TY - CHAP A1 - Lutz, Werner K. A1 - Cantoreggi, S. A1 - Velic, I. T1 - DNA binding and stimulation of cell division in the carcinogenicity of styrene 7,8-oxide N2 - [7-3H)Styrene 7,8-oxide was administered by oral gavage to male CD rats at a dose of 1.3 mg/kg. After 4 h, the forestomach was excised, DNA was isolated, purified to constant specific radioactivity and degraded nzymatically to the 3 '-nucleotides. Highperformance liquid chromatography fractions with the normal nucleotides contained most of the radiolabel, but a minute level of adduct label was also detccted. Using the units of the covalent binding index (micromoles adduct per mole DNA nucleotide)/(millimole chemical administered per kilogram body weight), a DNA binding potency of 1.0 was derived. A comparison of the covalent binding indices and carcinogenic potencies of other genotoxic forestarnach carcinogens showed that the tumorigenic activity of styrene oxide is unlikely to be purely genotoxic. Therefore, styrene oxide was compared with 3-tbutylhydroxyanisole (BHA) with respect to stimulation of cell proliferation in the forestomach. Male Fischer 344 rats were treated for four weeks at three dose levels of styrene oxide (0, 137, 275 and 550 mg/kg, three times per week by oral gavage) and BHA (0, 0.5, 1 and 2% in the diet); the highest doses had been reported to result in 84% and 22% carcinomas in the forestomach, respectively. Cell proliferation was assessed by incorporation of bromodeoxyuridine into DNA and immunohistochemical analysis. An increase in the lablling indexwas found in a11 treated animals. In the prefundic region of the forestomach, the labeHing index increased significantly, from 42% (controls) to 54% with styrene oxide and from 41 to 55% with BHA. Rats treated with BHA also had severe hyperplastic lesions in the prefundic region, i.e., at the location of BHA-induced forestomach carcinomas. The number of cells per millimetre of section length was increased up to 19 fold. Hyperplastic lesions were not seen with styrene oxide, despite the higher tumour incidence reported with this compound. We conclude that the carcinogenicity of styrene oxide to the forestomach most probably involves a mechanism in which marginal genotoxicity is combined with promotion by increased cell proliferation. KW - Styrol KW - DNS-Bindung KW - Zellteilung KW - Carcinogenität Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71597 ER - TY - THES A1 - Fackler, Marc T1 - Biochemical characterization of GAS2L3, a target gene of the DREAM complex T1 - Biochemische Charakterisierung von GAS2L3, ein Zielgen des DREAM Komplex N2 - GAS2L3 was identified recently as a target gene of the DREAM complex (Reichert et al., 2010; Wolter et al., 2012). It was shown that GAS2L3 is expressed in a cell cycle specific manner and that depletion of the protein leads to defects in cytokinesis and genomic instability (Wolter et al., 2012). Major aim of this thesis was, to further characterize the biochemical properties and physiological function of GAS2L3. By in vitro co-sedimentation and bundling assays, GAS2L3 was identified as a cytoskeleton associated protein which bundles, binds and crosslinks F-actin and MTs. GST pulldown assays and co-immunoprecipitation experiments revealed that GAS2L3 interacts in vitro and in vivo with the chromosomal passenger complex (CPC), a very important regulator of mitosis and cytokinesis, and that the interaction is mediated by the GAR domain of GAS2L3 and the C-terminal part of Borealin and the N-terminal part of Survivin. Kinase assays showed that GAS2L3 is not a substrate of the CPC but is strongly phosphorylated by CDK1 in vitro. Depletion of GAS2L3 by shRNA influenced protein stability and activity of the CPC. However pharmacological studies showed that the decreased CPC activity is not responsible for the observed cytokinesis defects upon GAS2L3 depletion. Immunofluorescence experiments revealed that GAS2L3 is localized to the constriction zone by the CPC in a GAR dependent manner and that the GAR domain is important for proper protein function. New interacting proteins of GAS2L3 were identified by stable isotope labelling by amino acids in cell culture (SILAC) in combination with tandem affinity purification and subsequent mass spectrometrical analysis. Co-immunoprecipitation experiments further confirmed the obtained mass spectrometrical data. To address the physiological function of GAS2L3 in vivo, a conditional and a non-conditional knockout mouse strain was established. The non-conditional mouse strain showed a highly increased mortality rate before weaning age probably due to heart failure. The physiological function of GAS2L3 in vivo as well as the exact reason for the observed heart phenotype is not known at the moment. N2 - GAS2L3 wurde vor kurzem als Zielgen des DREAM Komplex identifiziert (Reichert et al., 2010; Wolter et al., 2012). Es konnte gezeigt werden, dass die Expression von GAS2L3 Zellzyklus abhängig reguliert wird und dass Depletion des Proteins zu Fehlern in der Zytokinese und genomischer Instabilität führt (Wolter et al., 2012). Hauptziel dieser Doktorarbeit war es, GAS2L3 hinsichtlich seiner biochemischen Eigenschaften und physiologischer Funktion näher zu charakterisieren. Unter Verwendung verschiedener in vitro Experimente konnte gezeigt werden, dass GAS2L3 sowohl F-Aktin als auch Mikrotubuli binden, bündeln und quervernetzen kann. In vitro und in vivo Protein-Protein Interaktionsexperimente zeigten, dass GAS2L3 mit dem „chromosomal passenger complex“ (CPC), einem wichtigen Mitose- und Zytokineseregulator, interagiert und dass diese Interaktion durch die GAR Domäne von GAS2L3 und den C-Terminus von Borealin beziehungsweise den N-terminus von Survivin vermittelt wird. Phosphorylierungsexperimente zeigten deutlich, dass GAS2L3 kein Substrat des CPC ist, jedoch von CDK1 phosphoryliert wird. Zellbiologische Experimente belegten, dass Depletion von GAS2L3 mittels shRNA die Proteinstabilität und Aktivität des CPC beeinflusst. Experimente mit einem chemischen Aurora B Inhibitor dokumentierten, dass die verringerte CPC Aktivität nicht die Ursache der beobachteten Zytokinesefehler nach GAS2L3 Depletion ist. Immunfluoreszenzexperimente machten deutlich, dass GAS2L3 mit Hilfe des CPC an der Abschnürungszone lokalisiert wird und dass die Lokalisation abhängig von der GAR Domäne erfolgt. Mit Hilfe von SILAC in Kombination mit Tandem-Affinitätsaufreinigung und anschließender massenspektrometrischer Auswertung wurden neue Proteininteraktoren von GAS2L3 identifiziert. Protein-Protein Interaktionsexperimente bestätigten die massenspektrometrisch ermittelten Daten. Um die physiologische Funktion von GAS2L3 in vivo näher analysieren zu können, wurden verschiedene Knockout Mauslinien etabliert. Die nicht-konditionelle Mauslinie zeigte erhöhte Sterblichkeit vor dem Absetzalter wahrscheinlich verursacht durch Herzversagen. Die genaue physiologische Funktion von GAS2L3 und der Grund für den beobachteten Herzphänotyp sind momentan noch unbekannt. KW - Zellzyklus KW - Zellteilung KW - Cytoskeleton Chromosomal Passenger Complex Interaction GAR Domain KW - Regulation KW - Molekulargenetik KW - GAS2L3 KW - Chromosomal Passenger Complex Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-103394 ER - TY - THES A1 - Wolter, Patrick T1 - Characterization of the mitotic localization and function of the novel DREAM target GAS2L3 and Mitotic kinesins are regulated by the DREAM complex, often up-regulated in cancer cells, and are potential targets for anti-cancer therapy T1 - Charakterisierung der mitotischen Lokalisation und Funktion von GAS2L3, eines kürzlich gefundenen Zielgens des DREAM Komplexes und Mitotische Kinesine werden vom DREAM Komplex reguliert, sind in Krebszellen häufig hochreguliert und sind potentielle Zielle für die Krebstherapie N2 - The recently discovered human DREAM complex (for DP, RB-like, E2F and MuvB complex) is a chromatin-associated pocket protein complex involved in cell cycle- dependent gene expression. DREAM consists of five core subunits and forms a complex either with the pocket protein p130 and the transcription factor E2F4 to repress gene expression or with the transcription factors B-MYB and FOXM1 to promote gene expression. Gas2l3 was recently identified by our group as a novel DREAM target gene. Subsequent characterization in human cell lines revealed that GAS2L3 is a microtubule and F-actin cross-linking protein, expressed in G2/M, plays a role in cytokinesis, and is important for chromosomal stability. The aim of the first part of the study was to analyze how expression of GAS2L3 is regulated by DREAM and to provide a better understanding of the function of GAS2L3 in mitosis and cytokinesis. ChIP assays revealed that the repressive and the activating form of DREAM bind to the GAS2L3 promoter. RNA interference (RNAi) mediated GAS2L3 depletion demonstrated the requirement of GAS2L3 for proper cleavage furrow ingression in cytokinesis. Immunofluorescence-based localization studies showed a localization of GAS2L3 at the mitotic spindle in mitosis and at the midbody in cytokinesis. Additional experiments demonstrated that the GAS2L3 GAR domain, a putative microtubule- binding domain, is responsible for GAS2L3 localization to the constriction zones in cytokinesis suggesting a function for GAS2L3 in the abscission process. DREAM is known to promote G2/M gene expression. DREAM target genes include several mitotic kinesins and mitotic microtubule-associated proteins (mitotic MAPs). However, it is not clear to what extent DREAM regulates mitotic kinesins and MAPs, so far. Furthermore, a comprehensive study of mitotic kinesin expression in cancer cell lines is still missing. Therefore, the second major aim of the thesis was to characterize the regulation of mitotic kinesins and MAPs by DREAM, to investigate the expression of mitotic kinesins in cancer cell line panels and to evaluate them as possible anti-cancer targets. ChIP assays together with RNAi mediated DREAM subunit depletion experiments demonstrated that DREAM is a master regulator of mitotic kinesins. Furthermore, expression analyses in a panel of breast and lung cancer cell lines revealed that mitotic kinesins are up-regulated in the majority of cancer cell lines in contrast to non-transformed controls. Finally, an inducible lentiviral-based shRNA system was developed to effectively deplete mitotic kinesins. Depletion of selected mitotic kinesins resulted in cytokinesis failures and strong anti-proliferative effects in several human cancer cell lines. Thus, this system will provide a robust tool for future investigation of mitotic kinesin function in cancer cells. N2 - Der vor kurzem entdeckte humane DREAM Komplex (für DP,RB ähnlich, E2F und MuvB Komplex) ist ein Chromatin bindender Pocket-Protein-Komplex involviert in Zellzyklusphase abhängiger Genregulation. DREAM besteht aus fünf Kernproteinen, die entweder zusammen mit dem Pocket-Protein p130 und dem Transkriptionsfaktor E2F4 die Genexpression reprimieren oder zusammen mit den Transkriptionsfaktoren B-MYB und FOXM1 die Genexpression fördern. GAS2L3 wurde vor kurzem als neues Zielgen des DREAM Komplexes identifiziert. Eine anschließende Charakterisierung in humanen Zelllinien offenbarte, dass GAS2L3 in der Lage ist, das F-Aktin und das Mikrotubuli Cytoskelett zu binden und zu vernetzen. Außerdem ist GAS2L3 speziell während der G2/M Phase exprimiert, spielt eine Rolle in der Cytokinese und ist wichtig für die genomische Integrität. Der erste Teil der Arbeit hatte zum Ziel zu ergründen in welcher Art und Weise DREAM GAS2L3 reguliert. Außerdem sollte das Verständnis der Rolle von GAS2L3 in der Cytokinese erweitert werden. Hierzu durchgeführte ChIP Analysen zeigten, dass sowohl der reprimierende als auch der aktivierende DREAM Komplex an den Promoter von GAS2L3 bindet. Experimente, in denen GAS2L3 durch RNA-Interferenz (RNAi) depletiert wurde, demonstrierten, dass GAS2L3 in der Cytokinese am Prozess der Einschnürung der Teilungsfurche beteiligt ist. Anschließende auf Immunfluoreszenzmikroskopie basierende Lokalisationsstudien zeigten, dass GAS2L3 an der mitotischen Spindel in der Mitose und am Midbody in der Cytokinese lokalisiert ist. Weiterführende Studien zeigten, dass die GAR Domäne von GAS2L3, eine mutmaßliche Mikrotubuli- Bindedomäne, für die Lokalisierung von GAS2L3 in der für die Abszission wichtigen Konstriktionszone verantwortlich ist. Dieses Ergebnis lässt vermuten, dass GAS2L3 eine Rolle in diesem Prozess spielt. Der DREAM Komplex ist bekannt dafür G2/M Genexpression zu fördern. G2/M Zielgene des Komplexes sind unter anderem mehrere mitotische Kinesine und mitotische Mikrotubuli-Bindeproteine. Bisher ist die Art und Weise und das Ausmaß der Regulierung dieser Proteingruppen durch DREAM aber nur ungenügend untersucht worden. Des Weiteren fehlt bisher eine umfassende Charakterisierung der Expression von mitotischen Kinesinen in Krebszellen. Deswegen befasste sich der zweite Teil der Arbeit mit der Charakterisierung der Regulation von mitotischen Kinesinen und Mikrotubuli-Bindeproteinen durch DREAM, untersuchte die Expression dieser beiden Proteingruppen in Krebszelllinien und evaluierte diese anschließend als potentielle Ziele für die Krebstherapie. Eine Kombination aus ChIP Analysen und RNAi Experimenten zeigte, dass DREAM eine zentrale Rolle in der Regulierung von mitotischen Kinesinen spielt. Expressions- analysen deckten auf, dass mitotische Kinesine in der Mehrheit der Krebszelllinien hochreguliert sind im Gegensatz zu den nicht entarteten Kontrollzelllinien. Schließlich wurde ein auf Lentiviren basierendes induzierbares shRNA System etabliert, welches mitotische Kinesine effektiv herunterregulieren konnte. Depletion ausgewählter mitotischer Kinesine führte zu Fehlern in der Cytokinese und hatte starke Auswirkungen auf das Wachstumsverhalten von mehreren Krebszelllinien. Aufgrund dieser Erkenntnisse wird das lentivirale System eine solide Ausgangsbasis für zukünftige Untersuchungen von mitotischen Kinesinen in Krebszellen bilden. KW - Zellzyklus KW - GAS2L3 KW - B-MYB KW - DREAM KW - cytokinesis KW - mitosis KW - kinesin KW - cancer KW - FOXM1 KW - regulation KW - Zellteilung KW - Regulation KW - Krebs KW - Biologie / Zellbiologie Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122531 ER - TY - THES A1 - Jung, Jamin T1 - Precise timing of the trypanosome cell division cycle T1 - Präzises Timing des trypanosomalen Zellzyklus N2 - African trypanosomes are the causative agents of fatal diseases in humans and livestock. Trypanosomes show a complex lifecycle and shuttle between the transmitting vector, the tsetse (Glossina spec.), and the mammalian host. As a result of this the parasite undergoes tremendous changes in morphology and metabolism to adapt to the different living environments. The two best-studied lifecycle stages are the procyclic forms (PCF) that live in the tsetse fly and the proliferative bloodstream form (BSF) that resides in the mammalian blood. The most conspicuous weapon that trypanosomes use to evade the host immune attack is a dense layer of a single protein type, the variant surface glycoprotein (VSG), which shields the entire cell surface. Immune evasion required high rates of surface membrane turnover and surface coat recycling. Trypanosomes show highly polarised cell architecture with all major eukaryotic organelles (endoplasmic reticulum, Golgi apparatus, endosomal apparatus, lysosome, mitochondrion and peroxisome-like glycosomes) generally present in single copy. Furthermore, trypanosomes possess a single flagellum, which is important not only for cellular motility but also for cell division. How the duplication of all these cellular components is coordinated in order to progresss through the cell division cycle is poorly understood. We used trypanosomes as a model organism due to the relative simplicity and the polarised nature of their cell architecture and determined the duplication of all their compartments. This was only possible due to a new synchronisation approach developed during this project. In the first part of the thesis a precise temporal map of the cell division cycle of the BSF T. brucei cell division cycle was generated. By the use of well-described morphological markers (K/N status, new flagellum outgrowth and DNA synthesis) the position of individual cells was determined with high temporal resolution; this allowed us for the first time to synchronise a cell population in silico without affecting the naturally asynchronous growth. In the second part of the thesis we used this tool to follow duplication events of the Major organelles during progression through the cell division cycle. We precisely determined the time points of organelle duplication and found that it is ordered in trypanosomes. Furthermore we found that BSF T. brucei cells do not grow continuously, cell size start to increase rapidly, during a short period of time, late in the cell division cycle. We speculate that the initiation of cell volume increase is temporally separated from the formation of all secretory organelles in order to ensure maintenance of the protective coat, which must remain intact at all times in order for BSF trypanosomes to be able to evade the host immune response. N2 - Afrikanische Trypanosomen sind Erreger fataler Krankheiten sowohl bei Menschen also auch bei Nutztieren. Trypanosomen weisen einen komplexen Lebenszyklus auf und wechseln hierbei zwischen ihrem Überträger, der Tsetse Fliege (Glossina spec.) und ihrem Säugerwirt. Hieraus resultierend, erlebt der Parasit dramatische Veränderungen der Zellmorphologie und des Zell- metabolismus um sich an die jeweiligen Lebensräume anzupassen. Die zwei am besten unter- suchten Lebensstadien sind die Prozyklische Form (PCF), welche in der Tsetse Fliege vor- kommt und die Blutstrom Form, welche im Säugerwirt zirkuliert. BSF Trypanosomen leben extrazellulär im Säugerblut und sind hier kontinuierlich der Immunabwehr des Wirtes ausge- setzt. Durch einen dichten Proteinmantel eines einzigen Proteintyps, dem variablen Oberflä- chenglykoproteins (VSG) ummantelt der Parasit seine Zelloberfläche und schützt so invariable Proteine vor der Erkennung durch das Immunsystem. Um diesen VSG Mantel aufrecht zu er- halten werden enorm hohe Raten an Oberflächen-membran- und VSG- Recycling benötigt. Trypanosomen weisen eine hoch polarisierte Zellarchitektur auf und die wichtigen Organellen (Endoplasmatisches Retikulum, Golgi Apparat, Endosomaler Apparat, Lysosome, Mitochondri- um und Glykosomen) sind generell in einfacher Kopie vorhanden. Weiterhin besitzen Trypano- somen ein einzenes Flagellum welches sowohl für die Bewegung als auch die Zellteilung des Parasiten von großer Bedeutung ist. All diese Bestandteile müssen während des Zellzyklus verdoppelt werden um zwei lebensfähige Tochterzellen zu generieren. Über die Koordinierung und die Mechanismen der Organellenteilung ist kaum etwas bekannt. Wir nutzen den einfachen Zellaufbau und die polarisierte Zellarchitektur von Trypanosomen um die Verdopplung der zel- lulären Bestandteile zu untersuchen. Dies war jedoch nur durch einen neuen Synchronisie- rungsansatz möglich der im Rahmen dieser Arbeit entwickelt und etabliert wurde. Im ersten Teil der Arbeit wurde eine zeitlich hoch aufgelöste Kartierung des Zellzyklus vorge- nommen. Wir nutzen morphologisch gut beschriebene Marker um die Position einzelner Zellen im Zellzyklus zeitlich sehr genau zu bestimmen, somit kann eine in silico Synchronisierung durchgeführt werde ohne das natürliche Verhalten der Zellpopulation zu beeinflussen. Im zweiten Teil der Arbeit wurde mittels dieser zeitlichen Zellzykluskarte der Teilungszeitpunkt aller wichtigen Organellen bestimmt. Hierbei fanden wir heraus, dass die Teilung der Zellorga- nellen in einer definierten Reihenfolge stattfindet. Weiterhin konnten wir zeigen, dass Trypano- somen nicht kontinuierlich wachsen, die Zelle wächst in einer relativ kurzen Phase, spät im Zellzyklus. Wir vermuten, dass die Teilung der sekretorischen Organellen und das Zellwachs- tums zeitlich voneinander getrennt sind um so den schützenden Proteinmantel, der für das überleben im Blut unabdingbar ist, aufrecht zu erhalten. KW - Zellteilung KW - Trypanosomes KW - Trypanosomen KW - Zellbiologie Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114932 ER - TY - THES A1 - Irmisch, Linda T1 - The role of septins and other regulatory proteins in abscission and midbody fate in C. elegans embryos T1 - Die Rolle von Septinen und anderen regulatorischen Proteinen in Abszission und Schicksal des Midbodys in C. elegans Embryonen N2 - Abscission marks the last step of cytokinesis and gives rise to two physically separated daughter cells and a midbody remnant. This work studies abscission by examining the extent of the abscission failure in C. elegans septin and ESCRT mutants with the help of the ZF1-degradation technique. The ZF1 technique is also applied to discern a possible role for PI3K during abscission. Lastly, we test the role of proteins required for macroautophagy but not for LC3-associated phagocytosis (LAP) and show that after release into the extracellular space, the midbody is resolved via LAP. N2 - Durch Abszission, den letzten Schritt der Zytokinese, entstehen zwei physisch voneinander getrennte Tochterzellen und ein Mittelkörper, auch Flemming-Körper oder Midbody genannt. In dieser Arbeit wird mittels ZF1-vermittelter Abbautechnik in C. elegans Septin- und ESCRT-Mutanten das Ausmaß eines Abszissionsdefekts untersucht. Die ZF1-Technik wird ebenso eingesetzt, um eine mögliche Rolle von PI3K in Abszission festzustellen. Schließlich wird die Rolle von Proteinen erforderlich für Makroautophagie aber nicht für LC3-assoziierte Phagozytose (LAP) getestet und gezeigt, dass der Midbody nach Freilassung in den extrazellulären Raum mittels LAP verarbeitet wird. KW - Zellteilung KW - Caenorhabditis elegans KW - Abszision KW - Septine KW - Phagozytose KW - midbody remnant KW - LC3-associated phagocytosis KW - ZF1 degradation assay Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-183244 ER - TY - THES A1 - Weinstock [geb. Pattschull], Grit T1 - Crosstalk between the MMB complex and YAP in transcriptional regulation of cell cycle genes T1 - Interaktion zwischen dem MMB-Komplex und YAP bei der transkriptionellen Regulation von Zellzyklusgenen N2 - The Myb-MuvB (MMB) multiprotein complex is a master regulator of cell cycle-dependent gene expression. Target genes of MMB are expressed at elevated levels in several different cancer types and are included in the chromosomal instability (CIN) signature of lung, brain, and breast tumors. This doctoral thesis showed that the complete loss of the MMB core subunit LIN9 leads to strong proliferation defects and nuclear abnormalities in primary lung adenocarcinoma cells. Transcriptome profiling and genome-wide DNA-binding analyses of MMB in lung adenocarcinoma cells revealed that MMB drives the expression of genes linked to cell cycle progression, mitosis, and chromosome segregation by direct binding to promoters of these genes. Unexpectedly, a previously unknown overlap between MMB-dependent genes and several signatures of YAP-regulated genes was identified. YAP is a transcriptional co-activator acting downstream of the Hippo signaling pathway, which is deregulated in many tumor types. Here, MMB and YAP were found to physically interact and co-regulate a set of mitotic and cytokinetic target genes, which are important in cancer. Furthermore, the activation of mitotic genes and the induction of entry into mitosis by YAP were strongly dependent on MMB. By ChIP-seq and 4C-seq, the genome-wide binding of MMB upon YAP overexpression was analyzed and long-range chromatin interaction sites of selected MMB target gene promoters were identified. Strikingly, YAP strongly promoted chromatin-association of B-MYB through binding to distal enhancer elements that interact with MMB-regulated promoters through chromatin looping. Together, the findings of this thesis provide a so far unknown molecular mechanism by which YAP and MMB cooperate to regulate mitotic gene expression and suggest a link between two cancer-relevant signaling pathways. N2 - Der Myb-MuvB (MMB) Multiproteinkomplex spielt eine wichtige Rolle in der Expression Zellzyklus abhängiger Gene, welche erhöhte Expressionsraten in verschiedenen Krebsarten aufweisen und Teil der sogenannten chromosomalen Instabilitätssignatur (CIN) von Lungen-, Gehirn- und Brusttumoren sind. In dieser Arbeit konnte gezeigt werden, dass die Deletion von LIN9, einer zentralen Untereinheit des MMB-Komplexes, in primären Lungenkarzinomzellen der Maus zu starken Proliferationsdefekten und Anomalitäten des Zellkerns führt. Analysen des gesamten Transkriptoms mit Hilfe von RNA-Seq ergaben, dass der MMB-Komplex die Expression einer Gruppe von Genen reguliert, die mit dem Voranschreiten des Zellzyklus, der Mitose und der Trennung der Chromosomen in Verbindung stehen. Die Regulation dieser Gene erfolgt durch direkte Bindung des MMB-Komplexes an die dazugehörigen Promotoren, wie die Analyse der genomweiten DNA-Bindung des MMB-Komplexes durch ChIP-Seq erkennbar werden ließ. Weiterhin wurde in dieser Arbeit eine neuartige Interaktion zwischen MMB und YAP, einem transkriptionellen Co-Aktivator und Effektorprotein des Hippo-Signalweges, gefunden. Die Dysregulation von Hippo/YAP ist an der Entstehung verschiedener Tumorentitäten beteiligt. Die Ergebnisse dieser Arbeit zeigen, dass YAP mit Untereinheiten von MMB interagiert und dass beide Signalwege ein überlappendes Set von Zielgenen, die für die Entstehung von Tumoren relevant sind, regulieren. Es konnte außerdem nachgewiesen werden, dass YAP den MMB-Komplex benötigt, um die Expression mitotischer Gene zu aktivieren und dass der durch YAP induzierte Eintritt in die Mitose vom MMB-Komplex abhängig ist. In einem weiteren Teil der Arbeit wurden mittels ChIP-Seq und 4C-Seq Chromatin-Interaktionen von Promotoren der MMB-Zielgene mit weiter entfernt liegenden Bereichen des Genoms identifiziert. Hierbei konnte festgestellt werden, dass YAP die Bindung der MMB-Untereinheit B-MYB an die Promotoren der MMB-Zielgene verstärkt, indem es an weiter entfernte Enhancer bindet. Diese von YAP gebundenen Enhancer interagieren über Schleifenbildung des Chromatins mit den Promotoren MMB-regulierter Gene. Zusammengefasst konnten die Ergebnisse dieser Arbeit einen bisher unbekannten molekularen Mechanismus für die gemeinsame Regulation von Genen durch den MMB Komplex und YAP enthüllen und somit einen Zusammenhang zwischen zwei krebsrelevanten Signalwegen aufdecken. KW - Krebs KW - Zellteilung KW - Genexpression KW - MMB complex KW - Hippo pathway KW - mitosis KW - cytokinesis KW - mitotic gene expression KW - Lungenkrebs KW - Mitose Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170866 ER -