TY - THES A1 - Geßner, Ralph T1 - Untersuchungen an biologischen Proben mit verschiedenen Raman- und SERS-spektroskopischen Techniken T1 - Investigations on biological samples with different Raman- and SERS spectroscopic techniques N2 - Diese Arbeit befasst sich mit der Entwicklung und Erprobung geeigneter Methoden zur Raman-spektroskopischen Untersuchung empfindlicher, insbesondere biologischer Proben. Das Ziel dabei ist, ein Werkzeug zur Verfügung zu stellen, mit dem es möglich ist, detaillierte Informationen über die Inhaltsstoffe einer Probe und deren räumlichen Verteilung zu sammeln. Diese Daten sind beispielsweise für die Qualitätssicherung pharmazeutischer Produktionen notwendig. Zu diesem Zweck wurden zwei verschiedene Ansätze verfolgt: ein Raman-Spektrometer wurde zum einen mit einer Glasfasersonde, zum anderen mit einer optischen Gradientenfalle kombiniert. Beide Ansätze wurden getestet und mit ihnen biologische Fragestellungen bearbeitet. Die Empfindlichkeit biologischer Proben und die geringe Konzentration ihrer Inhaltsstoffe macht es dabei notwendig, besonderen Wert auf probenschonende Messverfahren und eine hohe Nachweisempfindlichkeit zu legen. Die Raman- bzw. SERS-Spektroskopie ist hierzu in der Lage und erfordert gleichzeitig nur eine minimale Probenpräparation. Anhand der präsentierten Experimente konnte gezeigt werden, dass sich die SERS-Glasfasersonde besonders zur Untersuchung empfindlicher Proben eignet. Insbesondere erlaubt sie minimal-invasives Arbeiten an biologischen Materialien. Es konnte außerdem gezeigt werden, dass die Sonde aufgrund ihrer geometrischen Beschaffenheit eine gute Ortsauflösung, bis in den Sub-Mikrometerbereich, bei den Messungen erlaubt. Daher eignet sich die Fasersonde besonders zur Untersuchung von hochempfindlichen biologischen Proben bei gleichzeitig sehr geringem Probenbedarf. Mit der optischen Gradientenfalle, als zweite Methode, hat man ein Werkzeug zur Hand, mit dem es möglich ist, einzelne Mikroorganismen oder Mikropartikel in Suspension zu vermessen. Bei Arbeit mit der optischen Gradientenfalle ist eine freie, dreidimensionale Manipulation der gefangenen Zellen im Probengefäß möglich. Auf diese Weise können einzelne Zellen über längere Zeit stabil im Laserfokus gehalten werden, wodurch längere Integrationszeiten möglich werden. Außerdem kann man auf diese Weise eine Immobilisierung der suspendierten Zellen auf einer funktionalisierten Oberfläche vermeiden, wodurch unerwünschte Effekte auf das zu messende Spektrum, wie z. B. Verschiebungen einzelner Banden oder Änderungen in den relativen Bandenintensitäten, ausgeschlossen werden können. Zur Untersuchung partikulärer Verunreinigungen ist es nicht notwendig, die Lösung aus dem Gefäß heraus zu präparieren. Vielmehr können die Mikropartikel durch die optische Gradientenfalle in der Lösung festgehalten und spektroskopisch identifiziert werden. Dies ermöglicht beispielsweise die Charakterisierung von Verunreinigungen in pharmazeutischen Lösungen, ohne dass dafür Ampullen geöffnet werden müssten. Auf diese Weise können Kontaminantien identifiziert werden, ohne Gefahr zu laufen, bei der Probenpräparation weitere Verunreinigungen zu verursachen und damit die Messungen zu verfälschen. Durch die Kombination eines Raman-mikroskopischen Aufbaus mit der SERS-Glasfasersonde bzw. der optischen Gradientenfalle ist es gelungen, Fragestellungen an biologischen Systemen in sehr Proben-schonender, aber gleichzeitig hoch-ortsauflösender Weise zu bearbeiten. Durch die Verwendung nicht-kontaminierender SERS-Sonden ist es möglich, zusätzliche Verstärkungseffekte zu erzielen. Die verwendeten Anregungslaserleistungen können daher generell niedrig gehalten werden. Dennoch erhält man aussagekräftige Spektren in einer akzeptablen Zeit. Die Zwei-Laser-Lösung für die optische Gradientenfalle stellt ein zuverlässiges Werkzeug zur berührungsfreien Manipulation kleiner Partikel bei gleichzeitiger Flexibilität in Bezug auf die Anregungswellenlänge dar. N2 - This work deals with the development and evaluation of methods suitable for Raman spectroscopic investigations of sensitive samples and especially of biological samples. The aim of this work is to provide an instrument that allows the collection of detailed information on the constituents of a sample and their spatial distribution. These data are necessary e. g. to insure the quality assurance for pharmaceutical productions. For this purpose, two different approaches have been followed. One was the combination of a Raman spectrometer with a glass fiber probe, the other the combination of a Raman spectrometer with an optical gradient trap. Both strategies have been tested and applied to investigate biological problems. The sensitivity of biological samples as well as the low concentration of their constituents requires non-destructive measuring techniques as providing a high detection limit. Raman spectroscopy or SERS spectroscopy, respectively, provide these features together with the necessity for only minimal sample preparation. The presented experiments show rather convincingly that the SERS glass fiber probe is especially suitable for the investigation of sensitive samples. In particular this method allows for minimal invasive studies of biological material. Furthermore, it could be shown, that due to its geometrical properties the probe has a good spatial resolution allowing measurement down to the sub-micrometer region. Therefore, the fiber probe is especially suited for the investigation of extremely sensitive biological samples combined with only minimal amount of sample needed. The presented work nicely proofs that the optical gradient trap provides a tool enabling the measurement of single microorganism or micro particles in suspension. When working with the optical gradient trap a free three dimensional manipulation of the trapped cells inside the sample container is possible. In this manner, single cells could be held stable in the laser focus for a longer time period, allowing longer integration times. Furthermore, in this way an immobilization of the suspended cells on a functionalized surface can be avoided, whereby unwanted effects e. g. shifts of single bands or changes in relative band intensities, can be excluded. For the study of particulate contaminations it is not necessary to prepare the solution out of the container. Instead the microparticles can be hold and spectroscopically identified within the solution by the optical gradient trap. This, for example, allows the characterization of contaminations of pharmaceutical solutions without the necessity to open any phials. By doing so contaminations can be identified without risking further contaminations and therefore causing adulterated spectra. The combination of a micro Raman setup with a SERS glass fiber probe or an optical gradient trap allowed the study of biological systems in a sample sparing way and with a high spatial resolution. Additional signal enhancing effects can be achieved by using non contaminating SERS probes. Therefore, the applied excitation laser power can be kept low, although reasonable Raman spectra could be obtained for short acquisition times. The two laser solution for the optical gradient trap proved to be a reliable tool for the contact free manipulation of small particles in combination with flexibility in relation to the excitation wavelength. The application of two different lasers for trapping and Raman excitation provides a reliable tool for a contact free manipulation of small particles together with the possibility to chose the Raman excitation wavelength according to the investigated samples. KW - Biologisches Material KW - Raman-Spektroskopie KW - Oberflächenverstärkter Raman-Effekt KW - Raman KW - SERS KW - Fasersonde KW - Optische Gradientenfalle KW - Raman KW - SERS KW - fiber probe KW - optical gradient trap Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-8626 ER - TY - THES A1 - Griebel, Dragan T1 - Fluoreszente, hybride Nanosensoren auf Silicatbasis für die Bioanalytik T1 - Fluorescent, hybrid silica nanosensors for bioanalytic applications N2 - Es wurde ein Leitpartikeltyp mit hoher Fluoreszenz sowie einem Absorptionsbereich oberhalb von 600 nm evaluiert. Zur Anbindung der hochspezifisch wirkenden Antikörper wurde die Teilchenoberfläche mit Carboxylgruppen funktionalisiert. Die Darstellung dieser sphärischen, komplex aufgebauten erfolgte über eine nasschemische Synthese. Die synthetisierten Partikel besitzen eine hohe Fluoreszenzintensität, gutes Chromatographierverhalten und spezifische Beladbarkeit mit monoklonalen Antikörpern (z.B. Troponin T) auf einer mit Carboxylgruppen modifizierten Partikeloberfläche. Auf die Partikel mit dem favorisierten Fluorophor musste eine zusätzliche Silicathülle aufkondensiert werden, damit diese im Anschluss erfolgreich mit Antikörpern beladen werden konnte. Die erhaltenen partikulären Systeme wurden sowohl qualitativ als auch quantitativ charakterisiert. Die Fluoreszenzintensität dieser dotierten Kern-Schale-Partikel konnte soweit optimiert werden, dass sich klinisch relevante und noch höhere Sensitivitäten in Prüfteststreifen detektieren ließen. Weiterhin wurden neuartige Fluoralkylsilan und Fluorophor codotierte Silicat-Nanopartikel synthetisiert, die auf Anhieb eine gute untere Nachweisgrenze von Troponin erzielten. Durch UV-VIS- und Fluoreszenz-Untersuchungen sowie Konjugations- und Prüfteststreifen-Versuche konnte gezeigt werden, dass die Cokondensation des Fluoralkylsilans in einer Erhöhung von Absorption und Fluoreszenz der Partikel resultiert. Weitere Untersuchungen von zeigten, dass eine zusätzliche Oberflächenmodifizierung mit Fluoralkylsilan zu einer signifikanten Verschlechterung der Konjugationseigenschaften mit Antikörpern führt. Alternative Detekorreagenzien und -methoden wurden ebenfalls untersucht. So konnte der kationische Komplex Tris-(1,10-phenantrolin)ruthenium(II)-dichlorid erfolgreich in monodisperse Silicat-Partikel eingebaut werden. Aufgrund ihrer geringen Sauerstoffpermeabilität sind sie als impermeabler Referenzstandard in O2-Sensoren geeignet. Eine andere untersuchte Detektionsmethode basiert auf zeitaufgelöster Fluoreszenz (TRF). Hierbei werden hauptsächlich Lanthanoid-Komplexe eingesetzt. Am besten untersucht sind Europium-Komplexe, welche meistens Diketone als Liganden besitzen. Bislang konnten diese neutralen Komplexe jedoch nicht in polare Silicatpartikel-Matrizes eingebaut werden. Durch Einsatz von 3,3,3-Trifluoropropyltrimethoxysilan gelang es erstmalig, einen Europium(III)-tris-4,4,4-trifluoro-1-(2-naphthoyl)-1,3-butandion-Komplex (Eu(TNB)3) in hydrophobierte Silicat-Nanopartikeln physikalisch einzubauen. TRF-Messungen zeigten Abklingzeiten von ca. 300 µs. In diesem bislang nicht verfügbaren Partikel-Typ konnten positive Eigenschaften von Latex- und Silicatpartikeln kombiniert werden. Auch einige Porphyrinkomplexe mit langen Fluoreszenzlebensdauern sind in Silicat-Nanopartikel eingebaut worden. Der neutrale Komplex 5,10,15,20-Tetrakis(4-carboxyphenyl)-porphyrin-Pd(II) konnte nur durch vorhergehende Silanisierung erfolgreich eingebunden werden. Die erhaltenen sphärischen Partikel weisen eine Größenverteilung von 200-300 nm auf. Ein weiteres, kationisches Porphyrin (5,10,15,20-Tetrakis(N-methyl-4-pyridyl)-21,23H-porphyrin-Zn(II)) konnte ebenfalls erfolgreich in etwa 140 nm große Silicat-Nanopartikel blutungsstabil eingebaut werden. N2 - The aim was to develop monodisperse detector reagents based on nanoparticles, that can be used as biosensors for medical diagnostics and other bioanalytical applications. A particle-type with a high fluorescence intensity and an absorption range around or above 600 nm was evaluated. The particle surface was functionalized with carboxyl groups to allow for covalent attachment of specific antibodies through which the particles can bind to target molecules. The synthesis of these complex spherical particles was done following the wet-chemical Sol-Gel-Process. The particles could be adjusted to the desired requirements: high fluorescence quantum yields, good chromatographic behaviour , efficient conjugation of antibodies (e.g. Troponin T) to a carboxyl modified particle surface. The nanoparticles with the favoured fluorophore had first to be covered with an additional silica shell in order to prepare them for loading with antibodies afterwards. The resulting particles have been characterized qualitatively as well as quantitatively. Furthermore, novel silica nanoparticles have been synthesized by cocondensation of a fluoroalkylsilane and a fluorophore. UV-VIS- and fluorescence spectroscopy as well as conjugational and biosensor tests showed that the cocondensation has positive effects on the absorption and on the fluorescence of the particles. Alternative detection reagents and methods have also been investigated. Thus, the cationic complex Tris-(1,10-phenantrolin)ruthenium(II)-dichloride could successfully be integrated into monodisperse silica particles. These particles are suitable as a standard substrate in O2-sensors because of their low oxygen permeability. The required physical entrapment quantity of the complex as well as the desired low permeability could be demonstrated successfully. Time resolved flourescence (TRF) was applied as an additional detection method. Mainly lanthanoid complexes are used within this method. Most commonly used are Eu(III)-b-diketonate complexes. Up to now, these neutral complexes could not be integrated into the polar silica particle matrix. For the first time, an Europium(III)-tris-4,4,4-trifluoro-1-(2-naphthoyl)-1,3-butandion-complex (Eu(TNB)3 could be embedded into silica particles hydrophobized with 3,3,3-Trifluoropropyltrimethoxysilane. The embedment into the 140 nm diameter nanoparticles has been proved quantitatively as well as qualitatively TRF measurements detected a fluorescence lifetime of approximately 300 µs. In this - up to now- unique particle type the positive properties of latex particles and silica particles could be combined. Some porphyrin complexes possess long fluorescence lifetimes and, therefore, have been investigated. The neutral 5,10,15,20-Tetrakis(4-carboxyphenyl)-porphyrin-Pd(II) complex could only be integrated successfully into silica nanoparticles after having been silanized. The resulting spheric particles have a particle size distribution of 200- 300 nm. Another cationic porphyrin (5,10,15,20-Tetrakis(N-methyl-4-pyridyl)-21,23H-porphyrin-Zn(II)) could also be integrated successfully and without bleeding into 140 nm sized monodisperse silica particles. KW - Silicate KW - Nanopartikel KW - Fluoreszenzmarkierung KW - Biologisches Material KW - Analyse KW - Nanosilicatpartikel KW - hybrid KW - Fluoreszenz KW - nano KW - nanoparticles KW - hybrid KW - fluorescence Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-6153 ER - TY - THES A1 - Belka, Janina T1 - Biomaterialien auf der Basis von Terpyridin-koordinierten Metallionen T1 - Biomaterials based on terpyridine-coordinated metal ions N2 - In der vorliegenden Arbeit wird der Einfluss von Metallkomplexverbindungen auf der Basis von monotopen und ditopen Terpyridin-Liganden auf Zellen behandelt. Es können mehrere Möglichkeiten aufgezeigt werden, wie MEPE als kontrollierte Freisetzungssysteme für Zel-lanwendungen eingesetzt werden können. Es werden 2D-Beschichtungen, 3D-Knochenzemente und Terpyridin funktionalisierte Alginate hergestellt. Es ist möglich, definier-te, homogene Fe-MEPE Schichten auf Borosilikatglas mithilfe der Layer by Layer Technik und mittels Tauschbeschichtung abzuscheiden. Um die Oberfläche und somit die Freisetzung von Metallionen zu erhöhen, werden zusätzlich poröse SiO2-Schichten hergestellt, welche mit Fe-MEPE infiltriert werden. Um die Anwendbarkeit von Metallkomplexverbindungen auf der Basis von monotopen und ditopen Terpyridin-Liganden als Knochenersatzmaterial zu testen werden Hydroxylapatit Knochenzemente synthetisiert. Ziel ist eine retardierende Freisetzung der Metallionen ohne Burst Effekt und ohne den Verlust der Druckstabilitäten der HA Zemen-te. Die Funktionalisierung von Alginat mit 1-Amino-5-(2,2ʹ:6ʹ,2ʹʹ-terpyrid-4ʹ-yl-oxy)pentan resultiert in Hydrogelen, welche ein anderes Gelierverhalten als das unfunktionalisierte Alginat zeigen. Zudem ist es möglich mit Fe(II)- /Ca(II)-Salzmischungen Hydrogele auszubilden. Die funktionalisierten Alginate sind zudem bioaktiv. Zum grundlegenden Verständnis der MEPE Zell Wechselwirkung werden zunächst Zytotoxo-zitätsuntersuchungen mittels WST-1 Test von L929 und C2C12-Zellen mit wässrigen M(II)MEPE Lösungen (Metallionen M= Fe(II), Co(II), Ni(II), Zn(II)) in einem Konzentrationsbe-reich von 1,56x10-11 bis 1,6x10-5 mol L-1 durchgeführt. Fe-MEPE zeigt im betrachteten Kon-zentrationsbereich keine zytotoxischen Eigenschaften auf die eingesetzte Fibroblastenzelllinie. Bei Konzentrationen über 1x10-6 mol L-1 Fe-MEPE sinkt die Mitochondrienaktivität der C2C12-Zellen auf 40%. Dagegen wirken Co- und Zn-MEPE ab einer Konzentration von 1x10-7 mol L-1 stark zytotoxisch auf L929 und C2C12-Zellen. Um selektiv die Differenzierung von C2C12, MG63, humanen mesenchymalen Stammzellen (hMSCs) und humanen Endothelzellen anzuregen, werden die Zellen auf den hergestellten 2D Beschichtungen ausgesät. Es kann gezeigt werden, dass Fe-MEPE die Proliferation zu-gunsten der Stoffwechselaktivität von C2C12, MG63-Zellen und hMSCs hemmt. Bei weiterer Betrachtung der spezifischen myogenen Differenzierungsmarker der C2C12-Zellen bzw. der spezifischen Gene der osteogenen Differenzierung (Osteocalcin und ALP) mithilfe qRT-PCR können erhebliche Stimulierungen auf der mRNA Basis detektiert werden. Auch auf enzymatischer Ebene zeigen Fe-MEPE modifizierte Oberflächen einen stimulierenden Effekt auf die Aktivität der alkalischen Phosphatase der MG63 Zelllinie und humaner mesenchyma-ler Stammzellen. Somit kann eine Stimulierung der myogenen Differenzierung von C2C12-Zellen, sowie oste-ogenen Differenzierung von MG63-Zellen und hMSCs mittels Fe-MEPE beschichteten Ober-flächen innerhalb von drei Tagen nachgewiesen werden. Die Ergebnisse zeigen, dass Fe-MEPE funktionalisierte Oberflächen als innovative Scaffolds für die Behandlung von Kno-chendefekten eingesetzt werden können. N2 - In this thesis the influence of metal complexes based on monotopic and ditopic terpyridine ligands on cells is discussed. There are several ways MEPE can be used as a controlled re-lease system for cell applications. 2D planar and porous coatings, 3D bone cements and ter-pyridine functionalised alginates are produced. It is possible to deposit defined, homogeneous Fe-MEPE layers on borosilicate glass using the layer by layer technique and by dip coating. In order to increase the surface and thus the release of metal ions, porous SiO2 layers are addi-tionally produced, which are infiltrated with Fe-MEPE. To test the applicability of monosubsti-tuted and ditopic terpyridine ligand metal complexes as bone substitutes, hydroxyapatite bone cements are synthesized. The intent is to release the metal ions without a burst effect and without losing the pressure stability of the HA cements. The functionalization of alginate with 1-amino-5-(2,2'-6',2'-terpyrid-4'-yl-oxy) pentane results in hydrogels which exhibit a different gelling behavior than the unfunctionalised alginate. It is possible to form hydrogels with aqueous Fe (II) / Ca (II) salt mixtures. The functionalized algi-nates are bioactive. To gain a basic understanding of the MEPE cell interaction, cytotoxicity studies are first per-formed by WST-1 assay of L929 and C2C12 cells with aqueous M (II) MEPE solutions (metal ions M = Fe (II), Co (II), Ni (II), Zn (II)) in a concentration range of 1.56 × 10 -11 to 1.6 × 10 -5 mole L-1. In the concentration range Fe-MEPE shows no cytotoxic properties on the fibroblast cell line. At concentrations above 1x10-6 mol L-1 Fe-MEPE the mitochondrial activity of C2C12 cells decreases to 40%. In contrast, Co and Zn MEPEs have a strong cytotoxic effect on L929 and C2C12 cells at a concentration of 1x10-7 mol L-1. C2C12, MG63, human mes-enchymal stem cells (hMSCs) and human endothelial cells are seeded on the prepared Fe-MEPE 2D coatings to selectively stimulate the differentiation. It can be shown that Fe-MEPE inhibits the proliferation in favor of the metabolic activity of C2C12, MG63 cells and hMSCs. Further consideration of the specific myogenic differentiation markers of the C2C12 cells or the specific genes of osteogenic differentiation (osteocalcin and ALP) by means of qRT-PCR, significant mRNA-based stimuli can be detected. Likewise on the enzymatic level, the Fe-MEPE modified surfaces have a stimulating effect on the alkaline phosphatase activity of the MG63 cell line and human mesenchymal stem cells. During 3 days Fe-MEPE stimulates my-ogenic differentiation of C2C12 cells as well as osteogenic differentiation of MG63 cells and hMSCs. Thus, the results indicate that Fe-MEPE functionalized surfaces may serve as inno-vative scaffold for the treatment of bone defects. KW - Biologisches Material KW - Terpyridin <2,2':6',2''-> KW - Terpyridinderivate <2,2':6',2''-> KW - Knochen KW - Biomaterial KW - Terpyridin Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-210659 ER -