TY - JOUR A1 - Bellut, Maximilian A1 - Raimondi, Anthony T. A1 - Haarmann, Axel A1 - Zimmermann, Lena A1 - Stoll, Guido A1 - Schuhmann, Michael K. T1 - NLRP3 inhibition reduces rt-PA induced endothelial dysfunction under ischemic conditions JF - Biomedicines N2 - Thrombolysis with recombinant tissue plasminogen activator (rt-PA) is a mainstay of acute ischemic stroke treatment but is associated with bleeding complications, especially after prolonged large vessel occlusion. Recently, inhibition of the NLRP3 inflammasome led to preserved blood–brain barrier (BBB) integrity in experimental stroke in vivo. To further address the potential of NLRP3 inflammasome inhibition as adjunct stroke treatment we used immortalized brain derived endothelial cells (bEnd5) as an in vitro model of the BBB. We treated bEnd5 with rt-PA in combination with the NLRP3 specific inhibitor MCC950 or vehicle under normoxic as well as ischemic (OGD) conditions. We found that rt-PA exerted a cytotoxic effect on bEnd5 cells under OGD confirming that rt-PA is harmful to the BBB. This detrimental effect could be significantly reduced by MCC950 treatment. Moreover, under ischemic conditions, the Cell Index — a sensible indicator for a patent BBB — and the protein expression of Zonula occludens 1 stabilized after MCC950 treatment. At the same time, the extent of endothelial cell death and NLRP3 expression decreased. In conclusion, NLRP3 inhibition can protect the BBB from rt-PA-induced damage and thereby potentially increase the narrow time window for safe thrombolysis in stroke. KW - NLRP3 KW - inflammasome KW - MCC950 KW - rt-PA KW - blood–brain barrier KW - Cell Index KW - ASC KW - ischemic stroke KW - i.v. thrombolysis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-267261 SN - 2227-9059 VL - 10 IS - 4 ER - TY - JOUR A1 - Thal, Serge C. A1 - Smetak, Manuel A1 - Hayashi, Kentaro A1 - Förster, Carola Y. T1 - Hemorrhagic cerebral insults and secondary Takotsubo syndrome: findings in a novel in vitro model using human blood samples JF - International Journal of Molecular Sciences N2 - Intracranial hemorrhage results in devastating forms of cerebral damage. Frequently, these results also present with cardiac dysfunction ranging from ECG changes to Takotsubo syndrome (TTS). This suggests that intracranial bleeding due to subarachnoid hemorrhage (SAH) disrupts the neuro–cardiac axis leading to neurogenic stress cardiomyopathy (NSC) of different degrees. Following this notion, SAH and secondary TTS could be directly linked, thus contributing to poor outcomes. We set out to test if blood circulation is the driver of the brain–heart axis by investigating serum samples of TTS patients. We present a novel in vitro model combining SAH and secondary TTS to mimic the effects of blood or serum, respectively, on blood–brain barrier (BBB) integrity using in vitro monolayers of an established murine model. We consistently demonstrated decreased monolayer integrity and confirmed reduced Claudin-5 and Occludin levels by RT-qPCR and Western blot and morphological reorganization of actin filaments in endothelial cells. Both tight junction proteins show a time-dependent reduction. Our findings highlight a faster and more prominent disintegration of BBB in the presence of TTS and support the importance of the bloodstream as a causal link between intracerebral bleeding and cardiac dysfunction. This may represent potential targets for future therapeutic inventions in SAH and TTS. KW - Takotsubo syndrome KW - subarachnoid hemorrhage KW - inflammation KW - in vitro KW - blood KW - blood–brain barrier KW - human KW - patient KW - endothelial cells Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-288305 SN - 1422-0067 VL - 23 IS - 19 ER - TY - JOUR A1 - Salvador, Ellaine A1 - Kessler, Almuth F. A1 - Domröse, Dominik A1 - Hörmann, Julia A1 - Schaeffer, Clara A1 - Giniunaite, Aiste A1 - Burek, Malgorzata A1 - Tempel-Brami, Catherine A1 - Voloshin, Tali A1 - Volodin, Alexandra A1 - Zeidan, Adel A1 - Giladi, Moshe A1 - Ernestus, Ralf-Ingo A1 - Löhr, Mario A1 - Förster, Carola Y. A1 - Hagemann, Carsten T1 - Tumor Treating Fields (TTFields) reversibly permeabilize the blood–brain barrier in vitro and in vivo JF - Biomolecules N2 - Despite the availability of numerous therapeutic substances that could potentially target CNS disorders, an inability of these agents to cross the restrictive blood–brain barrier (BBB) limits their clinical utility. Novel strategies to overcome the BBB are therefore needed to improve drug delivery. We report, for the first time, how Tumor Treating Fields (TTFields), approved for glioblastoma (GBM), affect the BBB’s integrity and permeability. Here, we treated murine microvascular cerebellar endothelial cells (cerebEND) with 100–300 kHz TTFields for up to 72 h and analyzed the expression of barrier proteins by immunofluorescence staining and Western blot. In vivo, compounds normally unable to cross the BBB were traced in healthy rat brain following TTFields administration at 100 kHz. The effects were analyzed via MRI and immunohistochemical staining of tight-junction proteins. Furthermore, GBM tumor-bearing rats were treated with paclitaxel (PTX), a chemotherapeutic normally restricted by the BBB combined with TTFields at 100 kHz. The tumor volume was reduced with TTFields plus PTX, relative to either treatment alone. In vitro, we demonstrate that TTFields transiently disrupted BBB function at 100 kHz through a Rho kinase-mediated tight junction claudin-5 phosphorylation pathway. Altogether, if translated into clinical use, TTFields could represent a novel CNS drug delivery strategy. KW - blood–brain barrier KW - TTFields KW - CNS disorders Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-288057 SN - 2218-273X VL - 12 IS - 10 ER - TY - JOUR A1 - Fareed, Muhammad Mazhar A1 - Qasmi, Maryam A1 - Aziz, Shaan A1 - Völker, Elisabeth A1 - Förster, Carola Yvette A1 - Shityakov, Sergey T1 - The role of clusterin transporter in the pathogenesis of Alzheimer’s disease at the blood–brain barrier interface: a systematic review JF - Biomolecules N2 - Alzheimer’s disease (AD) is considered a chronic and debilitating neurological illness that is increasingly impacting older-age populations. Some proteins, including clusterin (CLU or apolipoprotein J) transporter, can be linked to AD, causing oxidative stress. Therefore, its activity can affect various functions involving complement system inactivation, lipid transport, chaperone activity, neuronal transmission, and cellular survival pathways. This transporter is known to bind to the amyloid beta (Aβ) peptide, which is the major pathogenic factor of AD. On the other hand, this transporter is also active at the blood–brain barrier (BBB), a barrier that prevents harmful substances from entering and exiting the brain. Therefore, in this review, we discuss and emphasize the role of the CLU transporter and CLU-linked molecular mechanisms at the BBB interface in the pathogenesis of AD. KW - clusterin transporter KW - Wnt signaling KW - Alzheimer’s disease KW - AD pathogenesis KW - blood–brain barrier KW - apolipoprotein J Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290279 SN - 2218-273X VL - 12 IS - 10 ER - TY - JOUR A1 - Förster, Carola Y. A1 - Shityakov, Sergey A1 - Scheper, Verena A1 - Lenarz, Thomas T1 - Linking cerebrovascular dysfunction to age-related hearing loss and Alzheimer’s disease — are systemic approaches for diagnosis and therapy required? JF - Biomolecules N2 - Alzheimer’s disease (AD), the most common cause of dementia in the elderly, is a neurodegenerative disorder associated with neurovascular dysfunction, cognitive decline, and the accumulation of amyloid β peptide (Aβ) in the brain and tau-related lesions in neurons termed neurofibrillary tangles (NFTs). Aβ deposits and NFT formation are the central pathological hallmarks in AD brains, and the majority of AD cases have been shown to exhibit a complex combination of systemic comorbidities. While AD is the foremost common cause of dementia in the elderly, age-related hearing loss (ARHL) is the most predominant sensory deficit in the elderly. During aging, chronic inflammation and resulting endothelial dysfunction have been described and might be key contributors to AD; we discuss an intriguing possible link between inner ear strial microvascular pathology and blood–brain barrier pathology and present ARHL as a potentially modifiable and treatable risk factor for AD development. We present compelling evidence that ARHL might well be seen as an important risk factor in AD development: progressive hearing impairment, leading to social isolation, and its comorbidities, such as frailty, falls, and late-onset depression, link ARHL with cognitive decline and increased risk of dementia, rendering it tempting to speculate that ARHL might be a potential common molecular and pathological trigger for AD. Additionally, one could speculate that amyloid-beta might damage the blood–labyrinth barrier as it does to the blood–brain barrier, leading to ARHL pathology. Finally, there are options for the treatment of ARHL by targeted neurotrophic factor supplementation to the cochlea to improve cognitive outcomes; they can also prevent AD development and AD-related comorbidity in the future. KW - Alzheimer’s disease KW - age-related hearing loss KW - neurovasculature KW - blood–brain barrier KW - blood–labyrinth barrier KW - spiral ganglion neuron KW - pharmacotherapy KW - neurotrophic factor KW - inner ear Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-297552 SN - 2218-273X VL - 12 IS - 11 ER - TY - JOUR A1 - Shityakov, Sergey A1 - Hayashi, Kentaro A1 - Störk, Stefan A1 - Scheper, Verena A1 - Lenarz, Thomas A1 - Förster, Carola Y. T1 - The conspicuous link between ear, brain and heart − Could neurotrophin-treatment of age-related hearing loss help prevent Alzheimer's disease and associated amyloid cardiomyopathy? JF - Biomolecules N2 - Alzheimer's disease (AD), the most common cause of dementia in the elderly, is a neurodegenerative disorder associated with neurovascular dysfunction and cognitive decline. While the deposition of amyloid β peptide (Aβ) and the formation of neurofibrillary tangles (NFTs) are the pathological hallmarks of AD-affected brains, the majority of cases exhibits a combination of comorbidities that ultimately lead to multi-organ failure. Of particular interest, it can be demonstrated that Aβ pathology is present in the hearts of patients with AD, while the formation of NFT in the auditory system can be detected much earlier than the onset of symptoms. Progressive hearing impairment may beget social isolation and accelerate cognitive decline and increase the risk of developing dementia. The current review discusses the concept of a brain–ear–heart axis by which Aβ and NFT inhibition could be achieved through targeted supplementation of neurotrophic factors to the cochlea and the brain. Such amyloid inhibition might also indirectly affect amyloid accumulation in the heart, thus reducing the risk of developing AD-associated amyloid cardiomyopathy and cardiovascular disease. KW - Alzheimer's disease KW - amyloid cardiomyopathy KW - heart failure KW - age-related hearing loss KW - neurotrophins KW - blood–brain barrier KW - blood–labyrinth barrier KW - spiral ganglion neuron KW - BDNF KW - GDNF Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241084 SN - 2218-273X VL - 11 IS - 6 ER - TY - JOUR A1 - Bieber, Michael A1 - Foerster, Kathrin I. A1 - Haefeli, Walter E. A1 - Pham, Mirko A1 - Schuhmann, Michael K. A1 - Kraft, Peter T1 - Treatment with edoxaban attenuates acute stroke severity in mice by reducing blood–brain barrier damage and inflammation JF - International Journal of Molecular Sciences N2 - Patients with atrial fibrillation and previous ischemic stroke (IS) are at increased risk of cerebrovascular events despite anticoagulation. In these patients, treatment with non-vitamin K oral anticoagulants (NOAC) such as edoxaban reduced the probability and severity of further IS without increasing the risk of major bleeding. However, the detailed protective mechanism of edoxaban has not yet been investigated in a model of ischemia/reperfusion injury. Therefore, in the current study we aimed to assess in a clinically relevant setting whether treatment with edoxaban attenuates stroke severity, and whether edoxaban has an impact on the local cerebral inflammatory response and blood–brain barrier (BBB) function after experimental IS in mice. Focal cerebral ischemia was induced by transient middle cerebral artery occlusion in male mice receiving edoxaban, phenprocoumon or vehicle. Infarct volumes, functional outcome and the occurrence of intracerebral hemorrhage were assessed. BBB damage and the extent of local inflammatory response were determined. Treatment with edoxaban significantly reduced infarct volumes and improved neurological outcome and BBB function on day 1 and attenuated brain tissue inflammation. In summary, our study provides evidence that edoxaban might exert its protective effect in human IS by modulating different key steps of IS pathophysiology, but further studies are warranted. KW - edoxaban KW - thrombo-inflammation KW - blood–brain barrier KW - tMCAO KW - experimental stroke KW - hemorrhagic transformation KW - NOAC Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284481 SN - 1422-0067 VL - 22 IS - 18 ER - TY - JOUR A1 - Salvador, Ellaine A1 - Burek, Malgorzata A1 - Löhr, Mario A1 - Nagai, Michiaki A1 - Hagemann, Carsten A1 - Förster, Carola Y. T1 - Senescence and associated blood-brain barrier alterations in vitro JF - Histochemistry and Cell Biology N2 - Progressive deterioration of the central nervous system (CNS) is commonly associated with aging. An important component of the neurovasculature is the blood-brain barrier (BBB), majorly made up of endothelial cells joined together by intercellular junctions. The relationship between senescence and changes in the BBB has not yet been thoroughly explored. Moreover, the lack of in vitro models for the study of the mechanisms involved in those changes impede further and more in-depth investigations in the field. For this reason, we herein present an in vitro model of the senescent BBB and an initial attempt to identify senescence-associated alterations within. KW - senescence KW - in vitro model KW - aging KW - CNS diseases KW - blood–brain barrier Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-267435 SN - 1432-119X VL - 156 IS - 3 ER - TY - JOUR A1 - Burek, Malgorzata A1 - Burmester, Sandra A1 - Salvador, Ellaine A1 - Möller-Ehrlich, Kerstin A1 - Schneider, Reinhard A1 - Roewer, Norbert A1 - Nagai, Michiaki A1 - Förster, Carola Y. T1 - Kidney Ischemia/Reperfusion Injury Induces Changes in the Drug Transporter Expression at the Blood–Brain Barrier in vivo and in vitro JF - Frontiers in Physiology N2 - Ischemia/reperfusion injury is a major cause of acute kidney injury (AKI). AKI is characterized by a sudden decrease in kidney function, systemic inflammation, oxidative stress, and dysregulation of the sodium, potassium, and water channels. While AKI leads to uremic encephalopathy, epidemiological studies have shown that AKI is associated with a subsequent risk for developing stroke and dementia. To get more insights into kidney–brain crosstalk, we have created an in vitro co-culture model based on human kidney cells of the proximal tubule (HK-2) and brain microvascular endothelial cells (BMEC). The HK-2 cell line was grown to confluence on 6-well plates and exposed to oxygen/glucose deprivation (OGD) for 4 h. Control HK-2 cells were grown under normal conditions. The BMEC cell line cerebED was grown to confluence on transwells with 0.4 μm pores. The transwell filters seeded and grown to confluence with cereEND were inserted into the plates with HK-2 cells with or without OGD treatment. In addition, cerebEND were left untreated or treated with uremic toxins, indole-3-acetic acid (IAA) and indoxyl sulfate (IS). The protein and mRNA expression of selected BBB-typical influx transporters, efflux transporters, cellular receptors, and tight junction proteins was measured in BMECs. To validate this in vitro model of kidney–brain interaction, we isolated brain capillaries from mice exposed to bilateral renal ischemia (30 min)/reperfusion injury (24 h) and measured mRNA and protein expression as described above. Both in vitro and in vivo systems showed similar changes in the expression of drug transporters, cellular receptors, and tight junction proteins. Efflux pumps, in particular Abcb1b, Abcc1, and Abcg2, have shown increased expression in our model. Thus, our in vitro co-culture system can be used to study the cellular mechanism of kidney and brain crosstalk in renal ischemia/reperfusion injury. KW - kidney ischemia/reperfusion injury KW - brain pathology KW - blood–brain barrier KW - drug transporter KW - tight junctions Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216413 SN - 1664-042X VL - 11 ER - TY - JOUR A1 - Kim, Brandon J. A1 - Shusta, Eric V. A1 - Doran, Kelly S. T1 - Past and current perspectives in modeling bacteria and blood–brain barrier interactions JF - Frontiers in Microbiology N2 - The central nervous system (CNS) barriers are highly specialized cellular barriers that promote brain homeostasis while restricting pathogen and toxin entry. The primary cellular constituent regulating pathogen entry in most of these brain barriers is the brain endothelial cell (BEC) that exhibits properties that allow for tight regulation of CNS entry. Bacterial meningoencephalitis is a serious infection of the CNS and occurs when bacteria can cross specialized brain barriers and cause inflammation. Models have been developed to understand the bacterial – BEC interaction that lead to pathogen crossing into the CNS, however, these have been met with challenges due to these highly specialized BEC phenotypes. This perspective provides a brief overview and outlook of the in vivo and in vitro models currently being used to study bacterial brain penetration, and opinion on improved models for the future. KW - bacteria KW - blood–brain barrier KW - meningitis KW - stem cells KW - brain endothelial cell Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201766 VL - 10 IS - 1336 ER - TY - JOUR A1 - Silwedel, Christine A1 - Speer, Christian P. A1 - Haarmann, Axel A1 - Fehrholz, Markus A1 - Claus, Heike A1 - Schlegel, Nicolas A1 - Glaser, Kirsten T1 - Ureaplasma species modulate cytokine and chemokine responses in human brain microvascular endothelial cells JF - International Journal of Molecular Science N2 - Ureaplasma species are common colonizers of the adult genitourinary tract and often considered as low-virulence commensals. Intraamniotic Ureaplasma infections, however, facilitate chorioamnionitis and preterm birth, and cases of Ureaplasma-induced neonatal sepsis, pneumonia, and meningitis raise a growing awareness of their clinical relevance. In vitro studies are scarce but demonstrate distinct Ureaplasma-driven impacts on immune mechanisms. The current study addressed cytokine and chemokine responses upon exposure of native or lipopolysaccharide (LPS) co-stimulated human brain microvascular endothelial cells (HBMEC) to Ureaplasma urealyticum or U. parvum, using qRT-PCR, RNA sequencing, multi-analyte immunoassay, and flow cytometry. Ureaplasma exposure in native HBMEC reduced monocyte chemoattractant protein (MCP)-3 mRNA expression (p < 0.01, vs. broth). In co-stimulated HBMEC, Ureaplasma spp. attenuated LPS-evoked mRNA responses for C-X-C chemokine ligand 5, MCP-1, and MCP-3 (p < 0.05, vs. LPS) and mitigated LPS-driven interleukin (IL)-1α protein secretion, as well as IL-8 mRNA and protein responses (p < 0.05). Furthermore, Ureaplasma isolates increased C-X-C chemokine receptor 4 mRNA levels in native and LPS co-stimulated HBMEC (p < 0.05). The presented results may imply immunomodulatory capacities of Ureaplasma spp. which may ultimately promote chronic colonization and long-term neuroinflammation. KW - Ureaplasma urealyticum KW - Ureaplasma parvum KW - neuroinflammation KW - meningitis KW - blood–brain barrier KW - HBMEC Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201848 SN - 1422-0067 VL - 20 IS - 14 ER - TY - JOUR A1 - Haarmann, Axel A1 - Schuhmann, Michael K. A1 - Silwedel, Christine A1 - Monoranu, Camelia-Maria A1 - Stoll, Guido A1 - Buttmann, Mathias T1 - Human brain endothelial CXCR2 is inflammation-inducible and mediates CXCL5- and CXCL8-triggered paraendothelial barrier breakdown JF - International Journal of Molecular Science N2 - Chemokines (C-X-C) motif ligand (CXCL) 5 and 8 are overexpressed in patients with multiple sclerosis, where CXCL5 serum levels were shown to correlate with blood–brain barrier dysfunction as evidenced by gadolinium-enhanced magnetic resonance imaging. Here, we studied the potential role of CXCL5/CXCL8 receptor 2 (CXCR2) as a regulator of paraendothelial brain barrier function, using the well-characterized human cerebral microvascular endothelial cell line hCMEC/D3. Low basal CXCR2 mRNA and protein expression levels in hCMEC/D3 were found to strongly increase under inflammatory conditions. Correspondingly, immunohistochemistry of brain biopsies from two patients with active multiple sclerosis revealed upregulation of endothelial CXCR2 compared to healthy control tissue. Recombinant CXCL5 or CXCL8 rapidly and transiently activated Akt/protein kinase B in hCMEC/D3. This was followed by a redistribution of tight junction-associated protein zonula occludens-1 (ZO-1) and by the formation of actin stress fibers. Functionally, these morphological changes corresponded to a decrease of paracellular barrier function, as measured by a real-time electrical impedance-sensing system. Importantly, preincubation with the selective CXCR2 antagonist SB332235 partially prevented chemokine-induced disturbance of both tight junction morphology and function. We conclude that human brain endothelial CXCR2 may contribute to blood–brain barrier disturbance under inflammatory conditions with increased CXCL5 and CXCL8 expression, where CXCR2 may also represent a novel pharmacological target for blood–brain barrier stabilization. KW - blood–brain barrier KW - multiple sclerosis KW - human cerebral endothelial cells KW - CXCR2 KW - CXCL5 KW - CXCL8 KW - interleukin-8 KW - SB332235 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201297 SN - 1422-0067 VL - 20 IS - 3 ER -