TY - THES A1 - Wagner, Martin T1 - Proliferationsverhalten kultivierter Mesangialzellen und glatter Gefäßmuskelzellen nach Stimulation mit Angiotensin II und atherogenen Lipoproteinen : Rezeptorbeteiligung T1 - Induction of proliferation by angiotensin II and atherogenic lipoproteins in mesangial cells and vascular smooth muscle cells N2 - Hintergrund: Atherogene Lipoproteine und Angiotensin II sind an der Entstehung von Athe-rosklerose und Glomerulosklerose maßgeblich beteiligt. Sowohl klinische Studien als auch experimentelle Beobachtungen weisen auf eine Interaktion beider Substanzen im Sinne ei-ner Potenzierung ihrer Einzeleffekte hin. Die vorliegende Arbeit untersuchte die Auswirkun-gen von Angiotensin II und nativen und oxidierten Low Density Lipoproteinen (natLDL bzw. oxLDL) auf den Zellzyklus von kultivierten vaskulären Gefäßmuskelzellen (BSMC) und Me-sangiumzellen (NHMC) im Sinne einer Proliferationsänderung unter anderem durch eine Beeinflussung der beteiligten Rezeptoren. Ebenso wurde die Interaktion von oxidierten LDL mit der Zelle sowohl qualitativ als auch quantitativ bestimmt. Methoden: Die Proliferation wurde sowohl mittels radioaktiv markiertem 3H-Thymidin-Einbau als auch durch den MTT-Assay, der auf der photometrisch messbaren Umwandlung von 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl Tetrazoliumbromid beruht, quantifiziert. Die Rezepto-ren wurden auf Proteinebene durch Western Blot Analysen nachgewiesen. Zum Nachweis der Interaktion von oxidierten LDL mit den inkubierten Zellen wurden die oxidierten LDL mit-tels 3,3’-Dioctadecyclindocarbocyanin (DiI) fluoreszenzmarkiert. Visualisiert werden konnte die Interaktion in der Histochemie, die quantitative Bestimmung der DiI-oxLDL-Aufnahme erfolgte durch fluorometische Messung. Ergebnisse: Sowohl native als auch oxidierte LDL steigerten die Proliferation in BSMC und NHMC. In Myozyten lag das Maximum im Tritiumeinbau bei ca. 450% bezogen auf die Kon-trollzellen bei 10 µg/ml natLDL, und bei ca. 350% bei 20 µg/ml oxLDL. In NHMC fiel der An-stieg der Proliferation weniger stark aus, ca. 150% bei 30 µg/ml natLDL und ca. 180% bei 3 µg/ml oxLDL. Im MTT-Assay konnten signifikante Dosis-Wirkungs-Beziehungen erstellt wer-den, die absolute Proliferationssteigerung war jedoch geringer: BSMC 120%, NHMC 140%. Fluoreszenzmarkierte oxLDL wurden über Endozytose in einem konzentrations- und zeitab-hängigen Prozess mit einer Sättigung nach ca. 14 Stunden in die Zellen aufgenommen. Der oxLDL-spezifische LOX-1-Rezeptor konnte jederzeit nachgewiesen werden. Durch Angiotensin II alleine und in Co-Inkubation mit atherogenen Lipoproteinen konnte kei-ne Proliferationsänderung gezeigt werden. Die spezifische Hemmung des AT1-Rezeptors mit Losartan bewirkte ebenfalls keine signifikanten Änderungen. Auch die Inkubation der Zellen mit Agenzien, die die AT1-Rezeptordichte erhöhen sollten, erbrachte im Western Blot keine Veränderungen. Im Vergleich unterschiedlich alter Zellpopulationen ließ sich in höheren Passagen der proliferationsvermittelnde AT1-Rezeptor kaum nachweisen, jedoch war in die-sen Zellpopulationen der antagonistisch wirkende AT2-Rezeptor stark exprimiert. Zusammenfassung: Atherogene Lipoproteine beeinflussen zeit- und konzentrationsabhängig möglicherweise über eine LOX-1 vermittelte Endozytose den Zellzyklus von kultivierten glat-ten Muskelzellen und Mesangiumzellen im Sinne einer Proliferationssteigerung. Die uneinheitlichen Effekte von Angiotensin II auf die Proliferationsrate können durch die starken Expressionsschwankungen der antagonistisch wirkenden Angiotensin II-Rezeptor-Subtypen (AT1 und AT2) vor allem in unterschiedlich alten Zellpopulationen erklärt werden. Wodurch diese Expressionsveränderungen verursacht sind, ist gegenwärtig noch unklar, ebenso, ob diese Effekte im atherosklerotischen Plaque in vivo nachweisbar und pathophy-siologisch bedeutsam. N2 - Background: Atherogenic lipoproteins and angiotensin II play important roles in the devel-opement of atherosclerosis and glomerulosclerosis. Experimental observations and clinical studies suggest that lipoproteins and Angiotensin II exhibit potentiated effects if incubated together. The current investigation examined the effects of Angiotensin II, native and oxi-dized low density lipoproteins (natLDL, oxLDL), and the receptors of Angiotensin II and oxLDL on the proliferation of vascular smooth muscle cells (BSMC) and mesangial cells (NHMC). Methods: Proliferation was quantified by 3H-thymidine incorporation and by a colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazoliumbromide assay. The expression of the in-volved receptors was determined by Western blot analysis. OxLDL were labeled with fluo-rescent 3,3’-Dioctadecyclindocarbocyanin (DiI) to visualize cell interaction in histochemistry and to quantify the internalisation process in a fluorometric assay. Results: Native and oxidized LDL lead to an increased proliferation in BSMC and NHMC. Maximum tritium incorporation in BSMC was 450% compared to control cells at 10 µg/ml natLDL and 350% at 20 µg/ml oxLDL. In NHMC the increased proliferation was lower, i.e. 150% at 30 µg/ml natLDL and 180% at 3 µg/ml oxLDL. In the colorimetric tetrazoliumbromide assay sensitive dose-effect responses with a maximum at 120% in BSMC and 140% in NHMC were observed. DiI-labeled oxLDL were internalised via endocytosis in a time and concentration dependent fashion with a saturation point after 14 hours. The oxLDL-specific LOX-1-receptor could be detected at all stages during the experiments. No consistant biological effects on proliferation were observed when angiotensin II was incu-bated alone or in combination with atherogenic lipoproteins. Similarly, the specific inhibition of the AT1 receptor with Losartan induced no changes in proliferation. Finally, the incubation with various agents reported previously to increase or decrease the expression of the AT1 receptor in the Western blot resulted in no significant changes. Younger and older cell popu-lations were compared and a high expression of the proliferation-inducing AT1-receptor in younger populations was found contrasting with high expression of the proliferation-inhibiting AT2-receptor in older populations. Conclusion: Atherogenic lipoproteins induce in a time and concentration dependent fashion an increased proliferation in smooth muscle cells and mesangial cells, presumably via LOX-1 mediated endocytosis. The heterogenous effects of Angiotensin II may be explained by the counterregulatory expression of the antagonistic angiotensin II receptor subtypes (AT1 and AT2), particularly in older cell populations. KW - Arteriosklerose KW - Glomerulosklerose KW - Proliferation KW - LDL KW - Angiotensin II KW - arteriosclerosis KW - glomerulosclerosis KW - proliferation KW - LDL KW - angiotensin II Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-15589 ER - TY - JOUR A1 - Biermann, Daniel A1 - Heilmann, Andreas A1 - Didié, Michael A1 - Schlossarek, Saskia A1 - Wahab, Azadeh A1 - Grimm, Michael A1 - Römer, Maria A1 - Reichenspurner, Hermann A1 - Sultan, Karim R. A1 - Steenpass, Anna A1 - Ergün, Süleyman A1 - Donzelli, Sonia A1 - Carrier, Lucie A1 - Ehmke, Heimo A1 - Zimmermann, Wolfram H. A1 - Hein, Lutz A1 - Böger, Rainer H. A1 - Benndorf, Ralf A. T1 - Impact of AT2 Receptor Deficiency on Postnatal Cardiovascular Development JF - PLoS One N2 - Background: The angiotensin II receptor subtype 2 (AT2 receptor) is ubiquitously and highly expressed in early postnatal life. However, its role in postnatal cardiac development remained unclear. Methodology/Principal Findings: Hearts from 1, 7, 14 and 56 days old wild-type (WT) and AT2 receptor-deficient (KO) mice were extracted for histomorphometrical analysis as well as analysis of cardiac signaling and gene expression. Furthermore, heart and body weights of examined animals were recorded and echocardiographic analysis of cardiac function as well as telemetric blood pressure measurements were performed. Moreover, gene expression, sarcomere shortening and calcium transients were examined in ventricular cardiomyocytes isolated from both genotypes. KO mice exhibited an accelerated body weight gain and a reduced heart to body weight ratio as compared to WT mice in the postnatal period. However, in adult KO mice the heart to body weight ratio was significantly increased most likely due to elevated systemic blood pressure. At postnatal day 7 ventricular capillarization index and the density of \(\alpha\)-smooth muscle cell actin-positive blood vessels were higher in KO mice as compared to WT mice but normalized during adolescence. Echocardiographic assessment of cardiac systolic function at postnatal day 7 revealed decreased contractility of KO hearts in response to beta-adrenergic stimulation. Moreover, cardiomyocytes from KO mice showed a decreased sarcomere shortening and an increased peak Ca\(^{2+}\) transient in response to isoprenaline when stimulated concomitantly with angiotensin II. Conclusion: The AT2 receptor affects postnatal cardiac growth possibly via reducing body weight gain and systemic blood pressure. Moreover, it moderately attenuates postnatal vascularization of the heart and modulates the beta adrenergic response of the neonatal heart. These AT2 receptor-mediated effects may be implicated in the physiological maturation process of the heart. KW - mice KW - II type-2 receptor KW - human endothelial cells KW - chronic kidney disease KW - angiotensin II KW - blood pressure KW - in vitro KW - cardiac hyperthrophy KW - tube formation KW - rat heart Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134902 VL - 7 IS - 10 ER - TY - THES A1 - Kircher, Malte Tim T1 - Neuronale Genotoxizität von Angiotensin II T1 - Neuronal Genotoxicity of Angiotensin II N2 - In recent decades, the acceptance has steadily increased that oxidative stress plays an important role in the development of chronic diseases, malignant neoplasia and the acceleration of the aging process. As one of the most common chronic diseases, hypertension is often associated with a misregulated renin-angiotensin-aldosterone system that causes chronic oxidative stress. Hypertension is a risk factor for neurological diseases such as vascular dementia (VaD) and many neurological disorders, including VaD, have an ROS-associated or inflammatory component in their etiology. Our group has already demonstrated AT-II-induced genotoxicity in kidney and myocardial cells and tissues. The aim of this dissertation was to investigate a possible association between AT-II and neurodegeneration that is triggered by neuronal genotoxicity of AT-II. First, we showed in two neuronal cell lines that AT-II causes dose-dependent genome damage. Subsequent experiments could attribute this toxicity to NOX-produced superoxide generated after AT-II binding to the AT1R. In addition, AT-II-induced depletion of the most important intracellular antioxidant - glutathione - was demonstrated. In vivo, we were able to show that AT1aR knockout mice after AT-II treatment showed significantly more genome damage in the subfornic organ (SFO) than wild-type mice. The SFO is one of the few structures in the brain with an interrupted blood-brain barrier, which makes it accessible and particularly sensitive to circulating AT-II. In the recent literature, these genome damages were also observed in kidney and heart tissues and prove an additional genotoxicity of AT-II independent of AT1aR and consequently independent of blood pressure. In summary, this work shows that increased AT-II levels in neuronal cells cause genome damage due to NOX-produced superoxide. It is hoped that these results will one day help to decipher the complete development of VaD. N2 - In den letzten Jahrzehnten ist die Akzeptanz stetig größer geworden, dass oxidativer Stress eine bedeutende Rolle bei der Entstehung von chronischen Erkrankungen, malignen Neoplasien sowie der Beschleunigung des Alterungsprozesses spielt. Als eine der häufigsten chronischen Erkrankungen ist Hypertonie oft mit einem fehlregulierten Renin-Angiotensin-Aldosteron-System assoziiert, welches chronisch oxidativen Stress verursacht. Bluthochdruck ist ein Risikofaktor für neurologische Erkrankungen wie der vaskulären Demenz (VaD) und viele neurologischen Störungen, einschließlich der VaD, haben eine ROS-assoziierte beziehungsweise inflammatorische Komponente in ihrer Entstehung. Unsere Arbeitsgruppe konnte bereits eine AT-II-induzierte Genotoxizität in Nieren- und Myokardzellen bzw. -Gewebe nachweisen. Ziel dieser Dissertation war es, einen möglichen Zusammenhang zwischen AT-II und Neurodegeneration zu untersuchen, welche durch eine neuronale Genotoxizität von AT-II ausgelöst wird. Zunächst zeigten wir in zwei neuronalen Zelllinien, dass AT-II eine Dosis-abhängige Genomschädigung verursacht. Nachfolgende Experimente konnten diese Toxizität auf NOX-produziertes Superoxid zurückführen, das nach Bindung von AT-II an den AT1R generiert wird. Zudem konnte ein AT-II-induzierter Verbrauch des wichtigsten intrazellulären Antioxidans – Glutathion - nachgewiesen werden. In vivo konnten wir zeigen, dass AT1aR-Knockout-Mäuse nach AT-II-Behandlung signifikant mehr Genomschäden im Subfornikalorgan (SFO) aufwiesen als Wildtypmäuse. Das SFO hat als eine der wenigen Strukturen im Gehirn eine unterbrochene Blut-Hirn-Schranke, was es für zirkulierendes AT-II zugänglich und besonders empfindlich macht. Diese Genomschäden wurden in der neueren Literatur auch in Nieren- und Herzgewebe beschrieben und belegen eine zusätzliche, AT1aR- und damit Blutdruck-unabhängige Genotoxizität von AT-II. Zusammenfassend zeigt diese Arbeit, dass erhöhte AT-II-Konzentrationen in Nervenzellen Genomschäden durch NOX-produziertes Superoxid verursachen. Die Hoffnung ist, dass diese Ergebnisse dabei helfen, eines Tages die vollständige Entstehung der VaD zu entschlüsseln. KW - Angiotensin II KW - Toxizität KW - Neuronale KW - toxicity KW - angiotensin II KW - neuronal Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214273 ER -