagen-Trägerstruktur das natürliche Vorbild, das imitiert werden sollte. Nach der Besiedelung der Matrix mit MSZ, konnte eine Integration der Zellen bereits nach vier Tagen bis in die Mittelschicht sowie eine spontane chondrogene Differenzierung nach einer insgesamt dreiwöchigen Kultivierung gezeigt werden. Das Biomaterial stellt in Hinblick auf die Differenzierung der Zellen ohne die Zugabe von Wachstumsfaktoren eine relevante Bedeutung für klinische Studien dar. Zur Kultivierung des 3D Meniskuskonstrukts wurde ein Bioreaktor entwickelt. Mit diesem können neben Perfusion der Gefäßsysteme zusätzlich Kompressionskräfte sowie Scherspannungen auf das Ersatzgewebe appliziert und die Differenzierung von MZ bzw. MSZ während der in vitro Kultur über mechanische Reize stimuliert werden. Ein anderes Anwendungsfeld für den neuartigen Bioreaktor ist seine Verwendung als Prüftestsystem für die Optimierung und Qualitätssicherung von Gewebekonstrukten. N2 - The meniscus, a disk-shaped fibrous cartilage, plays an important role in the equal distribution of pressure, shock absorption, power transmission and stability within the knee joint. After a meniscus injury or a meniscus tear, a total meniscectomy is done where the complete tissue is removed. This leads to a change of mechanical properties in the joint and causes arthrosis by an increased strain on the joint surfaces. Wordwide arthrosis is the most frequent of all joint diseases. Due to the demographic change, maintaining physical fitness and mobility up to an old age are the main challenges besides ensuring health of the heart and circulatory system and of the metabolic organs. Musculoskeletal disorders represented the most frequent type of disease in Germany in 2010. While tears in the outer zone of the meniscus heal spontaneously because of its connection to the blood vessel system, tears in the deeper zones do not heal. Due to the limited healing capacity of cartilage the use of a replacement tissue is the only therapeutic alternative in the long run. In the present work a vascularized meniscus construct as therapeutic alternatives has been developed with the Tissue Engineering method for the further use as an implant. Tissue En- gineering is an interdisciplinary research field to generate tissues outside the body. The key components are isolated cells from an organism, and scaffolds, which are seeded with cells. Biomaterials provide a suitable environment that replaces the extracellular matrix (ECM) to maintain cell functionality to let cells build up their own matrix. To maintain a functional tissue during in vitro dynamic culture, bioreactor systems are used to provide natural stimuli such as blood flow or mechanical compression forces. The tissue construct is based on natural biomaterials and solely on primary cells, which later can be isolated directly from the patient and thereby exclude repulsion reactions. Due to its limited vascularity of the meniscus and the aim to build up at its best the in vivo situation more than one cell type is used to generate constructs, so called co-culture systems. Mesen- chymal stem cells (MSZ) besides microvascular endothelial cells (mvEZ) and meniscus cells (MZ) were used in the experiments. To supply a cell type specific matrix environment, a segment of a porcine jejunum with decellularized vascular structures (BioVaSc®) for the mvEZ and a collagen based matrix (collagen type I hydrogel) for the MZ were employed. The validation and characterization of the de- veloped 3D meniscus construct, that was cultured in a dynamic perfusion bioreactor system, was performed by using cartilage matrix specific markers, such as aggrecan, collagen type I, II and X, as well as the transcription factors RunX2 and Sox9 that are of major importance for cartilage development. Further analysis with endothelial cell specific markers, such as vWF, CD31 and VEGF were performed to evaluate the vascularization of the construct. Furthermore, cell vitality tests of the construct were made. Because of the limited availability of primary MZ, culture approaches with MSZ as an alter- native cell source were investigated. Cell isolation and characterization were performed and a suitable 3D collagen matrix was selected. The best cell integration of the MSZ could be observed on a specifically engineered electrospun matrix. The matrix consists of two different collagen types that are arranged in a total of five layers. The fibers are further orientated in different directions. While outer layers consist of randomly-aligned collagen type I fibers, the collagen type II fibers in the middle layer are aligned parallel to each other. The native meniscus tissue serves as natural example and its structure is replicated in such a collagen scaffold. After seeding the scaffold with MSZ, cell integration into the middle layer could be observed after four days, as well as a spontanous chondrogenic differentation after three weeks of culture. The biomaterial developed in this work has to be considered as relevant for clinical studies with regard to cell differentiation without adding growth factors to the culture. For the culture of 3D meniscus construct a bioreactor was successfully developed, that can apply compressive strength and shear stress to the tissue model in addition to perfusing the vascular system. With these measures the differentiation of MZ or MSZ could be induced with mechanical strains during the in vitro culture. Another field of application for the new bioreactor is its use as a test system for the optimization and quality control of the tissue models. KW - Tissue Engineering KW - Meniskustransplantation KW - Bioreaktor KW - Gewebekultur KW - Biomaterial KW - Elektrospinning KW - Implantatentwicklung Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-108477 ER -