TY - JOUR A1 - de Nijs, Laurence A1 - Choe, Kyonghwan A1 - Steinbusch, Hellen A1 - Schijns, Olaf E. M. G. A1 - Dings, Jim A1 - van den Hove, Daniel L. A. A1 - Rutten, Bart P. F. A1 - Hoogland, Govert T1 - DNA methyltransferase isoforms expression in the temporal lobe of epilepsy patients with a history of febrile seizures JF - Clinical Epigenetics N2 - Background Temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS) is a common pharmaco-resistant epilepsy referred for adult epilepsy surgery. Though associated with prolonged febrile seizures (FS) in childhood, the neurobiological basis for this relationship is not fully understood and currently no preventive or curative therapies are available. DNA methylation, an epigenetic mechanism catalyzed by DNA methyltransferases (DNMTs), potentially plays a pivotal role in epileptogenesis associated with FS. In an attempt to start exploring this notion, the present cross-sectional pilot study investigated whether global DNA methylation levels (5-mC and 5-hmC markers) and DNMT isoforms (DNMT1, DNMT3a1, and DNMT3a2) expression would be different in hippocampal and neocortical tissues between controls and TLE patients with or without a history of FS. Results We found that global DNA methylation levels and DNMT3a2 isoform expression were lower in the hippocampus for all TLE groups when compared to control patients, with a more significant decrease amongst the TLE groups with a history of FS. Interestingly, we showed that DNMT3a1 expression was severely diminished in the hippocampus of TLE patients with a history of FS in comparison with control and other TLE groups. In the neocortex, we found a higher expression of DNMT1 and DNMT3a1 as well as increased levels of global DNA methylation for all TLE patients compared to controls. Conclusion Together, the findings of this descriptive cross-sectional pilot study demonstrated brain region-specific changes in DNMT1 and DNMT3a isoform expression as well as global DNA methylation levels in human TLE with or without a history of FS. They highlighted a specific implication of DNMT3a isoforms in TLE after FS. Therefore, longitudinal studies that aim at targeting DNMT3a isoforms to evaluate the potential causal relationship between FS and TLE or treatment of FS-induced epileptogenesis seem warranted. KW - febrile seizures KW - temporal lobe epilepsy KW - epigenetics KW - DNA methylation KW - DNA methyltransferases Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-223636 VL - 11 ER - TY - JOUR A1 - Wiechmann, Tobias A1 - Röh, Simone A1 - Sauer, Susann A1 - Czamara, Darina A1 - Arloth, Janine A1 - Ködel, Maik A1 - Beintner, Madita A1 - Knop, Lisanne A1 - Menke, Andreas A1 - Binder, Elisabeth B. A1 - Provençal, Nadine T1 - Identification of dynamic glucocorticoid-induced methylation changes at the FKBP5 locus JF - Clinical Epigenetics N2 - Background Epigenetic mechanisms may play a major role in the biological embedding of early-life stress (ELS). One proposed mechanism is that glucocorticoid (GC) release following ELS exposure induces long-lasting alterations in DNA methylation (DNAm) of important regulatory genes of the stress response. Here, we investigate the dynamics of GC-dependent methylation changes in key regulatory regions of the FKBP5 locus in which ELS-associated DNAm changes have been reported. Results We repeatedly measured DNAm in human peripheral blood samples from 2 independent cohorts exposed to the GC agonist dexamethasone (DEX) using a targeted bisulfite sequencing approach, complemented by data from Illumina 450K arrays. We detected differentially methylated CpGs in enhancers co-localizing with GC receptor binding sites after acute DEX treatment (1 h, 3 h, 6 h), which returned to baseline levels within 23 h. These changes withstood correction for immune cell count differences. While we observed main effects of sex, age, body mass index, smoking, and depression symptoms on FKBP5 methylation levels, only the functional FKBP5 SNP (rs1360780) moderated the dynamic changes following DEX. This genotype effect was observed in both cohorts and included sites previously shown to be associated with ELS. Conclusion Our study highlights that DNAm levels within regulatory regions of the FKBP5 locus show dynamic changes following a GC challenge and suggest that factors influencing the dynamics of this regulation may contribute to the previously reported alterations in DNAm associated with current and past ELS exposure. KW - DNA methylation KW - FKBP5 KW - glucocorticoid receptor KW - early-life stress KW - targeted bisulfite sequencing KW - dexamethasone Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-233673 VL - 11 ER - TY - JOUR A1 - Fiedler, David A1 - Hirsch, Daniela A1 - El Hajj, Nady A1 - Yang, Howard H. A1 - Hu, Yue A1 - Sticht, Carsten A1 - Nanda, Indrajit A1 - Belle, Sebastian A1 - Rueschoff, Josef A1 - Lee, Maxwell P. A1 - Ried, Thomas A1 - Haaf, Thomas A1 - Gaiser, Timo T1 - Genome‐wide DNA methylation analysis of colorectal adenomas with and without recurrence reveals an association between cytosine‐phosphate‐guanine methylation and histological subtypes JF - Genes, Chromosomes and Cancer N2 - Aberrant methylation of DNA is supposed to be a major and early driver of colonic adenoma development, which may result in colorectal cancer (CRC). Although gene methylation assays are used already for CRC screening, differential epigenetic alterations of recurring and nonrecurring colorectal adenomas have yet not been systematically investigated. Here, we collected a sample set of formalin‐fixed paraffin‐embedded colorectal low‐grade adenomas (n = 72) consisting of primary adenomas without and with recurrence (n = 59), recurrent adenomas (n = 10), and normal mucosa specimens (n = 3). We aimed to unveil differentially methylated CpG positions (DMPs) across the methylome comparing not only primary adenomas without recurrence vs primary adenomas with recurrence but also primary adenomas vs recurrent adenomas using the Illumina Human Methylation 450K BeadChip array. Unsupervised hierarchical clustering exhibited a significant association of methylation patterns with histological adenoma subtypes. No significant DMPs were identified comparing primary adenomas with and without recurrence. Despite that, a total of 5094 DMPs (false discovery rate <0.05; fold change >10%) were identified in the comparisons of recurrent adenomas vs primary adenomas with recurrence (674; 98% hypermethylated), recurrent adenomas vs primary adenomas with and without recurrence (241; 99% hypermethylated) and colorectal adenomas vs normal mucosa (4179; 46% hypermethylated). DMPs in cytosine‐phosphate‐guanine (CpG) islands were frequently hypermethylated, whereas open sea‐ and shelf‐regions exhibited hypomethylation. Gene ontology analysis revealed enrichment of genes associated with the immune system, inflammatory processes, and cancer pathways. In conclusion, our methylation data could assist in establishing a more robust and reproducible histological adenoma classification, which is a prerequisite for improving surveillance guidelines. KW - adenoma KW - DNA methylation KW - epigenetics KW - histological subtype KW - recurrence Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-212676 VL - 58 IS - 11 SP - 783 EP - 797 ER - TY - JOUR A1 - Weidner, Magdalena T. A1 - Lardenoije, Roy A1 - Eijssen, Lars A1 - Mogavero, Floriana A1 - De Groodt, Lilian P. M. T. A1 - Popp, Sandy A1 - Palme, Rupert A1 - Förstner, Konrad U. A1 - Strekalova, Tatyana A1 - Steinbusch, Harry W. M. A1 - Schmitt-Böhrer, Angelika G. A1 - Glennon, Jeffrey C. A1 - Waider, Jonas A1 - van den Hove, Daniel L. A. A1 - Lesch, Klaus-Peter T1 - Identification of cholecystokinin by genome-wide profiling as potential mediator of serotonin-dependent behavioral effects of maternal separation in the amygdala JF - Frontiers in Neuroscience N2 - Converging evidence suggests a role of serotonin (5-hydroxytryptamine, 5-HT) and tryptophan hydroxylase 2 (TPH2), the rate-limiting enzyme of 5-HT synthesis in the brain, in modulating long-term, neurobiological effects of early-life adversity. Here, we aimed at further elucidating the molecular mechanisms underlying this interaction, and its consequences for socio-emotional behaviors, with a focus on anxiety and social interaction. In this study, adult, male Tph2 null mutant (Tph2\(^{-/-}\)) and heterozygous (Tph2\(^{+/-}\)) mice, and their wildtype littermates (Tph2\(^{+/+}\)) were exposed to neonatal, maternal separation (MS) and screened for behavioral changes, followed by genome-wide RNA expression and DNA methylation profiling. In Tph2\(^{-/-}\) mice, brain 5-HT deficiency profoundly affected socio-emotional behaviors, i.e., decreased avoidance of the aversive open arms in the elevated plus-maze (EPM) as well as decreased prosocial and increased rule breaking behavior in the resident-intruder test when compared to their wildtype littermates. Tph2\(^{+/-}\) mice showed an ambiguous profile with context-dependent, behavioral responses. In the EPM they showed similar avoidance of the open arm but decreased prosocial and increased rule breaking behavior in the resident-intruder test when compared to their wildtype littermates. Notably, MS effects on behavior were subtle and depended on the Tph2 genotype, in particular increasing the observed avoidance of EPM open arms in wildtype and Tph2\(^{+/-}\) mice when compared to their Tph2\(^{-/-}\) littermates. On the genomic level, the interaction of Tph2 genotype with MS differentially affected the expression of numerous genes, of which a subset showed an overlap with DNA methylation profiles at corresponding loci. Remarkably, changes in methylation nearby and expression of the gene encoding cholecystokinin, which were inversely correlated to each other, were associated with variations in anxiety-related phenotypes. In conclusion, next to various behavioral alterations, we identified gene expression and DNA methylation profiles to be associated with TPH2 inactivation and its interaction with MS, suggesting a gene-by-environment interaction-dependent, modulatory function of brain 5-HT availability. KW - serotonin KW - maternal separation KW - mouse KW - emotional behavior KW - DNA methylation KW - RNA expression Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201340 VL - 13 ER -