TY - JOUR A1 - Lauruschkat, Chris D. A1 - Etter, Sonja A1 - Schnack, Elisabeth A1 - Ebel, Frank A1 - Schäuble, Sascha A1 - Page, Lukas A1 - Rümens, Dana A1 - Dragan, Mariola A1 - Schlegel, Nicolas A1 - Panagiotou, Gianni A1 - Kniemeyer, Olaf A1 - Brakhage, Axel A. A1 - Einsele, Hermann A1 - Wurster, Sebastian A1 - Loeffler, Juergen T1 - Chronic occupational mold exposure drives expansion of Aspergillus-reactive type 1 and type 2 T-helper cell responses JF - Journal of Fungi N2 - Occupational mold exposure can lead to Aspergillus-associated allergic diseases including asthma and hypersensitivity pneumonitis. Elevated IL-17 levels or disbalanced T-helper (Th) cell expansion were previously linked to Aspergillus-associated allergic diseases, whereas alterations to the Th cell repertoire in healthy occupationally exposed subjects are scarcely studied. Therefore, we employed functional immunoassays to compare Th cell responses to A. fumigatus antigens in organic farmers, a cohort frequently exposed to environmental molds, and non-occupationally exposed controls. Organic farmers harbored significantly higher A. fumigatus-specific Th-cell frequencies than controls, with comparable expansion of Th1- and Th2-cell frequencies but only slightly elevated Th17-cell frequencies. Accordingly, Aspergillus antigen-induced Th1 and Th2 cytokine levels were strongly elevated, whereas induction of IL-17A was minimal. Additionally, increased levels of some innate immune cell-derived cytokines were found in samples from organic farmers. Antigen-induced cytokine release combined with Aspergillus-specific Th-cell frequencies resulted in high classification accuracy between organic farmers and controls. Aspf22, CatB, and CipC elicited the strongest differences in Th1 and Th2 responses between the two cohorts, suggesting these antigens as potential candidates for future bio-effect monitoring approaches. Overall, we found that occupationally exposed agricultural workers display a largely balanced co-expansion of Th1 and Th2 immunity with only minor changes in Th17 responses. KW - mold exposure KW - immunoassay KW - biomarker KW - Aspergillus KW - cytokines KW - inflammation KW - adaptive immunity KW - hypersensitivity Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-245202 SN - 2309-608X VL - 7 IS - 9 ER - TY - JOUR A1 - Lauruschkat, Chris D. A1 - Page, Lukas A1 - White, P. Lewis A1 - Etter, Sonja A1 - Davies, Helen E. A1 - Duckers, Jamie A1 - Ebel, Frank A1 - Schnack, Elisabeth A1 - Backx, Matthijs A1 - Dragan, Mariola A1 - Schlegel, Nicolas A1 - Kniemeyer, Olaf A1 - Brakhage, Axel A. A1 - Einsele, Hermann A1 - Loeffler, Juergen A1 - Wurster, Sebastian T1 - Development of a simple and robust whole blood assay with dual co-stimulation to quantify the release of T-cellular signature cytokines in response to Aspergillus fumigatus antigens JF - Journal of Fungi N2 - Deeper understanding of mold-induced cytokine signatures could promote advances in the diagnosis and treatment of invasive mycoses and mold-associated hypersensitivity syndromes. Currently, most T-cellular immunoassays in medical mycology require the isolation of mononuclear cells and have limited robustness and practicability, hampering their broader applicability in clinical practice. Therefore, we developed a simple, cost-efficient whole blood (WB) assay with dual α-CD28 and α-CD49d co-stimulation to quantify cytokine secretion in response to Aspergillus fumigatus antigens. Dual co-stimulation strongly enhanced A. fumigatus-induced release of T-cellular signature cytokines detectable by enzyme-linked immunosorbent assay (ELISA) or a multiplex cytokine assay. Furthermore, T-cell-dependent activation and cytokine response of innate immune cells was captured by the assay. The protocol consistently showed little technical variation and high robustness to pre-analytic delays of up to 8 h. Stimulation with an A. fumigatus lysate elicited at least 7-fold greater median concentrations of key T-helper cell signature cytokines, including IL-17 and the type 2 T-helper cell cytokines IL-4 and IL-5 in WB samples from patients with Aspergillus-associated lung pathologies versus patients with non-mold-related lung diseases, suggesting high discriminatory power of the assay. These results position WB-ELISA with dual co-stimulation as a simple, accurate, and robust immunoassay for translational applications, encouraging further evaluation as a platform to monitor host immunity to opportunistic pathogens. KW - immunoassay KW - biomarker KW - Aspergillus KW - cytokines KW - inflammation KW - adaptive immunity Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241025 SN - 2309-608X VL - 7 IS - 6 ER - TY - JOUR A1 - Walther, Grit A1 - Zimmermann, Anna A1 - Theuersbacher, Johanna A1 - Kaerger, Kerstin A1 - Lilienfeld-Toal, Marie von A1 - Roth, Mathias A1 - Kampik, Daniel A1 - Geerling, Gerd A1 - Kurzai, Oliver T1 - Eye infections caused by filamentous fungi: spectrum and antifungal susceptibility of the prevailing agents in Germany JF - Journal of Fungi N2 - Fungal eye infections can lead to loss of vision and blindness. The disease is most prevalent in the tropics, although case numbers in moderate climates are increasing as well. This study aimed to determine the dominating filamentous fungi causing eye infections in Germany and their antifungal susceptibility profiles in order to improve treatment, including cases with unidentified pathogenic fungi. As such, we studied all filamentous fungi isolated from the eye or associated materials that were sent to the NRZMyk between 2014 and 2020. All strains were molecularly identified and antifungal susceptibility testing according to the EUCAST protocol was performed for common species. In total, 242 strains of 66 species were received. Fusarium was the dominating genus, followed by Aspergillus, Purpureocillium, Alternaria, and Scedosporium. The most prevalent species in eye samples were Fusarium petroliphilum, F. keratoplasticum, and F. solani of the Fusarium solani species complex. The spectrum of species comprises less susceptible taxa for amphotericin B, natamycin, and azoles, including voriconazole. Natamycin is effective for most species but not for Aspergillus flavus or Purpureocillium spp. Some strains of F. solani show MICs higher than 16 mg/L. Our data underline the importance of species identification for correct treatment. KW - eye infection KW - fungal infection KW - keratitis KW - antifungal susceptibility KW - natamycin KW - Fusarium KW - Purpureocillium KW - Aspergillus KW - Alternaria KW - Scedosporium Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241810 SN - 2309-608X VL - 7 IS - 7 ER - TY - JOUR A1 - Yu, Yidong A1 - Wolf, Ann-Katrin A1 - Thusek, Sina A1 - Heinekamp, Thorsten A1 - Bromley, Michael A1 - Krappmann, Sven A1 - Terpitz, Ulrich A1 - Voigt, Kerstin A1 - Brakhage, Axel A. A1 - Beilhack, Andreas T1 - Direct Visualization of Fungal Burden in Filamentous Fungus-Infected Silkworms JF - Journal of Fungi N2 - Invasive fungal infections (IFIs) are difficult to diagnose and to treat and, despite several available antifungal drugs, cause high mortality rates. In the past decades, the incidence of IFIs has continuously increased. More recently, SARS-CoV-2-associated lethal IFIs have been reported worldwide in critically ill patients. Combating IFIs requires a more profound understanding of fungal pathogenicity to facilitate the development of novel antifungal strategies. Animal models are indispensable for studying fungal infections and to develop new antifungals. However, using mammalian animal models faces various hurdles including ethical issues and high costs, which makes large-scale infection experiments extremely challenging. To overcome these limitations, we optimized an invertebrate model and introduced a simple calcofluor white (CW) staining protocol to macroscopically and microscopically monitor disease progression in silkworms (Bombyx mori) infected with the human pathogenic filamentous fungi Aspergillus fumigatus and Lichtheimia corymbifera. This advanced silkworm A. fumigatus infection model could validate knockout mutants with either attenuated, strongly attenuated or unchanged virulence. Finally, CW staining allowed us to efficiently visualize antifungal treatment outcomes in infected silkworms. Conclusively, we here present a powerful animal model combined with a straightforward staining protocol to expedite large-scale in vivo research of fungal pathogenicity and to investigate novel antifungal candidates. KW - fungal infection model KW - calcofluor white staining KW - Aspergillus KW - Lichtheimia KW - silkworm Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228855 SN - 2309-608X VL - 7 IS - 2 ER - TY - JOUR A1 - Page, Lukas A1 - Wallstabe, Julia A1 - Lother, Jasmin A1 - Bauser, Maximilian A1 - Kniemeyer, Olaf A1 - Strobel, Lea A1 - Voltersen, Vera A1 - Teutschbein, Janka A1 - Hortschansky, Peter A1 - Morton, Charles Oliver A1 - Brakhage, Axel A. A1 - Topp, Max A1 - Einsele, Hermann A1 - Wurster, Sebastian A1 - Loeffler, Juergen T1 - CcpA- and Shm2-Pulsed Myeloid Dendritic Cells Induce T-Cell Activation and Enhance the Neutrophilic Oxidative Burst Response to Aspergillus fumigatus JF - Frontiers in Immunology N2 - Aspergillus fumigatus causes life-threatening opportunistic infections in immunocompromised patients. As therapeutic outcomes of invasive aspergillosis (IA) are often unsatisfactory, the development of targeted immunotherapy remains an important goal. Linking the innate and adaptive immune system, dendritic cells are pivotal in anti-Aspergillus defense and have generated interest as a potential immunotherapeutic approach in IA. While monocyte-derived dendritic cells (moDCs) require ex vivo differentiation, antigen-pulsed primary myeloid dendritic cells (mDCs) may present a more immediate platform for immunotherapy. To that end, we compared the response patterns and cellular interactions of human primary mDCs and moDCs pulsed with an A. fumigatus lysate and two A. fumigatus proteins (CcpA and Shm2) in a serum-free, GMP-compliant medium. CcpA and Shm2 triggered significant upregulation of maturation markers in mDCs and, to a lesser extent, moDCs. Furthermore, both A. fumigatus proteins elicited the release of an array of key pro-inflammatory cytokines including TNF-α, IL-1β, IL-6, IL-8, and CCL3 from both DC populations. Compared to moDCs, CcpA- and Shm2-pulsed mDCs exhibited greater expression of MHC class II antigens and stimulated stronger proliferation and IFN-γ secretion from autologous CD4\(^+\) and CD8\(^+\) T-cells. Moreover, supernatants of CcpA- and Shm2-pulsed mDCs significantly enhanced the oxidative burst in allogeneic neutrophils co-cultured with A. fumigatus germ tubes. Taken together, our in vitro data suggest that ex vivo CcpA- and Shm2-pulsed primary mDCs have the potential to be developed into an immunotherapeutic approach to tackle IA. KW - antigens KW - dendritic cells KW - cytokines KW - host defense KW - immunotherapy KW - Aspergillus Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239493 SN - 1664-3224 VL - 12 ER - TY - JOUR A1 - Springer, Jan A1 - Held, Jürgen A1 - Mengoli, Carlo A1 - Schlegel, Paul Gerhardt A1 - Gamon, Florian A1 - Träger, Johannes A1 - Kurzai, Oliver A1 - Einsele, Hermann A1 - Loeffler, Juergen A1 - Eyrich, Matthias T1 - Diagnostic performance of (1→3)-β-D-glucan alone and in combination with aspergillus PCR and galactomannan in serum of pediatric patients after allogeneic hematopoietic stem cell transplantation JF - Journal of Fungi N2 - Data on biomarker-assisted diagnosis of invasive aspergillosis (IA) in pediatric patients is scarce. Therefore, we conducted a cohort study over two years including 404 serum specimens of 26 pediatric patients after allogeneic hematopoietic stem cell transplantation (alloSCT). Sera were tested prospectively twice weekly for Aspergillus-specific DNA, galactomannan (GM), and retrospectively for (1→3)-β-D-glucan (BDG). Three probable IA and two possible invasive fungal disease (IFD) cases were identified using the European Organization for Research and Treatment of Cancer and the Mycoses Study Group (EORTC/MSGERC) 2019 consensus definitions. Sensitivity and specificity for diagnosis of probable IA and possible IFD was 80% (95% confidential interval (CI): 28–99%) and 55% (95% CI: 32–77%) for BDG, 40% (95% CI: 5–85%) and 100% (95% CI: 83–100%) for GM, and 60% (95% CI: 15–95%) and 95% (95% CI: 75–100%) for Aspergillus-specific real-time PCR. However, sensitivities have to be interpreted with great caution due to the limited number of IA cases. Interestingly, the low specificity of BDG was largely caused by false-positive BDG results that clustered around the date of alloSCT. The following strategies were able to increase BDG specificity: two consecutive positive BDG tests for diagnosis (specificity 80% (95% CI: 56–94%)); using an optimized cutoff value of 306 pg/mL (specificity 90% (95% CI: 68–99%)) and testing BDG only after the acute posttransplant phase. In summary, BDG can help to diagnose IA in pediatric alloSCT recipients. However, due to the poor specificity either an increased cutoff value should be utilized or BDG results should be confirmed by an alternative Aspergillus assay. KW - beta-D-glucan KW - galactomannan KW - real-time PCR KW - Aspergillus KW - pediatric Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-234179 SN - 2309-608X VL - 7 IS - 3 ER -