TY - THES A1 - Jungbauer [geb. Ulzhöfer], Sandra Gabi T1 - Die Rolle präsynaptischer Proteine Aktiver Zonen bei konditionierten Lernprozessen T1 - The role of presynaptic active zone proteins in conditioned learning behaviour N2 - Synaptische Plastizität wird als Grundlage für Lern- und Gedächtnisprozesse in unserem Gehirn angesehen. Aktive Zonen (AZ) und ihre spezifischen Proteine modulieren diesen Prozess und bahnen essentielle Vorgänge der synaptischen Transmission. In dieser Arbeit wurden drei zentrale Proteine Aktiver Zonen - Bruchpilot, RIM (Rab3 interacting molecule) und Fife - untersucht und ihre Rolle bei konditionierten Lernprozessen in Drosophila melanogaster Larven geprüft. Hierzu wurde das etablierte Paradigma des larvalen appetitiven olfaktorischen Lernens genutzt, bei dem eine Gruppe von Larven lernt, einen Duft mit einem gustatorischen Verstärker zu koppeln. Durch die vielfältigen genetischen Manipulationsmöglichkeiten des Modellorganismus war es möglich, die Funktion der Proteine bei assoziativen Lernvorgängen selektiv zu betrachten. Bruchpilot wird für den funktionellen Aufbau Aktiver Zonen in Drosophila benötigt und ist wichtig für die Akkumulation von Calcium-Kanälen in der Nähe von AZ. Durch gentechnische Veränderungen dieses Proteins ließ sich jedoch keine Beeinträchtigung im olfaktorischen Lernverhalten von Drosophila Larven beobachten. RIM fungiert durch seine Interaktionsdomänen als Bindeglied zwischen verschiedensten Effektoren und hat Einfluss auf synaptische Plastizität. Es wurde gezeigt, dass eine Punktmutation in der C2A-Domäne von RIM beim Menschen gleichzeitig zur Retinadegeneration und zu einem gesteigert verbalen IQ (Intelligenzquotient) führt. Eine durch die hohe Homologie vergleichbare Mutation im Drosophila-Genom resultierte nicht in einem veränderten Phänotyp im olfaktorischen Lernen. Fife ist ein Protein, das für eine funktionsfähige Architektur von AZ und damit u.a. für den reibungslosen Vesikelverkehr zuständig ist. Es zeigte sich, dass dieses Protein auch synaptische Plastizität und Lernvorgänge beeinflusst. Die Ergebnisse der vorliegenden Arbeit sind ein Beitrag, um die Zusammenhänge der synaptischen Plastizität und die Funktion Aktiver Zonen Proteine besser begreifen zu können. Hervorzuheben dabei ist, dass die Bruchpilot- und RIM-Mutanten-Larven keinen veränderten Phänotyp, bzw. bei Fife nur teilweise einen eingeschränkten Phänotyp im olfaktorischen larvalen Lernen im Vergleich zu den Wildtyp-Kontrollen zeigten. Gleichwohl man früher schon signifikante strukturelle Veränderungen an Aktiven Zonen dieser Mutanten an der neuromuskulären Endplatte und auch Effekte auf das Verhalten in adulten Drosophila gefunden hat. Es wird entscheidend sein, den Zusammenhang zwischen Struktur und Funktion Aktiver Zonen Proteine weiter zu konkretisieren. N2 - Synaptic plasticity is considered to be the basis for learning and memory in our brain. Active zones (AZ) and its proteins orchestrate this process and are crucial to synaptic transmission. This work focused on three essential AZ proteins - Bruchpilot, RIM (Rab3 interacting molecule) and Fife- and their role in conditioned learning behaviour in Drosophila melanogaster larvae. To do so the well-established appetitive olfactory learning paradigm was used, in which a group of larvae is trained to learn that a specific odour is linked to a gustatory reinforcer. Due to the various genetic possibilities of Drosophila larvae it was possible to specifically study the function of each protein in associative learning behaviour. Bruchpilot is important for AZ structure in Drosophila and the accumulation of calcium channels in close proximity to active zones. Genetic manipulation of this protein did not impair olfactory learning in Drosophila larvae. Through its various interaction domains RIM connects with different molecular effectors and modulates synaptic plasticity. In Humans a point mutation in the C2A-domain of the protein leads to cone rod dystrophy and an elevated verbal IQ at the same time. A similar mutation in the Drosophila genome, thanks to the high genetic homologies, did not result in an altered phenotype. Fife is responsible for normal AZ architecture and also for efficient vesicle trafficking. It was shown that this protein modulates synaptic plasticity and learning processes. The results of this work contribute to a better understanding of synaptic plasticity and the function of active zone proteins. I would like to point out that Bruchpilot and RIM mutants did not show modified phenotypes in appetitive olfactory learning whereas Fife mutants were partially impaired in the tested paradigm compared to control groups. Although in previous works those mutants were found to cause structural changes at active zones in neuromuscular junctions and to affect learning behaviour in Drosophila adults. In future studies it will be crucial to determine the particular task and to specify the structure to function relationship of each AZ protein. KW - Plastizität KW - Aktive Zone KW - Konditioniertes Lernen KW - Drosophila melanogaster KW - Proteine Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169090 ER - TY - THES A1 - Pauli, Martin T1 - Bildgebung Aktiver Zonen : Lichtmikroskopische Methoden zur Darstellung präsynaptischer AktiverZonen in lebendem und fixiertem Gewebe T1 - Imaging active zones : Approaches for visualizing active zones with light microscopy in living and fixed tissue N2 - Ziel dieser Arbeit war es, strukturelle Veränderungen präsynaptischer Aktiver Zonen als mögliches Korrelat synaptischer Plastizität zu detektieren. Damit soll die Hypothese getestet werden, dass strukturelle Plastizität Aktiver Zonen eine zentrale Rolle bei der Informationsverarbeitung im Gehirn und bei Lern- und Gedächtnisprozessen spielt. Dazu war es notwendig Methoden zu etablieren, die die strukturelle Analyse Aktiver Zonen und deren Veränderung in vitalem Gewebe ermöglichen. Um die Untersuchungen in einem Gewebe mit plastischen Eigenschaften durchzuführen, wurden Methoden zur Herstellung organotypischer hippocampaler Hirnschnittkulturen etabliert, da hippokampale Moosfasersynapsen ausgeprägte präsynaptische Plastizität aufweisen (Bliss und Collingridge, 1993). Durch Einzelzellelektroporation wurde es möglich, individuelle Neurone mit Transgenen zur Markierung der gesamten Zelle (DsRed) und synaptischer Substrukturen wie Aktive Zonen (z.B.: GFP-CAST, einem Fluorophor-markierten AZ-Protein) zu transfizieren. Mit konfokaler Bildgebung transfizierter Zellen konnten strukturierte Anreicherungen von GFP-CAST in Moosfaserboutons dargestellt werden. Konfokale Bildgebung von Doppelimmunfluoreszenzfärbungen zur detaillierten Analyse der Proteinlokalisation zeigte ein diffraktionsbedingtes Auflösungsdefizit, das auch durch die Anwendung von STED-Mikroskopie nicht zufriedenstellend gelöst werden konnte. Um eine präzise Karte synaptischer Proteine zu erstellen, wurde hochauflösende Mikroskopie (dSTORM) mit einer lateralen räumlichen Auflösung von 20 nm etabliert. Dabei erwiesen sich die ausgeprägte Plastizität, die hohe Dichte an Aktiven Zonen und die variable Gestalt der Boutons im hippokampalen Präparat als problematisch. Aus diesem Grund wurde die elektronenmikroskopisch gut charakterisierte neuromuskuläre Endplatte mit ihrer symmetrischen molekularen Struktur als Präparat für dSTORM verwendet. An der Endplatte konnte die molekulare Organisation der Aktiven-Zonen-Proteine Piccolo und Bassoon dargestellt werden. Zudem konnten erstmals die Mündungen postsynaptischer Falten lichtmikroskopisch aufgelöst werden. So gelang es Werkzeuge zu etablieren, die mit lichtmikroskopischen Methoden die Darstellung der Architektur Aktiver Zonen mit molekularer Auflösung ermöglichen. Die Herausforderung wird es sein, diese neue Dimension in funktionellem Kontext zu nutzen. Die experimentellen Grundlagen dazu wurden durch eine spezielle Badkammer und die Etablierung von Rollertubekulturen bereits gelegt. Dabei ermöglicht dSTORM die Adressierung quantitativer Fragestellungen bis hin zur Bestimmung der Molekülanzahl. N2 - The aim of this work was to visualize structural changes of presynaptic active zones (AZ) as a putative correlate of synaptic plasticity in the brain, thereby testing the hypothesis, that structural plasticity is a key player in information processing, learning and memory. Therefore it was necessary to establish methods that allowed the structural analysis of active zones and their changes in living tissue. To do these investigations in a tissue with plastic characteristics, organotypic hippocampal slice cultures have been established, due to distinct presynaptic plasticity of hippocampal mossy fibre boutons (Bliss and Collingridge, 1993). With single cell electroporation it became possible to mark transgenetically individual neurons (DsRed) and synaptic substructures like active zones (GFP-CAST, a fluorophor labelled AZ- Protein). By imaging transfected neuron using confocal light microscopy, discrete accumulations of GFP-CAST were found in mossy fibre boutons. Aiming to analyse protein localisation in detail, confocal imaging of double-immunofluorescence staining revealed a diffraction based lack of lateral resolution, that couldn’t be solved satisfactory by the application of STED microscopy. To generate a precise map of synaptic protein distribution, superresolution light microscopy (dSTORM) was established with a lateral resolution of 20 nm. Pronounced structural plasticity, high active zone density and complex structure of hippocampal mossy fibre boutons turned out to be a drawback of this preparation. Therefore mammalian neuromuscular endplates that are well characterised by electron microscopy and display a highly symmetrical shape were introduced as a preparation for dSTORM. At the endplate dSTORM revealed a differential distribution of active zone proteins Piccolo and Bassoon. Moreover, for the first time it was possible to resolve the aparture of postsynaptic folds by light microscopy. These results show that it was possible to establish tools based on superresolution light microscopy, that are capable of exploring active zone ultrastructure on a molecular level. It will be future tasks to use these novel techniques in a functional context. Based on experimental advances shown in this work like specialised recording chambers for slicecultures or the use of rollertube cultures, dSTORM will allow to address questions concerning synaptic function and plasticity, down to counting single molecules. KW - Hippokampus KW - organotypische Schnittkultur KW - Aktive Zone KW - synaptische Plastizität KW - dSTORM KW - Hippokampus KW - organotypische Schnittkultur KW - Aktive Zone KW - synaptische Plastizität KW - dSTORM KW - hippocampus KW - organotypic slice cultur KW - synaptic plasticity KW - active zone KW - dSTORM Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-77630 ER - TY - THES A1 - Jauch, Mandy T1 - Die Serin/Arginin Proteinkinase 79D (SRPK79D) von Drosophila melanogaster und ihre Rolle bei der Bildung Aktiver Zonen von Synapsen T1 - The serine/arginine protein kinase 79D (SRPK79D) of Drosophila melanogaster and its role in the formation of active zones of synapses N2 - Synapsen als Stellen der Kommunikation zwischen Neuronen besitzen spezialisierte Bereiche – Aktive Zonen (AZs) genannt –, die aus einem hoch komplexen Netzwerk von Proteinen aufgebaut sind und die Maschinerie für den Prozess der Neurotransmitter-Ausschüttung und das Vesikel-Recycling beinhalten. In Drosophila ist das Protein Bruchpilot (BRP) ein wichtiger Baustein für die T-förmigen Bänder („T-Bars“) der präsynaptischen Aktiven Zonen. BRP ist notwendig für eine intakte Struktur der Aktiven Zone und eine normale Exocytose von Neurotransmitter-Vesikeln. Auf der Suche nach Mutationen, welche die Verteilung von Bruchpilot im Gewebe beeinträchtigen, wurde eine P-Element-Insertion im Gen CG11489 an der Position 79D identifiziert, welches eine Kinase kodiert, die einen hohen Grad an Homologie zur Familie der SR Proteinkinasen (SRPKs) von Säugern aufweist. Die Mitglieder dieser Familie zeichnen sich durch eine evolutionär hoch konservierte zweigeteilte Kinasedomäne aus, die durch eine nicht konservierte Spacer-Sequenz unterbrochen ist. SRPKs phosphorylieren SR-Proteine, die zu einer evolutionär hoch konservierten Familie Serin/Arginin-reicher Spleißfaktoren gehören und konstitutive sowie alternative Spleißprozesse steuern und damit auf post-transkriptioneller Ebene die Genexpression regulieren. Mutation des Srpk79D-Gens durch die P-Element-Insertion (Srpk79DP1) oder eine Deletion im Gen (Srpk79DVN Nullmutante) führt zu auffälligen BRP-Akkumulationen in larvalen und adulten Nerven. In der vorliegenden Arbeit wird gezeigt, dass diese BRP-Akkumulationen auf Ultrastruktur-Ebene ausgedehnten axonalen Agglomeraten elektronendichter Bänder entsprechen und von klaren Vesikeln umgeben sind. Charakterisierung durch Immuno-Elektronenmikroskopie ergab, dass diese Strukturen BRP-immunoreaktiv sind. Um die Bildung BRP-enthaltender Agglomerate in Axonen zu verhindern und damit eine intakte Gehirnfunktion zu gewährleisten, scheint die SRPK79D nur auf niedrigem Niveau exprimiert zu werden, da die endogene Kinase mit verschiedenen Antikörpern nicht nachweisbar war. Wie in anderen Arbeiten gezeigt werden konnte, ist die Expression der PB-, PC- oder PF-Isoform der vier möglichen SRPK79D-Varianten, die durch alternativen Transkriptionsstart in Exon eins beziehungsweise drei und alternatives Spleißen von Exon sieben zustande kommen, zur Rettung des Phänotyps der BRP-Akkumulation im Srpk79DVN Nullmutanten-Hintergrund ausreichend. Zur Charakterisierung der Rescue-Eigenschaften der SRPK79D-PE-Isoform wurde mit der Klonierung der cDNA in einen UAS-Vektor begonnen. Offenbar beruht die Bildung der axonalen BRP-Agglomerate nicht auf einer Überexpression von BRP in den betroffenen Neuronen, denn auch bei reduzierter Expression des BRP-Proteins im Srpk79DVN Nullmutanten-Hintergrund entstehen die BRP-Agglomerate. In Köpfen der Srpk79DVN Nullmutante ist die Gesamtmenge an Bruchpilot-Protein im Vergleich zum Wildtyp nicht deutlich verändert. Auch die auf Protein-Ebene untersuchte Expression der verschiedenen Isoformen der präsynaptischen Proteine Synapsin, Sap47 und CSP weicht in der Srpk79DVN Nullmutante nicht wesentlich von der Wildtyp-Situation ab, sodass sich keine Hinweise auf verändertes Spleißen der entsprechenden prä-mRNAs ergeben. Jedes der sieben bekannten SR-Proteine von Drosophila ist ein potentielles Zielprotein der SRPK79D. Knock-down-Experimente für die drei hier untersuchten SR-Proteine SC35, X16/9G8 und B52/SRp55 im gesamten Nervensystem durch RNA-Interferenz zeigten allerdings keinen Effekt auf die Verteilung von BRP im Gewebe. Hinsichtlich der Flugfähigkeit der Tiere hat die Srpk79DVN Nullmutation keinen additiven Effekt zum Knock-down des BRP-Proteins, denn die Doppelmutanten zeigten bei der Bestimmung des Anteils an flugunfähigen Tieren vergleichbare Werte wie die Einzelmutanten, die entweder die Nullmutation im Srpk79D-Gen trugen, oder BRP reduziert exprimierten. Vermutlich sind Bruchpilot und die SR Proteinkinase 79D somit Teil desselben Signalwegs. Durch Doppelfärbungen mit Antikörpern gegen BRP und CAPA-Peptide wurde abschließend entdeckt, dass Bruchpilot auch im Median- und Transvers-Nervensystem (MeN/TVN) von Drosophila zu finden ist, welche die Neurohämal-Organe beherbergen. Aufgabe dieser Organe ist die Speicherung und Ausschüttung von Neuropeptid-Hormonen. Daher ist zu vermuten, dass das BRP-Protein neben Funktionen bei der Neurotransmitter-Exocytose möglicherweise eine Rolle bei der Ausschüttung von Neuropeptiden spielt. Anders als in den Axonen der larvalen Segmental- und Intersegmentalnerven der Srpk79DVN Nullmutante, die charakteristische BRP-Agglomerate aufweisen, hat die Mutation des Srpk79D-Gens in den Axonen der Va-Neurone, die das MeN/TVN-System bilden, keinen sichtbaren Effekt auf die Verteilung von Brp, denn das Muster bei Färbung gegen BRP weist keine deutlichen Veränderungen zum Wildtyp auf. N2 - Synapses as sites of communication between neurons contain specialized regions termed active zones (AZs) which are composed of a highly complex network of proteins comprising the exocytotic machinery for neurotransmitter release and vesicle recycling. In Drosophila the Bruchpilot (BRP) protein is an important building block of the T-shaped ribbons („T-bars“) at presynaptic active zones. By screening for mutations affecting the tissue distribution of Bruchpilot, a P-transposon insertion in the Srpk gene at the position 79D has been identified (Srpk79D, CG11489). This gene codes for a kinase which shows high homology to the mammalian family of serine/arginine protein kinases (SRPKs). Members of this family have an evolutionarily highly conserved bipartite kinase domain in common which is separated by a non-conserved spacer sequence. SRPKs phosphorylate SR proteins, an evolutionarily highly conserved family of serine/arginine-rich splicing factors that control the processes of constitutive and alternative splicing. Mutation of the Srpk79D gene caused by the P-element insertion (Srpk79DP1) or by a deletion in the gene (Srpk79DVN null mutant) leads to conspicuous accumulations of BRP in larval and adult axons. This thesis shows that these BRP accumulations at the ultrastructural level correspond to extensive axonal agglomerates of electron-dense ribbons surrounded by clear vesicles. Using immuno electron microscopy, these accumulation were characterized as BRP immuno-reactive structures. To prevent the assembly of BRP containing agglomerates in axons and to maintain intact brain function the SRPK79D seems to be expressed only at low levels because the endogenous kinase was not detectable using various antibodies. It was shown in other thesis that the expression of the PB, PC or PF isoform of the four possible SRPK79D variants resulting from two alternative transcription start sites in exon one and three, respectively, and alternative splicing of exon seven is sufficient to rescue the phenotype of BRP accumulation in the Srpk79DVN null-mutant background. Cloning of the cDNA for the SRPK79D-PE isoform into a UAS vector has been started in order to characterize the ability of this isoform to rescue the BRP-phenotype. It seems as if the formation of axonal BRP agglomerates is not due to BRP overexpression in the affected neurons as was shown by reduced expression of the BRP protein in the Srpk79DVN null-mutant background which still leads to BRP agglomerates. The overall amount of Bruchpilot protein in adult heads of the Srpk79DVN null mutant is not clearly altered compared to wild type. No clear alteration was observed between Srpk79DVN null-mutant and wild-type flies comparing the expression of different presynaptic proteins like Synapsin, Synapse-associated protein of 47 kDa (Sap47), and Cysteine string protein (CSP). The experiment does not point towards altered splicing of the corresponding pre-mRNAs. Each of the seven known SR proteins of Drosophila is a potential target protein of the SRPK79D. Pan-neuronal knock-down experiments for the three SR proteins SC35, X16/9G8, and B52/SRp55 investigated in this thesis by RNA interference did not show an effect on the tissue distribution of BRP. It was shown that the Srpk79DVN null mutation has no additive effect on the knock-down of the BRP protein regarding the flight ability of the respective animals because the double mutants showed similar values of non-flyers as each of the single mutants with either null mutation of the Srpk79D gene or knock-down of BRP. Presumably, Bruchpilot and the SR protein kinase 79D are part of the same signaling pathway. Performing double fluorescence stainings with antibodies against BRP and the CAPA peptides it was shown that Bruchpilot is also present in the median and transverse nerve system (MeN/TVN) of Drosophila containing the neurohaemal organs. These organs are responsible for storage and release of neuropeptide hormones. In contrast to the larval segmental and intersegmental nerves of the Srpk79DVN null mutant which show characteristic BRP agglomerates, mutation of the Srpk79D gene does not affect the distribution of BRP in the axons of the Va neurons which form the MeN/TVN system. The staining pattern of BRP in these nerves does not show clear alterations in the Srpk79DVN null mutant compared to wild type. The finding that BRP is present in the median and transverse nerve system opens the field for speculation of a role for the Bruchpilot protein not only in the neurotransmitter exocytosis but also in the release of neuropeptides. KW - Taufliege KW - Serin KW - Arginin KW - Proteinkinasen KW - Synapse KW - Genexpression KW - Aktive Zone KW - Serin/Arginin Proteinkinase KW - SRPK KW - Bruchpilot KW - Drosophila KW - Synapse KW - Motorische Endplatte KW - Nervenzelle KW - Neurotransmitter KW - active zone KW - serine/arginine protein kinase KW - SRPK KW - Bruchpilot Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-53974 ER -