TY - THES A1 - Richter, Julian Alexander Jürgen T1 - Wave-CAIPI for Accelerated Dynamic MRI of the Thorax T1 - Beschleunigte Dynamische MR-Bildgebung des Thorax mit wave-CAIPI N2 - In summary, the wave-CAIPI k-space trajectory presents an efficient sampling strategy for accelerated MR acquisitions. Using wave-CAIPI in parallel imaging reconstructions leads to a reduced noise level in the reconstructed images, compared to the Cartesian standard trajectory. This effect could be quantified by means of noise and SNR calculations. An SNR gain can be traded for a reduced scan time, i.e., additional undersampling, or for an enhanced image quality, keeping scan time constant. Acceleration of MR imaging is especially important in dynamic applications, since these examinations are inherently time-consuming. The impact of wave-CAIPI sampling on image quality and its potential for scan time reduction was investigated for two dynamic applications: self-gated dynamic 3D lung MRI during free breathing and cardiac 4D flow MRI. Dynamic 3D Lung MRI By employing wave-CAIPI sampling in self-gated, free-breathing dynamic 3D lung MRI for the purpose of radiotherapy treatment planning, the image quality of accelerated scans could be enhanced. Volunteer examinations were used to quantify image quality by means of similarity between accelerated and reference images. To this end, the normalized mutual information and the root-mean-square error were chosen as quantitative image similarity measures. The wave-CAIPI sampling was shown to exhibit superior quality, especially for short scan times. The values of the normalized mutual information were (10.2 +- 7.3)% higher in the wave-CAIPI case -- the root-mean-square error was (18.9 +- 13.2)% lower on average. SNR calculations suggest an average SNR benefit of around 14% for the wave-CAIPI, compared to Cartesian sampling. Resolution of the lung in 8 breathing states can be achieved in only 2 minutes. By using the wave-CAIPI k-space trajectory, precise tumor delineation and assessment of respiration-induced displacement is facilitated. Cardiac 4D Flow MRI In 4D flow MRI, acceleration of the image acquisition is essential to incorporate the corresponding scan protocols into clinical routine. In this work, a retrospective 6-fold acceleration of the image acquisition was realized. Cartesian and wave-CAIPI 4D flow examinations of healthy volunteers were used to quantify uncertainties in flow parameters for the respective sampling schemes. By employing wave-CAIPI sampling, the estimated errors in flow parameters in 6-fold accelerated scans could be reduced by up to 55%. Noise calculations showed that the noise level in 6-fold accelerated 4D flow acquisitions with wave-CAIPI is 43% lower, compared to Cartesian sampling. Comparisons between Cartesian and wave-CAIPI 4D flow examinations with a prospective acceleration factor R=2 revealed small, but partly statistically significant discrepancies. Differences between 2-fold and 6-fold accelerated wave-CAIPI scans are comparable to the differences between Cartesian and wave-CAIPI examinations at R=2. Wave-CAIPI 4D flow acquisitions of the aorta could be performed with an average, simulated scan time of under 4 minutes, with reduced uncertainties in flow parameters. Important visualizations of hemodynamic flow patterns in the aorta were only slightly affected by undersampling in the wave-CAIPI case, whereas for Cartesian sampling, considerable discrepancies were observed. N2 - Die wave-CAIPI k-Raum Trajektorie stellt eine effiziente Methode für beschleunigte MRT Akquisitionen dar. Die Benutzung der wave-CAIPI Trajektorie anstelle der kartesischen Standardmethode in der parallelen Bildgebung führt zu einem reduzierten Rausch-Niveau in den rekonstruierten Bildern. Dieser Effekt kann durch Berechnungen des Rauschpegels und des Signal-zu-Rausch Verhältnisses (SNR) quantifiziert werden. Das höhere Signal-zu-Rausch Verhältnis kann genutzt werden, um entweder die Akquisition durch eine höhere Unterabtastung zu beschleunigen, oder um die Bildqualität zu verbessern. Die Beschleunigung von MRT Akquisitionen ist besonders in dynamischen Anwendungen wichtig, da diese Untersuchungen inhärent sehr zeitaufwendig sind. Der Einfluss der wave-CAIPI Methode auf die Bildqualität und das Beschleunigungspotenzial der Messung wurde in dieser Arbeit sowohl für selbst-navigierte, dynamische 3D Lungenbildgebung, als auch für 4D Fluss MRTs des Herzens untersucht Dynamische 3D Lungen MRT Durch die Verwendung der wave-CAIPI Samplingmethode konnte die Bildqualität von selbst-navigierten, dynamischen 3D Lungen MRTs bei freier Atmung verbessert werden. Eine wichtige Anwendung dieser Technik liegt im Bereich der Strahlentherapieplanung. Dabei wurde im Rahmen einer Probandenstudie die Bildqualität anhand der Ähnlichkeit zwischen beschleunigten Bildern und den jeweiligen Referenzen quantifiziert. Zu diesem Zweck wurden die normalized mutual information und der root-mean-square error als quantitative Maße gewählt. Es konnte gezeigt werden, dass -- besonders bei kurzen Akquisitionszeiten -- die wave-CAIPI Methode zu besserer Bildqualität führte, verglichen mit dem kartesischen Standard. Berechnungen der normalized mutual information ergaben im Mittel (10.2 +- 7.3)% höhere Werte für die wave-CAIPI Methode -- der root-mean-square error war (18.9 +- 13.2)% geringer. Darüber hinaus lieferte die wave-CAIPI ein um etwa 14% höheres mittleres SNR. In 2 Minuten konnte die Atembewegung der Lunge in 8 Atemzustände aufgelöst werden. Eine präzise Tumor-Abgrenzung und die Evaluierung von respirationsinduzierten Tumorbewegungen wird durch die Verwendung der wave-CAIPI Methode vereinfacht. 4D Fluss Herz MRT Die Beschleunigung von 4D Fluss MRTs ist essentiell, um solche Untersuchungen in die klinische Routine zu integrieren. In der präsentierten Arbeit wurde eine 6-fache retrospektive Beschleunigung realisiert. 4D Fluss Untersuchungen von gesunden Probanden mit der wave-CAIPI und mit der kartesischen Samplingmethode wurden verwendet, um Unsicherheiten in verschiedenen Flussparametern für die beiden Samplingmethoden zu berechnen. Dabei zeigte sich, dass die geschätzten Fehler in den Flussparametern der 6-fach beschleunigten wave-CAIPI Untersuchungen bis zu 55% geringer sind als die Fehler der kartesischen Messungen. Ferner zeigten Rausch-Analysen, dass die beschleunigten wave-CAIPI Aufnahmen ein um 43% geringeres Rausch-Niveau aufweisen. Vergleiche zwischen Flussparametern, die aus 2-fach beschleunigten wave-CAIPI und kartesischen Messungen berechnet wurden, zeigten kleine, aber teilweise statistisch signifikante Unterschiede zwischen den beiden Methoden. Unterschiede zwischen 2-fach und 6-fach beschleunigten wave-CAIPI Aufnahmen sind vergleichbar mit den Unterschieden zwischen der wave-CAIPI Methode und der kartesischen Methode bei R=2. Wave-CAIPI 4D Fluss Aufnahmen des Herzens konnten mit einer mittleren, simulierten Aufnahmezeit von unter 4 Minuten durchgeführt werden. Die effizientere Samplingmethode ermöglichte dabei erheblich reduzierte Unsicherheiten in den berechneten Flussparametern. Wichtige Visualisierungen des Blutflusses in der Aorta wurden im Falle der wave-CAIPI Methode kaum von der Unterabtastung beeinflusst. Hingegen wiesen die Visualisierungen der beschleunigten kartesischen Messungen erhebliche Diskrepanzen auf. KW - Magnetresonanztomographie KW - Lunge KW - Herz KW - Fluss KW - Lung KW - Heart KW - Flow Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-232071 ER - TY - THES A1 - Mendes Pereira, Lenon T1 - Morphological and Functional Ultrashort Echo Time (UTE) Magnetic Resonance Imaging of the Human Lung T1 - Morphologische und funktionelle Magnetresonanztomographie der menschlichen Lunge mit ultrakurzen Echozeiten (UTE) N2 - In this thesis, a 3D Ultrashort echo time (3D-UTE) sequence was introduced in the Self-gated Non-Contrast-Enhanced Functional Lung Imaging (SENCEFUL) framework. The sequence was developed and implemented on a 3 Tesla MR scanner. The 3D-UTE technique consisted of a nonselective RF pulse followed by a koosh ball quasi-random sampling order of the k-space. Measurements in free-breathing and without contrast agent were performed in healthy subjects and a patient with lung cancer. A gating technique, using a combination of different coils with high signal correlation, was evaluated in-vivo and compared with a manual approach of coil selection. The gating signal offered an estimation of the breathing motion during measurement and was used as a reference to segment the acquired data into different breathing phases. Gradient delays and trajectory errors were corrected during post-processing using the Gradient Impulse Response Function. Iterative SENSE was then applied to determine the fully sampled data. In order to eliminate signal changes caused by motion, a 3D image registration was employed, and the results were compared to a 2D image registration method. Ventilation was assessed in 3D and regionally quantified by monitoring the signal changes in the lung parenchyma. Finally, image quality and quantitative ventilation values were compared to the standard 2D-SENCEFUL technique. 3D-UTE, combined with an automatic gating technique and SENCEFUL MRI, offered ventilation maps with high spatial resolution and SNR. Compared to the 2D method, UTE-SENCEFUL greatly improved the clinical quality of the structural images and the visualization of the lung parenchyma. Through‐plane motion, partial volume effects and ventilation artifacts were also reduced with a three-dimensional method for image registration. UTE-SENCEFUL was also able to quantify regional ventilation and presented similar results to previous studies. N2 - In dieser Arbeit wurde eine 3D-UTE (ultrashort echo time) Sequenz mit SENCEFUL-MRI kombiniert. Die Sequenz wurde für einen 3 T MR-Scanner entwickelt und implementiert. Die 3D-UTE-Technik bestand aus einem nichtselektiven HF- Impuls, gefolgt von einer quasi-zufälligen Abtastung des k-Raums. Messungen in freier Atmung und ohne Kontrastmittel wurden bei gesunden Probanden und einem Patienten mit Lungenkrebs durchgeführt. Zur Zuordnung der Daten zu verschiedene Atemphasen wurde eine Technik verwendet, die verschiedene Spulen mit hoher Signalkorrelation kombiniert. Die Ergebnisse wurden in einer in-vivo Messung bewertet und mit einem manuellen Ansatz der Spulenselektion verglichen. Die Technik ermöglichte eine Visualisierung der Atembewegung und wurde als Referenz verwendet, um die erfassten Daten in mehrere Atemphasen zu segmentieren. Gradientenverzögerungen und Trajektorienfehler wurden mit der "Gradient Impulse Response Function - GIRF" korrigiert. Bei der Bildrekonstruktion kam Iteratives SENSE zum Einsatz. Eine 3D-Bildregistrierung erlaubte es, Signaländerungen durch Bewegung zu eliminieren. Es erfolgte ein Vergleich der Ergebnisse mit einem 2D- Bildregistrierungsverfahren. Die Lungenventilation wurde in 3D gemessen und anhand der Signaländerungen im Lungenparenchym quantifiziert. Schließlich, wurden die Werte für die Bildqualität und Lungenventilation mit der Standard-2D-SENCEFUL-Technik verglichen. Die 3D-UTE-Sequenz in Kombination mit einer automatischen Gating-Technik und SENCEFUL-MRI, ermöglichte die Akquise von Ventilationskarten mit hoher räumlicher Auflösung und SNR. Im Vergleich zur 2D-Methode, verbesserte UTE- SENCEFUL die klinische Qualität der Morphologischen Bilder. Bewegung, Partialvolumeneffekte und Ventilationsartefakte wurden ebenfalls mit einer dreidimensionalen Methode zur Bildregistrierung reduziert. Insgesamt konnten mit der 3D-UTE Technik die Ergebnisse vorangegangener Studien reproduziert und die Bildqualität verbessert werden. KW - Kernspintomografie KW - Lunge KW - MRI KW - Ultrashort echo time - UTE KW - Magnetic Resonance Imaging KW - Lung Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-183176 ER - TY - THES A1 - Carinci, Flavio T1 - Quantitative Characterization of Lung Tissue Using Proton MRI T1 - Quantitative Charakterisierung des Lungengewebes mithilfe von Proton-MRT N2 - The focus of the work concerned the development of a series of MRI techniques that were specifically designed and optimized to obtain quantitative and spatially resolved information about characteristic parameters of the lung. Three image acquisition techniques were developed. Each of them allows to quantify a different parameter of relevant diagnostic interest for the lung, as further described below: 1) The blood volume fraction, which represents the amount of lung water in the intravascular compartment expressed as a fraction of the total lung water. This parameter is related to lung perfusion. 2) The magnetization relaxation time T\(_2\) und T� *\(_2\) , which represents the component of T\(_2\) associated with the diffusion of water molecules through the internal magnetic field gradients of the lung. Because the amplitude of these internal gradients is related to the alveolar size, T\(_2\) und T� *\(_2\) can be used to obtain information about the microstructure of the lung. 3) The broadening of the NMR spectral line of the lung. This parameter depends on lung inflation and on the concentration of oxygen in the alveoli. For this reason, the spectral line broadening can be regarded as a fingerprint for lung inflation; furthermore, in combination with oxygen enhancement, it provides a measure for lung ventilation. N2 - Die Magnetresonanztomographie (MRT) stellt ein einzigartiges Verfahren im Bereich der diagnostischen Bildgebung dar, da sie es ermöglicht, eine Vielzahl an diagnostischen Informationen ohne die Verwendung von ionisierenden Strahlen zu erhalten. Die Anwendung von MRT in der Lunge erlaubt es, räumlich aufgelöste Bildinformationen über Morphologie, Funktionalität sowie über die Mikrostruktur des Lungengewebes zu erhalten und diese miteinander zu kombinieren. Für die Diagnose und Charakterisierung von Lungenkrankheiten sind diese Informationen von höchstem Interesse. Die Lungenbildgebung stellt jedoch einen herausfordernden Bereich der MRT dar. Dies liegt in der niedrigen Protondichte des Lungenparenchyms begründet sowie in den relativ kurzen Transversal- Relaxationszeiten T\(_2\) und T� *\(_2\) , die sowohl die Bildau� ösung als auch das Signal-zu-Rausch Verhältnis beeinträchtigen. Des Weiteren benötigen die vielfältigen Ursachen von physiologischer Bewegung, welche die Atmung, den Herzschlag und den Blut� uss in den Lungengefasen umfassen, die Anwendung von schnellen sowie relativ bewegungsunemp� ndlichen Aufnahmeverfahren, um Risiken von Bildartefakten zu verringern. Aus diesen Gründen werden Computertomographie (CT) und Nuklearmedizin nach wie vor als Goldstandardverfahren gehandhabt, um räumlich aufgelöste Bildinformationen sowohl über die Morphologie als auch die Funktionalität der Lunge zu erhalten. Dennoch stellt die Lungen- MRT aufgrund ihrer Flexibilität sowohl eine vielversprechende Alternative zu den anderen Bildgebungsverfahren als auch eine mögliche Quelle zusätzlicher diagnostischer Informationen dar. ... KW - Lung KW - MRI KW - Kernspintomografie KW - Lunge Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151189 ER - TY - JOUR A1 - Ukena, D. A1 - Schirren, C. G. A1 - Klotz, Karl-Norbert A1 - Schwabe, U. T1 - Evidence for an A\(_2\) adenosine receptor in guinea pig lung N2 - Adenosine receptors in guinea pig lung were characterized by measurement of cyclic AMP formation and radioligand binding. 5'-N-Ethylcarboxamidoadenosine (NECA) increased cyclic AMP Ievels in lung slices about 4-fold over basal values with an EC\(_{50}\) of 0.32 \(\mu\)mol/l. N\(^6\) - R-(- )-Phenylisopropyladenosine (R-PIA) was 5-fold less potent than NECA. 5'-N-Methylcarboxamidoadenosine (MECA) and 2-chloroadenosine had EC\(_{50}\)-values of 0.29 and 2.6 \(\mu\)mol/l, whereas adenosine and inosine had no effect. The adenosine receptors in guinea pig Iung can therefore be classified as A\(_2\) receptors. Several xanthine derivatives antagonized the NECA-induced increase in cyclic AMP levels. 1,3-Diethyl-8-phenylxanthine (DPX; K\(_i\) 0.14 \(\mu\)mol/l) was the most potent analogue, followed by 8-phenyltheophylline (K\(_i\) 0.55 \(\mu\)mol/l), 3-isobutyl-1-methylxanthine (IBMX; K\(_i\) 2.9 \(\mu\)mol/l) and theophylline (K\(_i\) 8.1 \(\mu\)mol/l). In contrast, enprofylline (1 mmol/1) enhanced basal and NECA-stimulated cyclic AMP formation. In addition, we attempted to characterize these receptors in binding studies with [\(^3\)H]NECA. The K\(_D\) for [\(^3\)H] NECA was 0.25 \(\mu\)mol/l and the maximal number of binding sites was 12 pmol/mg protein. In competition experiments MECA (K\(_i\) 0.14 \(\mu\)mol/l) was the most potent inhibitor of [\(^3\)H] NECA binding, followed by NECA (K\(_i\) 0.19 \(\mu\)mol/l) and 2-chloroadenosine (K\(_i\) 1.4 \(\mu\)mol/l). These results correlate well with the EC\(_{50}\)- values for cyclic AMP formation in lung slices. However, the K\(_i\)-values of R-PIA and theophylline were 240 and 270 \(\mu\)mol/l, and DPX and 8-phenyltheophylline did not compete for [\(^3\)H]NECA binding sites. Therefore, a complete characterization of A\(_2\) adenosine receptors by [\(^3\)H] NECA binding was not achieved. In conclusion, our results show the presence of adenylate cyclase-coupled A\(_2\) adenosiile receptors in lung tissue which are antagonized by several xanthines. KW - Toxikologie KW - Adenosine receptors KW - Cyclic AMP KW - Lung KW - Theophylline Y1 - 1985 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60202 ER - TY - THES A1 - Arnold, Johannes F. T. T1 - Funktionelle Bildgebung der Lunge und des Bronchialkarzinoms mittels Magnetresonanztomographie T1 - Functional Magnetic Resonance Imaging of the Lung and Non-Small-Cell Lung Cancer N2 - Ziel dieser Arbeit war es, die Magnetresonanztomographie (MRT) an der Lunge als Alternative zur traditionellen Lungenbildgebung voranzutreiben. So sollten MRT-Verfahren zur regionalen und quantitativen Lungenfunktionsprüfung für die klinische Routine entwickelt werden. Im Hinblick auf die Strahlentherapie von Patienten mit Bronchialkarzinom sollen funktionelle Lungenareale erkannt werden, um diese während der Bestrahlung optimal schonen zu können. An den zahlreichen Luft-Gewebe-Grenzflächen in der Lunge entstehen Magnetfeldinhomogenitäten. Daraus resultiert ein schneller Zerfall des MRT-Signals in der Lunge. Es wurde in dieser Arbeit ein Ansatz aufgezeigt, um die Ursache für den raschen Signalzerfall, nämlich die unterschiedlichen magnetischen Suszeptibilitäten von Lufträumen und Lungengewebe, zu beseitigen. Durch die intravaskuläre Injektion von paramagnetischen Kontrastmitteln kann die Suszeptibilität des Blutes an die Suszeptibilität der Lufträume angeglichen werden. Durch die Entwicklung einer MR-kompatiblen aktiven Atemkontrolle (MR-ABC) wurde in dieser Arbeit ein weiteres fundamentales Problem der Lungen-MRT adressiert: Die Bewegung während der Datenakquisition. Die MR-ABC detektiert Herzschlag und Atemposition und ist in der Lage die Atembewegung in jeder beliebigen Atemphase reproduzierbar für eine definierte Zeit auszusetzen. Dies wird durch einen Verschluss der Atemluftzufuhr realisiert. Traditionelle Verfahren können zwar ebenfalls die Atemphase detektieren, gestatten jedoch nicht deren Konservierung. Es wurde demonstriert, dass mit der MR-ABC hochauflösende Bilder der Lunge in hoher Bildqualität und durch die Verwendung langer Akquisitionsfenster in relativ kurzer Messzeit erreicht werden können. Eine regionale Lungenfunktionsprüfung ist für die Diagnose und Evaluierung vieler Krankheitsbilder vorteilhaft. In diesem Sinne wird seit einigen Jahren das Potential der Sauerstoff-verstärkten Lungen-MRT erforscht, die auf den paramagnetischen Eigenschaften des molekularen Sauerstoffs basiert. Im Blut gelöster Sauerstoff führt zu einer Verkürzung der T1-Relaxationszeit. Statt diese T1-Verkürzung quantitativ zu bestimmen wird aus praktischen Gründen meist ein T1-gewichteter Ansatz gewählt. In dieser Arbeit wurde jedoch gezeigt, dass nicht-quantitative Verfahren ein erhebliches Risiko zur Falschinterpretation beinhalten. Um Fehldiagnosen zu vermeiden, sollten deshalb prinzipiell quantitative Methoden zur Messung der durch die Sauerstoff-Verstärkung bedingten T1-Verkürzung in der Lunge verwendet werden. Herkömmliche Techniken zur quantitativen T1-Messung benötigen allerdings längere Messzeiten. Deshalb war zur Vermeidung von Bewegungsartefakten bisher die Datenaufnahme im Atemanhaltezustand notwendig. Wiederholtes Atemanhalten von mehreren Sekunden Dauer ist allerdings für einige Patienten sehr belastend. Aus diesem Grund wurden in dieser Arbeit zwei Methoden entwickelt, die eine quantitative Lungenfunktionsprüfung mittels MRT bei freier Atmung der Patienten ermöglichen. Eine gute Sauerstoffversorgung des Tumors wirkt sich positiv auf den Erfolg der Bestrahlung aus. Ein Ansatz zur Verbesserung der Strahlentherapie des Bronchialkarzinoms könnte daher in der Beatmung der Patienten mit hyperoxischen hypercapnischen Atemgasen während der Bestrahlung bestehen. In diesem Zusammenhang könnte die quantitative Messung der T1-Veränderung im Tumor nach Carbogenatmung ein Selektionskriterium darstellen, um diejenigen Patienten zu identifizieren, die von einer Carbogenbeatmung während der Bestrahlung profitieren können. Die Differenzierung zwischen vitalem Tumorgewebe, Nekrosen und atelektatischem Lungengewebe ist von großer Bedeutung bei der Bestrahlungsplanung des Bronchialkarzinoms. Einen neuen Ansatz bildet die in dieser Arbeit vorgestellte Magnetiserungstransfer-MRT. Um einen Magnetisierungstransfer zu erzeugen, wurde ein speziell auf die Bildgebung an der Lunge optimiertes Präparationsmodul entworfen. In Verbindung mit einer schnellen Bildakquisitionstechnik konnte die Magnetisierungstransfer-Lungenbildgebung in einem kurzen Atemstopp durchgeführt werden. Diese Technik wurde an mehreren Patienten mit Bronchialkarzinom evaluiert und die Ergebnisse mit denen der Fluor-Deoxyglykose-Positronen-Emissions-Tomographie (FDG-PET) verglichen. Es wurde festgestellt, dass mit diesem MRT-Verfahren ähnliche diagnostische Erkenntnisse erzielt werden können. Allerdings besitzt die MRT Vorteile im Hinblick auf räumliche Auflösung, Messzeit, Bildqualität, Kosten und Strahlenbelastung. Das erhebliche Potential für die Bestrahlungsplanung des Bronchialkarzinoms durch eine Magnetisierungstransfer-Bildgebung wurde damit nachgewiesen. N2 - The purpose of this work was to advance magnetic resonance imaging (MRI) to become an additional beneficial modality for lung imaging. MRI techniques for regional and quantitative assessment of pulmonary function, capable for clinical routine use, should be developed. Areas of sound and functional lung should be detected especially in patients with bronchial carcinoma undergoing radiotherapy, to be able to achieve an optimal protection for this kind of tissue during the irradiation process. Magnetic field inhomogeneities emerge from the numerous air-tissue-interfaces of the lung, causing an accelerated MRI signal decay. Therefore, this work postulates a new approach to eliminate the source of this signal decay acceleration, namely the differences in magnetic susceptibility between air sacks and lung tissue. By intravascular injection of paramagnetic contrast agent, the susceptibility of blood can be matched with the susceptibility of the air spaces. Removing the susceptibility differences could prolong the effective transverse relaxation time T2* by many factors. The development of an MR-compatible active breathing control device (MR-ABC) addressed another fundamental obstacle of lung MRI: motion occurring during the data sampling process. MR-ABC allows for the detection of heart and respiratory phases and is able to reproducibly freeze the breathing motion in any desired respiratory phase for a predefined amount of time. This is performed by a shutter that closes the breathing gas delivery. It was demonstrated that using MR-ABC high-resolution high-quality images of the lung can be acquired in a comparably short amount of time due to prolonged acquisition intervals. Regional assessment of pulmonary function is beneficial for diagnosis and evaluation of many lung diseases. In this respect, in the last few years the potential of oxygen-enhanced lung MRI based upon the paramagnetic properties of the molecular oxygen, started to be explored. Dissolved oxygen in the blood leads to a decrease in T1 relaxation time. Due to practical reasons this drop in T1 relaxation time is commonly assessed by T1-weighted imaging approaches instead of quantitative T1 measurements. However, in this work it was demonstrated that non-quantitative approaches comprehend severe risks of misinterpretation. Therefore, to avoid misdiagnosis, quantitative measurements of the oxygen-based T1 decrement in the lung should always be used. On the other hand, common quantitative T1 measurement techniques require longer measurement times, and therefore require imaging during breath-holding to avoid motion artifacts. Repeated breath-holding of several seconds may be very demanding for some patients, especially for those with lung cancer. For this reason, in this work two methods were developed to allow for a quantitative assessment of regional lung function by MRI during free-breathing. These techniques were applied to investigate regional oxygen transfer in lung cancer patients. Local defects of lung function could be demonstrated in these patients. A good oxygen supply of the tumor tissue is positively correlated to the success of radiation therapy. Reoxygenation of former hypoxic areas can improve the sensitivity of the tumor to irradiation. Thus, one approach to improve radiotherapy of bronchogenic carcinoma could be to use hyperoxic, hypercapnic breathing gases such as carbogen during the irradiation. In this respect, the quantitative measurement of the T1 alteration in the tumor due to the switching of breathing gas to carbogen could provide a selection criterion for patients who can benefit from an ARCON approach. In a preliminary study, the T1 alteration in the tumor after switching of breathing gas to carbogen was assessed in a variety of lung cancer patients. Differentiation of vital tumor, necrotic tissue and atelectasis is of paramount importance in radiation therapy planning of bronchial carcinoma. Unfortunately, discrimination of these tissues by using computer tomography or positron emission tomography is usually problematic in the clinical routine. This work proposes a new approach based on magnetization transfer MRI. The extent of magnetization transfer is mainly dependent on the macromolecular environment of the protons, which is different in tumor tissue and atelectatic tissue. To produce magnetization transfer, a magnetization preparation module was developed and particularly optimized for application to lung imaging. In conjunction with a fast readout imaging sequence, magnetization transfer lung imaging could be performed in a single short breath-hold period. This technique was evaluated in several patients with bronchial carcinoma. The results of magnetization transfer imaging were compared to the results of a fluorodeoxyglucose positron emission tomography (FDG-PET) investigation. It was found that using the MRI technique, similar diagnostic information as with the FDG-PET could be obtained. KW - Magnetische Resonanz KW - Lunge KW - Nicht-kleinzelliges Bronchialkarzinom KW - MRI KW - Lung KW - NSCLC Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-26388 ER -