TY - JOUR A1 - Sedaghat-Hamedani, Farbod A1 - Rebs, Sabine A1 - El-Battrawy, Ibrahim A1 - Chasan, Safak A1 - Krause, Tobias A1 - Haas, Jan A1 - Zhong, Rujia A1 - Liao, Zhenxing A1 - Xu, Qiang A1 - Zhou, Xiaobo A1 - Akin, Ibrahim A1 - Zitron, Edgar A1 - Frey, Norbert A1 - Streckfuss-Bömeke, Katrin A1 - Kayvanpour, Elham T1 - Identification of SCN5a p.C335R variant in a large family with dilated cardiomyopathy and conduction disease JF - International Journal of Molecular Sciences N2 - Introduction: Familial dilated cardiomyopathy (DCM) is clinically variable and has been associated with mutations in more than 50 genes. Rapid improvements in DNA sequencing have led to the identification of diverse rare variants with unknown significance (VUS), which underlines the importance of functional analyses. In this study, by investigating human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), we evaluated the pathogenicity of the p.C335R sodium voltage-gated channel alpha subunit 5 (SCN5a) variant in a large family with familial DCM and conduction disease. Methods: A four-generation family with autosomal dominant familial DCM was investigated. Next-generation sequencing (NGS) was performed in all 16 family members. Clinical deep phenotyping, including endomyocardial biopsy, was performed. Skin biopsies from two patients and one healthy family member were used to generate human-induced pluripotent stem cells (iPSCs), which were then differentiated into cardiomyocytes. Patch-clamp analysis with Xenopus oocytes and iPSC-CMs were performed. Results: A SCN5a variant (c.1003T>C; p.C335R) could be detected in all family members with DCM or conduction disease. A novel truncating TTN variant (p.Ser24998LysfsTer28) could also be identified in two family members with DCM. Family members with the SCN5a variant (p.C335R) showed significantly longer PQ and QRS intervals and lower left ventricular ejection fractions (LV-EF). All four patients who received CRT-D were non-responders. Electrophysiological analysis with Xenopus oocytes showed a loss of function in SCN5a p.C335R. Na\(^+\) channel currents were also reduced in iPSC-CMs from DCM patients. Furthermore, iPSC-CM with compound heterozygosity (SCN5a p.C335R and TTNtv) showed significant dysregulation of sarcomere structures, which may be contributed to the severity of the disease and earlier onset of DCM. Conclusion: The SCN5a p.C335R variant is causing a loss of function of peak INa in patients with DCM and cardiac conduction disease. The co-existence of genetic variants in channels and structural genes (e.g., SCN5a p.C335R and TTNtv) increases the severity of the DCM phenotype. KW - familial DCM KW - conduction disease KW - SCN5a Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284442 SN - 1422-0067 VL - 22 IS - 23 ER - TY - JOUR A1 - Maurer, Wiebke A1 - Hartmann, Nico A1 - Argyriou, Loukas A1 - Sossalla, Samuel A1 - Streckfuss-Bömeke, Katrin T1 - Generation of homozygous Na\(_{v}\)1.8 knock-out iPSC lines by CRISPR Cas9 genome editing to investigate a potential new antiarrhythmic strategy JF - Stem Cell Research N2 - The sodium channel Na\(_{v}\)1.8, encoded by SCN10A, is reported to contribute to arrhythmogenesis by inducing the late I\(_{Na}\) and thereby enhanced persistent Na\(^{+}\) current. However, its exact electrophysiological role in cardiomyocytes remains unclear. Here, we generated induced pluripotent stem cells (iPSCs) with a homozygous SCN10A knock-out from a healthy iPSC line by CRISPR Cas9 genome editing. The edited iPSCs maintained full pluripotency, genomic integrity, and spontaneous in vitro differentiation capacity. The iPSCs are able to differentiate into iPSC-cardiomyocytes, hence making it possible to investigate the role of Na\(_{v}\)1.8 in the heart. KW - arrhythmogenesis KW - cardiomyocytes KW - induced pluripotent stem cells Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300936 VL - 60 ER - TY - JOUR A1 - Sedaghat-Hamedani, Farbod A1 - Rebs, Sabine A1 - Kayvanpour, Elham A1 - Zhu, Chenchen A1 - Amr, Ali A1 - Müller, Marion A1 - Haas, Jan A1 - Wu, Jingyan A1 - Steinmetz, Lars M. A1 - Ehlermann, Philipp A1 - Streckfuss-Bömeke, Katrin A1 - Frey, Norbert A1 - Meder, Benjamin T1 - Genotype complements the phenotype: identification of the pathogenicity of an LMNA splice variant by nanopore long-read sequencing in a large DCM family JF - International Journal of Molecular Sciences N2 - Dilated cardiomyopathy (DCM) is a common cause of heart failure (HF) and is of familial origin in 20–40% of cases. Genetic testing by next-generation sequencing (NGS) has yielded a definite diagnosis in many cases; however, some remain elusive. In this study, we used a combination of NGS, human-induced pluripotent-stem-cell-derived cardiomyocytes (iPSC-CMs) and nanopore long-read sequencing to identify the causal variant in a multi-generational pedigree of DCM. A four-generation family with familial DCM was investigated. Next-generation sequencing (NGS) was performed on 22 family members. Skin biopsies from two affected family members were used to generate iPSCs, which were then differentiated into iPSC-CMs. Short-read RNA sequencing was used for the evaluation of the target gene expression, and long-read RNA nanopore sequencing was used to evaluate the relevance of the splice variants. The pedigree suggested a highly penetrant, autosomal dominant mode of inheritance. The phenotype of the family was suggestive of laminopathy, but previous genetic testing using both Sanger and panel sequencing only yielded conflicting evidence for LMNA p.R644C (rs142000963), which was not fully segregated. By re-sequencing four additional affected family members, further non-coding LMNA variants could be detected: rs149339264, rs199686967, rs201379016, and rs794728589. To explore the roles of these variants, iPSC-CMs were generated. RNA sequencing showed the LMNA expression levels to be significantly lower in the iPSC-CMs of the LMNA variant carriers. We demonstrated a dysregulated sarcomeric structure and altered calcium homeostasis in the iPSC-CMs of the LMNA variant carriers. Using targeted nanopore long-read sequencing, we revealed the biological significance of the variant c.356+1G>A, which generates a novel 5′ splice site in exon 1 of the cardiac isomer of LMNA, causing a nonsense mRNA product with almost complete RNA decay and haploinsufficiency. Using novel molecular analysis and nanopore technology, we demonstrated the pathogenesis of the rs794728589 (c.356+1G>A) splice variant in LMNA. This study highlights the importance of precise diagnostics in the clinical management and workup of cardiomyopathies. KW - familial DCM KW - laminopathy KW - long-read sequencing KW - nanopore KW - induced pluripotent stem cell cardiomyocytes Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290415 SN - 1422-0067 VL - 23 IS - 20 ER - TY - JOUR A1 - Rebs, Sabine A1 - Streckfuss-Bömeke, Katrin T1 - How can we use stem cell-derived cardiomyocytes to understand the involvement of energetic metabolism in alterations of cardiac function? JF - Frontiers in Molecular Medicine N2 - Mutations in the mitochondrial-DNA or mitochondria related nuclear-encoded-DNA lead to various multisystemic disorders collectively termed mitochondrial diseases. One in three cases of mitochondrial disease affects the heart muscle, which is called mitochondrial cardiomyopathy (MCM) and is associated with hypertrophic, dilated, and noncompact cardiomyopathy. The heart is an organ with high energy demand, and mitochondria occupy 30%–40% of its cardiomyocyte-cell volume. Mitochondrial dysfunction leads to energy depletion and has detrimental effects on cardiac performance. However, disease development and progression in the context of mitochondrial and nuclear DNA mutations, remains incompletely understood. The system of induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CM) is an excellent platform to study MCM since the unique genetic identity to their donors enables a robust recapitulation of the predicted phenotypes in a dish on a patient-specific level. Here, we focus on recent insights into MCM studied by patient-specific iPSC-CM and further discuss research gaps and advances in metabolic maturation of iPSC-CM, which is crucial for the study of mitochondrial dysfunction and to develop novel therapeutic strategies. KW - mitochondrial cardiomyopathy KW - iPSC-cardiomyocytes KW - maturation strategies KW - Barth syndrome KW - Friedreich’s ataxia KW - lysosomal storage disorders Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-327344 VL - 3 ER - TY - JOUR A1 - Eberl, Hanna A1 - Rebs, Sabine A1 - Hoppe, Stefanie A1 - Sedaghat-Hamedani, Farbod A1 - Kayvanpour, Elham A1 - Meder, Benjamin A1 - Streckfuss-Bömeke, Katrin T1 - Generation of an RBM20-mutation-associated left-ventricular non-compaction cardiomyopathy iPSC line (UMGi255-A) into a DCM genetic background to investigate monogenetic cardiomyopathies JF - Stem Cell Research N2 - RBM20 mutations account for 3 % of genetic cardiomypathies and manifest with high penetrance and arrhythmogenic effects. Numerous mutations in the conserved RS domain have been described as causing dilated cardiomyopathy (DCM), whereas a particular mutation (p.R634L) drives development of a different cardiac phenotype: left-ventricular non-compaction cardiomyopathy. We generated a mutation-induced pluripotent stem cell (iPSC) line in which the RBM20-LVNC mutation p.R634L was introduced into a DCM patient line with rescued RBM20-p.R634W mutation. These DCM-634L-iPSC can be differentiated into functional cardiomyocytes to test whether this RBM20 mutation induces development of the LVNC phenotype within the genetic context of a DCM patient. KW - cell biology KW - developmental biology KW - general medicine KW - RBM20 mutations KW - DCM genetic background KW - monogenetic cardiomyopathies Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350565 SN - 1873-5061 VL - 74 ER -