TY - THES A1 - Jihyoung, Choi T1 - Development of an Add-On Electrode for Non-Invasive Monitoring in Bioreactor Cultures and Medical Devices T1 - Entwicklung einer Zusatzelektrode für das nicht-invasive Monitoring von Bioreaktorkulturen und Medizinprodukten N2 - Electrochemical impedance spectroscopy (EIS) is a valuable technique analyzing electrochemical behavior of biological systems such as electrical characterization of cells and biomolecules, drug screening, and biomaterials in biomedical field. In EIS, an alternating current (AC) power signal is applied to the biological system, and the impedance of the system is measured over a range of frequencies. In vitro culture models of endothelial or epithelial barrier tissue can be achieved by culturing barrier tissue on scaffolds made with synthetic or biological materials that provide separate compartments (apical and basal sides), allowing for further studies on drug transport. EIS is a great candidate for non-invasive and real-time monitoring of the electrical properties that correlate with barrier integrity during the tissue modeling. Although commercially available transendothelial/transepithelial electrical resistance (TEER) measurement devices are widely used, their use is particularly common in static transwell culture. EIS is considered more suitable than TEER measurement devices in bioreactor cultures that involve dynamic fluid flow to obtain accurate and reliable measurements. Furthermore, while TEER measurement devices can only assess resistance at a single frequency, EIS measurements can capture both resistance and capacitance properties of cells, providing additional information about the cellular barrier's characteristics across various frequencies. Incorporating EIS into a bioreactor system requires the careful optimization of electrode integration within the bioreactor setup and measurement parameters to ensure accurate EIS measurements. Since bioreactors vary in size and design depending on the purpose of the study, most studies have reported using an electrode system specifically designed for a particular bioreactor. The aim of this work was to produce multi-applicable electrodes and established methods for automated non-invasive and real-time monitoring using the EIS technique in bioreactor cultures. Key to the electrode material, titanium nitride (TiN) coating was fabricated on different substrates (materials and shape) using physical vapor deposition (PVD) and housed in a polydimethylsiloxane (PDMS) structure to allow the electrodes to function as independent units. Various electrode designs were evaluated for double-layer capacitance and morphology using EIS and scanning electron microscopy (SEM), respectively. The TiN-coated tube electrode was identified as the optimal choice. Furthermore, EIS measurements were performed to examine the impact of influential parameters related to culture conditions on the TiN-coated electrode system. In order to demonstrate the versatility of the electrodes, these electrodes were then integrated into in different types of perfusion bioreactors for monitoring barrier cells. Blood-brain barrier (BBB) cells were cultured in the newly developed dynamic flow bioreactor, while human umblical vascular endothelial cells (HUVECs) and Caco-2 cells were cultured in the miniature hollow fiber bioreactor (HFBR). As a result, the TiN-coated tube electrode system enabled investigation of BBB barrier integrity in long-term bioreactor culture. While EIS measurement could not detect HUVECs electrical properties in miniature HFBR culture, there was the possibility of measuring the barrier integrity of Caco-2 cells, indicating potential usefulness for evaluating their barrier function. Following the bioreactor cultures, the application of the TiN-coated tube electrode was expanded to hemofiltration, based on the hypothesis that the EIS system may be used to monitor clotting or clogging phenomena in hemofiltration. The findings suggest that the EIS monitoring system can track changes in ion concentration of blood before and after hemofiltration in real-time, which may serve as an indicator of clogging of filter membranes. Overall, our research demonstrates the potential of TiN-coated tube electrodes for sensitive and versatile non-invasive monitoring in bioreactor cultures and medical devices. N2 - Die elektrochemische Impedanzspektroskopie (EIS) ist eine nützliche Methode, um das elektrochemische Verhalten von biologischen Systemen zu analysieren, wie z.B. die elektrische Charakterisierung von Zellen und Biomolekülen, Drug Screening und Biomaterialien im biomedizinischen Bereich. Für die EIS wird ein Wechselstrom an das biologische System angeschlossen und die Impedanz des Systems über einen Frequenzbereich gemessen. In vitro-Modelle von Gewebekulturen epithelialer Barrieren können mithilfe künstlicher oder biologischer Materialien, die über unterschiedliche Kompartimente (apikale und basolaterale Seite) verfügen, hergestellt werden und ermöglichen weitere Untersuchungen zum Transport von Arzneistoffen. Die EIS bietet dabei eine hervorragende Methode für das nicht-invasive Echtzeit-Monitoring der elektrischen Eigenschaften, die mit der Barriere-Integrität während der Gewebeentwicklung korreliert. Obwohl kommerziell erhältliche Geräte zur Messung des transendothelialen/transepithelialen elektrischen Widerstands (TEER) umfangreich verwendet werden, ist ihre Verwendung besonders bei statischen Transwell-Kulturen verbreitet. Durch die EIS kann im Gegensatz zur TEER-Messung für Bioreaktor-Kulturen, die einen dynamischen Medienfluss aufweisen, genauere und verlässliche Messungen erhalten werden. Zudem können EIS-Messungen anders als die TEER-Messung, die nur den Widerstand einer einzelnen Frequenz misst, gleichzeitig den elektrischen Widerstand und die Kapazität von Zellen erfassen und damit zusätzliche Informationen über die zellulären Barriereeigenschaften über verschiedene Frequenzen hinweg liefern. Der EIS-Einbau in ein Bioreaktor-System bedarf einer sorgfältigen Optimierung der Elektrodenintegration in das Bioreaktor-Setup und der Messparameter, um akkurate EIS-Messungen durchführen zu können. Da Bioreaktoren abhängig vom Untersuchungszweck in ihrer Größe und ihrem Design variieren, verwenden die meisten Studien speziell entwickelte Elektrodensysteme für einzelne Bioreaktoren. Das Ziel dieser Arbeit war die Herstellung von vielseitig anwendbaren Elektroden und etablierten Methoden für das automatisierte nicht-invasive Echtzeit-Monitoring von Bioreaktor-Kulturen mithilfe der EIS. Entscheidend für das Elektrodenmaterial war die Titannitrid (TiN)-Beschichtung, die auf verschiedenen Substraten (Materialien und Formen) durch Physical Vapor Deposition (PVD) hergestellt und in einer Polydimethylsiloxan (PDMS)-Struktur untergebracht wurde, damit die Elektroden unabhängig voneinander arbeiten können. Verschiedene Elektrodendesigns wurden auf Doppelschicht-Kapazität mithilfe der EIS bzw. auf die Morphologie mit Rasterelektronenmikroskopie untersucht. Die TiN-beschichteten Elektroden in Röhrenform erwiesen sich als optimal. Weiterhin wurden EIS-Messungen durchgeführt, um die Auswirkung von beeinflussenden Parametern auf die Kulturbedingungen durch das TiN-beschichtete Elektrodensystem zu untersuchen. Um die Vielseitigkeit der Elektroden aufzuzeigen, wurden diese anschließend zum Monitoring von Barriere-bildenden Zellen in unterschiedliche Perfusionsbioreaktoren integriert. Zellen der Blut-Hirn-Schranke (BHS) wurden im neu entwickelten dynamischen Flussreaktor kultiviert, wohingegen humane umbilikale vaskuläre Endothelzellen (HUVEC) und Caco-2-Zellen in Hohlfaserbioreaktoren (HFBR) in Miniaturform kultiviert wurden. Das TiN-beschichtete Röhrenelektrodensystem ermöglichte die Untersuchung der BHS-Barrieren-Integrität in einer Langzeit-Bioreaktorkultur. Während die EIS-Messung in der Miniaturform-HFBR-Kultur keine elektrischen Eigenschaften der HUVECs detektieren konnte, war es möglich, eine Barriere-Integrität der Caco-2-Zellen zu messen, die den potentiellen Nutzen für die Evaluierung deren Barrierefunktion aufzeigt. Nach den Bioreaktorkulturen wurde die Anwendung der TiN-beschichteten Röhrenelektrode auf die Hämofiltration erweitert, auf Grundlage der Hypothese, dass das EIS-System ein Gerinnen oder Verstopfen während der Hämofiltration überwachen könnte. Die Ergebnisse zeigen, dass das EIS-Monitoring-System Veränderungen in der Ionenkonzentration des Blutes vor und nach Hämofiltration in Echtzeit verfolgen kann, welches eventuell als Messgröße für ein Verstopfen der Filtermembranen genutzt werden kann. Insgesamt weisen TiN-beschichtete Röhrenelektroden unseren Forschungen zufolge ein großes Potential für ein empfindliches und vielfältiges nicht-invasives Monitoring von Bioreaktorkulturen und Medizingeräte auf. KW - Monitoring KW - Tissue Engineering KW - Electrode KW - Perfusion Bioreactor KW - Hemofiltration KW - Medizinprodukt KW - Electrochemical Impedance Spectroscopy Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-358232 ER - TY - THES A1 - Peindl, Matthias T1 - Refinement of 3D lung cancer models for automation and patient stratification with mode-of-action studies T1 - Weiterentwicklung von 3D Lungentumormodellen zur Automatisierung und Patienten-Stratifizierung mit Untersuchungen zur Wirkungsweise N2 - Lung cancer is the main cause of cancer-related deaths worldwide. Despite the availability of several targeted therapies and immunotherapies in the clinics, the prognosis for lung cancer remains poor. A major problem for the low benefit of these therapies is intrinsic and acquired resistance, asking for pre-clinical models for closer investigation of predictive biomarkers for refined personalized medicine and testing of possible combination therapies as well as novel therapeutic approaches to break resistances. One third of all lung adenocarcinoma harbor mutations in the KRAS gene, of which 39 % are transitions from glycine to cysteine in codon 12 (KRASG12C). Being considered “undruggable” in previous decades, KRASG12C-inhibitors now paved the way into the standard-of-care for lung adenocarcinoma treatment in the clinics. Still, the overall response rates as well as overall survival of patients treated with KRASG12C-inhibitors are sobering. Therefore, 3D KRASG12C-biomarker in vitro models were developed based on a decellularized porcine jejunum (SISmuc) using commercial and PDX-derived cell lines and characterized in regards of epithelial-mesenchymal-transition (EMT), stemness, proliferation, invasion and c-MYC expression as well as the sensitivity towards KRASG12C-inhibiton. The phenotype of lung tumors harboring KRAS mutations together with a c-MYC overexpression described in the literature regarding invasion and proliferation for in vivo models was well represented in the SISmuc models. A higher resistance towards targeted therapies was validated in the 3D models compared to 2D cultures, while reduced viability after treatment with combination therapies were exclusively observed in the 3D models. In the test system neither EMT, stemness nor the c-MYC expression were directly predictive for drug sensitivity. Testing of a panel of combination therapies, a sensitizing effect of the aurora kinase A (AURKA) inhibitor alisertib for the KRASG12C-inhibitor ARS-1620 directly correlating with the level of c-MYC expression in the corresponding 3D models was observed. Thereby, the capability of SISmuc tumor models as an in vitro test system for patient stratification was demonstrated, holding the possibility to reduce animal experiments. Besides targeted therapies the treatment of NSCLC with oncolytic viruses (OVs) is a promising approach. However, a lack of in vitro models to test novel OVs limits the transfer from bench to bedside. In this study, 3D NSCLC models based on the SISmuc were evaluated for their capability to perform efficacy and risk assessment of oncolytic viruses (OVs) in a pre-clinical setting. Hereby, the infection of cocultures of tumor cells and fibroblasts on the SISmuc with provided viruses demonstrated that in contrast to a wildtype herpes simplex virus 1 (HSV-1) based OV, the attenuated version of the OV exhibited specificity for NSCLC cells with a more advanced and highly proliferative phenotype, while fibroblasts were no longer permissive for infection. This approach introduced SISmuc tumor models as novel test system for in vitro validation of OVs. Finally, a workflow for validating the efficacy of anti-cancer therapies in 3D tumor spheroids was established for the transfer to an automated platform based on a two-arm-robot system. In a proof-of-concept process, H358 spheroids were characterized and treated with the KRASG12C-inhibitor ARS-1620. A time- and dose-dependent reduction of the spheroid area after treatment was defined together with a live/dead-staining as easy-to-perform and cost-effective assays for automated drug testing that can be readily performed in situ in an automated system. N2 - Lungentumoren sind die Hauptursache für krebsbedingte Todesfälle weltweit. Trotz der Verfügbarkeit diverser zielgerichteter Therapien und Immuntherapien im klinischen Alltag ist die Prognose für Lungenkrebs nach wie vor schlecht. Eine Hauptursache hierfür sind intrinsische und erworbene Resistenzen. Hieraus ergibt sich ein Bedarf für präklinische Modelle zur genaueren Untersuchung prädiktiver Biomarker für eine verbesserte personalisierte Medizin und zur Testung von Kombinationstherapien sowie neuartiger therapeutischer Ansätze, um bestehende Resistenzen zu brechen. Ein Drittel aller Lungen-Adenokarzinome weisen Mutationen im KRAS-Gen auf, von denen 39 % Transitionen von Glycin zu Cystein in Codon 12 (KRASG12C) darstellen. Obwohl KRAS in den vergangenen Jahrzehnten als "unbehandelbar" galt, haben sich KRASG12C-Inhibitoren nun den Weg in die klinische Standardbehandlung von Lungen-Adenokarzinomen gebahnt. Jedoch sind die Ansprech- und Überlebensraten von Patienten, die mit KRASG12C-Inhibitoren behandelt werden, ernüchternd. Daher wurden in dieser Arbeit 3D KRASG12C-Biomarker in vitro Modelle basierend auf dezellularisierten Schweinedünndarm (SISmuc) unter Verwendung kommerzieller und PDX-abgeleiteter Zelllinien aufgebaut und hinsichtlich der epithelial-mesenchymalen Transition (EMT), Stammzell-Eigenschaften, Proliferation, Invasion und c MYC-Expression sowie der Sensitivität gegenüber KRASG12C-Inhibitoren charakterisiert. Der in der Literatur für in vivo Modelle beschriebene Phänotyp von Lungentumoren mit KRAS-Mutationen und c-MYC-Überexpression in Bezug auf Invasion und Proliferation war in den SISmuc-Modellen reproduzierbar. Während in den 3D Modellen erhöhte Resistenz gegenüber zielgerichteten Therapien im Vergleich zu 2D beobachtet wurde, konnte eine verringerte Viabilität nach der Behandlung mit Kombinationstherapien ausschließlich in den 3D Modellen beobachtet werden. Im Test-System zeigten sich weder EMT noch die c-MYC-Expression als direkt prädiktiv für die Sensitivität gegenüber KRASG12C-Inhibitoren. Bei der Prüfung von verschiedenen Kombinationstherapien, wurde eine sensibilisierende Wirkung des Aurora-Kinase A (AURKA)-Inhibitors Alisertib für den KRASG12C-Inhibitor ARS-1620 beobachtet, welche direkt mit dem Grad der c-MYC-Expression in den entsprechenden 3D-Modellen korrelierte. Hierdurch konnte die Eignung von SISmuc Tumor Modellen als in vitro Test-System zur Patienten-Stratifizierung gezeigt werden, welches die Möglichkeit einer Reduktion von Tierversuchen birgt. Neben zielgerichteten Therapien ist die Behandlung von NSCLC mit onkolytischen Viren (OVs) ein vielversprechender Ansatz. Es mangelt jedoch an in vitro Modellen, um neue OVs in einer präklinischen Umgebung zu testen. Hierfür wurden 3D-NSCLC-Modelle auf der Grundlage der SISmuc bezüglich ihrer Eignung zur Durchführung von Wirksamkeits- und Risikobewertungen von OVs untersucht. Dabei zeigte die Infektion von Kokulturen aus Tumorzellen und Fibroblasten auf der SISmuc mit bereitgestellten Viren, dass die abgeschwächte Version des OV im Gegensatz zu einem auf dem Wildtyp des Herpes Simplex Virus 1 (HSV-1) basierenden OV eine Spezifität für NSCLC-Zellen mit einem fortgeschritteneren und stark proliferativen Phänotyp aufwies, während Fibroblasten sich für eine Infektion nicht länger permissiv zeigten. Dieser Ansatz stellt unter Beweis, dass SISmuc-Tumormodelle sich als neues Test-System zur in vitro Prüfung von OVs eignen. Schließlich wurde ein Arbeitsablauf zur Validierung der Wirksamkeit von Krebstherapien in 3D-Tumor-Sphäroiden für die Übertragung auf eine automatisierte Plattform auf der Grundlage eines zweiarmigen Robotersystems entwickelt. In einem Proof-of-Concept-Prozess wurden H358-Sphäroide charakterisiert und mit dem KRASG12C-Inhibitor ARS-1620 behandelt. Eine zeit- und dosisabhängige Reduktion der Sphäroid-Fläche nach der Behandlung wurde zusammen mit einer Lebend/Tot-Färbung als einfach durchzuführender und kostengünstiger Assay für automatisierte Medikamententests definiert, welche in situ in einer automatisierten Umgebung durchgeführt werden können. KW - Krebs KW - Tissue Engineering KW - Tumor models KW - Cancer KW - Targeted therapies KW - Automation Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-310693 ER - TY - THES A1 - Schlesinger, Tobias T1 - Autolog zellbesiedelte Matrix zum Verschluss gastraler Inzisionen: Eine Machbarkeitsstudie im Schweinemodell T1 - Autologous seeded matrix for gastrotomy closure: A proof of concept in a porcine model N2 - Einleitung: Strukturelle Defekte der gastrointestinalen Hohlorgane stellen ein allgegen-wärtiges Problem im klinischen Alltag dar. Sie entstehen meist auf dem Boden einer ent-zündlichen oder tumorösen Grunderkrankung und können außerdem traumatisch sowie durch medizinische Eingriffe hervorgerufen werden. In der Folge kommt es zur Kontami-nation des umliegenden Gewebes mit Magen- bzw. Darminhalt, wodurch deletäre Folgen wie eine systemische Infektion, also eine Sepsis mit Multiorganversagen drohen können. Vor diesem Hintergrund sind gastrointestinale Defekte immer als potenziell lebensbedroh-lich für den Patienten zu betrachten. Die adäquate und kausale Behandlung erfolgt je nach Ätiologie und Zustand des Patienten durch eine Operation oder eine endoskopische Inter-vention. Hierzu stehen zahlreiche etablierte, operative und interventionelle Therapieme-thoden zur Verfügung. In manchen Fällen stoßen die etablierten Techniken jedoch an ihre Grenzen. Bei Patienten mit schwerwiegenden Komorbiditäten oder im Rahmen neuer me-dizinischer Verfahren sind Innovationen gefragt. Die Grundidee der vorliegenden Arbeit ist die Entwicklung einer biotechnologischen Therapieoption zur Versorgung gastrointesti-naler Hohlorganperforationen. Methoden: Zur Durchführung einer Machbarkeitsstudie wurden zehn Göttinger Mi-nischweine in zwei Gruppen mit jeweils 5 Tieren aufgeteilt. Den Tieren der Experimental-gruppe wurden Hautbiopsien entnommen und daraus Fibroblasten isoliert, welche vo-rübergehend konserviert wurden. Unter Verwendung von azellularisiertem Schweinedarm erfolgte die Herstellung von Implantaten nach den Prinzipien des Tissue Engineerings. Die Tiere beider Gruppen wurden einer Minilaparotomie und einer ca. 3cm-Inzision der Ma-genvorderwand unterzogen. Die anschließende Versorgung wurde in der Experimental-gruppe durch Implantation der neuartigen Konstrukte erzielt. In der Kontrollgruppe wur-de im Sinne des Goldstandards eine konventionelle Naht durchgeführt. Anschließend wurden die Tiere für vier Wochen beobachtet. Eine bzw. zwei Wochen nach dem pri-mären Eingriff wurde bei allen Tieren beider Gruppen eine Laparoskopie bzw. Gastrosko-pie durchgeführt. Am Ende der klinischen Observationsphase wurden die Versuchstiere getötet und die entsprechenden Magenareale zur histologischen Untersuchung explantiert. Ergebnisse: Die Herstellung der Implantate konnte auf der Basis standardisierter zellbio-logischer Methoden problemlos etabliert werden. Alle Tiere beider Gruppen überlebten den Primäreingriff sowie das vierwöchige Nachbeobachtungsintervall und zeigten dabei keine klinischen Zeichen möglicher Komplikationen. Die durchgeführten Laparoskopien und Gastroskopien ergaben bei keinem der Tiere Hinweise auf Leckagen oder lokale Infek-tionsprozesse. Die histologische Aufarbeitung zeigte im Bereich des ursprünglichen De-fekts eine bindegewebige Überbrückung sowie ein beginnendes Remodeling der Magen-schleimhaut in beiden Gruppen. Schlussfolgerungen: Durch die Verknüpfung von Einzelprozessen der Zellkultur und dem Großtier-OP konnte ein neues Verfahren zum Verschluss gastrointestinaler Defekt erfolgreich demonstriert und etabliert werden. Das Projekt konnte reibungslos durchge-führt werden und lieferte Ergebnisse, die dem Goldstandard nicht unterlegen waren. Auf-grund der kleinen Fallzahl und weiterer methodischer Limitationen sind jedoch nur einge-schränkt Schlussfolgerungen möglich, weshalb die Durchführung größerer und gut geplan-ter Studien notwendig ist. Die Erkenntnisse dieser Pilotstudie liefern eine solide Basis für die Planung weiterführender Untersuchungen. N2 - Introduction: Structural defects of the gastrointestinal hollow organs are a common problem in clinical routine. They mostly arise from inflammatory or malignant patholo-gies as well as trauma or medical procedures. Contamination of adjacent tissue with fae-ces is a consequence of this, which can lead to systemic infection e.g. sepsis with multiple organ failure. Bearing this in mind gastrointestinal defects are always potentially life-threatening for the patient. Considering the aethiology and the patient’s general condition an appropriate therapy namely operation or endoscopic intervention will be performed. Though, these techniques have limitations in certain cases. For example there are patients with severe comorbidities or history of previous operations. And there are also new sur-gical procedures emerging. Therefore, innovations are needed in this field. The main purpose of the present study is the fabrication of a new biotechnological method for therapy of gastrointestinal hollow organ perforation. Methods: A feasibility study with Göttinger Minipigs was perforemd. Ten animals were randomly split up in two groups regarding closure technique . Skin biopsies were ob-tained from the animals of the experimental group (n=5) in order to obtain dermal fibro-blasts. Using acellularised porcine small intestine seeded with the autologous dermal fi-broblasts implants were manufactured following the principles to tissue engineering. All animals underwent laparotomy and a 3cm gastrical incision. Subsequently, animals of the experimental group received a novel implant in order to close the defect. Animals of the control group received a conventional suture as a gold standard technique. All animals were observed for four weeks. One and two weeks after primary surgery all animals un-derwent laparoscopy and gastroscopy respectively. Observation was completed after four weeks and all animals were euthanized. Relevant specimens of the gastric wall were ex-planted for histological examination. Results: Fabrication of the implants was based on well-established cell cultural methods. All animals survived within four weeks after primary surgery and showed no signs for possible complications. Neither laparoscopy nor gastroscopy revealed leakage or local infection in both groups. Histological examinations showed connective tissue in the de-fect-area predominantly but also initial remodeling of gastric mucosa. Conclusions: In this trial, a novel method based on cell culture methods and surgery were combined creating a new technique for closure of gastrointestinal defect. The pro-ject was carried out smoothly and results showed non-inferiority compared with the gold standard. Though, evidence generated from this study is limited due to the small scaled design and methodological issues. Thus, further investigations with larger animal groups and proper planning are required. Nevertheless, this pilot study will contribute to im-provement of trial designs in the future. KW - Magenkrankheit KW - NOTES KW - Tissue Engineering KW - Fibroblast KW - Magenchirurgie KW - Fibroblasts KW - small intestinal submucosa KW - Anastomoseninsuffizienz KW - Gastrointestinaltrakt KW - Magen KW - Perforation Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-305832 ER - TY - THES A1 - Däullary, Thomas T1 - Establishment of an infection model of the human intestinal epithelium to study host and pathogen determinants during the \(Salmonella\) Typhimurium infection process T1 - Etablierung eines Infektionsmodells des menschlichen Darmepithels zur Untersuchung von Wirts- und Erregerdeterminanten während des \(Salmonella\) Typhimurium-Infektionsprozesses N2 - According to the WHO, foodborne derived enteric infections are a global disease burden and often manifest in diseases that can potentially reach life threatening levels, especially in developing countries. These diseases are caused by a variety of enteric pathogens and affect the gastrointestinal tract, from the gastric to the intestinal to the rectal tissue. Although the complex mucosal structure of these organs is usually well prepared to defend the body against harmful agents, specialised pathogens such as Salmonella enterica can overcome the intestinal defence mechanism. After ingestion, Salmonella are capable of colonising the gut and establishing their proliferative niche, thereby leading to inflammatory processes and tissue damage of the host epithelium. In order to understand these processes, the scientific community in the last decades mostly used cell line based in vitro approaches or in vivo animal studies. Although these approaches provide fundamental insights into the interactions between bacteria and host cells, they have limited applicability to human pathology. Therefore, tissue engineered primary based approaches are important for modern infection research. They exhibit the human complexity better than traditional cell lines and can mimic human-obligate processes in contrast to animal studies. Therefore, in this study a tissue engineered human primary model of the small intestinal epithelium was established for the application of enteric infection research with the exemplary pathogen Salmonella Typhimurium. To this purpose, adult stem cell derived intestinal organoids were used as a primary human cell source to generate monolayers on biological or synthetic scaffolds in a Transwell®-like setting. These tissue models of the intestinal epithelium were examined for their comparability to the native tissue in terms of morphology, morphometry and barrier function. Further, the gene expression profiles of organotypical mucins, tight junction-associated proteins and claudins were investigated. Overall, the biological scaffold-based tissue models showed higher similarity to the native tissue - among others in morphometry and polarisation. Therefore, these models were further characterised on cellular and structural level. Ultrastructural analysis demonstrated the establishment of characteristic microvilli and tight-junction connections between individual epithelial cells. Furthermore, the expression pattern of typical intestinal epithelial protein was addressed and showed in vivo-like localisation. Interested in the cell type composition, single cell transcriptomic profiling revealed distinct cell types including proliferative cells and stem cells, progenitors, cellular entities of the absorptive lineage, Enterocytes and Microfold-like cells. Cells of the secretory lineage were also annotated, but without distinct canonical gene expression patterns. With the organotypical polarisation, protein expression, structural features and the heterogeneous cell composition including the rare Microfold-like cells, the biological scaffold-based tissue model of the intestinal epithelium demonstrates key requisites needed for infection studies with Salmonella. In a second part of this study, a suitable infection protocol of the epithelial tissue model with Salmonella Typhimurium was established, followed by the examination of key features of the infection process. Salmonella adhered to the epithelial microvilli and induced typical membrane ruffling during invasion; interestingly the individual steps of invasion could be observed. After invasion, time course analysis showed that Salmonella resided and proliferated intracellularly, while simultaneously migrating from the apical to the basolateral side of the infected cell. Furthermore, the bacterial morphology changed to a filamentous phenotype; especially when the models have been analysed at late time points after infection. The epithelial cells on the other side released the cytokines Interleukin 8 and Tumour Necrosis Factor α upon bacterial infection in a time-dependent manner. Taken together, Salmonella infection of the intestinal epithelial tissue model recapitulates important steps of the infection process as described in the literature, and hence demonstrates a valid in vitro platform for the investigation of the Salmonella infection process in the human context. During the infection process, intracellular Salmonella populations varied in their bacterial number, which could be attributed to increased intracellular proliferation and demonstrated thereby a heterogeneous behaviour of Salmonella in individual cells. Furthermore, by the application of single cell transcriptomic profiling, the upregulation of Olfactomedin-4 (OLFM4) gene expression was detected; OLFM4 is a protein involved in various functions including cell immunity as well as proliferating signalling pathways and is often used as intestinal stem cell marker. This OLFM4 upregulation was time-dependent, restricted to Salmonella infected cells and seemed to increase with bacterial mass. Investigating the OLFM4 regulatory mechanism, nuclear factor κB induced upregulation could be excluded, whereas inhibition of the Notch signalling led to a decrease of OLFM4 gene and protein expression. Furthermore, Notch inhibition resulted in decreased filamentous Salmonella formation. Taken together, by the use of the introduced primary epithelial tissue model, a heterogeneous intracellular bacterial behaviour was observed and a so far overlooked host cell response – the expression of OLFM4 by individual infected cells – could be identified; although Salmonella Typhimurium is one of the best-studied enteric pathogenic bacteria. This proves the applicability of the introduced tissue model in enteric infection research as well as the importance of new approaches in order to decipher host-pathogen interactions with higher relevance to the host. N2 - Nach Angaben der WHO stellen lebensmittelbedingte Darminfektionen eine globale Krankheitslast dar und äußern sich häufig in Krankheiten, die potenziell lebensbedrohliche Ausmaße annehmen können, insbesondere in Entwicklungsländern. Diese Krankheiten werden durch eine Vielzahl von enterischen Erregern verursacht und betreffen den Magen-Darm-Trakt, vom Magen über den Darm bis zum Enddarm. Obwohl die komplexe Schleimhautstruktur dieser Organe in der Regel gut darauf vorbereitet ist, den Körper vor schädlichen Reagenzien zu schützen, können spezialisierte Erreger wie Salmonella enterica den Abwehrmechanismus des Darms überwinden. Nach der Nahrungsaufnahme sind Salmonellen in der Lage, den Darm zu kolonisieren und ihre proliferative Nische zu etablieren, was letztlich zu entzündlichen Prozessen und Gewebeschäden des Wirtsepithels führt. Um diese Prozesse zu verstehen, hat die Wissenschaft in den letzten Jahrzehnten hauptsächlich auf Krebslinien basierende in vitro-Ansätze oder in vivo-Tierstudien verwendet. Obwohl diese Ansätze grundlegende Erkenntnisse über die Wechselwirkungen zwischen Bakterien und Wirtszellen lieferten, sind sie nur begrenzt auf die Pathologie des Menschen übertragbar. Daher sind Tissue engineering und primärzellbasierte Ansätze für die moderne Infektionsforschung wichtig. Sie spiegeln die menschliche Komplexität besser wider als Ansätze mit Krebszellen und können im Gegensatz zu Tierversuchen human-obligate Prozesse nachbilden. Daher wurde in dieser Studie ein tissue engineered humanes Primärmodell des Dünndarmepithels für die Anwendung in der enterischen Infektionsforschung am Beispiel des Erregers Salmonella Typhimurium etabliert. Zu diesem Zweck wurden aus adulten Stammzellen gewonnene Darmorganoide als primäre humane Zellquelle verwendet, um 2D-Monolayer auf biologischen oder synthetischen Trägestrukturen in einer Transwell®-ähnlichen Umgebung zu erzeugen. Die so erzeugten Gewebemodelle des Darmepithels wurden auf ihre Vergleichbarkeit mit dem nativen Gewebe in Bezug auf Morphologie, Morphometrie und Barrierefunktion untersucht. Weiterhin wurde die Genexpression von organtypischen Muzinen, Tight Junction-assoziierten Proteinen und Claudinen sowie das Expressionsmuster der Tight Junction-Proteine untersucht. Insgesamt wiesen die auf biologischen Matrizes basierenden Gewebemodelle eine größere Ähnlichkeit mit dem nativen Gewebe auf - unter anderem in Bezug auf Morphometrie und Polarisation -, weshalb diese Modelle auf zellulärer und struktureller Ebene tiefgehender charakterisiert wurden. Die ultrastrukturelle Analyse zeigte die Ausbildung charakteristischer Mikrovilli und Tight-Junction-Verbindungen zwischen einzelnen Epithelzellen. Darüber hinaus wurden die Expressionsmuster typischer Darmepithelproteine untersucht, die eine in vivo ähnliche Lokalisation aufwiesen. Im Hinblick auf die Zelltypenzusammensetzung ergab die Analyse des Transkriptoms auf Einzel-Zell-Ebene definierte Zelltypen. Dies waren Zellen mit proliferativem Profil, Stammzellen und Vorläuferzellen, und Zellen der absorptiven Linie, Enterozyten und Microfold-Zellen. Zellen der sekretorischen Linie wurden ebenfalls annotiert, jedoch ohne eindeutige kanonische Genexpression. Mit der organotypischen Polarisierung, der Proteinexpression, den strukturellen Merkmalen und der heterogenen Zellzusammensetzung, einschließlich der seltenen Microfold-Zellen, weist das auf einer biologischen Matrix basierende Gewebemodell des Darmepithels die wichtigsten Voraussetzungen für Infektionsstudien mit Salmonellen auf. Im zweiten Teil dieser Studie wurde ein geeignetes Infektionsprotokoll für das Epithelgewebemodell mit Salmonella Typhimurium erstellt, gefolgt von der Untersuchung der wichtigsten Merkmale des Infektionsprozesses. Salmonella hafteten an den epithelialen Mikrovilli und verursachten während der Invasion das typische Membran-Kräuseln; interessanterweise konnten die Schritte der Invasion einzeln beobachtet werden. Nach der Invasion zeigte die Zeitverlaufsanalyse der Infektion, dass die Salmonellen intrazellulär lokalisierten und replizierten, während sie gleichzeitig von der apikalen zur basolateralen Seite der infizierten Zelle migrierten. Darüber hinaus veränderte sich die Morphologie der Bakterien in der Spätphase der Infektion zu einem filamentösen Phänotyp. Die Epithelzellen auf der anderen Seite setzten nach der bakteriellen Infektion zeitabhängig die Zytokine Interleukin 8 und Tumor-Nekrose-Faktor-α frei. Insgesamt rekapituliert die Salmonelleninfektion des intestinalen Epithelgewebemodells wichtige Schritte des Infektionsprozesses, wie sie in der Literatur beschrieben sind und stellt somit eine valide in vitro Plattform für die Untersuchung des Salmonelleninfektionsprozesses in einem menschlichen Kontext dar. Interessanterweise variierten die intrazellulären Salmonellenpopulationen während des Infektionsprozesses in ihrer Bakterienzahl, was auf eine erhöhte intrazelluläre Proliferation zurückgeführt werden konnte und somit ein heterogenes Verhalten der Salmonellen in einzelnen Zellen demonstriert. Darüber hinaus wurde durch die Anwendung von Einzel-Zell-Transkriptom-Analysen die Hochregulierung der Genexpression von Olfactomedin-4 (OLFM4) nachgewiesen; OLFM4 ist ein Protein mit verschiedenen Funktionen, darunter Prozesse der Zellimmunität sowie proliferierende Signalwege, und es wird häufig als Darmstammzellmarker verwendet. Diese OLFM4-Hochregulierung war zeitabhängig, auf mit Salmonella infizierten Zellen beschränkt und schien mit der intrazellulären Bakterienmasse zuzunehmen. Bei der Untersuchung der OLFM4-Regulationsmechanismen konnte eine nuclear factor κB-induzierte Hochregulierung ausgeschlossen werden, während die Hemmung der Notch-Signalübertragung zu einem Rückgang der OLFM4-Gen- und Proteinexpression führte. Darüber hinaus führte die Hemmung von Notch zu einer verminderten Bildung von filamentösen Salmonella. Insgesamt konnte durch die Verwendung des hier eingeführten primären Epithelgewebemodells ein heterogenes intrazelluläres bakterielles Verhalten beobachtet und eine bisher übersehene Wirtszellantwort - die Expression von OLFM4 durch einzelne infizierte Zellen - bei einem der am besten untersuchten enterischen Pathogene identifiziert werden. Dies beweist die Anwendbarkeit des vorgestellten Gewebemodells in der enterischen Infektionsforschung sowie die Bedeutung neuer Ansätze zur Entschlüsselung von Wirt-Pathogen-Interaktionen mit höherer Relevanz für den Wirt. KW - Salmonella typhimurium KW - Tissue Engineering KW - Darmepithel KW - Infektion KW - Infektionsmodell KW - menschliches Darmepithel KW - Infektionsprozess KW - Gewebemodell KW - Wirt-Erreger Interaktion KW - infectionmodel KW - human intestinal epithelium KW - infectionprocess KW - Host-pathogen interaction KW - tissue model Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-311548 ER - TY - THES A1 - Andelovic, Kristina T1 - Characterization of arterial hemodynamics using mouse models of atherosclerosis and tissue-engineered artery models T1 - Charakterisierung arterieller Hämodynamiken in atherosklerotischen Mausmodellen und tissue-engineerten Arterienmodellen N2 - Within this thesis, three main approaches for the assessment and investigation of altered hemodynamics like wall shear stress, oscillatory shear index and the arterial pulse wave velocity in atherosclerosis development and progression were conducted: 1. The establishment of a fast method for the simultaneous assessment of 3D WSS and PWV in the complete murine aortic arch via high-resolution 4D-flow MRI 2. The utilization of serial in vivo measurements in atherosclerotic mouse models using high-resolution 4D-flow MRI, which were divided into studies describing altered hemodynamics in late and early atherosclerosis 3. The development of tissue-engineered artery models for the controllable application and variation of hemodynamic and biologic parameters, divided in native artery models and biofabricated artery models, aiming for the investigation of the relationship between atherogenesis and hemodynamics Chapter 2 describes the establishment of a method for the simultaneous measurement of 3D WSS and PWV in the murine aortic arch at, using ultra high-field MRI at 17.6T [16], based on the previously published method for fast, self-navigated wall shear stress measurements in the murine aortic arch using radial 4D-phase contrast MRI at 17.6 T [4]. This work is based on the collective work of Dr. Patrick Winter, who developed the method and the author of this thesis, Kristina Andelovic, who performed the experiments and statistical analyses. As the method described in this chapter is basis for the following in vivo studies and undividable into the sub-parts of the contributors without losing important information, this chapter was not split into the single parts to provide fundamental information about the measurement and analysis methods and therefore better understandability for the following studies. The main challenge in this chapter was to overcome the issue of the need for a high spatial resolution to determine the velocity gradients at the vascular wall for the WSS quantification and a high temporal resolution for the assessment of the PWV without prolonging the acquisition time due to the need for two separate measurements. Moreover, for a full coverage of the hemodynamics in the murine aortic arch, a 3D measurement is needed, which was achieved by utilization of retrospective navigation and radial trajectories, enabling a highly flexible reconstruction framework to either reconstruct images at lower spatial resolution and higher frame rates for the acquisition of the PWV or higher spatial resolution and lower frame rates for the acquisition of the 3D WSS in a reasonable measurement time of only 35 minutes. This enabled the in vivo assessment of all relevant hemodynamic parameters related to atherosclerosis development and progression in one experimental session. This method was validated in healthy wild type and atherosclerotic Apoe-/- mice, indicating no differences in robustness between pathological and healthy mice. The heterogeneous distribution of plaque development and arterial stiffening in atherosclerosis [10, 12], however, points out the importance of local PWV measurements. Therefore, future studies should focus on the 3D acquisition of the local PWV in the murine aortic arch based on the presented method, in order to enable spatially resolved correlations of local arterial stiffness with other hemodynamic parameters and plaque composition. In Chapter 3, the previously established methods were used for the investigation of changing aortic hemodynamics during ageing and atherosclerosis in healthy wild type and atherosclerotic Apoe-/- mice using the previously established methods [4, 16] based on high-resolution 4D-flow MRI. In this work, serial measurements of healthy and atherosclerotic mice were conducted to track all changes in hemodynamics in the complete aortic arch over time. Moreover, spatially resolved 2D projection maps of WSS and OSI of the complete aortic arch were generated. This important feature allowed for the pixel-wise statistical analysis of inter- and intragroup hemodynamic changes over time and most importantly – at a glance. The study revealed converse differences of local hemodynamic profiles in healthy WT and atherosclerotic Apoe−/− mice, with decreasing longWSS and increasing OSI, while showing constant PWV in healthy mice and increasing longWSS and decreasing OSI, while showing increased PWV in diseased mice. Moreover, spatially resolved correlations between WSS, PWV, plaque and vessel wall characteristics were enabled, giving detailed insights into coherences between hemodynamics and plaque composition. Here, the circWSS was identified as a potential marker of plaque size and composition in advanced atherosclerosis. Moreover, correlations with PWV values identified the maximum radStrain could serve as a potential marker for vascular elasticity. This study demonstrated the feasibility and utility of high-resolution 4D flow MRI to spatially resolve, visualize and analyze statistical differences in all relevant hemodynamic parameters over time and between healthy and diseased mice, which could significantly improve our understanding of plaque progression towards vulnerability. In future studies the relation of vascular elasticity and radial strain should be further investigated and validated with local PWV measurements and CFD. Moreover, the 2D histological datasets were not reflecting the 3D properties and regional characteristics of the atherosclerotic plaques. Therefore, future studies will include 3D plaque volume and composition analysis like morphological measurements with MRI or light-sheet microscopy to further improve the analysis of the relationship between hemodynamics and atherosclerosis. Chapter 4 aimed at the description and investigation of hemodynamics in early stages of atherosclerosis. Moreover, this study included measurements of hemodynamics at baseline levels in healthy WT and atherosclerotic mouse models. Due to the lack of hemodynamic-related studies in Ldlr-/- mice, which are the most used mouse models in atherosclerosis research together with the Apoe-/- mouse model, this model was included in this study to describe changing hemodynamics in the aortic arch at baseline levels and during early atherosclerosis development and progression for the first time. In this study, distinct differences in aortic geometries of these mouse models at baseline levels were described for the first time, which result in significantly different flow- and WSS profiles in the Ldlr-/- mouse model. Further basal characterization of different parameters revealed only characteristic differences in lipid profiles, proving that the geometry is highly influencing the local WSS in these models. Most interestingly, calculation of the atherogenic index of plasma revealed a significantly higher risk in Ldlr-/- mice with ongoing atherosclerosis development, but significantly greater plaque areas in the aortic arch of Apoe-/- mice. Due to the given basal WSS and OSI profile in these two mouse models – two parameters highly influencing plaque development and progression – there is evidence that the regional plaque development differs between these mouse models during very early atherogenesis. Therefore, future studies should focus on the spatiotemporal evaluation of plaque development and composition in the three defined aortic regions using morphological measurements with MRI or 3D histological analyses like LSFM. Moreover, this study offers an excellent basis for future studies incorporating CFD simulations, analyzing the different measured parameter combinations (e.g., aortic geometry of the Ldlr-/- mouse with the lipid profile of the Apoe-/- mouse), simulating the resulting plaque development and composition. This could help to understand the complex interplay between altered hemodynamics, serum lipids and atherosclerosis and significantly improve our basic understanding of key factors initiating atherosclerosis development. Chapter 5 describes the establishment of a tissue-engineered artery model, which is based on native, decellularized porcine carotid artery scaffolds, cultured in a MRI-suitable bioreactor-system [23] for the investigation of hemodynamic-related atherosclerosis development in a controllable manner, using the previously established methods for WSS and PWV assessment [4, 16]. This in vitro artery model aimed for the reduction of animal experiments, while simultaneously offering a simplified, but completely controllable physical and biological environment. For this, a very fast and gentle decellularization protocol was established in a first step, which resulted in porcine carotid artery scaffolds showing complete acellularity while maintaining the extracellular matrix composition, overall ultrastructure and mechanical strength of native arteries. Moreover, a good cellular adhesion and proliferation was achieved, which was evaluated with isolated human blood outgrowth endothelial cells. Most importantly, an MRI-suitable artery chamber was designed for the simultaneous cultivation and assessment of high-resolution 4D hemodynamics in the described artery models. Using high-resolution 4D-flow MRI, the bioreactor system was proven to be suitable to quantify the volume flow, the two components of the WSS and the radStrain as well as the PWV in artery models, with obtained values being comparable to values found in literature for in vivo measurements. Moreover, the identification of first atherosclerotic processes like intimal thickening is achievable by three-dimensional assessment of the vessel wall morphology in the in vitro models. However, one limitation is the lack of a medial smooth muscle cell layer due to the dense ECM. Here, the utilization of the laser-cutting technology for the generation of holes and / or pits on a microscale, eventually enabling seeding of the media with SMCs showed promising results in a first try and should be further investigated in future studies. Therefore, the proposed artery model possesses all relevant components for the extension to an atherosclerosis model which may pave the way towards a significant improvement of our understanding of the key mechanisms in atherogenesis. Chapter 6 describes the development of an easy-to-prepare, low cost and fully customizable artery model based on biomaterials. Here, thermoresponsive sacrificial scaffolds, processed with the technique of MEW were used for the creation of variable, biomimetic shapes to mimic the geometric properties of the aortic arch, consisting of both, bifurcations and curvatures. After embedding the sacrificial scaffold into a gelatin-hydrogel containing SMCs, it was crosslinked with bacterial transglutaminase before dissolution and flushing of the sacrificial scaffold. The hereby generated channel was subsequently seeded with ECs, resulting in an easy-to-prepare, fast and low-cost artery model. In contrast to the native artery model, this model is therefore more variable in size and shape and offers the possibility to include smooth muscle cells from the beginning. Moreover, a custom-built and highly adaptable perfusion chamber was designed specifically for the scaffold structure, which enabled a one-step creation and simultaneously offering the possibility for dynamic cultivation of the artery models, making it an excellent basis for the development of in vitro disease test systems for e.g., flow-related atherosclerosis research. Due to time constraints, the extension to an atherosclerosis model could not be achieved within the scope of this thesis. Therefore, future studies will focus on the development and validation of an in vitro atherosclerosis model based on the proposed bi- and three-layered artery models. In conclusion, this thesis paved the way for a fast acquisition and detailed analyses of changing hemodynamics during atherosclerosis development and progression, including spatially resolved analyses of all relevant hemodynamic parameters over time and in between different groups. Moreover, to reduce animal experiments, while gaining control over various parameters influencing atherosclerosis development, promising artery models were established, which have the potential to serve as a new platform for basic atherosclerosis research. N2 - Im Rahmen dieser Arbeit wurden drei Hauptansätze zur Bewertung und Untersuchung der veränderten Hämodynamik wie Wandschubspannung, des oszillatorischen Scherindex und der arteriellen Pulswellengeschwindigkeit bei der Entwicklung und Progression der Atherosklerose durchgeführt: 1. Die Etablierung einer schnellen Methode zur gleichzeitigen Bestimmung der 3D-Wandschubspannung und der Pulswellengeschwindigkeit im gesamten Aortenbogen der Maus mittels hochauflösender 4D-Fluss-MRT 2. Die Verwendung von seriellen in vivo Messungen in atherosklerotischen Mausmodellen mittels hochauflösender 4D-Fluss-MRT, die in Studien zur Beschreibung der veränderten Hämodynamik bei später und früher Atherosklerose aufgeteilt wurden 3. Die Entwicklung von tissue-engineerten Arterienmodellen für die kontrollierte Anwendung und Variation von hämodynamischen und biologischen Parametern, unterteilt in native Arterienmodelle und biofabrizierte Arterienmodelle, mit dem Ziel, die Beziehung zwischen Atherogenese und veränderter Hämodynamik zu untersuchen Kapitel 2 beschreibt die Etablierung einer Methode zur gleichzeitigen Messung von 3D-Wandschubspannung und Pulswellengeschwindigkeit im Aortenbogen der Maus unter Verwendung der Ultrahochfeld-MRT bei 17,6T [16], die auf der zuvor veröffentlichten Methode zur schnellen, selbstnavigierten Messung der Wandschubspannung im Aortenbogen der Maus unter Verwendung der radialen 4D-Phasenkontrast-MRT bei 17,6T [4] basiert. Dieses Projekt basiert auf der gemeinsamen Arbeit von Dr. Patrick Winter, der diese Methode entwickelt hat, und der Autorin dieser Thesis, Kristina Andelovic, die die Experimente und statistischen Analysen durchgeführt hat. Da die in diesem Kapitel beschriebene Methode die Grundlage für die folgenden in vivo Studien darstellt und sich nicht in die einzelnen Beiträge der Autoren aufteilen lässt, ohne dass wichtige Informationen verloren gehen, wurde dieses Kapitel nicht in die einzelnen Teile aufgeteilt, um grundlegende Informationen über die Mess- und Analysemethoden zu liefern und somit eine bessere Verständlichkeit für die folgenden Studien zu gewährleisten. Die größte Herausforderung in diesem Kapitel bestand darin, die Anforderung an eine hohe räumliche Auflösung zur Bestimmung der Geschwindigkeitsgradienten an der Gefäßwand für die WSS-Quantifizierung und an eine hohe zeitliche Auflösung für die Bestimmung der Pulswellengeschwindigkeit zu erfüllen, ohne die Messzeit aufgrund der Notwendigkeit von zwei separaten Messungen zu verlängern. Darüber hinaus ist für eine vollständige Erfassung der Hämodynamik im murinen Aortenbogen eine vollständige 3D-Messung des Aortenbogens erforderlich, die durch die Nutzung der retrospektiven Navigation und radialen Trajektorien erreicht wurde. Dies wurde durch ein hoch flexibles Rekonstruktionssystem ermöglicht, das entweder Bilder mit geringerer räumlicher Auflösung und höheren Bildraten für die Erfassung der Pulswellengeschwindigkeit oder mit höherer räumlicher Auflösung und niedrigeren Bildraten für die Erfassung der 3D-WSS in einer angemessenen Messzeit von nur 35 Minuten rekonstruieren konnte. Die in vivo-Bestimmung aller relevanter hämodynamischen Parameter, die mit der Entwicklung und dem Fortschreiten der Atherosklerose zusammenhängen, wurde somit in einer einzigen experimentellen Sitzung ermöglicht. Die Methode wurde an gesunden Wildtyp- und atherosklerotischen Apoe-/- Mäusen validiert, wobei keine Unterschiede in der Robustheit der Messungen zwischen pathologischen und gesunden Mäusen festgestellt werden konnten. Die heterogene Verteilung der Plaqueentwicklung und Arterienversteifung in der Atherosklerose [10, 12] weist jedoch auf die Wichtigkeit lokaler PWV-Messungen hin. Zukünftige Studien sollten sich daher auf die 3D-Erfassung der lokalen PWV im murinen Aortenbogen auf Grundlage der vorgestellten Methode konzentrieren, um räumlich aufgelöste Korrelationen der lokalen arteriellen Steifigkeit mit anderen hämodynamischen Parametern und der Plaquezusammensetzung zu ermöglichen. In Kapitel 3 wurden die zuvor etablierten Methoden zur Untersuchung der sich verändernden Hämodynamik in der Aorta während des Alterns und der Atherosklerose bei gesunden Wildtyp- und atherosklerotischen Apoe-/- Mäusen verwendet [4, 16], die auf hochauflösender 4D-Fluss MRT basieren. In dieser Arbeit wurden serielle Messungen an gesunden und atherosklerotischen Mäusen durchgeführt, um alle Veränderungen der Hämodynamik im gesamten Aortenbogen über die Zeit zu verfolgen. Zudem wurden in dieser Arbeit räumlich aufgelöste 2D-Projektionskarten der WSS und des OSI des gesamten Aortenbogens generiert. Diese Methode ermöglichte die pixelweise statistische Analyse der Unterschiede und hämodynamischen Veränderungen zwischen und innerhalb von Gruppen im Zeitverlauf und die Visualisierung auf einen Blick. Die Studie ergab sich gegensätzlich entwickelnde lokale hämodynamische Profile bei gesunden WT- und atherosklerotischen Apoe-/- Mäusen, wobei die longWSS über die Zeit abnahm und der OSI zunahm, während die PWV bei gesunden Mäusen konstant blieb. Im Gegensatz nahm die longWSS zu und der OSI bei kranken Mäusen ab, während die PWV über die Zeit zunahm. Darüber hinaus wurden räumlich aufgelöste Korrelationen zwischen WSS, PWV, Plaque und Gefäßwandeigenschaften ermöglicht, die detaillierte Einblicke in die Zusammenhänge zwischen Hämodynamik und Plaquezusammensetzung in der Atherosklerose bieten. Dabei wurde die zirkumferentielle WSS als potenzieller Marker für die Plaquegröße und -zusammensetzung bei fortgeschrittener Atherosklerose identifiziert. Darüber hinaus ergaben Korrelationen mit der PWV, dass der maximale radiale Druck als potenzieller Marker für die vaskuläre Elastizität dienen könnte. Zusammengefasst demonstriert diese Studie die Nützlichkeit der hochauflösenden 4D-Fluss MRT zur räumlichen Auflösung, Visualisierung und Analyse statistischer Unterschiede in allen relevanten hämodynamischen Parametern im Zeitverlauf und zwischen gesunden und erkrankten Mäusen, was unser Verständnis der Plaqueprogression in Richtung Vulnerabilität erheblich verbessern könnte. In zukünftigen Studien sollte jedoch der Zusammenhang zwischen Gefäßelastizität und radialem Druck weiter untersucht und mit lokalen PWV-Messungen und CFD validiert werden. Darüber hinaus spiegelten die histologischen 2D-Datensätze nicht die 3D-Eigenschaften und regionalen Charakteristika der atherosklerotischen Plaques wider. Daher sollten künftige Studien eine Analyse des 3D-Plaquevolumens und der 3D-Plaquenzusammensetzung sowie morphologische Messungen mittels MRT oder der Lichtblattmikroskopie mit einbeziehen, um das fundamentale Verständnis der Beziehung zwischen veränderter Hämodynamik und der Atherosklerose weiter zu verbessern. In Kapitel 4 ging es um die Beschreibung und Untersuchung der Hämodynamik in frühen Stadien der Atherosklerose. Darüber hinaus umfasste diese Studie zum ersten Mal Messungen der basalen Hämodynamik in gesunden WT- und atherosklerotischen Mausmodellen. Aufgrund des Mangels an Studien, die die Hämodynamik in Ldlr-/- Mäusen beschreiben, die zusammen mit dem Apoe-/- Mausmodell die am häufigsten verwendeten Mausmodelle in der Atheroskleroseforschung sind, wurde dieses Modell in diese Studie integriert, um erstmals die sich verändernde Hämodynamik im Aortenbogen zu Beginn und während der Entwicklung und Progression der frühen Atherosklerose zu beschreiben. In dieser Studie wurden erstmals deutliche Unterschiede in den basalen Aortengeometrien dieser Mausmodelle identifiziert, die zu signifikant unterschiedlichen Fluss- und WSS-Profilen im Ldlr-/- Mausmodell führen. Eine weitere basale Charakterisierung verschiedener Parameter ergab nur modell-charakteristische Unterschiede in den Lipidprofilen, was beweist, dass die Geometrie die lokale WSS in diesen Modellen stark beeinflusst. Interessanterweise ergab die Berechnung des atherogenen Plasma-Indexes ein signifikant höheres Risiko bei Ldlr-/- Mäusen mit fortschreitender Atheroskleroseentwicklung, aber signifikant größere Plaqueflächen im Aortenbogen der Apoe-/- Mäuse. Aufgrund des gegebenen basalen WSS- und OSI-Profils in diesen beiden Mausmodellen - zwei Parameter, die die Plaque-Entwicklung und -Progression stark beeinflussen - gibt es Hinweise darauf, dass sich die regionale Plaque-Entwicklung zwischen diesen Mausmodellen während der Atherogenese stark unterscheidet. Daher sollten sich künftige Studien auf die räumlich-zeitliche Bewertung der Plaqueentwicklung und -Zusammensetzung in den drei definierten Aortenregionen konzentrieren, wobei morphologische Messungen mittels MRT oder histologische 3D-Analysen wie LSFM zum Einsatz kommen. Darüber hinaus bietet diese Studie eine hervorragende Grundlage für künftige Studien mit CFD-Simulationen, in denen die verschiedenen gemessenen Parameterkombinationen (z. B. die Aortengeometrie der Ldlr-/-Maus mit dem Lipidprofil der Apoe-/- Maus) analysiert und die daraus resultierende Plaqueentwicklung und -Zusammensetzung simuliert werden. Dies könnte zum Verständnis des komplexen Zusammenspiels zwischen veränderter Hämodynamik, Serumlipiden und Atherosklerose beitragen und unser grundlegendes Verständnis der Schlüsselfaktoren für die Entstehung von Atherosklerose deutlich verbessern. In Kapitel 5 wird die Etablierung eines tissue-engineerten Arterienmodells beschrieben, das auf nativen, von Schweinehalsschlagadern hergestellten, dezellularisierten Gerüststrukturen basiert. Diese wurden zudem in einem MRT-geeigneten Bioreaktorsystem [23] kultiviert, um die hämodynamisch bedingte Atheroskleroseentwicklung auf kontrollierbare Weise zu untersuchen, wobei hierfür die zuvor etablierten Methoden zur WSS- und PWV-Bewertung [4, 16] verwendet wurden. Dieses in vitro Arterienmodell zielte auf die Reduzierung von Tierversuchen ab und bot gleichzeitig eine vereinfachte, aber vollständig kontrollierbare physikalische und biologische Umgebung. Zu diesem Zweck wurde in einem ersten Schritt ein sehr schnelles und schonendes Dezellularisierungsverfahren etabliert, das zu Gerüststrukturen basierend auf Schweinehalsschlagadern führte, die eine vollständige Azellularität aufwiesen, wobei gleichzeitig die Zusammensetzung der extrazellulären Matrix, die allgemeine Ultrastruktur und die mechanischen Eigenschaften der nativen Arterien erhalten blieben. Darüber hinaus wurde eine gute Zelladhäsion und -proliferation erreicht, die mit isolierten menschlichen Endothelzellen aus humanem Vollblut untersucht wurde. Darüber hinaus wurde zum ersten Mal eine MRT-geeignete Arterienkammer für die gleichzeitige Kultivierung der generierten Modelle und der Untersuchung der hochauflösenden 4D-Hämodynamik in diesen Arterienmodellen entwickelt. Unter Verwendung der hochauflösenden 4D-Fluss-MRT erwies sich das Bioreaktorsystem als sehr geeignet, den Volumenstrom, die beiden Komponenten der WSS inklusive dem radialen Druck und die PWV in den Arterienmodellen zu quantifizieren, wobei die erhaltenen Werte sehr gut mit den in der Literatur gefundenen Werten für in vivo-Messungen vergleichbar sind. Darüber hinaus lassen sich durch die dreidimensionale Untersuchung der Gefäßwandmorphologie in den in vitro-Modellen erste atherosklerotische Prozesse wie die Verdickung der Intima erkennen. Eine Einschränkung ist jedoch das Fehlen einer medialen glatten Muskelzellschicht aufgrund der dichten ECM des Gewebegerüsts. Die Verwendung der Laserschneidetechnik zur Erzeugung von Löchern und / oder Gruben im Mikrometerbereich, die eine Besiedlung des Mediums mit SMCs ermöglichen, zeigte in einem ersten Versuch vielversprechende Ergebnisse und sollte in zukünftigen Studien daher dringend weiter untersucht werden. Das präsentierte Arterienmodell verfügt somit über alle relevanten Komponenten für die Erweiterung zu einem Atherosklerosemodell und ebnet den Weg für ein deutlich besseres Verständnis der Schlüsselmechanismen in der Atherogenese. Kapitel 6 beschreibt die Entwicklung eines einfach herzustellenden, kostengünstigen und vollständig an gegebene Bedürfnisse anpassbaren Arterienmodells auf Grundlage von Biomaterialien. Hier wurden thermoresponsive Opfergerüststrukturen, die mit der MEW-Technik hergestellt wurden, zur Herstellung variabler, biomimetischer Formen verwendet, um die geometrischen Eigenschaften des Aortenbogens, bestehend aus Verzweigungen und Krümmungen, zu imitieren. Nach der Einbettung der Opfergerüststruktur in ein Gelatin-Hydrogel, das zudem SMCs enthält, wurde es mit bakterieller Transglutaminase vernetzt, bevor es aufgelöst und gespült wurde. Der so entstandene Hydrogelkanal wurde anschließend mit Endothelzellen besiedelt, wodurch ein einfach zu erstellendes, schnelles und kostengünstiges Arterienmodell entstand. Im Gegensatz zum nativen Arterienmodell ist dieses Modell daher deutlich variabler in Größe und Form und bietet die wichtige Möglichkeit, von Anfang an glatte Muskelzellen mit einzubringen. Darüber hinaus wurde speziell für die gegebene Gerüststruktur eine maßgeschneiderte und hochgradig anpassungsfähige Perfusionskammer entwickelt, die eine sehr schnelle und einstufige Herstellung des Arterienmodells ermöglicht und gleichzeitig die Möglichkeit zur dynamischen Kultivierung der Modelle bietet, was eine hervorragende Grundlage für die Entwicklung von in vitro Krankheits-Testsystemen für z.B. die Atheroskleroseforschung im Zusammenhang mit der Hämodynamik darstellt. Aus Zeitgründen konnte die Ausweitung auf ein Atherosklerosemodell jedoch im Rahmen dieser Arbeit nicht realisiert werden. Daher werden sich zukünftige Studien auf die Entwicklung und Validierung eines in vitro-Atherosklerosemodells konzentrieren, das auf den hier entwickelten zwei- und dreischichtigen Arterienmodellen basiert. Zusammenfassend lässt sich sagen, dass diese Arbeit den Weg für eine schnelle Erfassung und detaillierte Analyse der sich verändernden Hämodynamik während der Entwicklung und der Progression der Atherosklerose geebnet hat, einschließlich räumlich aufgelöster Analysen aller relevanten hämodynamischen Parameter im Zeitverlauf innerhalb einer Gruppe und zwischen verschiedenen Gruppen. Darüber hinaus wurden vielversprechende Arterienmodelle etabliert, die das Potenzial haben, als neue Plattform für die Atherosklerose-Grundlagenforschung zu dienen, um Tierversuche zu minimieren und gleichzeitig die Kontrolle über verschiedene Parameter zu erlangen, die die Atheroskleroseentwicklung beeinflussen. KW - Hämodynamik KW - Arteriosklerose KW - Tissue Engineering KW - Atherosclerosis KW - MRI KW - Hemodynamics KW - Tissue Engineering KW - Biofabrication KW - Artery Models Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-303601 ER - TY - THES A1 - Massih, Bita T1 - Human stem cell-based models to analyze the pathophysiology of motor neuron diseases T1 - Humane Stammzell-basierte Modelle zur Analyse der Pathophysiologie von Motoneuronerkrankungen N2 - Motor neuron diseases (MNDs) encompass a variety of clinically and genetically heterogeneous disorders, which lead to the degeneration of motor neurons (MNs) and impaired motor functions. MNs coordinate and control movement by transmitting their signal to a target muscle cell. The synaptic endings of the MN axon and the contact site of the muscle cell thereby form the presynaptic and postsynaptic structures of the neuromuscular junction (NMJ). In MNDs, synaptic dysfunction and synapse elimination precede MN loss suggesting that the NMJ is an early target in the pathophysiological cascade leading to MN death. In this study, we established new experimental strategies to analyze human MNDs by patient derived induced pluripotent stem cells (iPSCs) and investigated pathophysiological mechanisms in two different MNDs. To study human MNDs, specialized cell culture systems that enable the connection of MNs to their target muscle cells are required to allow the formation of NMJs. In the first part of this study, we established and validated a human neuromuscular co-culture system consisting of iPSC derived MNs and 3D skeletal muscle tissue derived from myoblasts. We generated 3D muscle tissue by culturing primary myoblasts in a defined extracellular matrix in self-microfabricated silicone dishes that support the 3D tissue formation. Subsequently, iPSCs from healthy donors and iPSCs from patients with the progressive MND Amyotrophic Lateral Sclerosis (ALS) were differentiated into MNs and used for 3D neuromuscular co-cultures. Using a combination of immunohistochemistry, calcium imaging, and pharmacological stimulations, we characterized and confirmed the functionality of the 3D muscle tissue and the 3D neuromuscular co-cultures. Finally, we applied this system as an in vitro model to study the pathophysiology of ALS and found a decrease in neuromuscular coupling, muscle contraction, and axonal outgrowth in co-cultures with MNs harboring ALS-linked superoxide dismutase 1 (SOD1) mutation. In summary, this co-culture system presents a human model for MNDs that can recapitulate aspects of ALS pathophysiology. In the second part of this study, we identified an impaired unconventional protein secretion (UPS) of Sod1 as pathological mechanisms in Pleckstrin homology domain-containing family G member 5 (Plekhg5)-associated MND. Sod1 is a leaderless cytosolic protein which is secreted in an autophagy-dependent manner. We found that Plekhg5 depletion in primary MNs and NSC34 cells leads to an impaired secretion of wildtype Sod1, indicating that Plekhg5 drives the UPS of Sod1 in vitro. By interfering with different steps during the biogenesis of autophagosomes, we could show that Plekhg5-regulated Sod1 secretion is determined by autophagy. To analyze our findings in a clinically more relevant model we utilized human iPSC MNs from healthy donors and ALS patients with SOD1 mutations. We observed reduced SOD1 secretion in ALS MNs which coincides with reduced protein expression of PLEKHG5 compared to healthy and isogenic control MNs. To confirm this correlation, we depleted PLEKHG5 in control MNs and found reduced extracellular SOD1 levels, implying that SOD1 secretion depends on PLEKHG5. In summary, we found that Plekh5 regulates the UPS of Sod1 in mouse and human MNs and that Sod1 secretion occurs in an autophagy dependent manner. Our data shows an unreported mechanistic link between two MND-associated proteins. N2 - Motoneuronerkrankungen (MNE) umfassen eine Vielzahl klinisch und genetisch heterogener Erkrankungen, die zur Degeneration von Motoneuronen (MN) und zu beeinträchtigten motorischen Funktionen führen. MN koordinieren und steuern Muskelbewegungen, indem sie ihr Signal an eine Zielmuskelzelle übertragen. Die synaptischen Endungen des MN-Axons und die Kontaktstelle der Muskelzelle bilden dabei die präsynaptischen und postsynaptischen Strukturen der neuromuskulären Endplatte (NME). Bei MNE zeichnen sich synaptische Dysfunktion und Synapseneliminierung bereits vor dem Verlust von MN ab, was darauf hindeutet, dass die NME ein frühes Ziel in der pathophysiologischen Kaskade ist, die zum MN-Tod führt. In dieser Studie haben wir neue experimentelle Strategien zur Analyse humaner MNE mithilfe von humanen induzierten pluripotenten Stammzellen (iPSZ) entwickelt und pathophysiologische Mechanismen bei zwei verschiedenen MNE untersucht. Um humane MNE zu untersuchen sind Zellkultursysteme erforderlich, die die Verbindung von MN mit ihren Zielmuskelzellen ermöglichen, um NME zu bilden. Im ersten Teil dieser Studie haben wir ein humanes neuromuskuläres Co-Kultursystem etabliert und validiert, das aus iPSZ abgeleiteten MN und 3D Skelettmuskelgewebe aus Myoblasten besteht. Wir haben 3D Muskelgewebe erzeugt, indem wir primäre Myoblasten in einer definierten extrazellulären Matrix in selbst gefertigten Silikonschalen kultivierten, die die 3D-Gewebebildung unterstützen. Anschließend wurden iPSZ von gesunden Spendern und iPSZ von Patienten mit der MNE Amyotrophe Lateralsklerose (ALS) in MN differenziert und für neuromuskuläre 3D Co-Kulturen verwendet. Mithilfe von immunhistochemischen Untersuchungen, Calcium-Imaging und pharmakologischen Stimulationen konnten wir die Funktionalität des 3D Muskelgewebes und neuromuskulären 3D Co-Kulturen charakterisieren und validieren. Anschließend wurde das System als in vitro Modell zur Untersuchung der Pathophysiologie von ALS verwendet. ALS Co-Kulturen mit MN, die eine Superoxid Dismutase 1 (SOD1)-Genmutation aufwiesen, zeigten eine Abnahme der neuromuskulären Verbindung, der Muskelkontraktion und des axonalen Wachstums. Zusammenfassend stellt dieses Co-Kultursystem ein humanes Modell für die Untersuchung von MNE dar, das Aspekte der ALS-Physiologie rekapitulieren kann. Im zweiten Teil dieser Studie konnten wir eine Beeinträchtigung der unkonventionellen Proteinsekretion (UPS) von Sod1 als pathologischen Mechanismus bei Pleckstrin homology domain-containing family G member 5 (Plekhg5)-assoziiertem MNE identifizieren. Sod1 ist ein cytosolisches Protein ohne Signalsequenz für konventionelle Sekretion. Stattdessen wird die UPS über sekretorische Autophagie-Mechanismen reguliert. Unsere Ergebnisse zeigen, dass Plekhg5-Depletion in primären MN und NSC34-Zellen zu einer beeinträchtigten Sekretion von Wildtyp-Sod1 führt, was darauf hinweist, dass die UPS von Sod1 Plekgh5 abhängig ist. Indem verschiedene Schritte während der Biogenese von Autophagosomen gestört wurden, konnten wir nachweisen, dass die Plekhg5-regulierte Sod1-Sekretion Autophagie abhängig ist. Um unsere Ergebnisse in einem klinisch relevanteren Modell zu analysieren, wurden humane iPSZ-MN von gesunden Spendern und ALS-Patienten mit SOD1-Mutationen untersucht. Hier fand sich, dass die Sekretion von mutiertem SOD1 in ALS-MN im Vergleich zu gesunden und isogenen Kontrollen verringert ist. Dabei konnten wir zeigen, dass eine verringerte SOD1 Sekretion in ALS-MNs mit einer verringerten Expression von PLEKHG5 einhergeht. Um diese Korrelation zu bestätigen, wurden Kontroll-MN nach PLEKHG5-Depletion untersucht und eine verminderte SOD1-Sekretion dokumentiert, was auf eine PLEKHG5 Abhängigkeit hindeutet. Zusammenfassend konnten wir zeigen, dass Plekh5 die UPS von Sod1 in Maus MN und humanen MN reguliert und dass die Sod1-Sekretion Autophagie abhängig erfolgt. Unsere Daten belegen eine bislang noch nicht gezeigte mechanistische Verknüpfung zwischen zwei MNE-assoziierten Proteinen. KW - Tissue Engineering KW - NMJ (neuromuscular junction) KW - MND KW - SOD1 KW - ALS KW - PLEKHG5 KW - Co-culture KW - 3D muscle KW - Motoneuron KW - Stammzellen KW - Neuromuskuläre Endplatte KW - Induzierte pluripotente Stammzelle KW - Motoneuron-Krankheit KW - Myatrophische Lateralsklerose KW - Zellkultur KW - Motorische Endplatte KW - Induced pluripotent stem cells KW - Motor neuron disease KW - Amyotrophic lateral sclerosis KW - Cell culture Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-346374 PB - Frontiers in Cell and Developmental Biology ER - TY - THES A1 - Gastberger, Katharina T1 - Einfluss der perizellulären Matrix auf die Produktion extrazellulärer Matrix von nativen porcinen Chondrozyten im 3D-Bioprinting in Agarose-Hydrogelen \(in\) \(vitro\) T1 - Influence of the pericellular matrix on the production of extracellular matrix of native porcine chondrocytes in 3D bioprinting in agarose hydrogels \(in\) \(vitro\) N2 - Chondrozyten stellen die zelluläre Komponente von hyalinem Knorpel dar, der die Gelenkflächen diarthrotischer Gelenke bedeckt. Über die perizelluläre Matrix (PZM) sind sie mit der extrazellulären Matrix des Knorpelgewebes, die im Wesentlichen aus Wasser, Kollagen-Typ-II (Koll-II) und Glykosaminoglykan (GAG) gebildet wird, verbunden. Die PZM gilt als wichtiges modulatorisches und protektives Element in der Signal- und Mechanotransduktion sowie für die Homöostase innerhalb des Knorpelgewebes. Degenerative und inflammatorische Prozesse führen zu irreparablen Schäden der Gewebearchitektur und -funktionalität. Die Regenerative Medizin strebt den Ersatz destruierter Gelenkflächen durch mittels Tissue Engineering hergestellten Neoknorpel an. 3D-Bioprinting gilt hier als attraktive Methode, nimmt jedoch über Scherkräfte während des Druckvorgangs auch schädigenden Einfluss auf das Überleben oder die Funktionalität der Zellen. Zielsetzung dieser Arbeit war es, den möglichen protektiven Einfluss der PZM während des Druckvorgangs zu untersuchen. Aus porcinem Frischknorpel isolierte Chondrozyten wurden nach cast bzw. 3D-Bioprinting in Agarose-Biotinte hinsichtlich ihres Überlebens und ihrer Syntheseleistung von knorpelspezifischem Koll-II und GAG untersucht. Chondrozyten ohne PZM wurden mit Chondrozyten verglichen, die nach enzymatischer Isolation noch perizellulär Kollagen-Typ-VI als Marker der PZM aufwiesen. Chondrozyten mit PZM zeigten allgemein eine stärkere Produktion von Koll-II als Chondrozyten ohne PZM. Nach 3D-Bioprinting konnte für Chondrozyten ohne PZM eine signifikant geringere Produktion von GAG nachgewiesen werden als in der cast-Vergleichsgruppe, während dies für Chondrozyten mit PZM nicht gezeigt werden konnte. Der gezeigte protektive Einfluss der PZM gegenüber Scherkräften während des Druckvorgangs eröffnet neue Methoden für das Cartilage Tissue Engineering. Weitere Untersuchungen sind notwendig, um dies zu bestätigen und die Translation in die klinische Forschung ermöglichen. N2 - Chondrocytes are the cellular component of the hyaline cartilage that lines the articular surfaces of diarthrotic joints. They are bound to the extracellular matrix of the cartilage tissue by the pericellular matrix (PCM), which consists mainly of water, collagen type II (coll-II) and glycosaminoglycan (GAG). PCM is considered to be an important modulatory and protective element in signalling, mechanotransduction and homeostasis within cartilage tissue. Degenerative and inflammatory processes cause irreparable damage to tissue architecture and functionality. Regenerative medicine aims to replace damaged joint surfaces with neocartilage produced by tissue engineering. 3D bioprinting is considered to be an attractive method for this purpose, but also has a detrimental effect on the survival or functionality of the cells due to shear forces during the printing process. The aim of this study was to investigate the potential protective effect of PZM during the printing process. Chondrocytes isolated from fresh porcine cartilage were analysed after casting or 3D bioprinting in agarose bioprinting for their survival and their ability to synthesise cartilage-specific Coll-II and GAG. Chondrocytes without PCM were compared with chondrocytes that still had pericellular collagen type VI as a marker of PCM after enzymatic isolation. Chondrocytes with PCM generally showed a higher production of Coll-II than chondrocytes without PCM. After 3D bioprinting, chondrocytes without PCM showed significantly lower GAG production than the control group, whereas chondrocytes with PCM did not. The demonstrated protective effect of PCM against shear forces during the printing process opens up new possibilities for cartilage tissue engineering. Further studies are needed to confirm this and to enable translation into clinical research. KW - Hyaliner Knorpel KW - 3 D bioprinting KW - Tissue Engineering KW - Kollagen KW - Regenerative Medizin KW - perizelluläre Matrix KW - pericellular matrix KW - Chondron KW - Kollagen-Typ-VI KW - collagen VI Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-347168 ER - TY - THES A1 - Berberich, Oliver T1 - Lateral Cartilage Tissue Integration - Evaluation of Bonding Strength and Tissue Integration \(in\) \(vitro\) Utilizing Biomaterials and Adhesives T1 - Laterale Knorpelintegration - Beurteilung der Adhäsionskraft und der Gewebeintegration \(in\) \(vitro\) unter Verwendung verschiedener Biomaterialien und Gewebekleber N2 - Articular cartilage defects represent one of the most challenging clinical problem for orthopedic surgeons and cartilage damage after trauma can result in debilitating joint pain, functional impairment and in the long-term development of osteoarthritis. The lateral cartilage-cartilage integration is crucial for the long-term success and to prevent further tissue degeneration. Tissue adhesives and sealants are becoming increasingly more popular and can be a beneficial approach in fostering tissue integration, particularly in tissues like cartilage where alternative techniques, such as suturing, would instead introduce further damage. However, adhesive materials still require optimization regarding the maximization of adhesion strength on the one hand and long-term tissue integration on the other hand. In vitro models can be a valuable support in the investigation of potential candidates and their functional mechanisms. For the conducted experiments within this work, an in vitro disc/ring model obtained from porcine articular cartilage tissue was established. In addition to qualitative evaluation of regeneration, this model facilitates the implementation of biomechanical tests to quantify cartilage integration strength. Construct harvesting for histology and other evaluation methods could be standardized and is ethically less questionable compared to in vivo testing. The opportunity of cell culture technique application for the in vitro model allowed a better understanding of cartilage integration processes. Tissue bonding requires chemical or physical interaction of the adhesive material and the substrate. Adhesive hydrogels can bind to the defect interface and simultaneously fill the gap of irregularly shaped defect voids. Fibrin gels are derived from the physiological blood-clot formation and are clinically applied for wound closure. Within this work, comparisons of different fibrin glue formulations with the commercial BioGlue® were assessed, which highlighted the need for good biocompatibility when applied on cartilage tissue in order to achieve satisfying long-term integration. Fibrin gel formulations can be adapted with regard to their long-term stability and when applied on cartilage disc/ring constructs improved integrative repair is observable. The kinetic of repairing processes was investigated in fibrin-treated cartilage composites as part of this work. After three days in vitro cultivation, deposited extracellular matrix (ECM) was obvious at the glued interface that increased further over time. Interfacial cell invasion from the surrounding native cartilage was detected from day ten of tissue culture. The ECM formation relies on molecular factors, e.g., as was shown representatively for ascorbic acid, and contributes to increasing integration strengths over time. The experiments performed with fibrin revealed that the treatment with a biocompatible adhesive that allows cartilage neosynthesis favors lateral cartilage integration in the long term. However, fibrin has limited immediate bonding strength, which is disadvantageous for use on articular cartilage that is subject to high mechanical stress. The continuing aim of this thesis was to further develop adhesive mechanisms and new adhesive hydrogels that retain the positive properties of fibrin but have an increased immediate bonding strength. Two different photochemical approaches with the advantage of on-demand bonding were tested. Such treatment potentially eases the application for the professional user. First, an UV light induced crosslinking mechanism was transferred to fibrin glue to provide additional bonding strength. For this, the cartilage surface was functionalized with highly reactive light-sensitive diazirine groups, which allowed additional covalent bonds to the fibrin matrix and thus increased the adhesive strength. However, the disadvantages of this approach were the multi-step bonding reactions, the need for enzymatic pretreatment of the cartilage, expensive reagents, potential UV-light damage, and potential toxicity hazards. Due to the mentioned disadvantages, no further experiments, including long-term culture, were carried out. A second photosensitive approach focused on blue light induced crosslinking of fibrinogen (RuFib) via a photoinitiator molecule instead of using thrombin as a crosslinking mediator like in normal fibrin glue. The used ruthenium complex allowed inter- and intramolecular dityrosine binding of fibrinogen molecules. The advantage of this method is a one-step curing of fibrinogen via visible light that further achieved higher adhesive strengths than fibrin. In contrast to diazirine functionalization of cartilage, the ruthenium complex is of less toxicological concern. However, after in vitro cultivation of the disc/ring constructs, there was a decrease in integration strength. Compared to fibrin, a reduced cartilage synthesis was observed at the defect. It is also disadvantageous that a direct adjustment of the adhesive can only be made via protein concentration, since fibrinogen is a natural protein that has a fixed number of tyrosine binding sites without chemical modification. An additional cartilage adhesive was developed that is based on a mussel-inspired adhesive mechanism in which reactivity to a variety of substrates is enabled via free DOPA amino acids. DOPA-based adhesion is known to function in moist environments, a major advantage for application on water-rich cartilage tissue surrounded by synovial liquid. Reactive DOPA groups were synthetically attached to a polymer, here POx, to allow easy chemical modifiability, e.g. insertion of hydrolyzable ester motifs for tunable degradation. The possibility of preparing an adhesive hybrid hydrogel of POx in combination with fibrinogen led to good cell compatibility as was similarly observed with fibrin, but with increased immediate adhesive strength. Degradation could be adjusted by the amount of ester linkages on the POx and a direct influence of degradation rates on the development of integration in the in vitro model could be shown. Hydrogels are well suited to fill defect gaps and immediate integration can be achieved via adhesive properties. The results obtained show that for the success of long-term integration, a good ability of the adhesive to take up synthesized ECM components and cells to enable regeneration is required. The degradation kinetics of the adhesive must match the remodeling process to avoid intermediate loss of integration power and to allow long-term firm adhesion to the native tissue. Hydrogels are not only important as adhesives for smaller lesions, but also for filling large defect volumes and populating them with cells to produce tissue engineered cartilage. Many different hydrogel types suitable for cartilage synthesis are reported in the literature. A long-term stable fibrin formulation was tested in this work not only as an adhesive but also as a bulk hydrogel construct. Agarose is also a material widely used in cartilage tissue engineering that has shown good cartilage neosynthesis and was included in integration assessment. In addition, a synthetic hyaluronic acid-based hydrogel (HA SH/P(AGE/G)) was used. The disc/ring construct was adapted for such experiments and the inner lumen of the cartilage ring was filled with the respective hydrogel. In contrast to agarose, fibrin and HA-SH/P(AGE/G) gels have a crosslink mechanism that led to immediate bonding upon contact with cartilage during curing. The enhanced cartilage neosynthesis in agarose compared to the other hydrogel types resulted in improved integration during in vitro culture. This shows that for the long-term success of a treatment, remodeling of the hydrogel into functional cartilage tissue is a very high priority. In order to successfully treat larger cartilage defects with hydrogels, new materials with these properties in combination with chemical modifiability and a direct adhesion mechanism are one of the most promising approaches. N2 - Gelenkknorpeldefekte stellen eines der größten klinischen Probleme für orthopädische Chirurgen dar, und Knorpelschäden nach einem Trauma können zu starken Gelenkschmerzen, Funktionseinschränkungen und langfristig zur Entwicklung von Arthrose führen. Die laterale Knorpel-Knorpel-Integration ist entscheidend für den langfristigen Behandlungserfolg, um eine weitere Degeneration des Gewebes zu verhindern. Gewebekleber und -versiegelungen erfreuen sich zunehmender Beliebtheit und können einen vorteilhaften Ansatz zur Förderung der Gewebeintegration darstellen. Insbesondere bei einem avaskulären Gewebe wie Knorpel können alternative Fixierungstechniken wie Nähte eher zu weiteren Schäden führen. Aktuelle Klebstoffe bedürfen jedoch noch der Optimierung im Hinblick auf die Maximierung der Klebekraft einerseits und der langfristigen Gewebsintegration andererseits. In vitro Modelle können eine wertvolle Unterstützung bei der Untersuchung potenzieller Kleber-Kandidaten und derer Funktionsmechanismen sein. Für die im Rahmen dieser Arbeit durchgeführten Experimente wurde ein in vitro Disc/Ring-Modell aus porcinem Gelenkknorpel hergestellt. Neben der qualitativen Bewertung der Regeneration erleichtert dieses Modell die Durchführung biomechanischer Tests zur Quantifizierung der Knorpelintegrationskraft. Die Herstellung von Konstrukten für die Histologie und anderer analytischer Verfahren ist standardisierbar und ist im Vergleich zu in vivo Versuchen ethisch weniger bedenklich. Die Möglichkeit der Anwendung von Zellkulturtechniken mit dem in vitro Modell ermöglicht eine bessere Untersuchung von Knorpelintegrationsprozessen. Das Verkleben von Gewebe erfordert eine chemische oder physikalische Wechselwirkung zwischen dem Klebstoff und dem Substrat. Adhäsive Hydrogele können sich an die Defektoberfläche binden und gleichzeitig die Lücke unregelmäßig geformter Defekthohlräume füllen. Fibrin-Gele sind von der physiologischen Blutgerinnung abgeleitet und werden seit langem klinisch zum Wundverschluss eingesetzt. Innerhalb dieser Arbeit wurden Vergleiche verschiedener Fibrinkleberformulierungen mit dem kommerziellen BioGlue® durchgeführt, welche gezeigt haben, dass bei der Anwendung auf Knorpelgewebe eine gute Biokompatibilität erforderlich ist, um eine zufriedenstellende Langzeitintegration zu erreichen. Fibrinformulierungen können im Hinblick auf ihre Langzeitstabilität angepasst werden, und bei der Anwendung auf Knorpel Disc/Ring-Konstrukten ist eine verbesserte integrative Reparatur zu beobachten. Im Rahmen dieser Arbeit wurde die Kinetik der Reparaturprozesse in fibrinbehandelten Knorpelkompositen untersucht. Nach dreitägiger in vitro-Kultivierung war eine Ablagerung von extrazellulärer Matrix (ECM) an der verklebten Grenzfläche zu erkennen, welche mit der Zeit weiter zunahm. Ab dem zehnten Tag der Gewebekultur wurde das Einwandern von Zellen aus dem umgebenden nativen Knorpel an der Grenzfläche festgestellt. Die ECM-Bildung hängt von Stoffwechselfaktoren ab, wie es beispielhaft für Ascorbinsäure gezeigt wurde. Dabei trug neue ECM zu einer mit der Zeit zunehmenden Integrationsstärke bei. Die mit Fibrin durchgeführten Experimente haben gezeigt, dass der Ansatz mit einem biokompatiblen Klebstoff und dem Potenzial zur Knorpelneosynthese die laterale Knorpelintegration langfristig begünstigt. Allerdings hatte Fibrin nur eine begrenzte anfängliche Klebekraft, was für den Einsatz auf mechanisch stark belastetem Gelenkknorpel nachteilig ist. Das weiterführende Ziel dieser Arbeit war es unter anderem Haftmechanismen und neue adhäsive Hydrogele zu entwickeln, welche die positiven Eigenschaften von Fibrin beibehalten, aber eine höhere Klebekraft aufweisen. Es wurden zwei verschiedene photochemische Ansätze getestet, die den Vorteil einer zeitlich festlegbaren Verklebung haben und somit dem Anwender eine einfache Applizierung ermöglichen. Zunächst wurde ein UV-Licht-induzierter Vernetzungsmechanismus zur Bereitstellung zusätzlicher Klebestellen zum Fibrinkleber entwickelt. Die Knorpeloberfläche wurde dabei mit hochreaktiven, lichtempfindlichen Diazirin-Molekülen funktionalisiert, die zusätzliche kovalente Bindungen an die Fibrinmatrix ermöglichten und damit die direkte Adhäsionskraft erhöhten. Die Nachteile dieses Ansatzes waren jedoch die mehrstufigen Vernetzungsreaktionen, die Notwendigkeit einer enzymatischen Vorbehandlung des Knorpels, teure Reagenzien, eine mögliche Schädigung durch UV-Licht und potentielle toxikologische Risiken. Wegen den erwähnten Nachteilen wurde auf zusätzliche Untersuchungen verzichtet und der Fokus auf die Alternativenfindung gelegt. Ein weiterer Ansatz konzentrierte sich auf die Vernetzung von Fibrinogen durch blaues Licht (RuFib) mittels eines Photoinitiaor-Moleküls statt über Thrombinzugabe wie bei gewöhnlichen Fibrinklebern. Der verwendete Rutheniumkomplex ermöglichte die inter- und intramolekulare Dityrosinbindung von Fibrinogenmolekülen. Der Vorteil war dabei die einstufige lichtinduzierte Vernetzung von Fibrinogen mit höheren Haftkräften als bei Fibrin. Im Gegensatz zur Diazirin-Funktionalisierung von Knorpel ist der Rutheniumkomplex auch toxikologisch weniger bedenklich. Nach in vitro Kultivierung der RuFib geklebten Disc/Ring-Konstruktes kam es jedoch zu einer Abnahme der Integrationskraft. Im Vergleich zu Fibrin wurde eine verminderte Knorpelsynthese am Defekt beobachtet. Nachteilig ist auch, dass eine Modifizierung des Klebers einzig über die Proteinkonzentration erfolgen kann, da Fibrinogen als natürliches Protein eine feste Anzahl von Tyrosin-Bindungsstellen hat und alternativ chemisch verändert werden müsste. Ein zusätzlich entwickelter Klebstoff basiert auf einem von Muscheln inspirierten Haftmechanismus, bei dem die Reaktivität zu einer Vielzahl von Substraten über freie DOPA-Aminosäuren ermöglicht wird. Es ist bekannt, dass die DOPA-basierte Adhäsion in einer feuchten Umgebung funktioniert, ein großer Vorteil für die Anwendung auf stark wasserhaltigem Knorpelgewebe und im feuchten Synovium. Reaktive DOPA-Gruppen wurden synthetisch an ein Polymer, in diesem Fall POx, gebunden, um eine einfache chemische Modifizierbarkeit zu ermöglichen. Mögliche Anpassungen sind z.B. das Einfügen von hydrolysierbaren Esterbindungen um veränderte Degradationsraten zu erreichen. Die Möglichkeit der Herstellung eines adhäsiven Hybridhydrogels aus POx in Kombination mit Fibrinogen führte zu einer erhöhten Zellkompatibilität, wie sie bereits bei Fibrin beobachtet wurde, jedoch mit erhöhter direkter Klebekraft. Die angepasste Degradationskinetik über die Menge an Esterbindungen am POx hatte einen direkten Einfluss auf die Entwicklung der Integration im in vitro Modell gezeigt. Hydrogele sind gut geeignet, um Defektlücken zu füllen. Bei intrinsischen Adhäsionseigenschaften kann eine gewisse sofortige Integration erreicht werden. Die erzielten Ergebnisse zeigen, dass für den Erfolg einer langfristigen Integration eine gute Fähigkeit des Klebstoffs zur Aufnahme von synthetisierten ECM-Komponenten und Zellen erforderlich ist. Die Abbaukinetik des Klebstoffs muss dabei mit dem Umbauprozess im Gleichgewicht sein, um einen zwischenzeitlichen Verlust der Integrationskraft zu vermeiden und eine langfristige feste Adhäsion an das native Gewebe zu ermöglichen. Hydrogele sind nicht nur als Klebstoffe für kleinere Defekte wichtig, sondern auch als Tissue-Engineering Material um große Defektvolumina aufzufüllen und mit Zellen zu besiedeln. In der Literatur werden verschiedene Hydrogelarten für die Knorpelsynthese berichtet. Eine langzeitstabile Fibrinformulierung wurde in dieser Arbeit nicht nur als Klebstoff, sondern auch als größeres Hydrogelkonstrukt getestet. Agarose ist ebenfalls ein im Knorpel-Tissue-Engineering häufig verwendetes Material, das bereits eine gute Knorpelneosynthese gezeigt hat. Darüber hinaus wurde ein synthetisches Hyaluronsäure-basiertes Hydrogel (HA-SH/P(AGE/G)) untersucht. In durchgeführten Experimenten wurde das Disc/Ring Modell adaptiert und das innere Lumen des Knorpelrings mit dem jeweiligen Hydrogel gefüllt. Im Gegensatz zu Agarose verfügen Fibrin und das HA-SH/P(AGE/G)-Gel über einen Vernetzungsmechanismus, der beim Kontakt mit dem Knorpel während der Aushärtung zu einer sofortigen Bindung führte. Die verstärkte Knorpelneosynthese in Agarose im Vergleich zu den anderen Hydrogeltypen führte zu einer erhöhten Integration während der in vitro Kultur. Dies zeigt, dass für den langfristigen Erfolg eines Therapieansatzes der Umbau des Hydrogels in funktionelles Knorpelgewebe eine sehr hohe Priorität hat. Um größere Knorpeldefekte erfolgreich mit Hydrogelen behandeln zu können, sind neue Materialien mit diesen Eigenschaften in Kombination mit chemischer Modifizierbarkeit und einem direkten Adhäsionsmechanismus einer der vielversprechendsten Ansätze. KW - Knorpel KW - Hyaliner Knorpel KW - Gelenkknorpel KW - Arthrose KW - Kniegelenkarthrose KW - Cartiage Integration KW - Adhesive Hydrogels KW - in vitro Testmodell KW - Cartilage defect KW - Biomechanics KW - Tissue Engineering Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-346028 ER - TY - THES A1 - Reuter, Christian Steffen T1 - Development of a tissue-engineered primary human skin infection model to study the pathogenesis of tsetse fly-transmitted African trypanosomes in mammalian skin T1 - Entwicklung eines primären humanen Hautinfektionsmodells basierend auf Gewebezüchtung zur Erforschung der Pathogenese von Tsetsefliegen-übertragenen Afrikanischen Trypanosomen in der Säugetierhaut N2 - Many arthropods such as mosquitoes, ticks, bugs, and flies are vectors for the transmission of pathogenic parasites, bacteria, and viruses. Among these, the unicellular parasite Trypanosoma brucei (T. brucei) causes human and animal African trypanosomiases and is transmitted to the vertebrate host by the tsetse fly. In the fly, the parasite goes through a complex developmental cycle in the alimentary tract and salivary glands ending with the cellular differentiation into the metacyclic life cycle stage. An infection in the mammalian host begins when the fly takes a bloodmeal, thereby depositing the metacyclic form into the dermal skin layer. Within the dermis, the cell cycle-arrested metacyclic forms are activated, re-enter the cell cycle, and differentiate into proliferative trypanosomes, prior to dissemination throughout the host. Although T. brucei has been studied for decades, very little is known about the early events in the skin prior to systemic dissemination. The precise timing and the mechanisms controlling differentiation of the parasite in the skin continue to be elusive, as does the characterization of the proliferative skin-residing trypanosomes. Understanding the first steps of an infection is crucial for developing novel strategies to prevent disease establishment and its progression. A major shortcoming in the study of human African trypanosomiasis is the lack of suitable infection models that authentically mimic disease progression. In addition, the production of infectious metacyclic parasites requires tsetse flies, which are challenging to keep. Thus, although animal models - typically murine - have produced many insights into the pathogenicity of trypanosomes in the mammalian host, they were usually infected by needle injection into the peritoneal cavity or tail vein, bypassing the skin as the first entry point. Furthermore, animal models are not always predictive for the infection outcome in human patients. In addition, the relatively small number of metacyclic parasites deposited by the tsetse flies makes them difficult to trace, isolate, and study in animal hosts. The focus of this thesis was to develop and validate a reconstructed human skin equivalent as an infection model to study the development of naturally-transmitted metacyclic parasites of T. brucei in mammalian skin. The first part of this work describes the development and characterization of a primary human skin equivalent with improved mechanical properties. To achieve this, a computer-assisted compression system was designed and established. This system allowed the improvement of the mechanical stability of twelve collagen-based dermal equivalents in parallel through plastic compression, as evaluated by rheology. The improved dermal equivalents provided the basis for the generation of the skin equivalents and reduced their contraction and weight loss during tissue formation, achieving a high degree of standardization and reproducibility. The skin equivalents were characterized using immunohistochemical and histological techniques and recapitulated key anatomical, cellular, and functional aspects of native human skin. Furthermore, their cellular heterogeneity was examined using single-cell RNA sequencing - an approach which led to the identification of a remarkable repertoire of extracellular matrix-associated genes expressed by different cell subpopulations in the artificial skin. In addition, experimental conditions were established to allow tsetse flies to naturally infect the skin equivalents with trypanosomes. In the second part of the project, the development of the trypanosomes in the artificial skin was investigated in detail. This included the establishment of methods to successfully isolate skin-dwelling trypanosomes to determine their protein synthesis rate, cell cycle and metabolic status, morphology, and transcriptome. Microscopy techniques to study trypanosome motility and migration in the skin were also optimized. Upon deposition in the artificial skin by feeding tsetse, the metacyclic parasites were rapidly activated and established a proliferative population within one day. This process was accompanied by: (I) reactivation of protein synthesis; (II) re-entry into the cell cycle; (III) change in morphology; (IV) increased motility. Furthermore, these observations were linked to potentially underlying developmental mechanisms by applying single-cell parasite RNA sequencing at five different timepoints post-infection. After the initial proliferative phase, the tsetse-transmitted trypanosomes appeared to enter a reversible quiescence program in the skin. These quiescent skin-residing trypanosomes were characterized by very slow replication, a strongly reduced metabolism, and a transcriptome markedly different from that of the deposited metacyclic forms and the early proliferative trypanosomes. By mimicking the migration from the skin to the bloodstream, the quiescent phenotype could be reversed and the parasites returned to an active proliferating state. Given that previous work has identified the skin as an anatomical reservoir for T. brucei during disease, it is reasonable to assume that the quiescence program is an authentic facet of the parasite's behavior in an infected host. In summary, this work demonstrates that primary human skin equivalents offer a new and promising way to study vector-borne parasites under close-to-natural conditions as an alternative to animal experimentation. By choosing the natural transmission route - the bite of an infected tsetse fly - the early events of trypanosome infection have been detailed with unprecedented resolution. In addition, the evidence here for a quiescent, skin-residing trypanosome population may explain the persistence of T. brucei in the skin of aparasitemic and asymptomatic individuals. This could play an important role in maintaining an infection over long time periods. N2 - Zahlreiche Arthropoden wie Stechmücken, Zecken, Wanzen und Fliegen sind Überträger für krankheitserregende Parasiten, Bakterien und Viren. Hierzu gehört der einzellige Parasit Trypanosoma brucei (T. brucei), welcher durch Tsetsefliegen übertragen wird und die Afrikanische Trypanosomiasis bei Menschen und Tieren verursacht. Der Entwicklungszyklus des Parasiten in der Fliege ist komplex und endet in der Speicheldrüse mit der Differenzierung in das metazyklische Lebensstadium. Diese metazyklischen Formen werden durch den Biss der blutsaugenden Tsetsefliege in die dermale Hautschicht des Säugetierwirts injiziert. Die zellzyklusarretierten metazyklischen Formen werden in der Dermis aktiviert und der Widereintritt in den Zellzyklus sowie die Differenzierung zu proliferativen Trypanosomen eingeleitet. Anschließend breitet sich der Parasit systemisch im Säugetierwirt aus. Obwohl T. brucei bereits seit Jahrzehnten erforscht wird, ist nur sehr wenig über das frühe Infektionsgeschehen in der Haut bekannt. Der genaue Zeitpunkt und die Mechanismen, die der Differenzierung des Parasiten in der Haut zugrunde liegen, sind unbekannt. Ebenso wurden die proliferativen Trypanosomen in der Haut bisher nur unzureichend charakterisiert. Das Verständnis über die ersten Schritte einer Infektion ist jedoch von entscheidender Bedeutung für die Entwicklung von neuen Strategien, die die Krankheitsentstehung und deren Fortschreiten verhindern sollen. Ein großes Hindernis bei der Erforschung der humanen Afrikanischen Trypanosomiasis ist der Mangel an geeigneten Infektionsmodellen, die den Krankheitsverlauf authentisch nachbilden. Außerdem werden für die Erzeugung der infektiösen metazyklischen Parasiten Tsetsefliegen benötigt, die aufwändig zu züchten sind. Tiermodelle haben es ermöglicht - hauptsächlich Mäuse -, viele Erkenntnisse über die Pathogenese von Trypanosomen im Säugetierwirt zu erlangen. Allerdings wurden diese überwiegend durch Nadelinjektion in den Bauchraum oder die Kaudalvene infiziert, wodurch die Haut als erste Eintrittspforte umgangen wurde. Darüber hinaus lassen Tiermodelle nicht immer Rückschlüsse auf den Infektionsverlauf beim Menschen zu. Zusätzlich erschwert die geringe Anzahl von metazyklischen Parasiten, die von Tsetsefliegen injiziert werden, die Isolation, Nachweis und Untersuchung im tierischen Wirt. Das Ziel der vorliegenden Arbeit war es, ein rekonstruiertes menschliches Hautäquivalent zu entwickeln und als Infektionsmodell zu validieren, um die Entwicklung von natürlich übertragenen metazyklischen Parasiten von T. brucei in der Säugetierhaut zu untersuchen. Der erste Teil dieser Arbeit beschreibt die Entwicklung und Charakterisierung eines primären menschlichen Hautäquivalents mit verbesserten mechanischen Eigenschaften. Zu diesem Zweck wurde ein computergesteuertes Kompressionssystem entworfen und hergestellt. Dieses System ermöglichte die gleichzeitige Verbesserung der mechanischen Stabilität von zwölf kollagenbasierten dermalen Äquivalenten durch plastische Kompression, die mittels Rheologie evaluiert wurden. Die verbesserten dermalen Äquivalente dienten als Fundament für die Erzeugung der Hautäquivalente und reduzierten deren Kontraktion und Gewichtsverlust während der Gewebebildung. Dadurch wurde ein hohes Maß an Standardisierung und Reproduzierbarkeit erreicht. Die Hautäquivalente wurden durch immunhistochemische und histologische Techniken charakterisiert und bildeten wichtige anatomische, zelluläre und funktionelle Aspekte der nativen menschlichen Haut nach. Des Weiteren wurde die zelluläre Heterogenität durch Einzelzell-RNA-Sequenzierung untersucht. Mit dieser Technik wurde ein umfangreiches Spektrum an extrazellulären Matrix-assoziierten Genen identifiziert, die von verschiedenen Zellsubpopulationen in der künstlichen Haut exprimiert werden. Zusätzlich wurden experimentelle Bedingungen etabliert, damit Tsetsefliegen eingesetzt werden konnten, um die Hautäquivalente auf natürlichem Weg mit Trypanosomen zu infizieren. Im zweiten Teil dieser Arbeit wurde die Entwicklung der Trypanosomen in der künstlichen Haut im Detail untersucht. Dies umfasste die Etablierung von Methoden zur erfolgreichen Isolierung der Trypanosomen aus der Haut, um deren Proteinsyntheserate, Zellzyklus- und Stoffwechselstatus, sowie Morphologie und Transkriptom zu bestimmen. Zusätzlich wurden Mikroskopietechniken zur Untersuchung der Trypanosomenmotilität und migration in der Haut optimiert. Nach der Injektion in die künstliche Haut durch Tsetsefliegen wurden die metazyklischen Parasiten schnell aktiviert und etablierten innerhalb eines Tages eine proliferative Population. Dieser Entwicklungsprozess wurde begleitet von (I) einer Reaktivierung der Proteinsynthese, (II) einem Wiedereintritt in den Zellzyklus, (III) einer Veränderung der Morphologie und (IV) einer erhöhten Motilität. Des Weiteren wurden diese Beobachtungen mit potentiell zugrundeliegenden entwicklungsbiologischen Mechanismen in Verbindung gebracht, indem eine Einzelzell RNA-Sequenzierung der Trypanosomen zu fünf verschiedenen Zeitpunkten nach der Infektion durchgeführt wurde. Nach der ersten proliferativen Phase traten die Tsetse-übertragenen Trypanosomen in der Haut in ein reversibles Ruhestadium ein. Diese ruhenden Trypanosomen waren durch eine sehr langsame Zellteilung, einen stark reduzierten Stoffwechsel und ein Transkriptom gekennzeichnet, dass sich deutlich von dem der injizierten metazyklischen Formen und der ersten proliferativen Trypanosomen unterschied. Durch Nachahmung der Migration von der Haut in den Blutkreislauf konnte dieser Phänotyp reaktiviert werden und die Parasiten kehrten in einen aktiven, proliferierenden Zustand zurück. Unter Berücksichtigung, dass vorangegangene Forschungsarbeiten die Haut als anatomisches Reservoir für T. brucei während des Krankheitsverlaufs identifiziert haben, ist anzunehmen, dass das Ruheprogramm eine authentische Facette im Verhalten des Parasiten in einem infizierten Wirt darstellt. Zusammenfassend zeigt diese Arbeit, das primäre menschliche Hautäquivalente eine neue und vielversprechende Möglichkeit bieten, vektorübertragene Parasiten unter naturnahen Bedingungen als Alternative zu Tierversuchen zu untersuchen. Durch die Verwendung des natürlichen Infektionsweges - dem Biss einer infizierten Tsetsefliege -, konnten die frühen Prozesse einer Trypanosomen-Infektion mit noch nie dagewesener Detailtiefe nachvollzogen werden. Des Weiteren könnte der hier erbrachte Nachweis einer ruhenden, hautresidenten Trypanosomen-Population die Persistenz von T. brucei in der Haut von aparasitämischen und asymptomatischen Personen erklären. Dies könnte eine wichtige Rolle bei der Aufrechterhaltung einer Infektion über lange Zeiträume spielen. KW - Trypanosoma brucei KW - Tissue Engineering KW - Trypanosomiasis KW - 3D-Zellkultur KW - Transkriptomanalyse KW - developmental differentiation KW - skin equivalent KW - artificial human skin KW - single-cell RNA sequencing KW - quiescence Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-251147 ER - TY - THES A1 - Alzheimer, Mona T1 - Development of tissue-engineered three-dimensional infection models to study pathogenesis of \(Campylobacter\) \(jejuni\) T1 - Entwicklung dreidimensionaler Infektionsmodelle basierend auf Gewebezüchtung zur Erforschung der Pathogenese von \(Campylobacter\) \(jejuni\) N2 - Infectious diseases caused by pathogenic microorganisms are one of the largest socioeconomic burdens today. Although infectious diseases have been studied for decades, in numerous cases, the precise mechanisms involved in the multifaceted interaction between pathogen and host continue to be elusive. Thus, it still remains a challenge for researchers worldwide to develop novel strategies to investigate the molecular context of infectious diseases in order to devise preventive or at least anti-infective measures. One of the major drawbacks in trying to obtain in-depth knowledge of how bacterial pathogens elicit disease is the lack of suitable infection models to authentically mimic the disease progression in humans. Numerous studies rely on animal models to emulate the complex temporal interactions between host and pathogen occurring in humans. While they have greatly contributed to shed light on these interactions, they require high maintenance costs, are afflicted with ethical drawbacks, and are not always predictive for the infection outcome in human patients. Alternatively, in-vitro two-dimensional (2D) cell culture systems have served for decades as representatives of human host environments to study infectious diseases. These cell line-based models have been essential in uncovering virulence-determining factors of diverse pathogens as well as host defense mechanisms upon infection. However, they lack the morphological and cellular complexity of intact human tissues, limiting the insights than can be gained from studying host-pathogen interactions in these systems. The focus of this thesis was to establish and innovate intestinal human cell culture models to obtain in-vitro reconstructed three-dimensional (3D) tissue that can faithfully mimic pathogenesis-determining processes of the zoonotic bacterium Campylobacter jejuni (C. jejuni). Generally employed for reconstructive medicine, the field of tissue engineering provides excellent tools to generate organ-specific cell culture models in vitro, realistically recapitulating the distinctive architecture of human tissues. The models employed in this thesis are based on decellularized extracellular matrix (ECM) scaffolds of porcine intestinal origin. Reseeded with intestinal human cells, application of dynamic culture conditions promoted the formation of a highly polarized mucosal epithelium maintained by functional tight and adherens junctions. While most other in-vitro infection systems are limited to a flat monolayer, the tissue models developed in this thesis can display the characteristic 3D villi and crypt structure of human small intestine. First, experimental conditions were established for infection of a previously developed, statically cultivated intestinal tissue model with C. jejuni. This included successful isolation of bacterial colony forming units (CFUs), measurement of epithelial barrier function, as well as immunohistochemical and histological staining techniques. In this way, it became possible to follow the number of viable bacteria during the infection process as well as their translocation over the polarized epithelium of the tissue model. Upon infection with C. jejuni, disruption of tight and adherens junctions could be observed via confocal microscopy and permeability measurements of the epithelial barrier. Moreover, C. jejuni wildtype-specific colonization and barrier disruption became apparent in addition to niche-dependent bacterial localization within the 3D microarchitecture of the tissue model. Pathogenesis-related phenotypes of C. jejuni mutant strains in the 3D host environment deviated from those obtained with conventional in-vitro 2D monolayers but mimicked observations made in vivo. Furthermore, a genome-wide screen of a C. jejuni mutant library revealed significant differences for bacterial factors required or dispensable for interactions with unpolarized host cells or the highly prismatic epithelium provided by the intestinal tissue model. Elucidating the role of several previously uncharacterized factors specifically important for efficient colonization of a 3D human environment, promises to be an intriguing task for future research. At the frontline of the defense against invading pathogens is the protective, viscoelastic mucus layer overlying mucosal surfaces along the human gastrointestinal tract (GIT). The development of a mucus-producing 3D tissue model in this thesis was a vital step towards gaining a deeper understanding of the interdependency between bacterial pathogens and host-site specific mucins. The presence of a mucus layer conferred C. jejuni wildtype-specific protection against epithelial barrier disruption by the pathogen and prevented a high bacterial burden during the course of infection. Moreover, results obtained in this thesis provide evidence in vitro that the characteristic corkscrew morphology of C. jejuni indeed grants a distinct advantage in colonizing mucous surfaces. Overall, the results obtained within this thesis highlight the strength of the tissue models to combine crucial features of native human intestine into accessible in-vitro infection models. Translation of these systems into infection research demonstrated their ability to expose in-vivo like infection outcomes. While displaying complex organotypic architecture and highly prismatic cellular morphology, these tissue models still represent an imperfect reflection of human tissue. Future advancements towards inclusion of human primary and immune cells will strive for even more comprehensive model systems exhibiting intricate multicellular networks of in-vivo tissue. Nevertheless, the work presented in this thesis emphasizes the necessity to investigate host-pathogen interactions in infection models authentically mimicking the natural host environment, as they remain among the most vital parts in understanding and counteracting infectious diseases. N2 - In der heutigen Zeit tragen insbesondere durch pathogene Mikroorganismen ausgelöste Infektionskrankheiten zur sozioökonomischen Belastung bei. Obwohl bereits jahrzehntelang an der Entstehung von Infektionskrankheiten geforscht wird, bleiben in zahlreichen Fällen die genauen Mechanismen, welche an den vielfältigen Interaktionen zwischen Pathogen und Wirt beteiligt sind, unbeschrieben. Gerade deshalb bleibt es für Wissenschaftler weltweit eine Herausforderung, neue Strategien zur Untersuchung des molekularen Kontexts von Infektionskrankheiten zu entwickeln, um präventive oder zumindest anti-infektive Maßnahmen ergreifen zu können. In den meisten Fällen ist jedoch das Fehlen geeigneter Infektionsmodelle, mit denen der Krankheitsverlauf im Menschen authentisch nachgestellt werden kann, eines der größten Hindernisse um detailliertes Wissen darüber gewinnen zu können wie bakterielle Pathogene die Krankheit auslösen. Zahlreiche Studien sind dabei auf Tiermodelle angewiesen, um die komplexen zeitlichen Abläufe zwischen Wirt und Pathogen im menschlichen Körper nachzuahmen. Während diese Modelle in hohem Maß dazu beigetragen haben, Aufschluss über diese Abläufe zu geben, sind sie doch sehr kostenintensiv, mit ethischen Bedenken behaftet und können nicht immer die Folgen einer Infektion im menschlichen Patienten vorhersagen. Seit Jahrzehnten werden daher alternativ in-vitro 2D Zellkultursysteme eingesetzt, um den Verlauf von Infektionskrankheiten zu erforschen, welche die Bedingungen im menschlichen Wirt wiederspiegeln sollen. Diese auf Zelllinien basierenden Modelle sind essentiell in der Entdeckung von Virulenzfaktoren diverser Pathogene, aber auch in der Aufklärung von wirtsspezifischen Abwehrmechanismen. Dennoch fehlt ihnen die morphologische und zelluläre Komplexität von intaktem menschlichen Gewebe. Dadurch sind die Erkenntnisse, die mit diesen Systemen über Infektionsverläufe gewonnen werden können, limitiert. Die vorgelegte Arbeit konzentriert sich auf die Etablierung und Weiterentwicklung intestinaler, humaner Zellkulturmodelle, um dreidimensionales Gewebe in vitro zu rekonstruieren mit dem Ziel, Pathogenese-beeinflussende Prozesse des zoonotischen Bakteriums C. jejuni nachzustellen. Das Fachgebiet der Gewebezüchtung wird üblicherweise für rekonstruktive Medizin eingesetzt und bietet exzellente Mittel zur in-vitro Herstellung organspezifischer Zellkulturmodelle, welche die unverkennbare Mikroarchitektur humanen Gewebes realistisch nachempfinden können. Die in dieser Arbeit verwendeten Modelle basieren auf einem extrazellulären Matrixgerüst, das aus der Dezellularisierung von Schweinedarm gewonnen wurde. Durch die Wiederbesiedelung mit human Kolonzellen und der Kultivierung unter dynamischen Bedingungen entwickelte sich ein hochpolarisiertes mucosales Epithel, das durch funktionale Zell-Zell-Kontakte (tight und adherens junctions) aufrechterhalten wird. Während andere in-vitro Infektionssysteme meist durch die Präsenz einer flachen Zellschicht limitiert werden, entwickelt das in dieser Arbeit eingeführte Gewebemodell die für den menschlichen Dünndarm charakteristische Architektur aus Villi und Krypten. Zunächst wurden experimentelle Bedingungen für die Infektion eines zuvor entwickelten, statisch kultivierten Dünndarmmodells mit C. jejuni etabliert. Dies beinhaltete die erfolgreiche Isolierung koloniebildender Einheiten, die Messung der epithelialen Barrierefunktion, sowie immunhistochemische und histologische Färbetechniken. Dadurch konnte die Anzahl der Bakterien sowie deren Translokalisierung über das polarisierte Epithel während des Infektionsprozesses nachvollzogen werden. Außerdem konnte die Beeinträchtigung von Zell-Zell-Kontakten durch konfokale Mikroskopie und Permeabilitätsmessungen der epithelialen Barriere beobachtet werden. Neben der Bestimmung der Kolonisierungsrate von C. jejuni Isolaten und der dadurch hervorgerufenen spezifischen Zerstörung der epithelialen Barriere konnten die Bakterien auch innerhalb der 3D Mikroarchitektur des Gewebemodells lokalisiert werden. Außerdem konnte im Rahmen der 3D Gewebeumgebung beobachtet werden, dass Pathogenese-relevante Phänotypen von C. jejuni Mutantenstämmen im Vergleich zu konventionellen in-vitro 2D Zellschichten abwichen, diese aber dafür mit den in-vivo gemachten Beobachtungen übereinstimmten. Darüber hinaus wies die genomweite Suche einer C. jejuni Mutantenbibliothek signifikante Unterschiede zwischen bakteriellen Faktoren, die für die Interaktion mit nicht polarisierten Wirtszellen oder dem hochprismatischen Epithel des Gewebemodells bedeutsam oder entbehrlich waren, auf. Die Aufklärung der Funktion einiger bisher nicht charakterisierter Faktoren, die zu einer effizienten Kolonisierung menschlichen Gewebes beitragen, verspricht eine faszinierende Aufgabe für die zukünftige Forschung zu werden. Die vorderste Verteidigungslinie gegen eindringende Pathogene bildet die schützende, viskoelastische Mukusschicht, die mukosale Oberflächen entlang des menschlichen Gastrointestinaltrakts überzieht. Mit der Entwicklung eines mukusproduzierenden Gewebemodells in der hier vorgelegten Arbeit gelang ein entscheidender Schritt zur Erforschung der Wechselbeziehungen zwischen bakteriellen Pathogenen und wirtsspezifischen Muzinen. Während des Infektionsverlaufs wurde das unterliegende Epithel durch die Anwesenheit der Mukusschicht vor der Zerstörung durch die Mikroben geschützt und eine erhöhte bakterielle Belastung verhindert. Darüber hinaus liefern die Resultate dieser Arbeit einen in-vitro Nachweis für den bakteriellen Vorteil einer spiralförmigen Morphologie, um muköse Oberflächen zu besiedeln. Zusammenfassend unterstreicht diese Arbeit das Potential der hier entwickelten Gewebemodelle, entscheidende Eigenschaften des menschlichen Darms in einem leicht zugänglichen in-vitro Infektionsmodell zu vereinigen. Der Einsatz dieser Modelle im Rahmen der Infektionsforschung bewies deren Fähigkeit in-vivo beobachtete Infektionsverläufe widerzuspiegeln. Während diese Infektionsmodelle bereits organotypische Architektur und hochprismatische Zellmorphologie aufweisen, ist ihre Darstellung von menschlichem Gewebe noch nicht perfekt. Durch den Einsatz von humanen Primär- und Immunzellen wird es in Zukunft möglich sein, noch umfassendere Modellsysteme zu entwickeln, die komplexe multizelluläre Netzwerke von in-vivo Geweben aufweisen. Nichtsdestotrotz verdeutlicht die hier vorgelegte Arbeit wie wichtig es ist, die Interaktionen zwischen Wirt und Pathogen innerhalb von Infektionsmodellen zu erforschen, welche die natürliche Wirtsumgebung wiedergeben. Dies spielt eine entscheidende Rolle, um die Entstehung von Infektionskrankheiten nachvollziehen und ihnen entgegenwirken zu können. KW - Campylobacter jejuni KW - Tissue Engineering KW - Small RNA KW - 3D tissue model KW - Bacterial infection KW - 3D Gewebemodelle KW - Bakterielle Infektion KW - 3D cell culture KW - Infection models Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193440 ER - TY - THES A1 - Schmidt [geb. Schmid], Freia Florina T1 - Ein dreidimensionales kutanes Melanommodell für den Einsatz in der präklinischen Testung T1 - A three-dimensional cutaneous melanoma model for use in preclinical testing N2 - Das maligne Melanom nimmt als Tumorerkrankung mit hoher Metastasierungsrate und steigenden Inzidenzraten bei höchster Mortalität aller Hauttumoren eine zunehmende Bedeutung in der modernen Onkologie ein. Frühzeitige Diagnosemöglichkeiten und moderne Behandlungen konnten das Überleben der Patienten bereits erheblich verbessern. Jedoch besteht nach wie vor Bedarf an geeigneten Modellen, um die Melanomprogression vollständig zu verstehen und neue wirksame Therapien zu entwickeln. Hierfür werden häufig Tiermodelle verwendet, diese spiegeln jedoch nicht die menschliche Mikroumgebung wider. Zweidimensionalen Zellkulturen fehlen dagegen entscheidende Elemente der Tumormikroumgebung. Daher wurde in dieser Arbeit ein dreidimensionales epidermales Tumormodell des malignen Melanoms, welches aus primären humanen Keratinozyten und verschiedenen Melanomzelllinien besteht, entwickelt. Die eingesetzten Melanomzelllinien variieren in ihren Treibermutationen, wodurch das Modell in der Lage ist, Wirkstoffe zu untersuchen, die spezifisch auf diese Mutationen wirken. Mit Techniken des Tissue Engineerings konnte ein dreidimensionales Hautmodell aufgebaut werden, das alle charakteristischen Schichten der Epidermis aufweist und im Bereich des stratum basale Melanomcluster ausbildet. Diese reichen je nach Größe und Ausdehnung bis in suprabasale Epidermisschichten hinein. Die Tumor-Histopathologie, der Tumorstoffwechsel sowie tumorassoziierte Proteinsekretionen ließen sich im in vitro Modell nachweisen. Darüber hinaus konnte ein Protokoll entwickelt werden, mit dem einzelne Zellen aus den Modellen reisoliert werden können. Dies ermöglichte es, den Proliferationszustand innerhalb des jeweiligen Modells zu charakterisieren und die Wirkung von Antitumortherapien gezielt zu bewerten. Die Anwendbarkeit als Testsystem im Bereich der Tumortherapeutika wurde mit dem in der Klinik häufig verwendeten v-raf-Maus-Sarkom-Virus-Onkogen-Homolog B (BRAF)-Inhibitor Vemurafenib demonstriert. Der selektive BRAF-Inhibitor reduzierte erfolgreich das Tumorwachstum in den Modellen mit BRAF-mutierten Melanomzellen, was durch eine Verringerung der metabolischen Aktivität, der proliferierenden Zellen und des Glukoseverbrauchs gezeigt wurde. Für die Implementierung des Modells in die präklinische Therapieentwicklung wurde B-B-Dimethylacrylshikonin, ein vielversprechender Wirkstoffkandidat, welcher einen Zellzyklusarrest mit anschließender Apoptose bewirkt, im Modell getestet. Bei einer Anwendung der Modelle im Bereich der Testung topischer Behandlungen ist eine Barrierefunktion der Modelle notwendig, die der in vivo Situation nahe kommt. Die Barriereeigenschaften der Hautäquivalente wurden durch die Melanomzellen nachweislich nicht beeinflusst, sind aber im Vergleich zur in vivo Situation noch unzureichend. Eine signifikante Steigerung der Hautbarriere konnte durch die Bereitstellung von Lipiden und die Anregung hauteigener Regenerationsprozesse erreicht werden. Über den Nachweis des transepidermalen Wasserverlusts konnte eine Messmethode zur nicht-invasiven Bestimmung der Hautbarriere etabliert und über den Vergleich zur Impedanzspektroskopie validiert werden. Hierbei gelang es, erstmals die Korrelation der Hautmodelle zur in vivo Situation über ein solches Verfahren zu zeigen. Das entwickelte epidermale Modell konnte durch die Integration eines dermalen Anteils und einer Endothelzellschicht noch weiter an die komplexe Struktur und Physiologie der Haut angepasst werden um Untersuchungen, die mit der Metastierung und Invasion zusammenhängen, zu ermöglichen. Die artifizielle Dermis basiert auf einem Kollagen-Hydrogel mit primären Fibroblasten. Eine dezellularisierte Schweinedarmmatrix ließ sich zur Erweiterung des Modells um eine Endothelzellschicht nutzen. Dabei wanderten die primären Fibroblasten apikal in die natürliche Schweindarmmatrix ein, während die Endothelzellen basolateral eine geschlossene Schicht bildeten. Die in dieser Arbeit entwickelten Gewebemodelle sind in der Lage, die Vorhersagekraft der in vitro Modelle und die in vitro - in vivo Korrelation zu verbessern. Durch die Kombination des Melanommodells mit einer darauf abgestimmten Analytik wurde ein neuartiges Werkzeug für die präklinische Forschung zur Testung von pharmazeutischen Wirkstoffen geschaffen. N2 - Malignant melanoma, as a tumor disease with a high metastasis rate and rising incidence rates with the highest mortality of all skin tumors, is assuming increasing importance in modern oncology. Early diagnosis and modern treatments significantly improved patient survival. There is still an unmet need for appropriate models to fully understand melanoma progression and to develop new effective therapies. Animal models are widely used but do not reflect the human microenvironment, while two-dimensional cell cultures lack crucial elements of this tumor microenvironment. Therefore, a three-dimensional epidermal tumor model of malignant melanoma consisting of primary human keratinocytes and various melanoma cell lines was developed in this work. The melanoma cell lines vary in their driver mutations, enabling the model to investigate compounds specifically designed to target one mutation. Tissue engineering techniques were used to generate a three-dimensional skin model that shows all characteristic layers of the epidermis and forms melanoma clusters in the stratum basale. Depending on size and extension, these extend into suprabasal epidermal layers. Tumor histopathology, tumor metabolism, and tumor-associated protein secretions could be demonstrated in the in vitro model. In addition, a protocol could be developed to reisolate single cells from the models. This made it possible to characterize the proliferation state within the respective model and to specifically evaluate the effect of antitumor therapies. Applicability as a test system in the field of tumor therapeutics was demonstrated with the v-raf mouse sarcoma virus oncogene homolog B (BRAF) inhibitor commonly used in the clinic. This selective BRAF inhibitor successfully reduced tumor growth in models with BRAF-mutated melanoma cells, indicated by a reduction in metabolic activity, proliferating cells, and glucose consumption. For the implementation of the model in preclinical development, B-B-dimethylacrylshikonin, a promising drug candidate, which induces cell cycle arrest followed by apoptosis, was tested in the model. An application of the models in the field of testing topical treatments requires a barrier function of the models close to the in vivo situation. The barrier properties of the skin equivalents were demonstrably not influenced by the melanoma cells, but are still insufficient compared to the in vivo situation. A significant increase in the skin barrier could be achieved by providing lipids and stimulating the skin's own regeneration processes. A measurement method for the non-invasive determination of the skin barrier was established by detection of transepidermal water loss and validated by comparison with impedance spectroscopy. For the first time, the correlation of the skin models to the in vivo situation was demonstrated by such a method. The developed epidermal model could be further adapted to the complex structure and physiology of the skin by integrating a dermal portion and an endothelial cell layer to allow studies related to metastasis and invasion. The artificial dermis is based on a collagen hydrogel with primary fibroblasts. A decellularized porcine intestinal matrix could be used to extend the model with an endothelial cell layer. Here, the primary fibroblasts migrated apically into the natural porcine intestinal matrix, while the endothelial cells formed a closed layer basolaterally. The tissue models developed in this work are able to improve the predictive power of the in vitro models and the in vitro - in vivo correlation. By combining the melanoma model with matched analytics, a novel tool for preclinical research for testing of pharmaceutical agents was established. KW - Tissue Engineering KW - Melanom KW - Hautmodell KW - Alternative zum Tierversuch Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-329255 ER - TY - THES A1 - Altmann, Stephan T1 - Characterization of Metabolic Glycoengineering in Mesenchymal Stromal Cells for its Application in thermoresponsive Bioinks T1 - Charakterisierung von Metabolic Glycoengineering in mesenchymalen Stromazellen für die Anwendung in thermoresponsiven Biotinten N2 - This work developed during the first funding period of the subproject B05 in the framework of the interdisciplinary research consortium TRR 225 ‘From the Fundamentals of Biofabrication toward functional Tissue Models’ and was part of a cooperation between the Orthopedic Department represented by Prof. Dr. Regina Ebert and the Institute of Organic Chemistry represented by Prof. Dr. Jürgen Seibel. This project dealed with cellular behavior during the bioprinting process and how to influence it by modifying the cell glycocalyx with functional target molecules. The focus was on the impact of potential shear stress, that cells experience when they get processed in thermoresponsive bioinks, and a way to increase the cell stiffness via metabolic glycoengineering to attenuate shear forces. For the characterization of the metabolic glycoengineering, four different peracetylated and four non-acetylated modified monosaccharides (two mannose and two sialic acid sugars) were tested in primary human mesenchymal stromal cells (hMSC) and telomerase-immortalized hMSC (hMSC-TERT). Viability results demonstrated a dose-dependent correlation for all sugars, at which hMSC-TERT seemed to be more susceptible leading to lower viability rates. The assessment of the incorporation efficiencies was performed by click chemistry using fluorescent dyes and revealed also a dose-dependent correlation for all mannose and sialic acid sugars, while glucose and galactose variants were not detected in the glycocalyx. However, incorporation efficiencies were highest when using mannose sugars in the primary hMSC. A subsequent analysis of the temporal retention of the incorporated monosaccharides showed a constant declining fluorescence signal up to 6 d for azido mannose in hMSC-TERT, whereas no signal could be detected for alkyne mannose after 2 d. Investigation of the differentiation potential and expression of different target genes revealed no impairment after incubation with mannose sugars, indicating a normal phenotype for hMSC-TERT. Following the successful establishment of the method, either a coumarin derivative or an artificial galectin 1 ligand were incorporated into the cell glycocalyx of hMSC-TERT as functional target molecule. The biophysical analysis via shear flow deformation cytometry revealed a slightly increased cell stiffness and lowered fluidity for both molecules. A further part of this project aimed to control lectin-mediated cell adhesion by artificial galectin 1 ligands. As that hypothesis was settled in the work group of Prof. Dr. Jürgen Seibel, this work supported with an initial characterization of galectin 1 as part of the hMSC biology. A stable galectin 1 expression at gene and protein level in both hMSC and hMSC-TERT could be confirmed, at which immunocytochemical stainings could detect the protein only in the glycocalyx. The treatment of hMSC-TERT with a galectin 1 ligand in different concentrations did not show an altered gene expression of galectin 1. However, these first data in addition to the investigation of stiffness confirmed the applicability of specific and artificial IV galectin 1 ligands in biofabrication approaches to alter cell properties of hMSC. To conclude, metabolic glycoengineering has been successfully implemented in hMSC and hMSC-TERT to introduce glycocalyx modifications which reside there for several days. A proof of concept was carried out by the increase of cell stiffness and fluidity by the incorporation of a coumarin derivative or an artificial galectin 1 ligand. For the characterization of shear stress impact on cells after printing in thermoresponsive bioinks, the processing of hMSC-TERT (mixing or additionally printing) with Pluronic F127 or Polyoxazoline-Polyoxazine (POx-POzi) polymer solution was investigated. While there were no changes in viability when using POx-POzi bioink, processing with Pluronic F127 indicated slightly lower viability and increased apoptosis activity. Assessment of cellular responses to potential shear stress showed no reorganization of the cytoskeleton independent of the bioink, but highly increased expression of the mechanoresponsive proto-oncogene c Fos which was more pronounced when using Pluronic F127 and just mixed with the bioinks. Interestingly, processing of the mechanoresponsive reporter cell line hMSC-TERT-AP1 revealed slightly elevated mechanotransduction activity when using POx-POzi polymer and just mixed with the bioinks as well. In conclusion, hMSC-TERT embedded in thermoresponsive bioinks might shortly experience shear stress during the printing process, but that did not lead to remarkable cell damage likely due to the rheological properties of the bioinks. Furthermore, the printing experiments also suggested that cells do not sense more shear stress when additionally printed. N2 - Diese Arbeit entstand aus dem Projekt B05 während der ersten Förderperiode im Rahmen des interdisziplinären Sonderforschungsbereiches TRR 225 „Von den Grundlagen der Biofabrikation zu funktionalen Gewebemodellen“ und beinhaltete eine Kooperation zwischen dem Lehrstuhl für Orthopädie repräsentiert durch Prof. Dr. Regina Ebert und dem Institut für Organische Chemie repräsentiert durch Prof. Dr. Jürgen Seibel. Das Projekt beschäftigte sich mit den Auswirkungen des 3D Drucks auf Zellen während und nach dem Druck mit thermoresponsiven Biotinten. Hierbei lag der Fokus auf Scherkräften, die Zellen während des Drucks erfahren, und der Möglichkeit, deren nachteilige Auswirkungen durch gezielte Erhöhung der Zellsteifigkeit via Metabolic Glycoengineering zu minimieren. Zur Etablierung dieser Methode wurden vier azetylierte sowie vier nicht-azetylierte modifizierte Einfachzucker (zwei Mannosen und zwei Sialinsäuren) hinsichtlich ihrer Zellkompatibilität und Einbaurate in primären humanen mesenchymalen Stromazellen (hMSC) und Telomerase-immortalisierten hMSC (hMSC-TERT) charakterisiert. Bei der Viabilität zeigte sich für alle untersuchten Zucker ein konzentrationsabhängiges Verhalten, wobei die hMSC-TERT generell empfindlicher reagierten. Eine Untersuchung von verschiedenen Zielgenen nach Zuckerinkubation gab keine Hinweise auf biologisch veränderte Expressionsmuster und auch das phänotypische Differenzierungspotenzial (adipogen und osteogen) blieb erhalten. Der Einbau der modifizierten Zucker in Proteoglykane sowie Glykoproteine der Glykokalyx wurde mikroskopisch mittels Fluoreszenzfarbstoffen charakterisiert. Dabei zeigte sich ebenfalls ein konzentrationsabhängiges Verhalten für alle Mannosen und Sialinsäuren, wohingegen die Glukose- und Galaktosevarianten nicht nachgewiesen werden konnten. Die Mannosezucker zeigten die höchsten Einbauraten, welche in primären hMSC noch stärker ausfielen als in hMSC-TERT. Ein Langzeitversuch zur Beurteilung der zeitlichen Stabilität der Glykokalyxmodifikation konnte für die azetylierte Azidomannose ein abnehmendes Fluoreszenzsignal bis zum sechsten Tag nach der Klickreaktion ermitteln. Im Gegensatz dazu konnte die azetylierte Alkinmannose bereits ab dem zweiten Tag nicht mehr nachgewiesen werden. Nach der erfolgreichen Optimierung der Methodik wurde der Effekt eines Kumarinderivates oder eines künstlichen Galektin 1 Liganden auf die Zellsteifigkeit sowie die -fluidität mit Hilfe der Deformationszytometrie untersucht. Die Modifikation der Glykokalyx mit beiden untersuchten Molekülen führte zu einer leichten Erhöhung der Steifigkeit in Kombination mit einer leicht erniedrigten Fluidität. In einem weiteren Teil des Projekts sollte die Lektin-vermittelte Adhäsion von Zellen an Polymerstränge initiiert werden, indem sie mit künstlichen Galektin 1 Liganden modifiziert werden. Da diese Hypothese in der Forschungsgruppe von Prof. Dr. Jürgen Seibel bearbeitet wurde, unterstützte diese Arbeit mit einer anfänglichen Charakterisierung von Galektin 1 als Teil der hMSC Zellbiologie. In hMSC und hMSC-TERT konnte eine VI stabile Expression auf Gen- und Proteinebene nachwiesen werden, wobei das Lektin in der Glykokalyx lokalisiert war. Ein Inkubationsversuch mit einem spezifischen Liganden zeigte in hMSC-TERT unabhängig von der Konzentration keine veränderte Galektin 1 Genexpression. In Verbindung mit den Steifigkeitsuntersuchungen bestätigt diese anfängliche Charakterisierung die Anwendbarkeit von künstlichen Galektin 1 Liganden in der Biofabrikation um hMSC zu modifizieren. Somit konnte gezeigt werden, dass Metabolic Glycoengineering sich für die gezielte Einbringung von Molekülen in die Zellglykokalyx von primären hMSC sowie der entsprechenden TERT-Zelllinie zur mittelfristigen Modifikation eignet. Dies wurde durch einen funktionellen Ansatz bestätigt, indem die Zellsteifigkeit und -fluidität durch den Einsatz zwei verschiedener Moleküle erwartungsgemäß beeinflusst wurden. Für die Charakterisierung der Scherstressauswirkungen auf Zellen nach 3D Druck in thermoresponsiven Biotinten wurden hMSC und hMSC-TERT in Pluronic F127 oder Polyoxazolin-Polyoxazin (POx-POzi) Polymerlösung prozessiert (gemischt oder zusätzlich verdruckt) und direkt danach analysiert. Während letztere die Viabilität nicht verschlechterte, zeigten hMSC-TERT nach Verarbeitung in Pluronic F127 eine leicht erniedrigte Viabilität sowie leicht erhöhte Apoptoseraten. Im Zuge von Analysen der Mechanotransduktion und deren Auswirkungen konnte unabhängig von der Biotinte sowie der Behandlung kein Umbau des Zytoskeletts immunzytochemisch nachgewiesen werden. Im Gegensatz dazu zeigten Genexpressionsanalysen eine starke Hochregulierung des mechanoresponsiven Proto-Onkogens c Fos unter allen Bedingungen, wobei diese stärker ausfiel bei Verwendung der Pluronic F127 Biotinte und nur nach Mischen (gilt für beide Biotinten). Um den Scherstress quantitativ zu beurteilen, wurde die Reporterzelllinie hMSC-TERT-AP1 verwendet, welche das Auslesen der Mechanotransduktion durch eine gekoppelte Luziferase-Proteinexpression ermöglicht. Interessanterweise zeigte sich eine leicht erhöhte Luziferaseaktivität nur nach Verarbeitung mit der POx-POzi Polymerlösung, welche stärker ausfiel wenn die Zellen mit der Biotinte lediglich gemischt wurden. Zusammengenommen bestätigten die Ergebnisse die zelluläre Wahrnehmung von Scherstress in thermoresponsiven Biotinten, allerdings scheint dieser nur schwache Auswirkungen auf die Zellen zu haben, was auf die rheologischen Eigenschaften beider untersuchten Biotinten zurückgeführt werden kann. Die Druckergebnisse legten außerdem nahe, dass die Zellen nicht mehr Scherstress erfahren, wenn sie zusätzlich verdruckt wurden. KW - Glykobiologie KW - Glykokalyx KW - Tissue Engineering KW - Galectine KW - Metabolic Glycoengineering KW - Biofabrication KW - Galectin 1 KW - Glycocalyx KW - Shear Stress KW - Scherstress Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-291003 ER - TY - THES A1 - Gensler, Marius E. T1 - Simultaneous printing of tissue and customized bioreactor T1 - Simultanes Drucken von Gewebe und angepasstem Bioreaktor N2 - Additive manufacturing processes such as 3D printing are booming in the industry due to their high degree of freedom in terms of geometric shapes and available materials. Focusing on patient-specific medicine, 3D printing has also proven useful in the Life Sciences, where it exploits the shape fidelity for individualized tissues in the field of bioprinting. In parallel, the current systems of bioreactor technology have adapted to the new manufacturing technology as well and 3D-printed bioreactors are increasingly being developed. For the first time, this work combines the manufacturing of the tissue and a tailored bioreactor, significantly streamlining the overall process and optimally merging the two processes. This way the production of the tissues can be individualized by customizing the reactor to the tissue and the patient-specific wound geometry. For this reason, a common basis and guideline for the cross-device and cross-material use of 3D printers was created initially. Their applicability was demonstrated by the iterative development of a perfusable bioreactor system, made from polydimethylsiloxane (PDMS) and a lignin-based filament, into which a biological tissue of flexible shape can be bioprinted. Cost-effective bioink-replacements and in silico computational fluid dynamics simulations were used for material sustainability and shape development. Also, nutrient distribution and shear stress could be predicted in this way pre-experimentally. As a proof of functionality and adaptability of the reactor, tissues made from a nanocellulose-based Cellink® Bioink, as well as an alginate-based ink mixed with Me-PMeOx100-b-PnPrOzi100-EIP (POx) (Alginate-POx bioink) were successfully cultured dynamically in the bioreactor together with C2C12 cell line. Tissue maturation was further demonstrated using hMSC which were successfully induced to adipocyte differentiation. For further standardization, a mobile electrical device for automated media exchange was developed, improving handling in the laboratory and thus reduces the probability of contamination. N2 - Additive Fertigungsverfahren wie der 3D-Druck boomen in der Industrie aufgrund ihres hohen Freiheitsgrads in Bezug auf geometrische Formen und verfügbare Materialien. Mit Blick auf die patientenspezifische Medizin hat sich der 3D-Druck auch in den Biowissenschaften bewährt, wo er die Formtreue für individualisierte Gewebe im Bereich des Bioprinting nutzt. Parallel dazu haben sich auch die derzeitigen Systeme der Bioreaktortechnologie an die neue Fertigungstechnologie angepasst, und es werden zunehmend 3D-gedruckte Bioreaktoren entwickelt. In dieser Arbeit werden erstmals die Herstellung des Gewebes und ein maßgeschneiderter Bioreaktor kombiniert, wodurch der Gesamtprozess erheblich gestrafft und beide Verfahren optimal zusammengeführt werden. Auf diese Weise kann die Herstellung der Gewebe individualisiert werden, indem der Reaktor an das Gewebe und die patientenspezifische Wundgeometrie angepasst wird. Aus diesem Grund wurde zunächst eine gemeinsame Basis und Leitlinie für den Geräte- und Materialübergreifenden Einsatz von 3D-Druckern geschaffen. Deren Anwendbarkeit wurde durch die iterative Entwicklung eines perfundierbaren Bioreaktorsystems aus Polydimethylsiloxan (PDMS) und einem Lignin-basierten Filament demonstriert, in das ein biologisches Gewebe mit flexibler Form gedruckt werden kann. Kostengünstige Biotintenalternativen und emph in silico Computational Fluid Dynamics Simulationen wurden für eine materialschonende Formentwicklung verwendet. Nährstoffverteilung und Scherspannung konnten auf diese Weise präexperimentell vorhergesagt werden. Als Beweis für die Funktionalität und Anpassbarkeit des Reaktors wurden Gewebe aus einer Cellink® Bioink auf Nanocellulosebasis sowie einer Tinte auf Alginatbasis, welche mit Me-PMeOx100-b-PnPrOzi100-EIP (POx) gemischt wurde (Alginat-POx-Bioink), erfolgreich zusammen mit C2C12-Zelllinie dynamisch im Reaktor kultiviert. Die Gewebereifung wurde außerdem mit hMSC demonstriert, die erfolgreich zur adipozyten Differenzierung induziert wurden. Zur weiteren Standardisierung wurde ein mobiles elektrisches Gerät für den automatischen Medienwechsel entwickelt, welches die Handhabung im Labor verbessert und damit die Wahrscheinlichkeit einer Kontamination deutlich verringert. KW - 3 D bioprinting KW - Tissue Engineering KW - Bioreactor Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-280190 ER - TY - THES A1 - Malkmus, Christoph T1 - Establishment of a 3D \(in\) \(vitro\) skin culture system for the obligatory human parasite \(Onchocerca\) \(volvulus\) T1 - Etablierung eines 3D-\(in\)-\(vitro\)-Hautkultursystems für den obligat humanen Parasiten \(Onchocerca\) \(volvulus\) N2 - Onchocerciasis, the world's second-leading infectious cause of blindness in humans –prevalent in Sub-Saharan Africa – is caused by Onchocerca volvulus (O. volvulus), an obligatory human parasitic filarial worm. Commonly known as river blindness, onchocerciasis is being targeted for elimination through ivermectin-based mass drug administration programs. However, ivermectin does not kill adult parasites, which can live and reproduce for more than 15 years within the human host. These impediments heighten the need for a deeper understanding of parasite biology and parasite-human host interactions, coupled with research into the development of new tools – macrofilaricidal drugs, diagnostics, and vaccines. Humans are the only definitive host for O. volvulus. Hence, no small-animal models exist for propagating the full life cycle of O. volvulus, so the adult parasites must be obtained surgically from subcutaneous nodules. A two-dimensional (2D) culture system allows that O. volvulus larvae develop from the vector-derived infective stage larvae (L3) in vitro to the early pre-adult L5 stages. As problematic, the in vitro development of O. volvulus to adult worms has so far proved infeasible. We hypothesized that an increased biological complexity of a three-dimensional (3D) culture system will support the development of O. volvulus larvae in vitro. Thus, we aimed to translate crucial factors of the in vivo environment of the developing worms into a culture system based on human skin. The proposed tissue model should contain 1. skinspecific extracellular matrix, 2. skin-specific cells, and 3. enable a direct contact of larvae and tissue components. For the achievement, a novel adipose tissue model was developed and integrated to a multilayered skin tissue comprised of epidermis, dermis and subcutis. Challenges of the direct culture within a 3D tissue model hindered the application of the three-layered skin tissue. However, the indirect coculture of larvae and skin models supported the growth of fourth stage (L4) larvae in vitro. The direct culture of L4 and adipose tissue strongly improved the larvae survival. Furthermore, the results revealed important cues that might represent the initial encapsulation of the developing worm within nodular tissue. These results demonstrate that tissue engineered 3D tissues represent an appropriate in vitro environment for the maintenance and examination of O. volvulus larvae. N2 - Onchozerkose, die weltweit zweithäufigste infektionsbedingte Ursache für Erblindung von Menschen, wird durch Onchocerca volvulus (O. volvulus) verursacht, ein parasitärer Fadenwurm. Die allgemein als Flussblindheit bekannte Onchozerkose wird mit dem Medikament Ivermectin bekämpft, das jedoch nicht die adulten Parasiten tötet, die im Menschen mehr als 15 Jahre lang leben und sich vermehren. Ein tieferes Verständnis der Biologie des Parasiten und dessen Interaktionen im menschlichen Wirt ist für die Erforschung und Entwicklung neuer Instrumente – makrofilarizide Medikamente, Diagnostika und Impfstoffe – erforderlich. Da der Mensch der einzige Endwirt für O. volvulus ist, gibt es keine Tiermodelle für dessen Vermehrung. Zu Forschungszwecken werden adulte Würmer daher chirurgisch aus subkutanen Knoten erkrankter Individuen gewonnen. Ein zweidimensionales (2D) Kultursystem ermöglicht die Entwicklung von aus dem Vektor isolierten infektiösen O. volvulus-Larven (L3) bis zu einem frühen präadulten Stadium. Als problematisch erwies sich bisher die in vitro Entwicklung von O. volvulus bis zum adulten Wurm. Unsere Hypothese ist, dass eine erhöhte biologische Komplexität des Kultursystems die Entwicklung von O. volvulus-Larven in vitro unterstützt. Daher wurden entscheidende Faktoren der in vivo-Umgebung entwickelnder Larven – die menschliche Haut – auf ein dreidimensionales (3D) Kultursystem übertragen. Dieses Kultursystem sollte 1. Haut-spezifische extrazelluläre Matrix enthalten, 2. hautspezifische Zellen und 3. einen direkten Kontakt zwischen Larven und Gewebekomponenten ermöglichen. Dafür wurde ein neuartiges Fettgewebemodell entwickelt, das in ein mehrschichtiges Hautgewebe integriert wurde – bestehend aus Epidermis, Dermis und subkutanem Fettgewebe. Die Anwendung des dreischichtigen Hautgewebes als direktes Kultursystem wurde durch technische Herausforderungen verhindert. Jedoch unterstützte die indirekte Ko-Kultur von Hautmodellen das Wachstum der Larven (L4) in vitro. Die direkte Kultur mit dem Fettgewebemodell verbesserte die Viabilität der Larven signifikant. Darüber hinaus konnten Anzeichen für eine beginnende Verkapselung der Larven durch humane Zellen und Matrix gezeigt werden kann. Die Ergebnisse demonstrieren, dass humane Gewebemodelle eine angemessene in vitro-Umgebung für die Kultur und die Erforschung von O. volvulus darstellen. KW - Tissue Engineering KW - Humanparasitologie KW - In-vitro-Kultur KW - Onchozerkose KW - Multilayered skin tissue model KW - Onchocerca volvulus KW - Skin Tissue Engineering KW - Parasitology Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-317171 ER - TY - THES A1 - Kupczyk, Eva Katharina T1 - Charakterisierung von Zellen aus dem vorderen Kreuzband nach Vorderer- Kreuzband-Ruptur im Hinblick auf das Rupturalter T1 - Characterisation of cells isolated from the ruptured anterior cruciate ligament in regard to the time since rupture N2 - Die Vordere Kreuzband (VKB)-Ruptur ist eine häufige Verletzung, welche eine hohe individuelle und sozioökonomische Belastung verursacht. Eine etablierte Therapie ist die VKB-Plastik, problematisch sind jedoch die hohen Rerupturraten nach operativer Versorgung. In der Annahme, dass Mesenchymale Stammzellen (MSC) eine bedeutende Rolle für die Heilung spielen, sollte in der vorliegenden Arbeit untersucht werden, ob ein Zusammenhang zwischen Zahl und Qualität der aus dem VKB isolierten MSC sowie der Latenz zwischen Ruptur und Rekonstruktion besteht und so ein optimaler Therapiezeitraum eingegrenzt werden kann. Zunächst erfolgte die Zellisolierung aus intraoperativ gewonnenen VKB-Biopsien. Je nach Latenz zwischen Ruptur und Operation wurden drei Gruppen (akute ≙ ≤ 30 d, subakute ≙ 31-90 d, verzögerte Rekonstruktion ≙ > 90 d) gebildet. Zum Nachweis von MSC wurden die Zellen hinsichtlich ihrer Plastikadhärenz, eines multipotenten Differenzierungspotentials sowie eines spezifischen Oberflächenantigenmusters (CD73+, CD90+, CD105+, CD34-) untersucht. Zudem wurde ihr Einflusses auf die biomechanischen und histologischen Eigenschaften eines analysiert. Der Nachweis von MSC war in allen Gruppen möglich. Das Proliferationspotential war in Gruppe II am größten, ebenso der Anteil der MSC an allen Zellen. Er war 5,4% (4,6% - 6,3%, 95% CI; p < 0,001) höher als in Gruppe I und 18,9% (18,2% - 19,6%, 95% CI; p < 0,001) höher als in Gruppe III. In den mit Zellen kultivierten Bandkonstrukten konnte im Gegensatz zu zellfreien Konstrukten humanes Kollagen I nachgewiesen werden. Die Stabilität nahm bei Kultivierung mit Zellen ab. Die Ergebnisse legen nahe, dass das Regenerationspotential bei subakuter VKB-Rekonstruktion (31-90 d) am höchsten ist. Potenziell ursächlich sind die Regeneration hemmende Entzündungsprozesse zu Beginn sowie degenerative Prozesse im längerfristigen Verlauf. Zudem konnte gezeigt werden, dass die isolierten Zellen die Eigenschaften eines Bandkonstruktes durch Bildung von Kollagen I und Reduktion der Stabilität im kurzfristigen Verlauf verändern und dementsprechend den Therapieerfolg beeinflussen könnten. Zur Verifizierung der Ergebnisse bedarf es weiterer Untersuchungen. N2 - A ruptured Anterior Cruciate Ligament (ACL) can significantly impact an individual’s health and cause great socioeconomic repercussions. Despite a well-established surgical treatment, the rate of secondary rupture remains high. Previous research has highlighted the important role of Mesenchymal Stem Cells (MSC) in ligament regeneration. This study sets out to analyse possible correlations between the quality and quantity of MSC and the time between rupture and repair, and thus defining the optimal time for surgery. Cells were isolated from ACL biopsies gained intraoperatively. Three groups (acute ≙ ≤ 30d, subacute ≙ 31-90d and delayed reconstruction ≙ > 90d) were defined based on the time from trauma to surgery. To prove the presence of MSC the cells were analysed for proliferative capacity, adherence to plastic, multilineage differentiation potential, as well as the presence of specific surface antigens (CD73+, CD90+, CD105+ and CD34-). The cells’ ability to support healing was assessed through biomechanical tests and histological analysis of ligament models created using isolated ACL cells and a rat collagen type I-based scaffold. Cells that fulfil MSC criteria were isolated in all three groups. In the subacute reconstruction group the proportion of cells which fulfilled the criteria was 5.4% (4,6% - 6,3%, 95% CI; p < 0,001) higher than in the acute reconstruction group and 18.9% (18,2% - 19,6%, 95% CI; p < 0,001) higher than in the delayed reconstruction group. Human collagen I could be isolated in ligament models cultivated using ACL cells. However, the stability of the ligament models decreased after cell cultivation. The results described above suggest that the potential for regeneration is highest in the subacute reconstruction group. This may be because the post traumatic inflammation slows regeneration, while degenerative processes set in in the weeks to months following the rupture. The fact that the presence of human collagen I in the ligament models was associated with decreased stability suggests that the concentration of MSC can affect the surgical outcome. More research into the subject is required to further explore these preliminary findings. KW - Ligamentum cruciatum anterius KW - Tissue Engineering KW - Zellkultur KW - Kollagen KW - Stammzelle KW - Mesenchymale Stammzellen KW - Vorderes Kreuzband KW - Anterior Cruciate Ligament KW - Mesenchymal Stem Cell KW - colllagen Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-280568 ER - TY - THES A1 - Poker, Konrad Felix T1 - Vergleichende in vitro-Charakterisierung des Differenzierungspotentials humaner mesenchymaler Stromazellen aus verschiedenen Geweben des Kniegelenkes von Patientinnen mit Gonarthrose T1 - Comparison of the in vitro characterisation of the differentiation potential of human mesenchymal stromalcells derived from various tissus of the knee from patients with gonarthosis N2 - Humane mesenchymale Stromazellen (hMSCs) sind Interessengebiet der Forschung im Bereich des Tissue Engineering und werden häufig in Bezug auf Knorpelregeneration untersucht. Hierbei sind bereits mehrere potentielle Quellen nachgewiesen worden. Fokus dieser Disseration war die Vergleichende in vitro-Charakterisierung des Differenzierungspotentials von hMSCs von sechs verschiedenen Geweben des Kniegelenkes bei Patientinnen mit Gonarthrose um zu erforschen, welches Gewebe das meiste Potential für eine mögliche Extraktion von hMSCs birgt. Hierfür wurden Zellen aus der Spongiose, dem Knorpelgewebe, des vorderen Kreuzbandes, der Menisken, der Synovialmebran sowie des Hoffa’schen Fettkörpers von fünf verschiedenen Spenderinnen isoliert und apidogen, osteogen sowie chondrogen differenziert sowie anschließend histologisch, immunhistochemisch und molekularbiologisch untersucht und die Ergebnisse miteinander verglichen. Hierbei wurde die zunächst der Nachweis erbracht, dass es sich bei allen Zellen um hMSCs handelt sowie anschließend gezeigt, dass alle Zellen ein multipotentes Differenzierungspotential aufweisen. Während kein statistisch relevanter Nachweis erbracht werden konnte, dass eine Zellquelle hierbei überlegen ist, scheinen die Zellen der Spongiosa sowie der Synovialmembran das vielversprechendste Potential zu bieten und eigenen sich somit als Quelle für weitere Forschung. N2 - Human mesenchymal stromal cells (hMSCs) are a subject of interest in tissue engineering research and are often investigated in regard to cartialage regerenation. However no superior potential cell source has been found up to now. The aim of this study was to characterise the in vitro differentiation potential of hMSCs of six different tissues of the knee derived from patients with gonarthrosis and therefore to investigate which cell origin is showing the highest extraction potential. From five different female patients the cells of the bone marrow, the cartialage, the anterior cruciate ligament, the menisci, the synovial membrane and the infrapatellar fatty body were isolated and investigated using histological, immunhistochemical and molecular biological methods. Afterwards those findings were compared for further investigation. The study proved that all isolated cells were hMSCs and that all cells showed multipotent differentiation potential. While no statistically relevant superiority of either cell line could be proven it seemed that the cells extracted from the bone marrow and the synovial membrane did show the highest potential of being a promising source for further investigations. KW - Tissue Engineering KW - Kniegelenkarthrose KW - Mesenchymale Stromazellen KW - Knorpelregeneration KW - mesenchymal stromal cells KW - cartilage regeneration Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-302930 ER - TY - THES A1 - Nadolinski, Annemarie T1 - Einfluss des extrusionsbasierten 3D-Drucks von Einzelzellen und Sphäroiden in Alginat-Gelatine-Hydrogelen auf die chondrogene Differenzierung humaner mesenchymaler Stromazellen T1 - Impact of extrusion-based 3D printing of single cells and spheroids in alginate-gelatin hydrogels on chondrogenic differentiation of human mesenchymal stromal cells N2 - Knorpeldefekte gelten in der Medizin als besonders schwierig zu beheben, da das avaskuläre und aneurale hyaline Knorpelgewebe nur über sehr begrenzte Selbstheilungskräfte verfügt. Die Entwicklung neuer klinischer Therapien für eine erfolgreiche Regeneration bis hin zum vollständigen Ersatz von beschädigtem oder erkranktem Knorpel stellt daher das Ziel umfangreicher Forschung dar. Darüber hinaus zeichnet sich Knorpel durch eine organisierte, zonale Zell-Matrix-Verteilung und -Dichte aus, die möglichst naturgetreu nachgebildet werden muss, um einen adäquaten Gelenkknorpelersatz zu schaffen. Das dreidimensionale Bioprinting von humanen mesenchymalen Stromazellen (hMSCs) in Hydrogelen ist hierbei ein vielversprechender Ansatz. Es sind jedoch umfangreiche Studien erforderlich, um herauszufinden, wie 3D-Stammzellkonstrukte mit unterschiedlichen Zelldichten und Zell-Zell-Wechselwirkungen in einer gedruckten Hydrogel Matrix interagieren. Deshalb wurde in dieser Arbeit untersucht, ob die mesenchymalen Stromazellen in Form von Einzelzellen oder Sphäroiden durch das Extrusionsdruckverfahren in ihrer Proliferationsfähigkeit und ihrem chondrogenen Differenzierungspotential beeinträchtigt werden. Hierfür wurden in dieser Arbeit sowohl das Zellüberleben als auch Proliferations- und Differenzierungsmarker in gedruckten und nicht gedruckten Proben mit Einzelzellkonzentrationen von 2-20 Millionen Zellen sowie bei Sphäroiden mit ca 4000 Zellen/Sphäroid untersucht. Es konnte gezeigt werden, dass das extrusionsbasierte Druckverfahren keine negativen Auswirkungen auf die Überlebensfähigkeit und die Proliferation der hMSCs hat. Zum Nachweis der chondrogenen Differenzierung wurden mehrere Experimente durchgeführt. Durch die Expression von Typ-II-Kollagen und Aggrecan sowie durch die Quantifizierung von GAG welches zu einem großen Teil in der ECM von Knorpelgewebe zu finden ist, konnte bestätigt werden, dass die mesenchymalen Stromazellen durch den Druckprozess ihr chondrogenes Differenzierungspotential nicht einbüßen. Die beim 3D-Bioprinting auftretenden Scherkräfte scheinen die in-vitro Chondrogenese sogar ohne chemische Stimulation durch TGF-β1 anzustoßen. Außerdem zeigten die Sphäroidgruppen ein höheres chondrogenes Differenzierungspotential als die Einzelzellgruppen. Um dies im Zusammenhang mit dem 3D Extrusionsdruckverfahren zu bestätigen, erscheint es sinnvoll, weitere Versuche mit noch höheren Zellkonzentrationen in Form von Sphäroiden durchzuführen. Zusammenfassend zeigte sich in dieser Arbeit, dass das extrusionsbasierte Druckverfahren in Alginat/Gelatine Hydrogelen keine Zellschädigung verursacht und weder die chondrogene Differenzierung von Einzelzellen noch von Sphäroiden beeinträchtigt. N2 - Cartilage defects are considered particularly difficult to repair in medicine, since avascular and aneural hyaline cartilage tissue has only very limited self-healing capabilities. The development of new clinical therapies for successful regeneration to complete replacement of damaged or diseased cartilage therefore represents the goal of extensive research. In addition, cartilage is characterized by an organized, zonal cell-matrix distribution and density that must be replicated as closely as possible to nature in order to create an adequate articular cartilage replacement. Three-dimensional bioprinting of human mesenchymal stromal cells (hMSCs) in hydrogels is a promising approach in this regard. However, extensive studies are needed to determine how 3D stem cell constructs interact with different cell densities and cell-cell interactions in a printed hydrogel matrix. Therefore, this work investigated whether the mesenchymal stromal cells in the form of single cells or spheroids are affected in their proliferative capacity and chondrogenic differentiation potential by the extrusion printing process. For this purpose, cell survival as well as proliferation and differentiation markers were investigated in this work in printed and non-printed samples with single cell concentrations of 2-20 million cells and in spheroids with approximately 4000 cells/spheroid. It was shown that the extrusion-based printing process had no negative effects on the survival and proliferation of hMSCs. Several experiments were performed to demonstrate chondrogenic differentiation. By expressing type II collagen and aggrecan and quantifying GAG which is largely found in the ECM of cartilage tissue, it was confirmed that the mesenchymal stromal cells do not lose their chondrogenic differentiation potential by the printing process. The shear forces involved in 3D bioprinting appear to trigger in vitro chondrogenesis even without chemical stimulation by TGF-β1. In addition, the spheroid groups showed a higher chondrogenic differentiation potential than the single cell groups. To confirm this in the context of the 3D extrusion printing process, it seems reasonable to perform further experiments with even higher cell concentrations in the form of spheroids. In summary, this work showed that the extrusion-based printing process in alginate/gelatin hydrogels does not cause cell damage and does not affect the chondrogenic differentiation of either single cells or spheroids. KW - Tissue Engineering KW - Bioprinting KW - Mesenchymale Stromazellen Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-280472 ER - TY - THES A1 - Rampeltshammer, Eva Maria T1 - Etablierung eines 3D Gewebemodells für die translationale Forschung am Malignen Pleuramesotheliom T1 - Establishment of a 3-dimensional human tissue model to study the malignant pleural mesothelioma N2 - Einleitung: Das maligne Pleuramesotheliom (MPM) ist ein aggressiver von den Mesothelzellen der Pleura ausgehender Tumor, der in der Regel Folge einer Exposition mit Asbest ist. Aufgrund der häufig für ein chirurgisches Vorgehen zu späten Diagnose und des nur unzureichenden Ansprechens des Tumors auf Chemotherapie und Bestrahlung ist die Prognose sehr schlecht. Die präklinische Entwicklung und Testungen neuer Wirkstoffe ist aufgrund eines Mangels an geeigneten in vivo und in vitro Modellen für die biomedizinische Forschung schwierig. Das Ziel der vorliegenden Arbeit war der Aufbau eines 3D Gewebemodells, das die physiologischen Wachstumsverhältnisse und die Tumormikroumgebung des MPM wiedergibt und das als mögliches präklinisches Testmodell eingesetzt werden kann. Methoden: Zwei etablierte Zelllinien des MPM, JL-1 und MSTO-211H, wurden auf in Zellkronen eingespannten Segmenten aus azellulärem porzinen Jejunum unter statischen Kulturbedingungen und unter kontinuierlicher Perfusion in einem Bioreaktorsystem kultiviert. Die 3D Gewebemodelle wurden mit 2D Kulturmodellen des Pleuramesothelioms verglichen. Aus OP-Präparaten wurden tumor-assoziierte Fibroblasten (TAF) isoliert, die zum Aufbau von Kokulturmodellen verwendet wurden. Die Modelle wurden histologisch und immunhistologisch charakterisiert (Calretinin etc.). Ergebnisse: Die beiden verwendeten Zelllinien bildeten in der statischen Kultur ein mehrschichtiges Gewebe auf der apikalen Oberfläche der Matrix. Im Vergleich mit der 2D Kultur war ein homogeneres Wachstumsmuster der Zellen und eine erniedrigte Proliferationsrate zu beobachten. Die unter dynamischen Bedingungen kultivierten Modelle zeigten deutlich mehr Tumorzellmasse auf der Matrix. Aus Gewebebiopsien eines malignen Pleuramesothelioms von Patienten wurden TAF isoliert und damit 3D Kokulturmodelle aufgebaut. In den Kokulturmodellen migrierten die TAF in die Matrix, während die Tumorzellen weiterhin auf der apikalen Seite wuchsen. Diskussion Durch die Kombination mit einem Bioreaktorsystem, das eine bessere Nährstoffversorgung und die Erzeugung von Scherstress ermöglicht, wird das Tumorzellwachstum positiv beeinflusst. Das Wachstum primärer Zellen auf und deren Migration in die Matrix zeigt das Potential für den Aufbau patienten-spezifischer Modelle auf. Die generierten Gewebemodelle stellen eine Grundlage für gewebespezifische Weiterentwicklungen der Modelle für tumorspezifische mechanistische und letztlich auch therapeutische Fragestellungen dar. N2 - Introduction: Treatment of malignant pleural mesothelioma (MPM) remains challenging as the tumor is often diagnosed at a late stage and only inadequately responds to chemotherapy and radiation. Preclinical testing of new pharmaceutical and immunological treatment approaches proves to be difficult due to a lack of appropriate in vitro tumor models. Consequently, we aimed to establish a 3-dimensional MPM tissue model reflecting the physiological environment of the MPM. Methods: Two MPM cell lines, MSTO211H and JL-1, were cultured on a decellularized porcine scaffold (SISser) fixed in cell crowns. Culture conditions were static and dynamic applying a specially designed bioreactor set-up. Cancer associated fibroblasts (TAF) were isolated from surgical tumor specimen and co-cultured with MPM cells on the matrix. The resulting models were characterized histologically and immunhistologically (Calretinin etc). Results: Both cell lines formed multiple layers on the apical surface of the SIS after 14 days of static culture. Compared to 2D culture the cells grew more homogeneously and the proliferation rate declined. The models cultured in a bioreactor under dynamic conditions exhibited an increased tumor cell mass on top of the matrix. In the co-culture models, the CAFs migrated into the matrix while the tumour cells only grew on the apical side. Discussion: Dynamic 3D-culture conditions provide a microenvironment similar to in vivo conditions for MPM cell lines and primary TAF to form tumor tissue in vitro. The combination of a bioreactor systems to warrant tissue nutrition and induce shear-stress paces MPM cells to show in vitro a less artificial and clinically more realistic growth pattern. MPM cell growth and TAF tissue infiltration show a potential for the generation of patient specific MPM tumor models. KW - Pleuramesotheliom KW - Tissue Engineering KW - tumormicroenvironment KW - Pleuramesotheliom Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-274656 ER - TY - THES A1 - Leikeim, Anna T1 - Vascularization Strategies for Full-Thickness Skin Equivalents to Model Melanoma Progression T1 - Vaskularisierungsstrategien für Vollhautäquivalente zur Modellierung der Melanom-Progression N2 - Malignant melanoma (MM) is the most dangerous type of skin cancer with rising incidences worldwide. Melanoma skin models can help to elucidate its causes and formation or to develop new treatment strategies. However, most of the current skin models lack a vasculature, limiting their functionality and applicability. MM relies on the vascular system for its own supply and for its dissemination to distant body sites via lymphatic and blood vessels. Thus, to accurately study MM progression, a functional vasculature is indispensable. To date, there are no vascularized skin models to study melanoma metastasis in vitro, which is why such studies still rely on animal experimentation. In the present thesis, two different approaches for the vascularization of skin models are employed with the aim to establish a vascularized 3D in vitro full-thickness skin equivalent (FTSE) that can serve as a test system for the investigation of the progression of MM. Initially, endothelial cells were incorporated in the dermal part of FTSEs. The optimal seeding density, a spheroid conformation of the cells and the cell culture medium were tested. A high cell density resulted in the formation of lumen-forming shapes distributed in the dermal part of the model. These capillary-like structures were proven to be of endothelial origin by staining for the endothelial cell marker CD31. The established vascularized FTSE (vFTSE) was characterized histologically after 4 weeks of culture, revealing an architecture similar to human skin in vivo with a stratified epidermis, separated from the dermal equivalent by a basement membrane indicated by collagen type IV. However, this random capillary-like network is not functional as it cannot be perfused. Therefore, the second vascularization approach focused on the generation of a perfusable tissue construct. A channel was molded within a collagen hydrogel and seeded with endothelial cells to mimic a central, perfusable vessel. The generation and the perfusion culture of the collagen hydrogel was enabled by the use of two custom-made, 3D printed bioreactors. Histological assessment of the hydrogels revealed the lining of the channel with a monolayer of endothelial cells, expressing the cell specific marker CD31. For the investigation of MM progression in vitro, a 3D melanoma skin equivalent was established. Melanoma cells were incorporated in the epidermal part of FTSEs, representing the native microenvironment of the tumor. Melanoma nests grew at the dermo-epidermal junction within the well stratified epidermis and were characterized by the expression of common melanoma markers. First experiments were conducted showing the feasibility of combining the melanoma model with the vFTSE, resulting in skin models with tumors at the dermo-epidermal junction and lumen-like structures in the dermis. Taken together, the models presented in this thesis provide further steps towards the establishment of a vascularized, perfusable melanoma model to study melanoma progression and metastasis. N2 - Das maligne Melanom (MM) ist die gefährlichste Form von Hautkrebs mit weltweit steigender Inzidenz. Melanom-Hautmodelle können helfen, seine Ursachen und Entstehung aufzuklären oder neue Behandlungsstrategien zu entwickeln. Den meisten bisherigen Hautmodellen fehlt jedoch ein Gefäßsystem, was ihre Funktionalität und Anwendbarkeit einschränkt. Das MM ist auf das Gefäßsystem angewiesen, sowohl für die eigene Versorgung als auch für die Ausbreitung über Lymph- und Blutgefäße zu entfernten Körperstellen. Um die Entwicklung des MM genau zu studieren, ist daher eine funktionelles Gefäßsystem unabdingbar. Bislang gibt es keine vaskularisierten Hautmodelle, um die Melanommetastasierung in vitro zu untersuchen, weshalb solche Studien immer noch auf Tierversuche angewiesen sind. In der vorliegenden Arbeit werden zwei unterschiedliche Ansätze zur Vaskularisierung von Hautmodellen mit dem Ziel verfolgt, ein vaskularisiertes 3D in vitro Vollhautmodell (full-thickness skin equivalent, FTSE) zu etablieren, das als Testsystem zur Untersuchung der Entwicklung des MM dienen kann. Einerseits wurden Endothelzellen in den dermalen Teil von FTSEs integriert. Die optimale Aussaatdichte, eine sphäroidale Konformation der Zellen und das Zellkulturmedium wurden getestet. Eine hohe Zelldichte führte zur Bildung von lumenbildenden Formen, die im dermalen Teil des Modells verteilt waren. Diese kapillarähnlichen Strukturen wurden durch Färbung für den Endothelzellmarker CD31 als endothelialen Ursprungs nachgewiesen. Das etablierte vaskularisierte FTSE (vFTSE) wurde nach 4 Wochen Kultur histologisch charakterisiert und zeigte eine der menschlichen Haut in vivo ähnliche Architektur mit einer geschichteten Epidermis, die vom dermalen Äquivalent durch eine Basalmembran, gezeigt durch Kollagen Typ IV, getrennt ist. Dieses zufällige kapillarartige Netzwerk ist jedoch nicht funktional, da es nicht durchblutet werden kann. Daher konzentrierte sich der zweite Vaskularisierungsansatz auf die Erzeugung eines perfundierbaren Gewebekonstrukts. Ein Kanal wurde in einem Kollagenhydrogel geformt und mit Endothelzellen besiedelt, um ein zentrales, perfundierbares Gefäß zu imitieren. Die Erzeugung und die Perfusionskultur des Kollagenhydrogels wurde durch die Verwendung von zwei speziell angefertigten, 3D-gedruckten Bioreaktoren ermöglicht. Die histologische Beurteilung der Hydrogele zeigte die Auskleidung des Kanals mit einer Einzelschicht von Endothelzellen, die den zellspezifischen Marker CD31 exprimieren. Für die Untersuchung der MM-Progression in vitro wurde ein 3D-Melanom-Hautäquivalent hergestellt. Melanomzellen wurden in den epidermalen Teil von FTSEs integriert, was die native Mikroumgebung des Tumors darstellt. Die Melanomnester wuchsen an der dermo-epidermalen Grenzfläche innerhalb der gut stratifizierten Epidermis und wurden durch die Expression gängiger Melanommarker charakterisiert. Zusätzlich konnte die Kombination des Melanom-Modells mit dem vFTSE gezeigt werden, was zu Hautmodellen mit Tumoren an der dermo-epidermalen Grenzfläche und lumenartigen Strukturen in der Dermis führte. Alles in allem bieten die in dieser Arbeit vorgestellten Modelle weitere Schritte hin zur Entwicklung eines vaskularisierten, perfundierbaren Melanommodell zur Erforschung der Melanomprogression und Metastasierung. KW - Tissue Engineering KW - In-vitro-Kultur KW - Melanom KW - skin model KW - vascularization KW - in vitro-Testsystem KW - perfused hydrogel Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-272956 ER - TY - THES A1 - Fey, Christina T1 - Establishment of an intestinal tissue model for pre-clinical screenings T1 - Etablierung eines Darmgewebemodells für Präklinische Screenings N2 - The small intestine represents a strong barrier separating the lumen from blood circulation thereby playing a major role in the absorption and the transport of pharmacological agents prior to their arrival on the respective target site. In order to gain more knowledge about specialized uptake mechanisms and risk assessment for the patient after oral admission of drugs, intestinal in vitro models demonstrating a close similarity to the in vivo situation are needed. In the past, cell line-based in vitro models composed of Caco-2 cells cultured on synthetic cell carriers represented the “gold standard” in the field of intestinal tissue engineering. Expressive advantages of these models are a reproducible, cost-efficient and standardized model set up, but cell function can be negatively influenced by the low porosity or unwanted molecular adhesion effects of the artificial scaffold material. Natural extracellular matrices (ECM) such as the porcine decellularized small intestinal submucosa (SIS) are used as alternative to overcome some common drawbacks; however, the fabrication of these scaffolds is time- and cost-intensive, less well standardized and the 3Rs (replacement, reduction, refinement) principle is not entirely fulfilled. Nowadays, biopolymer-based scaffolds such as the bacterial nanocellulose (BNC) suggest an interesting option of novel intestinal tissue engineered models, as the BNC shows comparable features to the native ECM regarding fiber arrangement and hydrophilic properties. Furthermore, the BNC is of non-animal origin and the manufacturing process is faster as well as well standardized at low costs. In this context, the first part of this thesis analyzed the BNC as alternative scaffold to derive standardized and functional organ models in vitro. Therefore, Caco-2 cells were cultured on two versions of BNC with respect to their surface topography, the unmodified BNC as rather smooth surface and the surface-structured BNC presenting an aligned fiber arrangement. As controls, Caco-2 in vitro models were set up on PET and SIS matrices. In this study, the BNC-based models demonstrated organ-specific properties comprising typical cellular morphologies, a characteristic tight junction protein expression profile, representative ultrastructural features and the formation of a tight epithelial barrier together with a corresponding transport activity. In summary, these results validated the high quality of the BNC-based Caco-2 models under cost-efficient conditions and their suitability for pre-clinical research purposes. However, the full functional diversity of the human intestine cannot be presented by Caco-2 cells due to their tumorigenic background and their exclusive representation of mature enterocytes. Next to the scaffold used for the setup of in vitro models, the cellular unit mainly drives functional performance, which demonstrates the crucial importance of mimicking the cellular diversity of the small intestine in vitro. In this context, intestinal primary organoids are of high interest, as they show a close similarity to the native epithelium regarding their cellular diversity comprising enterocytes, goblet cells, enteroendocrine cells, paneth cells, transit amplifying cells and stem cells. In general, such primary organoids grow in a 3D Matrigel® based environment and a medium formulation supplemented with a variety of growth factors to maintain stemness, to inhibit differentiation and to stimulate cell migration supporting long term in vitro culture. Intestinal primary spheroid/organoid cultures were set up as Transwell®-like models on both BNC variants, which resulted in a fragmentary cell layer and thereby unfavorable properties of these scaffold materials under the applied circumstances. As the BNC manufacturing process is highly flexible, surface properties could be adapted in future studies to enable a good cell adherence and barrier formation for primary intestinal cells, too. However, the application of these organoid cultures in pre-clinical research represents an enormous challenge, as the in vitro culture is complex and additionally time- and cost-intensive. With regard to the high potential of primary intestinal spheroids/organoids and the necessity of a simplified but predictive model in pre-clinical research purposes, the second part of this thesis addressed the establishment of a primary-derived immortalized intestinal cell line, which enables a standardized and cost-efficient culture (including in 2D), while maintaining the cellular diversity of the organoid in vitro cultures. In this study, immortalization of murine and human intestinal primary organoids was induced by ectopic expression of a 10- (murine) or 12 component (human) pool of genes regulating stemness and the cell cycle, which was performed in cooperation with the InSCREENeX GmbH in a 2D- and 3D-based transduction strategy. In first line, the established cell lines (cell clones) were investigated for their cell culture prerequisites to grow under simplified and cost-efficient conditions. While murine cell clones grew on uncoated plastic in a medium formulation supplemented with EGF, Noggin, Y-27632 and 10% FCS, the human cell clones demonstrated the necessity of a Col I pre coating together with the need for a medium composition commonly used for primary human spheroid/organoid cultures. Furthermore, the preceding analyses resulted in only one human cell clone and three murine cell clones for ongoing characterization. Studies regarding the proliferative properties and the specific gene as well as protein expression profile of the remaining cell clones have shown, that it is likely that transient amplifying cells (TACs) were immortalized instead of the differentiated cell types localized in primary organoids, as 2D, 3D or Transwell®-based cultures resulted in slightly different gene expression profiles and in a dramatically reduced mRNA transcript level for the analyzed marker genes representative for the differentiated cell types of the native epithelium. Further, 3D cultures demonstrated the formation of spheroid-like structures; however without forming organoid-like structures due to prolonged culture, indicating that these cell populations have lost their ability to differentiate into specific intestinal cell types. The Transwell®-based models set up of each clone exhibit organ-specific properties comprising an epithelial-like morphology, a characteristic protein expression profile with an apical mucus-layer covering the villin-1 positive cell layer, thereby representing goblet cells and enterocytes, together with representative tight junction complexes indicating an integer epithelial barrier. The proof of a functional as well as tight epithelial barrier in TEER measurements and in vivo-like transport activities qualified the established cell clones as alternative cell sources for tissue engineered models representing the small intestine to some extent. Additionally, the easy handling and cell expansion under more cost-efficient conditions compared to primary organoid cultures favors the use of these newly generated cell clones in bioavailability studies. Altogether, this work demonstrated new components, structural and cellular, for the establishment of alternative in vitro models of the small intestinal epithelium, which could be used in pre-clinical screenings for reproducible drug delivery studies. N2 - Der Dünndarm bildet eine starke Barriere aus, welche das Lumen vom Blutkreislauf trennt, und dadurch maßgeblich an der Absorption und dem Transport von pharmakologischen Wirkstoffen beteiligt ist, bevor diese ihren Wirkort erreichen. Um ein detaillierteres Wissen über die speziellen Aufnahmemechanismen zu erlangen und zur Risikoabschätzung für den Patienten nach oraler Aufnahme dieser Medikamente, sind intestinale in vitro Modelle erforderlich, die eine große Ähnlichkeit mit der Situation in vivo aufweisen. In der Vergangenheit stellten Caco-2 Zelllinien-basierte in vitro Modelle, die auf synthetischen Trägerstrukturen aufgebaut sind, den „Goldstandard“ auf dem Gebiet der intestinalen Geweberekonstruktion dar. Bedeutende Vorteile dieser Modelle sind der reproduzierbare, kosteneffiziente und standardisierte Modellaufbau, jedoch können die zellulären Funktionen durch die geringe Porosität oder die unerwünschten molekularen Adhäsionseffekte des künstlichen Trägermaterials negativ beeinflusst werden. Um einige häufige Nachteile zu überwinden werden natürliche extrazelluläre Matrizen (ECM) wie die porzine dezellularisierte Dünndarm-submukosa (SIS) verwendet, jedoch ist die Herstellung dieser Trägerstrukturen zeit- und kostenintensiv, weniger gut standardisiert und entspricht nicht ganzheitlich dem 3R-Prinzip (Replace = Vermeiden, Reduce = Verringern, Refine = Verbessern). Heutzutage ermöglichen biopolymer-basierte Trägerstrukturen wie die bakterielle Nanozellulose (BNC) die Entwicklung von neuartigen intestinalen Gewebemodellen, da die BNC eine große Ähnlichkeit hinsichtlich der Faseranordnung und der hydrophilen Eigenschaften mit der nativen ECM aufweist. Darüber hinaus ist die BNC nicht tierischen Ursprungs und der Herstellungsprozess schneller, gut standardisiert als auch kostengünstig. In diesem Zusammenhang wurde im ersten Teil dieser Arbeit nachgewiesen, dass die BNC als alternative Trägerstruktur für standardisierte und funktionelle Organmodelle in vitro geeignet ist. Dafür wurden Caco-2 Zellen auf zwei Varianten der BNC kultiviert, die sich in ihrer Oberflächentopographie unterscheiden, wobei die nicht-modifizierte BNC eine glatte Oberfläche und die oberflächen-strukturierte BNC eine ausgerichtete Faseranordnung aufweist. Als Kontrollen dienten Caco 2 zellbasierte in vitro Modelle, die auf PET- oder SIS Matrizes aufgebaut wurden. In dieser Studie wiesen die BNC-basierten Modelle die wichtigsten organ-spezifischen Eigenschaften auf, darunter eine typische zelluläre Morphologie, ein charakteristisches Expressionsprofil der Tight Junction Proteine, repräsentative ultrastrukturelle Merkmale und die Bildung einer dichten epithelialen Barriere verbunden mit einer entsprechenden Transportaktivität. Zusammenfassend bestätigten diese Ergebnisse die hohe Qualität der BNC-basierten Caco-2 Modelle unter kosteneffizienten Herstellbedingungen und ihre Eignung für präklinische Forschungszwecke. Allerdings kann die volle Funktionsvielfalt des menschlichen Darms durch Caco-2 Zellen aufgrund ihres kanzerogenen Ursprungs und der exklusiven Repräsentanz von Enterozyten nicht abgebildet werden. Neben der Trägerstruktur die für den Aufbau der in vitro Modelle verwendet wird, trägt auch die zelluläre Einheit zur Etablierung von funktionalen Modellen bei, weshalb es von großer Bedeutung ist, die zelluläre Vielfalt des Dünndarms in diesen Modellen in vitro nachzuahmen. In diesem Zusammenhang sind die primären intestinalen Organoide, die sich hauptsächlich aus Enterozyten, Becherzellen, enteroendokrinen Zellen, Paneth Zellen, Vorläuferzellen und Stammzellen zusammensetzen, von großem Interesse, da die zelluläre Komponente eine große Ähnlichkeit zum nativen Epithel aufweist. Derartige primäre Organoide werden üblicherweise in einer 3D-Matrigel® Umgebung und einer speziellen Formulierung des Mediums, die mit einer Vielzahl an Wachstumsfaktoren ergänzt wird, um das Stammzellpotenzial zu erhalten, die Differenzierung zu hemmen, die Zellmigration zu stimulieren und somit eine langfristige in vitro-Kultivierung zu unterstützt. Intestinale primäre Sphäroid-/Organoidkulturen wurden auf beiden BNC Varianten als Transwell®-ähnliche Modelle aufgebaut. Dabei zeigte sich eine fragmentierte Zellschicht was darauf schließen lässt, dass die Matrix unter diesen Bedingungen für den Modellaufbau ungeeignet ist. Da der BNC-Herstellungsprozess sehr flexibel ist, könnten die Oberflächen-eigenschaften in zukünftigen Studien angepasst werden, um so eine gute Zelladhäsion auch für primäre Darmzellen zu ermöglichen. Die Anwendung dieser Organoid-basierten Kulturen stellt jedoch für die präklinische Forschung eine enorme Herausforderung dar, da die Kultivierung komplex und zudem sehr zeit- und kosten-intensiv ist. Im Hinblick auf das hohe Potenzial der primären intestinalen Sphäroide/Organoide und der Notwendigkeit eines vereinfachten aber prädiktiven Modells für präklinische Forschungs-zwecke, befasste sich der zweite Teil der Arbeit mit der Etablierung einer primären immortalisierten intestinalen Zelllinie, die eine standardisierte und kosteneffiziente Kultur ermöglicht, wobei die zelluläre Vielfalt der in vitro Organoid-Kulturen erhalten bleibt. In dieser Studie wurden primäre Organoide aus dem murinen und dem menschlichen Dünndarm durch die ektopische Expression eines 10- (murin) bzw. 12 Komponenten (human) Pools von Genen, welche im Hinblick auf die Regulation der Stammzellen und dem Zellzyklus bekannt sind, in Zusammenarbeit mit der InSCREENeX GmbH in einer 2D- und 3D-basierten Transduktionsstrategie immortalisiert. In erster Linie wurden die etablierten Zelllinien (Zellklone) auf ihren Bedarf an Wachstumsfaktoren für die Kultivierung unter vereinfachten und kosteneffizienten Bedingungen hin untersucht. Während die murinen Zellklone auf unbeschichteten Kunststoff in einer Mediumformulierung mit hEGF, mNoggin, Y-27632 und 10% FCS wuchsen, zeigten die humanen Zellklone eine Notwendigkeit für eine Col I-Vorbeschichtung zusammen mit einer Zusammensetzung des Mediums, wie sie üblicherweise für primäre humane Sphäroide/Organoide verwendet wird. Darüber hinaus führten diese vorangegangenen Analysen dazu, dass nur ein humaner Zellklon und drei murine Zellklone umfänglich charakterisiert wurden. Studien zu proliferativen Eigenschaften und spezifischen Gen- sowie Proteinexpressionsprofilen dieser Klone haben gezeigt, dass vermutlich Vorläuferzellen (TACs) anstelle der differenzierten Zelltypen der primären Organoide immortalisiert wurden, da die Kultivierung in 2D, 3D oder in Transwell®-basierten Modellen zu einem geringfügig veränderten Genexpressionsprofil im Vergleich untereinander und zudem zu einem stark reduzierten mRNA-Transkriptionswert für die analysierten Markergene, welche die differenzierten Zelltypen des nativen Epithels repräsentieren, die Folge war. Weiterhin zeigte die 3D-Kultivierung die Bildung von Sphäroid-ähnlichen Strukturen, jedoch keine Organoid-ähnlichen Strukturen unter verlängerten Kultur-bedingungen, was darauf hinweist, dass diese Zellpopulationen ihre Eigenschaft zur Differenzierung hin zu spezifischen intestinalen Zelltypen eingebüßt haben. Die Transwell®-basierten Modelle, welche für jeden Klon etabliert wurden, weisen zudem Organ-spezifische Eigenschaften auf, wie eine epitheliale Morphologie, ein charakteristisches Protein-expressionsprofil mit einer apikalen Schleimschicht, welche den Villin-1 positiven Zelllayer bedeckt und somit den Nachweis erbringt, dass die entstandenen immortalisierten Zellpopulationen zu einem gewissen Anteil aus Becherzellen und Enterozyten bestehen. Zudem konnten repräsentative Tight-Junction Komplexe, die auf eine dichte epitheliale Barriere hinweisen, in entsprechenden Proteinexpressionsprofilanalysen nachgewiesen werden. Der Nachweis einer sowohl dichten als auch funktionellen epithelialen Barriere konnte weitergehend durch TEER-Messungen und in vivo-ähnliche Transportmechanismen für die etablierten Zellklone qualifiziert werden, wodurch diese Zellen als alternative Zellquelle für in vitro Modelle des Dünndarms verwendet werden können. Darüber hinaus begünstigt die einfache Handhabung und Zellexpansion unter kostengünstigeren Bedingungen im Vergleich zu primären Organoidkulturen den Einsatz dieser neu-generierten Zellklone für Bioverfügbarkeits-Studien. Zusammenfassend zeigte diese Arbeit neue Komponenten, strukturelle und zelluläre, für die Etablierung alternativer in vitro-Modelle des Dünndarmepithels, die in präklinischen Screenings für reproduzierbare Studien hinsichtlich der Medikamententestung verwendet werden können. KW - Dünndarm KW - In vitro KW - Tissue Engineering KW - intestinal in vitro model KW - bacterial nanocellulose KW - primary-cell-derived immortalized cell line KW - in vitro Modelle KW - Bakterielle Nanocellulose KW - Primär-basierte immortalisierte Zelllinie Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-244107 ER - TY - THES A1 - Weigel [geb. Schneider], Verena T1 - Entwicklung eines \(in\) \(vitro\) Modells für Verbrennungen ersten Grades zur Testung einer zellbasierten Wundauflage T1 - Development of an \(in\) \(vitro\) model for first degree burn wounds to test a cell based wound dressing N2 - Mit jährlich circa 11 Millionen Fällen weltweit, stellen schwere Brandwunden bis heute einen großen Anteil an Verletzungen dar, die in Kliniken behandelt werden müssen. Während leichte Verbrennungen meist problemlos heilen, bedarf die Behandlung tieferer Verbrennungen medizinischer Intervention. Zellbasierte Therapeutika zeigen hier bereits große Erfolge, aufgrund der eingeschränkten Übertragbarkeit von Ergebnissen aus Tiermodellen ist jedoch sowohl die Testung neuer Produkte, als auch die Erforschung der Wundheilung bei Brandwunden noch immer schwierig. Aufgrund dessen wurden in dieser Arbeit zwei Ziele verfolgt: Die Etablierung von Methoden, um ein zellbasiertes Therapeutikum produzieren zu können und die Entwicklung eines Modells zur Untersuchung von Verbrennungswunden. Zunächst wurden hierfür die Kulturbedingungen und -protokolle zur Isolation und Expansion von Keratinozyten so angepasst, dass sie gängigen Regularien zur Produktion medizinischer Produkte entsprechen. Hier zeigten die Zellen auch in anschließenden Analysen, dass charakteristische Merkmale nicht verloren hatten. Darüber hinaus gelang es, die Zellen mithilfe verschiedener protektiver Substanzen erfolgreich einzufrieren und zu konservieren. Des Weiteren konnte ein Modell etabliert werden, das eine Verbrennung ersten Grades widerspiegelt. Über einen Zeitraum von zwei Wochen wurde seine Regeneration hinsichtlich verschiedener Aspekte, wie der Histomorphologie, dem Metabolismus und der Reepithelialisierungsrate, untersucht. Die Modelle zeigten hier viele Parallelen zur Wundheilung in vivo auf. Um die Eignung der Modelle zur Testung von Wirkstoffen zu ermitteln wurde außerdem eine Behandlung mit 5% Dexpanthenol getestet. Sie resultierte in einer verbesserten Histomorphologie und einer erhöhten Anzahl an proliferativen Zellen in den Modellen, beschleunigte jedoch die Reepithelialisierung nicht. Zusammengefasst konnten in dieser Arbeit zunächst Methoden etabliert werden, um ein medizinisches Produkt aus Keratinozyten herzustellen und zu charakterisieren. Außerdem wurde ein Modell entwickelt, anhand dessen die Wundheilung und Behandlung von Verbrennungen ersten Grades untersucht werden kann und welches als Basis zur Entwicklung von Modellen von tieferen Verbrennungen dienen kann. N2 - With approximately 11 million cases annually worldwide, severe burns still represent a large proportion of injuries requiring hospital treatment. While minor burns usually heal without problems, the treatment of deeper burns requires medical intervention. Cell-based therapeutics have already shown great success in this area, but due to the limited transferability of results from animal models, both the testing of new products and research into wound healing in burn wounds is still difficult. Due to this, two objectives were pursued in this work: The establishment of methods to enable the production of a cell-based therapeutic and the development of a model to study burn wounds. First, the culture conditions and protocols for the isolation and expansion of keratinocytes were adapted to meet common regulations for the production of medical products. The cells showed in subsequent analyses that characteristic features had not been lost. In addition, the cells were successfully frozen and preserved with the use of different protective substances. Furthermore, it was possible to establish a model that reflects a first-degree burn wound. Over a period of two weeks, the regeneration of the models was investigated with regard to various aspects, such as histomorphology, metabolism and the rate of reepithelialization. Here, the models showed many parallels to wound healing in vivo. In addition, to determine the suitability of the models for testing active ingredients, a treatment with 5% dexpanthenol was tested. It resulted in an improved histomorphology and increased numbers of proliferative cells in the models, but did not accelerate overall reepithelialization. In summary, this work initially established methods to produce and characterize a medical product from keratinocytes. In addition, an in vitro model was developed that can be used to study wound healing and treatment of first-degree burns and can serve as a basis for developing models of deeper burns. KW - Tissue Engineering KW - In-vitro-Kultur KW - Wundheilung KW - Hautverbrennung KW - Kryokonservierung KW - skin equivalent KW - in vitro model KW - burn wound KW - wound healing KW - cryokonservation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261514 ER - TY - THES A1 - Schmidt, Stefanie T1 - Cartilage Tissue Engineering – Comparison of Articular Cartilage Progenitor Cells and Mesenchymal Stromal Cells in Agarose and Hyaluronic Acid-Based Hydrogels T1 - Tissue Engineering von Knorpel – Vergleich von Gelenkknorpel-Vorläuferzellen und mesenchymalen Stromazellen in Agarose- und Hyaluronsäure-basierten Hydrogelen N2 - Articular cartilage damage caused by sports accidents, trauma or gradual wear and tear can lead to degeneration and the development of osteoarthritis because cartilage tissue has only limited capacity for intrinsic healing. Osteoarthritis causes reduction of mobility and chronic pain and is one of the leading causes of disability in the elderly population. Current clinical treatment options can reduce pain and restore mobility for some time, but the formed repair tissue has mostly inferior functionality compared to healthy articular cartilage and does not last long-term. Articular cartilage tissue engineering is a promising approach for the improvement of the quality of cartilage repair tissue and regeneration. In this thesis, a promising new cell type for articular cartilage tissue engineering, the so-called articular cartilage progenitor cell (ACPC), was investigated for the first time in the two different hydrogels agarose and HA-SH/P(AGE-co-G) in comparison to mesenchymal stromal cells (MSCs). In agarose, ACPCs´ and MSCs´ chondrogenic capacity was investigated under normoxic (21 % oxygen) and hypoxic (2 % oxygen) conditions in monoculture constructs and in zonally layered co-culture constructs with ACPCs in the upper layer and MSCs in the lower layer. In the newly developed hyaluronic acid (HA)-based hydrogel HA-SH/P(AGE-co-G), chondrogenesis of ACPCs and MSCs was also evaluated in monoculture constructs and in zonally layered co-culture constructs like in agarose hydrogel. Additionally, the contribution of the bioactive molecule hyaluronic acid to chondrogenic gene expression of MSCs was investigated in 2D monolayer, 3D pellet and HA-SH hydrogel culture. It was shown that both ACPCs and MSCs could chondrogenically differentiate in agarose and HA-SH/P(AGE-co-G) hydrogels. In agarose hydrogel, ACPCs produced a more articular cartilage-like tissue than MSCs that contained more glycosaminoglycan (GAG), less type I collagen and only little alkaline phosphatase (ALP) activity. Hypoxic conditions did not increase extracellular matrix (ECM) production of ACPCs and MSCs significantly but improved the quality of the neo-cartilage tissue produced by MSCs. The creation of zonal agarose constructs with ACPCs in the upper layer and MSCs in the lower layer led to an ECM production in zonal hydrogels that lay in general in between the ECM production of non-zonal ACPC and MSC hydrogels. Even though zonal co-culture of ACPCs and MSCs did not increase ECM production, the two cell types influenced each other and, for example, modulated the staining intensities of type II and type I collagen in comparison to non-zonal constructs under normoxic and hypoxic conditions. In HA-SH/P(AGE-co-G) hydrogel, MSCs produced more ECM than ACPCs, but the ECM was limited to the pericellular region for both cell types. Zonal HASH/P(AGE-co-G) hydrogels resulted in a native-like zonal distribution of ECM as MSCs in the lower zone produced more ECM than ACPCs in the upper zone. It appeared that chondrogenesis of ACPCs was supported by hydrogels without biological attachment sites such as agarose, and that chondrogenesis of MSCs benefited from hydrogels with biological cues like HA. As HA is an attractive material for cartilage tissue engineering, and the HA-based hydrogel HA-SH/P(AGE-co-G) appeared to be beneficial for MSC chondrogenic differentiation, the contribution of HA to chondrogenic gene expression of MSCs was investigated. An upregulation of chondrogenic gene expression was found in 2D monolayer and 3D pellet culture of MSCs in response to HA supplementation, while gene expression of osteogenic and adipogenic transcription factors was not upregulated. MSCs, encapsulated in a HA-based hydrogel, showed upregulation of gene expression for chondrogenic, osteogenic and adipogenic differentiation markers as well as for stemness markers. In a 3D bioprinting process, using the HA-based hydrogel, gene expression levels of MSCs mostly did not change. Nevertheless, expression of three tested genes (COL2A1, SOX2, CD168) was downregulated in printed in comparison to cast constructs, underscoring the importance of closely monitoring cellular behaviour during and after the printing process. In summary, it was confirmed that ACPCs are a promising cell source for articular cartilage engineering with advantages over MSCs when they were cultured in a suitable hydrogel like agarose. The performance of the cells was strongly dependent on the hydrogel environment they were cultured in. The different chondrogenic performance of ACPCs and MSCs in agarose and HA-SH/P(AGE-co-G) hydrogels highlighted the importance of choosing suitable hydrogels for the different cell types used in articular cartilage tissue engineering. Hydrogels with high polymer content, such as the investigated HA-SH/P(AGE-co-G) hydrogels, can limit ECM distribution to the pericellular area and should be developed further towards less polymer content, leading to more homogenous ECM distribution of the cultured cells. The influence of HA on chondrogenic gene expression and on the balance between differentiation and maintenance of stemness in MSCs was demonstrated. More studies should be performed in the future to further elucidate the signalling functions of HA and the effects of 3D bioprinting in HA-based hydrogels. Taken together, the results of this thesis expand the knowledge in the area of articular cartilage engineering with regard to the rational combination of cell types and hydrogel materials and open up new possible approaches to the regeneration of articular cartilage tissue. N2 - Gelenkknorpeldefekte, die durch Sportverletzungen, Unfälle oder graduelle Abnutzung ent-stehen, können zu Degeneration des Gewebes und zur Entstehung von Arthrose führen, da Knorpelgewebe nur über eine eingeschränkte Fähigkeit zur Selbstheilung verfügt. Arthrose reduziert die Beweglichkeit und verursacht chronische Schmerzen. Sie ist vor allem bei älte-ren Menschen einer der häufigsten Gründe für körperliche Behinderung. Die zurzeit verfüg-baren operativen Behandlungsmöglichkeiten können die Symptome meist für einige Zeit lindern, aber das dabei gebildete Ersatzgewebe zeigt meistens nur eingeschränkte Funktiona-lität im Vergleich zu natürlichem gesunden Knorpelgewebe und bleibt nur für eine begrenzte Zeit stabil. Tissue Engineering von Gelenkknorpelgewebe ist ein vielversprechender Ansatz, um die Qualität des Ersatzgewebes und der Knorpelregeneration zu verbessern. Diese Arbeit untersuchte einen neuen vielversprechenden Zelltyp für das Tissue Engineering von Knorpelgewebe, sogenannte Gelenkknorpel-Vorläuferzellen (ACPCs). Diese Zellen wurden erstmals in zwei verschiedenen Hydrogelen, Agarose und HA-SH/P(AGE-co-G), mit mesenchymalen Stromazellen (MSCs) verglichen. Die chondrogene Kapazität von ACPCs und MSCs in Agarose wurde unter normoxischen (21 % Sauerstoff) und hypoxischen (2 % Sauerstoff) Bedingungen in Monokultur und zonal geschichteter Kokultur untersucht. In den zonalen Kokulturen befanden sich ACPCs in einer oberen Schicht und MSCs in einer unte-ren Schicht. In dem neu entwickelten Hyaluronsäure (HA)-basierten Hydrogel HA-SH/P(AGE-co-G) wurde die chondrogene Differenzierung von ACPCs und MSCs ebenfalls in Monokultur und in zonal geschichteter Kokultur, wie im Agarose-Hydrogel, analysiert. Außerdem wurde der Beitrag des biologisch aktiven Moleküls Hyaluronsäure zur chondro-genen Genexpression von MSCs in 2D-, 3D-Pellet- und HA-SH-Hydrogel-Kulturen unter-sucht. Diese Arbeit zeigte, dass sowohl ACPCs als auch MSCs in Agarose- und HA-SH/P(AGE-co-G)-Hydrogelen chondrogen differenzieren konnten. ACPCs produzierten im Agarose-Hydrogel ein Gewebe, das dem Gelenkknorpel ähnlicher war als das von MSCs produzierte Gewebe, da es mehr Glykosaminoglykane (GAG), weniger Typ I Kollagen und nur geringe Aktivität der Alkalinen Phosphatase (ALP) aufwies. Hypoxische Bedingungen konnten die Produktion von extrazellulärer Matrix (ECM) durch ACPCs und MSCs nicht erhöhen, aber sie verbesserten die Qualität des von MSCs produzierten Gewebes. Die Herstellung von zon-alen Agarose-Konstrukten mit ACPCs in der oberen Schicht und MSCs in der unteren Schicht führte zu einer ECM-Produktion in zonalen Hydrogelen, die im Allgemeinen zwi-schen der ECM-Produktion der ACPC-Monokultur und der MSC-Monokultur lag. Zonale Kokultur von ACPCs und MSCs führte zwar nicht zu einer erhöhten ECM-Produktion, al-lerdings beeinflussten die beiden Zelltypen sich gegenseitig und modulierten zum Beispiel die Intensitäten der Typ II und Typ I Kollagen Färbungen im Vergleich zu Monokulturen unter normoxischen und hypoxischen Bedingungen. Im HA-SH/P(AGE-co-G)-Hydrogel produzierten die MSCs mehr ECM als die ACPCs, allerdings war die Verteilung der gebilde-ten ECM bei beiden Zelltypen auf den perizellulären Bereich beschränkt. Zonale HA-SH/P(AGE-co-G)-Hydrogele führten zu einer zonalen Verteilung von ECM, die der natürli-chen Struktur von Gelenkknorpel ähnlich war, da die MSCs in der unteren Schicht mehr ECM produzierten als die ACPCs in der oberen Schicht. Anscheinend wurde die chondroge-ne Differenzierung von ACPCs von Hydrogelen unterstützt, die, so wie Agarose, keine bio-logischen Bindestellen aufwiesen, und die Chondrogenese von MSCs profitierte von Hydro-gelen mit biologischen Signalen wie HA. Da HA ein attraktives Material für Tissue Engineering von Knorpel darstellt und das HA-basierte Hydrogel HA-SH/P(AGE-co-G) anscheinend die chondrogene Differenzierung von MSCs begünstigte, wurde der Beitrag von HA zur chondrogenen Genexpression in MSCs untersucht. Eine Hochregulation der chondrogenen Genexpression ließ sich in 2D- und 3D-Pellet-Kulturen von MSCs als Reaktion auf HA beobachten, während die Genexpression von osteogenen oder adipogenen Transkriptionsfaktoren nicht hochreguliert wurde. Der Ein-schluss von MSCs in einem HA-basierten Hydrogel führte zu einer Erhöhung der Genex-pression von chondrogenen, osteogenen, adipogenen und Stemness-Markern. Ein 3D-Druck-Prozess mit dem HA-basierten Hydrogel veränderte die Genexpression von MSCs in den meisten Fällen nicht. Dennoch wurde die Expression von drei getesteten Genen (COL2A1, SOX2, CD168) in gedruckten im Vergleich zu gegossenen Konstrukten herunterreguliert. Dies unterstrich die Wichtigkeit einer genauen Kontrolle des Verhaltens der Zellen während und nach dem Druck-Prozess. Zusammenfassend ließen sich ACPCs als vielversprechender neuer Zelltyp für das Tissue Engineering von Gelenkknorpelgewebe bestätigen. ACPCs haben Vorteile gegenüber MSCs, vor allem, wenn sie in einem passenden Hydrogel wie Agarose kultiviert werden. Die Leis-tung der Zellen war stark von den verschiedenen Hydrogelen und der Umgebung beeinflusst, die diese den Zellen darboten. Die unterschiedliche chondrogene Leistung von ACPCs und MSCs in Agarose- und HA-SH/P(AGE-co-G)-Hydrogelen zeigte deutlich die übergeordnete Relevanz der Auswahl von passenden Hydrogelen für die verschiedenen Zelltypen, die im Tissue Engineering von Gelenkknorpel Verwendung finden. Hydrogele mit einem hohen Polymergehalt, wie das eingesetzte HA-SH/P(AGE-co-G)-Hydrogel, können die Verteilung der gebildeten ECM auf den perizellulären Bereich beschränken und sollten weiterentwickelt werden, um einen niedrigeren Polymergehalt und damit eine homogenere ECM-Verteilung durch die kultivierten Zellen zu erreichen. Der Einfluss von HA auf die chondrogene Gen-expression und auf die Balance zwischen Differenzierung und Erhaltung der Stemness in MSCs ließ sich aufzeigen. In Zukunft sollten weitere Studien die Signalfunktionen von HA und den Einfluss des 3D-Drucks in HA-basierten Hydrogelen genauer zu untersuchen. Zusammengenommen erweitern die Ergebnisse dieser Arbeit das Wissen im Bereich des Tissue Engineerings von Gelenkknorpelgewebe, vor allem in Bezug auf eine rationale Kom-bination von Zelltypen und Hydrogel-Materialien, und eröffnen neue Ansätze zur Knorpel-regeneration. KW - Hyaliner Knorpel KW - Tissue Engineering KW - Hydrogel KW - Hypoxie KW - Mesenchymzelle KW - articular cartilage progenitor cells KW - Cartilage KW - Mesenchymal stem cell KW - Hyaluronsäure KW - Agarose KW - zonal Hydrogels KW - Bioprinting KW - Cartilage Tissue Engineering KW - Oxygen partial pressure KW - chondrogene Differenzierung Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-251719 ER - TY - THES A1 - Rothaug, Johanna T1 - Vergleich des Redifferenzierungspotenzials von zonalen Chondrozyten-Subpopulationen im 3D-Hydrogelmodell T1 - Comparison of redifferentiation potential of zonal chondrocyte subpopulations in a 3D hydrogel model N2 - Im Rahmen neuer Therapieansätze der Arthrose versucht man mittels Tissue Engineering transplantationsfähige, hochwertige Knorpelkonstrukte zu züchten. Dabei kommen häufig auch expandierte und redifferenzierte zonenspezifische Chondrozyten-Subpopulationen zum Einsatz. Wenige Studien beschäftigten sich bisher mit dem Redifferenzierungspotential dieser Zellen und dem Effekt einer zonalen Schichtung unter verschiedenen Kulturbedingungen. In dieser Arbeit konnten Ähnlichkeiten im Phänotyp sowie der Chondrogenese der redifferenzierten Zellen zu den jeweiligen Subpopulationen in nativem Knorpel nachgewiesen werden. Sowohl die zonale Schichtung als auch Veränderungen im Studienprotokoll zeigten sich als entscheidende Einflussfaktoren auf das Zellverhalten. Die Frage nach den optimalen Kulturbedingungen stellt die Forschung jedoch weiterhin vor eine große Herausforderung. N2 - In the context of new therapeutic approaches for osteoarthritis, attempts are being made to design high-quality cartilage constructs suitable for transplantation by means of tissue engineering. The use of expanded and redifferentiated zone-specific chondrocyte subpopulations is widely reported. Few studies previously addressed the redifferentiation potential of these cells and the effect of mimicking zonal organization under different culture conditions. In this work, similarities in phenotype as well as chondrogenesis of the redifferentiated cells to the respective subpopulations in native cartilage were demonstrated. Both zonal organization and changes in the study protocol were shown to be crucial factors influencing cell behavior. However, the question of optimal culture conditions remains a major challenge for current research. KW - Osteoarthritis KW - Gelenkknorpel KW - Tissue Engineering KW - Chondrozyten-Subpopulationen KW - zonal Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-249226 ER - TY - THES A1 - Hrynevich, Andrei T1 - Enhancement of geometric complexity and predictability of melt electrowriting for biomedical applications T1 - Fortentwicklung von geometrischer Komplexität und Kalkulierbarkeit des Melt Electrowriting für biomedizinische Anwendungen N2 - This thesis encompasses the development of the additive manufacturing technology melt electrowriting, in order to achieve the improved applicability in biomedical applications and design of scaffolds. Melt electrowriting is a process capable of producing highly resolved structures from microscale fibres. Nevertheless, there are parameters influencing the process and it has not been clear how they affect the printing result. In this thesis the influence of the processing and environmental parameters is investigated with the impact on their effect on the jet speed, fibre diameter and scaffold morphology, which has not been reported in the literature to date and significantly influences the printing quality. It was demonstrated that at higher ambient printing temperatures the fibres can be hampered to the extent that the individual fibres are completely molten together and increased air humidity intensifies this effect. It was also shown how such parameters as applied voltage, collector distance, feed pressure and polymer temperature influence the fibre diameter and critical translation speed. Based on these results, a detailed investigation of the fibre diameter control and printing of scaffolds with novel architectures was made. As an example, a 20-fold diameter ratio is obtained within one scaffold by changing the collector speed and the feed pressure during the printing process. Although the pressure change caused fibre diameter oscillations, different diameter fibres were successfully integrated into two scaffold designs, which were tested for mesenchymal stromal cell suspension and adipose tissue spheroid seeding. Further design and manufacturing aspects are discussed while jet attraction to the printed structures is illuminated in connection with the fibre positioning control of the multilayer scaffolds. The artefacts that appear with the increasing scaffold height of sinusoidal laydown patterns are counteracted by layer-by-layer path adjustment. For the prediction of a printing error of the first deposited layer, an algorithm is developed, that utilizes an empirical jet lag equation and the speed of fibre deposition. This model was able to predict the position of the printing fibre with up to ten times smaller error than the of the programmed path. The same model allows to qualitatively assess the fibre diameter change along the nonlinear pattern as well as to indicate the areas of the greatest pattern deformation with the growing scaffold height. Those results will be used in the later chapters for printing of the novel MEW structures for biomedical applications. In the final chapter the concept of multimodal scaffold was combined with the suspended fibre printing, for the manufacturing of the MEW scaffolds with controlled pore interconnectivity in three dimensions. Those scaffolds were proven to be a promising substate for the control of the neurite spreading of the chick DRG neurons. N2 - Diese Arbeit umfasst die Entwicklung der additiven Fertigungstechnologie Schmelzelektroschreiben, um die verbesserte Anwendbarkeit in biomedizinischen Anwendungen und die Konstruktion von Gerüsten zu erreichen. Schmelzelektroschreiben ist ein Verfahren, das in der Lage ist, hochaufgelöste Strukturen aus mikroskaligen Fasern zu erzeugen. Dennoch gibt es Parameter, die den Prozess beeinflussen, und es ist nicht klar, wie sie sich auf das Druckergebnis auswirken. In dieser Arbeit wird der Einfluss der Verarbeitungs- und Umweltparameter mit der Auswirkung auf deren Einfluss auf die Polymerstrahlgeschwindigkeit, den Faserdurchmesser und die Gerüstmorphologie untersucht, was bisher in der Literatur nicht berichtet wurde und die Druckqualität wesentlich beeinflusst. Es konnte gezeigt werden, dass bei höheren Umgebungstemperaturen die Entstehung von zylindrischen Fasern soweit behindert werden können, dass die einzelnen Fasern vollständig zusammengeschmolzen werden und eine erhöhte Luftfeuchtigkeit diesen Effekt verstärkt. Es wurde auch gezeigt, wie solche Parameter wie angelegte Spannung, Kollektorabstand, Vorschubdruck und Polymertemperatur den Faserdurchmesser und die kritische Translationsgeschwindigkeit beeinflussen. Basierend auf diesen Ergebnissen, wurde eine detaillierte Untersuchung der Faserdurchmessersteuerung durchgeführt und Gerüsten mit neuartigen Architekturen wurden gedruckt. Als Beispiel wird ein 20-fach Durchmesserverhältnis innerhalb eines Gerüstes durch die Änderung der Kollektorgeschwindigkeit und des Vorschubdrucks während eines Druckvorgangs erreicht. Obwohl die Vorschubdruckveränderung spürbare Oszillationen des Faserdurchmessers verursachte, wurden Fasern mit unterschiedlichen Durchmessern erfolgreich in zwei Scaffoldmuster integriert, die für mesenchymale Stromazell und L929 Zellsuspension und die Aussaat von Fettgewebe-Sphäroiden getestet wurden. Weitere Design- und Herstellungsaspekte werden diskutiert, während die Polymerstrahlanziehung auf die gedruckten Strukturen in Verbindung mit der Faserpositionierungssteuerung der mehrschichtigen Scaffolds beleuchtet wird. Den Artefakten, die mit zunehmender Gerüsthöhe sinusförmiger Ablagemuster auftreten, wird durch schichtweise Anpassung von Verfahrweg des Kollektors entgegengewirkt. Für die Vorhersage eines Druckfehlers der ersten abgelegten Schicht wurde ein Algorithmus entwickelt, der die empirischen Zusammenhänge zwischen Kollektorgeschwindigkeit, Nachlauf, und die Geschwindigkeit der Faserablage verwendet. Dieses Modell war in der Lage die Position der gedruckten Faser mit einem bis zu zehnmal kleinerem Fehler als die Position auf dem programmierten Pfad vorherzusagen. Dasselbe Modell erlaubt es, die Änderung des Faserdurchmessers entlang des nichtlinearen Musters qualitativ zu bewerten und die Bereiche mit der größten Musterdeformation mit zunehmender Gerüsthöhe anzuzeigen. Diese Ergebnisse werden in anderen Kapiteln für den Druck der neuartigen MEW-Strukturen für biomedizinische Anwendungen verwendet. Im letzten Kapitel wurde das Konzept des multimodalen Gerüstes mit dem Druck von hängenden Fasern kombiniert, um MEW-Gerüste mit kontrollierter Porenvernetzung in drei Dimensionen herzustellen. Diese Gerüste erwiesen sich als vielversprechendes Substrat für die Kontrolle der Neuritenausbreitung der Nervenzellen aus Spinalganglien. KW - Elektrospinnen KW - 3D-druck KW - Tissue Engineering KW - Melt electrowriting Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-247642 ER - TY - THES A1 - Seidensticker, Katharina T1 - Aufbau eines humanen 3D-Atemwegsmodells zur Modellierung der Atemwegsinfektion mit Bordetella pertussis T1 - Investigations of pertussis toxins in a 3D in vitro model of the human respiratory mucosa N2 - Mittels Tissue Engineering hergestellte humane 3D in vitro-Testsysteme sind ein neuer Ansatz, um u.a. Erkrankungen der Atemwege zu simulieren und zu untersuchen. Obwohl gegen B. pertussis, den Erreger des Keuchhustens, Impfstoffe zur Verfügung stehen, nimmt die Erkrankungs-Inzidenz in den letzten Jahren deutlich zu. Da B. pertussis zu den obligat humanpathogenen Erregern zählt, sind die aus Tierversuchen stammenden Daten nur unzureichend auf den Menschen übertragbar. Die genauen Pathomechanismen der Infektion sind bisher nicht geklärt. Auf einer biologischen Kollagenmatrix wurde eine Ko-Kultur aus humanen tracheobronchialen Fibroblasten und humanen tracheobronchialen Epithelzellen (hTEC) angesiedelt und 3 Wochen unter apikaler Belüftung kultiviert. Die ausdifferenzierten 3D Testsysteme wurden mit Überständen von Bordetella pertussis-Kulturen inkubiert und auf licht- und elektronenmikroskopischer Ebene analysiert. Weiterhin wurden 2D Kulturen der hTEC mit Hilfe der Ramanspektroskopie nicht-invasiv auf intrazelluläre Veränderungen nach der Inkubation mit den bakteriellen Überständen untersucht. Das 3D Testsystem der humanen Atemwegschleimhaut zeigte auf lichtmikroskopischer und ultrastruktureller Ebene eine hohe in vitro – in vivo-Korrelation. Die elektronenmikroskopische Analyse zeigte morphologische Veränderungen nach der Inkubation mit den B. pertussis Überständen, die mit vorbeschrieben Effekten einer B. pertussis Infektion korrelieren. Mittels der Ramanspektroskopie ließen sich Gruppen von unbehandelten Zellen von Gruppen, die zuvor mit Bakterienüberständen inkubiert wurden, trennen. Somit zeigte sich die Ramanspektroskopie sensitiv für intrazelluläre Infektionsfolgen. Zusammenfassend wurde belegt, dass das 3D-Modell der humanen Atemwegschleimhaut zur Untersuchung obligat humanpathogener Infektionserreger geeignet ist und dass die Ramanspektroskopie eine nicht-invasive Methode ist, um durch Infektionen hervorgerufene intrazellulären Pathologien zu analysieren. N2 - Three dimensional (3D) tissue-engineered human tissue models are of high relevance, e.g. to investigate virulence mechanisms of human obligate pathogens in vitro. One major obligate agent causing acute respiratory diseases is Bordetella pertussis (Bp), the agent of whooping cough. The progress towards elimination Bp has stalled which is mainly caused due to an absence of suitable models to gain more knowledge about its pathomechanism. On a biological collagen matrix (SISser) a co-culture of human fibroblasts and human airway epithelial cells (hTEC) was seeded and cultured under airlift conditions. The completely differentiated test systems were treated with sterile-filtrated supernatants of Bp and afterwards analyzed with light and transmission electron microscopy. 2D cultures of hTEC were also infected and analyzed with Raman spectroscopy. The 3D test system of the human airway mucosa shows high in vitro - in vivo - correlation on both structural and ultrastructural level. Preliminary morphological analysis after infection with Bp supernatant reveals considerable ultrastructural changes which were not observed in control samples and correlate to effects knows from Bp infections in vivo. In 2D cultivation conditions the Raman spectra of infected hTEC clearly differ from spectra of the control. It is shown that the 3D airway mucosa model represents pathological effects of Bp toxins and offers an opportunity to further examine their pathomechanisms. Raman spectroscopy appears to be a practical method to show intracellular changes on living cells non-invasively. KW - Bordetella pertussis KW - Tissue Engineering KW - Raman-Spektroskopie KW - 3D-Gewebemodell KW - Keuchhusten KW - Konfokale Ramanspektroskopie KW - Airlift-Kultur Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-242092 ER - TY - THES A1 - Lodes, Nina Theresa T1 - Tissue Engineering für seltene Erkrankungen mit Störungen des mukoziliären Transports T1 - Tissue engineering for rare diseases with impaired mucociliary transport N2 - Bei der zystischen Fibrose (CF) sowie der primären Ziliendyskinesie (PCD) handelt es sich um zwei seltene Erkrankungen, die unter anderem den mukoziliären Transport beeinträchtigen. CF gehört hierbei zu den am häufigsten vorkommenden angeborenen Stoffwechselerkrankungen, wobei Betroffene unter einem Defekt des Cystic Fibrosis Transmembrane Conductor Regulator (CFTR)-Gens leiden, der durch die Produktion von hochviskosem Sekret in muzinproduzierenden Organen, wie dem gastrointestinalen Trakt und der Lunge, gekennzeichnet ist. Patienten, die an PCD leiden, weisen Defekte in, zum jetzigen Zeitpunkt, ca. 38 bekannten und PCD-assoziierten Genen auf, die in strukturellen Defekten des ziliären Apparats und somit in dysfunktionalen Kinozilien resultieren. Da aktuell weder für die CF noch für die PCD eine Heilung möglich ist, steht bei der Therapie vor allem die Linderung der Symptome im Fokus. Grundlegendes Ziel ist der langfristige Erhalt der Lungenfunktion sowie die Prävention bakterieller Infekte. Als bisherige Modellsysteme zur Erforschung möglicher Therapeutika gelten Tiermodelle, die den humanen Phänotyp aufgrund von Speziesdiversität nicht vollständig abbilden können. Als vielversprechende Testsysteme für die zystische Fibrose gelten humane intestinale Organoidkulturen. Nachdem allerdings vorwiegend respiratorische Symptome für die Mortalität der Patienten verantwortlich sind, stellen CF-Atemwegsmodelle bessere Testsysteme für zukünftige Therapeutika dar. Atmungsorganoidkulturen wurden verwendet, um die CFTR-Funktionalität zu untersuchen, repräsentieren aber nicht vollständig die in vivo Situation. Deshalb werden zur Entwicklung neuer Therapiestrategien patientenspezifische 3D in vitro Testsysteme der humanen Atemwege benötigt, die insbesondere im Hinblick auf personalisierte Medizin ihren Einsatz finden. In der vorliegenden Arbeit wurde eine für den Lehrstuhl neue Methode zur Zellgewinnung aus nasalen Schleimhautabstrichen etabliert, die eine standardisierte Versorgung mit humanem Primärmaterial garantiert. Zur Generierung einer krankheitsspezifischen Zelllinie, wie beispielsweise einer PCD-Zelllinie mit Hilfe des CRISPR/Cas9-Systems, ist eine Atemwegszelllinie erforderlich, die die in vivo Situation vollständig repräsentiert. So wurden vier verschiedene respiratorische Epithelzelllinien (HBEC3-KT, Calu-3, VA10 und Cl-huAEC) auf ihren mukoziliären Phänotyp hin untersucht, wobei lediglich die Zelllinie HBEC3-KT in zilientragende Zellen differenzierte. Diese zeigten jedoch nur auf ca. 5 % der Modelloberfläche Kinozilien, wodurch die humane respiratorische Mukosa nicht komplett abgebildet werden konnte und die HBEC3-KT-Zelllinie keine geeignete Zelllinie zur Generierung einer PCD-Zelllinie darstellte. Mit Hilfe des Tissue Engineering war es möglich, 3D in vitro Testsysteme basierend auf zwei unterschiedlichen Matrices, der biologischen SIS (small intestinal submucosa) und der synthetischen Polyethylenterephthalat (PET)-Membran, aufzubauen. Es wurden 3D Atemwegstestsysteme mit humanen primären nasalen und tracheobronchialen Epithelzellen generiert. Ergänzend zu histologischen Untersuchungen und zur Charakterisierung spezifischer Marker des respiratorischen Systems mittels Immunfluoreszenz, wurde die Ultrastruktur der Modelle, mit speziellem Fokus auf ziliäre Strukturen, analysiert. Um Rückschlüsse auf die ziliäre Funktionalität ziehen zu können und somit eine hohe in vivo Korrelation zu bestätigen, wurde im Rahmen dieser Arbeit am Lehrstuhl für Tissue Engineering und Regenerative Medizin die Methode der Hochgeschwindigkeitsvideomikroskopie etabliert, welche die Analyse der Zilienschlagfrequenz sowie des mukoziliären Transports ermöglicht. Ebenfalls wurde der Einfluss von isotoner Kochsalzlösung und des � 2-adrenergen Agonisten Salbutamol, das vor allem als Bronchodilatator bei Asthmapatienten eingesetzt wird, auf die Zilienschlagfrequenz analysiert. Es konnte gezeigt werden, dass beide Substanzen den Zilienschlag im Atemwegsmodell erhöhen. Zur Generierung der Testsysteme der beiden seltenen Erkrankungen CF und PCD wurden Epithelzellen der betroffenen Patienten zunächst mittels nicht-invasiver Raman-Spektroskopie auf einen potentiellen Biomarker untersucht, welcher Einsatz in der Diagnostik der beiden Krankheiten finden könnte. Es konnte jedoch weder für die CF noch für die PCD ein Biomarker aufgedeckt werden. Jedoch zeigten PCD-Zellen eine geringe Auftrennung gegenüber nicht-PCD Zellen. Anschließend wurden 3D-Atemwegstestsysteme basierend auf Patientenzellen aufgebaut. Der Phänotyp der CF-Modelle wurde mittels immunhistologischer Färbung und der Analyse des gestörten mukoziliären Transports verifiziert. Strukturelle ziliäre Defekte konnten durch die ultrastrukturelle Analyse von Zilienquerschnitten in drei donorspezifischen PCD-Modellen identifiziert werden. Darüber hinaus konnte die ziliäre Funktionalität mit Hilfe der Hochgeschwindigkeitsvideomikroskopie nicht nachgewiesen werden. Zusammenfassend ist es in dieser Arbeit gelungen, eine neue Methode zur vollständigen Charakterisierung von 3D-Atemwegstestsystemen zu etablieren, die die Analyse der Zilienschlagfrequenz sowie des mukoziliären Transports ermöglicht. Es konnte erstmalig gezeigt werden, dass mit Hilfe des Tissue Engineering ein personalisiertes Krankheitsmodell für die PCD auf Segmenten eines dezellularisierten porzinen Jejunums generiert werden kann, das zukünftig ein Testsystem für potentielle Therapeutika darstellen kann. N2 - Cystic fibrosis (CF) and primary ciliary dyskinesia (PCD) are two rare diseases which,among others, impair the mucociliary transport. CF is one of the most common in-herited metabolic diseases with patients suffering from a defect in theCystic FibrosisTransmembrane Conductor Regulator(CFTR) gene, which is characterized by the pro-duction of highly viscous secretions in mucin-producing organs such as the gastrointestinaltract and lungs. Patients suffering from PCD have defects in currently approximately 38known and PCD-associated genes resulting in structural defects of the ciliary appara-tus and thus in dysfunctional cilia. Since neither CF nor PCD have any chance of beingcured so far, the main focus is on alleviating the symptoms. The basic goal is the long-term preservation of lung function and the prevention of microbial infections. Previousmodel systems for exploring possible therapeutic options have been animal models thatcan never completely represent the human phenotype due to species diversity. Humanintestinal organoid cultures are considered as a promising test system for cystic fibro-sis. However, since respiratory symptoms are mainly responsible for patient mortality,CF respiratory models provide better test systems for future therapeutics. Respiratoryorganoid cultures have been used to study CFTR functionality, but do not completelyrepresent thein vivosituation. In order to develop new therapeutic strategies, patient-specific 3Din vitrotest systems for the human respiratory tract expressing functionalkinocilia are required, which can be used in particular with regard to personalized medi-cine.In the present thesis, a new method for obtaining cells from nasal mucosal brush biop-sies was established, that guarantees a standardised supply of human primary materi-al. In order to generate a disease-specific cell line, such as a PCD cell line, using theCRISPR/Cas9 system, a respiratory cell line that fully represents thein vivosituation isrequired. Hence, four different respiratory epithelial cell lines (HBEC3-KT, Calu-3, VA10and Cl-huAEC) were investigated with regard to their mucociliary phenotype, wherebyonly the cell line HBEC3-KT differentiated into ciliated cells. However, these showed ki-nocilia only on approx. 5 % of the model’s surface, thus the human respiratory mucosacould not be completely modelled and HBEC3-KT cell line is no suitable cell line for geneediting experiments.Tissue engineering made it possible to build 3Din vitrotest systems based on two differentmatrices, the biological SIS (small intestine submucosa) and synthetic PET (polyethyleneterephthalate) membranes. 3D airway test systems were generated using human primarynasal and tracheobronchial epithelial cells. In addition to histological investigations and the characterization of specific markers of the respiratory system by immunofluorescence,the ultrastructure of the models was analyzed with a special focus on ciliary structures.In order to gain insight into the ciliary functionality and thus to achieve a highin vivocorrelation, the method of high-speed video microscopy was established within the scopeof this work at the Chair of Tissue Engineering and Regenerative Medicine, which allowsthe analysis of ciliary beat frequency as well as mucociliary transport. The influence ofisotonic saline solution and salbutamol, aβ2-adrenergic agonist mainly used as broncho-dilator in asthma patients, on ciliary beat frequency was also analyzed. It could be shownthat both substances increased the ciliary beat of the primary respiratory mucosa models.In order to generate test systems for the two rare diseases CF and PCD, epithelial cellsof the affected patients were first examined by non-invasive Raman spectroscopy for apotential biomarker that could be used in diagnostic approaches. However, no biomarkerfor CF or PCD could be detected, with PCD cells showing a low separation to non-PCDcells. Subsequently, 3D test systems based on patient cells were developed. The phenotypeof the CF models was verified by immunohistological staining and analysis of impairedmucociliary transport. Ultrastructural ciliary defects could be identified by ultrastructuralanalysis of cilia cross sections in three donor-specific PCD models. Additionally, ciliaryfunctionality could not be detected using high speed video microscopy analysis.In summary, this work succeeded in establishing a new method for the complete characte-rization of 3D airway test systems, which allows the analysis of ciliary beating frequencyand mucociliary transport. It has been shown for the first time that tissue engineering canbe used to generate a personalized disease model for PCD using a decellularized poricinejejunum as a scaffold. Both, PCD and CF disease models could in future be regarded astest systems for potential therapeutics. KW - In-vitro-Kultur KW - Tissue Engineering KW - Gewebekultur KW - Individualisierte Medizin KW - Respiratorisches System KW - Primäre Ziliendyskinesie KW - airways KW - primary ciliary dyskinesia Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200178 ER - TY - THES A1 - Kunze, Andrea Birgit T1 - Etablierung eines dreidimensionalen Tumormodells für das orale Plattenepithelkarzinom unter Einsatz von Tissue Engineering T1 - Establishment of a three-dimensional tumor model for oral squamous cell carcinoma using tissue engineering N2 - Gegenstand dieser Arbeit war die Etablierung eines dreidimensionalen in vitro Tumormodells, welches ein orales in vivo Plattenepithelkarzinom nachbilden sollte. Dabei standen Aufbau, Reproduzierbarkeit und Reliabilität an vorderster Stelle. Als Zellquelle sollten sowohl Tumorzellen aus den Zelllinien FaDu, HLaC79 und HLaC79 Clone 1 als auch primäre Zellen aus karzinogenem Primärgewebe dienen. Als Referenz wurden dabei stets Modelle aus primär isolierten Zellen herangezogen, die ein Äquivalent zur gesunden Mundschleimhaut bildeten. Während der Isolationsvorgang von pathologischen Zellen primärer Plattenepithelkarzinomen aus der Mundhöhle und dem Pharynx aufgrund zahlreicher Kontaminationen und Stagnationen des Zellwachstums keinen Erfolg erzielte und der Versuch eingestellt wurde, war es mit den Tumorzelllinien FaDu und HLaC79 möglich, dreidimensionale in vitro Tumormodelle herzustellen. Ihre Malignität wurde durch die besonderen histologischen Architekturstörungen wie die geringere Epitheldicke, das Fehlen einer Parakeratinisierung im Stratum corneum und die Invasion von Tumorzellen in die Submukosa verdeutlicht. Um einen eindeutigen Vergleich zu den Mukosaäquivalenten zu ziehen, fand eine Immunhistochemie mit unterschiedlichen Markern statt, die vor allem den gestörten Epithelaufbau des Tumormodells verdeutlichte. Als Maß für die Zell-Zell-Kontakte, die im Laufe der Kultivierung entstanden, diente der transepitheliale elektrische Widerstand. Die Behandlung der Tumorzellen und Tumormodelle mit dem klinisch bewährten Zytostatikum Paclitaxel und dem neuen Polyether-Antibiotikum Salinomycin erzielte vor allem in der zweidimensionalen Kultivierung große Erfolge. Hier wurde verdeutlicht, dass Paclitaxel toxisch auf die HLaC79 Tumorzellen wirkt, während die paclitaxelresistenten HLaC79 Clone 1 Tumorzellen immun gegen dieses Medikament sind. Salinomycin hingegen sorgte für eine Verringerung der Zellviabilität bei beiden Zelllinien. Die histologischen Untersuchungen nach der 24-stündigen Medikamentenapplikation mit Paclitaxel bei den Tumormodellen zeigten keine signifikanten Unterschiede, während der transepitheliale elektrische Widerstand stieg und auf eine verstärkte Barriere nach Paclitaxelgabe schließen ließ. N2 - The subject of this work was the establishment of a three-dimensional in vitro tumor model, which should simulate an oral in vivo squamous cell carcinoma. Structure, reproducibility and reliability were paramount. Both tumor cells from the FaDu, HLaC79 and HLaC79 Clone 1 cell lines and primary cells from carcinogenic primary tissue should serve as the cell source. Models from primary isolated cells, which are equivalent to healthy oral mucosa, were used as a reference. While the isolation process of pathological cells of primary squamous cell carcinomas from the oral cavity and the pharynx was unsuccessful due to numerous contamination and stagnation of cell growth, the FaDu and HLaC79 tumor cell lines made it possible to produce three-dimensional in vitro tumor models. Their malignancy was illustrated by the histological architectural disorders such as the reduced epithelial thickness, the lack of parakeratinization in the stratum corneum and the invasion of tumor cells into the submucosa. To make a clear comparison with the mucosa equivalents, an immunohistochemistry with different markers was carried out, which above all clarified the disturbed epithelial structure of the tumor model. The transepithelial electrical resistance was used as a measure of the cell-cell contacts that developed during cultivation. The treatment of tumor cells and tumor models with the clinically proven cytostatic agent paclitaxel and the new polyether antibiotic salinomycin achieved great success, especially in two-dimensional cultivation. It was made clear here that paclitaxel has a toxic effect on the HLaC79 tumor cells, while the paclitaxel-resistant HLaC79 clone 1 tumor cells are immune to this drug. Salinomycin, however, reduced the cell viability of both cell lines. The histological examinations after the 24-hour drug application with paclitaxel in the tumor models showed no significant differences, while the transepithelial electrical resistance increased and suggested a stronger barrier after paclitaxel administration. KW - Tissue Engineering KW - Plattenepithelcarcinom KW - Mundschleimhaut KW - in-vitro-Modell KW - Tumorzelllinien KW - in-vitro-Testsysteme KW - Paclitaxel KW - Salinomycin Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-223356 ER - TY - THES A1 - Waltermann, Leopold-Maximilian Johannes T1 - Charakterisierung und Standardisierung eines in-vitro Modells der oralen Mukosa für die präklinische Forschung T1 - Characterization and standardization of an in-vitro oral mucosa model for preclinical research N2 - Bisherige per Tissue Engineering hergestellte Testsysteme der Mundschleimhaut basieren in der Regel auf allogenen und teils dysplastischen Keratinozyten. Dies schmälert die Aussagekraft der gewonnenen Ergebnisse hinsichtlich des Anspruchs, Nativgewebe bestmöglich nachzubilden. In der vorliegenden Arbeit sollte daher ein am Lehrstuhl für Tissue Engineering und Regenerative Medizin entwickeltes Protokoll zur Herstellung dreidimensionaler epidermaler Oralmukosaäquivalente auf Basis autologer Keratinozyten auf seine Eigenschaften und Einsatzmöglichkeit als in-vitro Testsystem untersucht werden. Nach erfolgreicher Isolierung und Kultivierung im Monolayer konnten insgesamt 420 Modelle zu drei verschiedenen Zeitpunkten (Passagen) aufgebaut werden. Die Untersuchung von Histologie, Viabilität und Barrierefunktion mittels MTT, TEER und Natriumfluoresceinpermeabilität konnte einen suffizienten Aufbau von verhorntem, mehrschichtigen oralen Plattenepithel nachweisen. Gleichzeitig konnte eine Abnahme der Epithelqualität mit steigendem Keratinozytenalter festgestellt werden. Eine sich anschließende Untersuchung von 14 Cytokeratinen sowie Apoptosemarkern per effizienzkorrigierter und normalisierter RT-qPCR konnte die Überlegenheit der dreidimensionalen autologen Oralmukosaäquivalente gegenüber der zweidimensionalen Monolayerkultur auf Genebene zeigen. N2 - Current tissue-engineered oral mucosa test systems are usually based on allogenic, mostly dysplastic keratinocytes. Their ability to mimic native tissue sufficiently is therefore limited. Hence the aim of the present work was to examine the characteristics and possible applications of an autologous oral mucosa equivalent based on a protocol developed at the Chair of Tissue Engineering and Regenerative Medicine. Following isolation and monolayer cultivation, 420 equivalents could successfully be built at three different time points. Histology as well as viability and barrier assays (MTT, TEER, sodium-fluoresceine-permeability) revealed sufficient stratification and cornification. Concomitantly, decreasing epithelium quality was associated with a prolongated previous monolayer cultivation. In addition, efficiency corrected and normalized RT-qPCR of 14 cytokeratins and apoptosis marker genes showed the superiority of three dimensional oral mucosa equivalents over two dimensional monolayers on gene level. KW - Tissue Engineering KW - Mundschleimhaut KW - Epithel KW - Real time quantitative PCR KW - Cytokeratine KW - Oralmukosa KW - Mukosamodell KW - Oralmukosamodell KW - RT-qPCR KW - Viabilität KW - oral mucosa model KW - viability Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-222032 ER - TY - THES A1 - Ströhle, Serge - Peer T1 - Kultivierung von humanem Speicheldrüsengewebe in einer dreidimensionalen Polyurethanmatrix T1 - Cultivation of human salivary gland tissue in a three-dimensional Polyurethane Matrix N2 - Bei Tumoren von Kopf und Hals kann primär oder adjuvant durch Bestrahlung therapiert werden. Die Folgen dieser Behandlung können Xerostomie, Karies, Infektionen, Dysphagie oder Mundgeruch sein. Diese Nebenwirkungen vermindern die Lebensqualität des Patienten. Unterschiedliche Behandlungsansätze haben aufgrund von therapiebedingten Einschränkungen nicht den Weg in den klinischen Alltag gefunden. Eine Alternative zu den vorhandenen Behandlungsansätzen kann das Tissue Engineering sein. Das Ziel einer Normalisierung der Speichelproduktion nach Behandlung soll durch eine implantierbare, künstliche Speicheldrüse erreicht werden. Kann humanes natives Speicheldrüsengewebe der Parotis auf gradientenfreiem dreidimensional aufgebauten Polyurethan wachsen und seine Funktionalität beibehalten? Humane Parotiszellen wurden von 20 Patienten im Alter von 42 - 90 Jahren durch Operation entnommenen und in Polystyrol-Zellkulturflaschen mit dem Nährmedium BEGM herangezüchtet. Es erfolgte eine 2D-Zellverteilung der reinen Parotiskultur. Zur Kontrolle der Vitalität zwischen den Passagen wurde eine Trypan-Blau Färbung verwendet. Als Trägermaterial der Zellen wurde eine biokompatible, abbaubare Matrix aus ε-Polycaprolacton verarbeitet. Die Übertragung der humanen Parotiszellen wurde mit einer Kleberproteinlösung, bestehend aus den Hauptbestandteilen Aprotinin, Fibrinogen und der Thrombinlösung durchgeführt. 7,14 und 21 Tage nach Aufbringung wurde der Überstand der zeitgleich entnommenen Konstrukte zur Überprüfung des α-Amylase konserviert. Zusätzlich wurden an den 3 Untersuchungstagen Konstrukte für die Anfertigung von histologischen Schnitten, quantitativer PCR, indirekter Immunfluoreszenz und zur Elektronenmikroskopie entnommen. Zur Überprüfung der Funktionalität der angezüchteten Speicheldrüsenzellen wurde das Enzym α-Amylase und das Wasserkanalprotein Aquaporin 5 herangezogen. Bei der Kultivierung der humanen Speicheldrüsenzellen konnte durch den Vitalitätstest Trypan-Blau Färbung in Kombination mit einer Neubauerzählkammer eine konstant hohe Anzahl an vitalen Zellen bis zur 4. Passage nachgewiesen werden. Durch die Lebend/Tot Färbung auf FDA/EB Basis der Konstrukte über die Untersuchungszeit von 14 Tagen konnte keine Vermehrung von avitalen Zellen mikroskopisch festgestellt werden. Die statistische Auswertung mittels Boxplots des ELISA berechnete für den ersten Untersuchungstag einen Median auf niedrigem Niveau von 4,4 U/l und sank im weiteren Zeitverlauf am Untersuchungstag 21 auf die niedrigsten Median von 2,2 U/l ab. α-Amylase konnte an allen 3 Tagen mittels quantitativer PCR und indirekter Immunfluoreszenz belegt werden. Aquaporin 5 als Funktionsnachweis war in der vorliegenden Studie nicht signifikant durch quantitative PCR beweisbar. Die Rasterelektronenmikroskopie bildete adhärente Zellen in kugeliger Form aus den besiedelten Matrices nach 7 Tagen Kultivierung ab. Durch die Transmissionselektronenmikroskopie konnten Zellen, die Zellfortsätze ausgebildet hatten nach 14 Tagen beobachtet werden. Der Versuch, histologische Schnitte auf Grundlage der Paraffineinbettung oder Kryo-Konservierung zu erzeugen, musste frustran abgeschlossen werden. Eine Kultivierung von Speicheldrüsenzellen auf einer Matrix aus ε-Polycaprolacton ohne Gradienten ist eingeschränkt umsetzbar. Die Studie konnte zeigen, dass das Wachstum der Zellen auf konstant niedrigem Niveau über den Untersuchungszeitraum von 21 Tagen lag. Der Funktionsnachweis von α-Amylase auf absinkendem niedrigem Niveau sowie fehlender Bestätigung von Aquaporin 5 kann als stationäre Phase des Wachstums interpretiert werden. Zur Verbesserung der Zellentwicklung sollte die besiedelte Matrix zu einem 3D-Zellwachstum anregen. Bei sequenziell entstehender Polarität der Zellen käme es zu einer Verbesserung der Vitalität sowie der vermehrten Ausbildung von α-Amylase und Aquaporin 5. Dies könnte in einer Kombination der Zellkultur aus Parotiszellen mit Kokulturen aus humanen Myoepithelzellen und Parenchymzellen erreicht werden. Sehr gute Ergebnisse des Zellwachstums und der Zellfunktion konnten aktuell in anderen Studien auf der Trägersubstanz Matrigel oder durch Rebesiedelung von dezellularisierten Organen beobachtet werden. N2 - In the case of tumours of the head and neck, the tumour can be treated primarily or adjuvantly by radiation. The consequences of this treatment can be xerostomia, caries, infections, dysphagia or bad breath. These side effects reduce the patient's quality of life. Different treatment approaches have not found their way into the clinical routine due to therapy related limitations. Tissue engineering can be an alternative to the existing treatment approaches. The goal of normalising saliva production after treatment is to be achieved by means of an implantable, artificial salivary gland. Can human native salivary gland tissue of the parotid gland grow on gradient-free three-dimensional polyurethane and retain its functionality? Human parotid gland cells were taken from 20 patients aged 42 - 90 years by surgery and cultivated in polystyrene cell culture bottles with the culture medium BEGM. A 2D cell distribution of the pure parotid culture was performed. A trypan-blue staining was used to control the vitality between the passages. A biocompatible, degradable matrix of ε-polycaprolactone was used as carrier material for the cells. The transfer of human parotid cells was performed with a glue protein solution consisting of the main components aprotinin, fibrinogen and the thrombin solution. 7, 14 and 21 days after application, the supernatant of the constructs taken at the same time was preserved for the examination of α amylase. In addition, constructs for the preparation of histological sections, quantitative PCR, indirect immunofluorescence and electron microscopy were taken during the 3 days of examination. The enzyme α-amylase and the water channel protein aquaporin 5 were added to test the functionality of the cultivated salivary gland cells. During the cultivation of human salivary gland cells, the vitality test Trypan blue staining in combination with a Neubauer counting chamber showed a constantly high number of vital cells up to the 4th passage. The live/dead staining on FDA/EB basis of the constructs over the examination period of 14 days did not show any proliferation of avital cells. The statistical evaluation by means of ELISA box plots calculated a median at a low level of 4.4 U/l for the first day of the examination and dropped to the lowest median of 2.2 U/l on examination day 21. α-amylase was detected on all 3 days by quantitative PCR and indirect immunofluorescence. Aquaporin 5 as a functional test was not significantly detectable by quantitative PCR in this study. The scanning electron microscopy imaged adherent cells in spherical form from the colonised matrices after 7 days of cultivation. Using transmission electron microscopy, cells that had formed cell extensions could be observed after 14 days. The attempt to produce histological sections based on paraffin embedding or cryopreservation had to be frustrated. Cultivation of salivary gland cells on a matrix of ε-polycaprolactone without gradients is of limited use. The study was able to show that the growth of the cells was at a constantly low level over the 21-day period of the study. The proof of function of α-amylase at a decreasing low level and the lack of confirmation of aquaporin 5 can be interpreted as a stationary phase of growth. To improve cell development, the colonised matrix should stimulate 3D cell growth. If the cells were to develop a sequential polarity, there would be an improvement in vitality as well as increased formation of α-amylase and aquaporin 5. This could be achieved by a combination of cell culture from parotid cells with cocultures of human myoepithelial cells and parenchymal cells. Very good results of cell growth and cell function could be observed in other studies on the carrier substance Matrigel or by re-colonisation of decellularised organs. KW - Ohrspeicheldrüse KW - Tissue Engineering KW - Polyurethane KW - Trägersubstanz KW - Zellkultur KW - Ohrspeicheldrüse KW - Elektronenmikroskopie KW - Biomarker KW - Real time quantitative PCR KW - Electron microscopy KW - Cell culture KW - Parotid glands KW - Biochemical markers KW - Quantitative Real-Time PCR Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216887 ER - TY - THES A1 - Stebani, Tanja Veronika T1 - Tissue Engineering von Fettgewebe: Immunohistochemische und histologische Analyse der Entwicklung der Extrazellulärmatrix und der Adipogenese in 3D Gewebekonstrukten in vivo T1 - Tissue engineering of adipose tissue: Immunohistochemical and histological analysis of the development of the extracellular matrix and adipogenesis in 3D tissue constructs in vivo N2 - Die Erzeugung von klinisch in der plastischen und rekonstruktiven Chirurgie nutzbarem Fettgewebe stellt einen sehr wichtigen Aspekt in aktuellen Arbeiten des Tissue Engineerings, also der Erzeugung von spezifischem Gewebe aus Spenderzellen dar. Sollte es gelingen, aus patienteneigenen Zellen wieder neues Gewebe zu züchten, so würden daraus eine Fülle neuer Behandlungsmöglichkeiten für Gewebedefekte resultieren. In einer Vorgängerarbeit zu der vorliegenden Arbeit konnte gezeigt werden, dass die Adipogenese in vivo von Fettgewebe aus Vorläuferzellen, den Präadipozyten, durch geeignete Methoden der Vorkultivierung in vitro beeinflusst werden kann. Die Unterschiede in der Vorbehandlung lagen in einer Induktion der Differenzierung der Präadipozyten bei gleichzeitigem Stopp der Proliferation und einer anschließenden verschieden langen Ausdifferenzierungsphase der Zellen in vitro im Brutschrank. Die resultierenden Konstrukte wurden in jeweils drei Mäuse in vier Gruppen implantiert und nach 1, 5, 12 und 24 Wochen entnommen und untersucht. Während die Präadipozyten von Gruppe 1 keine Induktion erfuhren, erfolgte diese bei den anderen drei Gruppen. Die Konstrukte der Gruppe 2 wurden dann bereits nach 2 Tagen der Induktion der Präadipozyten implantiert, die Konstrukte der Gruppe 3 blieben zur Differenzierung noch 7 Tage, die der Gruppe 4 noch 33 Tage im Brutschrank, bevor sie in die Versuchstiere eingebracht wurden. Ziel der vorliegenden Arbeit war es zunächst, an den Gewebekonstrukten der Vorgängerarbeit eine histomorphometrische Analyse der resultierenden Adipozyten in vivo über die Zeit durchzuführen, um eine detaillierte Beurteilung des Verlaufs der Fettgewebeentwicklung anhand resultierender Zellzahlen darzustellen. Hierfür wurden die Gewebedünnschnitte der Mäuse nach einer HE-Anfärbung mikroskopisch untersucht und die Zellzahlen resultierend jeweils aus unreifen und reifen Adipozyten histomorphometrisch quantifiziert. Die Unterscheidung erfolgte mittels einer Größenzuordnung, wobei Zellen kleiner 20 µm Durchmesser den unreifen und Zellen größer 20 µm Durchmesser den reifen Adipozyten zugeordnet wurden. Aus der quantitativen Analyse mittels Histomorphometrie ergab sich, dass in allen Konstrukten die Zahlen an Zellen der den unreifen Adipozyten zugeordneten Größenordnung von kleiner als 20µm tendenziell während der gesamten Zeit in vivo klein bleibt. Die Zellzahlen resultierend aus großen Zellen mit einem Durchmesser mehr als 20µm, die den reifen Adipozyten zugeordnet wurden, steigen dagegen in allen Proben leicht an, wobei die Konstrukte der Gruppe 4 den absolut höchsten Wert aufwiesen. In der HE-Anfärbung ist demgemäß in Gruppe 4 eine Vielzahl reifer Adipozyten zu erkennen. Das zweite Ziel dieser Arbeit war es, durch Anfärbung charakteristischer Proteine der extrazellulären Matrix mittels markierter Antikörper und einer anschließenden immunohistochemischen Analyse des Verlaufs der Signalintensität dieser markierten Komponenten in der EZM die Adipogenese mittels Analyse der entstehenden Gerüstproteine zu verfolgen. Hierfür wurde durch eine umfangreiche immunohistochemische Analyse die Bildung der Kollagene I, IV und VI sowie von Laminin als Bestandteile der EZM analysiert und damit die Art und der Umfang der entstandenen extrazellulären Matrix während der Adipogenese qualitativ beurteilt. Die Fluoreszenz-Bilder der Proben nach den jeweiligen Gruppen und Wochen in vivo zeigen einen deutlichen Hinweis im Sinne der Bildung von Fettgewebe in den Gewebe-Konstrukten der Gruppe 4. Während in den Gruppen 1 und 2 fast durchweg faserartige Bindegewebsstrukturen, verbunden mit den entsprechenden eher fibrillärem Aussehen der Signale für die untersuchten Kollagene I, IV, VI und für Laminin gefunden werden konnten, zeigen die Konstrukte der Gruppe 3 und insbesondere von Gruppe 4 in den Fluoreszenz-Abbildungen deutlich ausgeprägtere, netzartig ausgebildete Strukturen. Aus den Resultaten der vorliegenden Arbeit kann demnach geschlossen werden, dass die Art der Vorkultivierung eine spätere Adipogenese eindeutig beeinflussen kann. Eine längere Inkubationszeit nach erfolgter Induktion der Präadipozyten zur Förderung der Reifung zu Adipozyten vor der Implantation fördert die Bildung einer höheren Anzahl von Adipozyten und die Ausbildung einer charakteristischen EZM. Diese Erkenntnisse eröffnen für zukünftige Arbeiten die Möglichkeit, durch die weitere Optimierung der Vorkultivierung, verbunden mit einer eventuell noch besseren Überlebensrate der ursprünglich eingebrachten Zellen, die Herstellung von klinisch geeigneten Konstrukten aus Fettgewebe weiter voranzutreiben. N2 - The generation of adipose tissue that can be clinically used in plastic and reconstructive surgery is a very important aspect of current tissue engineering work, i.e. the generation of specific tissue from donor cells. Should it be possible to grow new tissue from the patient's own cells, it would result a plethora of new treatment options for tissue defects. In a previous work to the present work it was shown that the adipogenesis in vivo of adipose tissue from precursor cells, the preadipocytes, can be influenced by suitable methods of preculturing in vitro. The differences in the pretreatment were an induction of the differentiation of the preadipocytes with simultaneous stop of the proliferation and a subsequent differentiation phase of the cells in vitro in the incubator. The resulting constructs were implanted in four groups of three mice each and removed and examined after 1, 5, 12 and 24 weeks. While the preadipocytes of group 1 did not experience induction, this did occur in the other three groups. The constructs of group 2 were then already implanted after 2 days of the induction of the preadipocytes, the constructs of group 3 remained in the incubator for 7 days for differentiation, those of group 4 for 33 days before they were introduced into the test animals. The aim of the present work was initially to carry out a histomorphometric analysis of the resulting adipocytes in vivo over time on the tissue constructs of the previous work in order to present a detailed assessment of the course of adipose tissue development based on the resulting cell counts. For this purpose, the thin tissue sections of the mice were examined microscopically after HE staining and the cell counts resulting from immature and mature adipocytes were quantified histomorphometrically. The differentiation was made by means of a size assignment, with cells smaller than 20 µm in diameter being assigned to immature and cells larger than 20 µm in diameter being assigned to mature adipocytes. The quantitative analysis by means of histomorphometry showed that in all constructs the number of cells of the order of magnitude of less than 20 µm assigned to immature adipocytes tends to remain small during the entire time in vivo. In contrast, the cell counts resulting from large cells with a diameter of more than 20 µm, which were assigned to the mature adipocytes, increased slightly in all samples, the constructs of group 4 exhibiting the absolute highest value. Accordingly, a large number of mature adipocytes can be seen in group 4 of the HE staining. The second aim of this work was to follow the adipogenesis by staining characteristic proteins of the extracellular matrix by means of labeled antibodies and a subsequent immunohistochemical analysis of the course of the signal intensity of these labeled components in the ECM by analyzing the resulting scaffold proteins. For this purpose, the formation of collagens I, IV and VI as well as laminin as components of the ECM was analyzed through an extensive immunohistochemical analysis and thus the type and extent of the extracellular matrix formed during adipogenesis was qualitatively assessed. The fluorescence images of the samples after the respective groups and weeks in vivo show a clear indication of the formation of adipose tissue in the tissue constructs of group 4. While in groups 1 and 2 almost all fibrous connective tissue structures, connected with the corresponding rather fibrillar appearance of the signals for the examined collagens I, IV, VI and for laminin could be found, the constructs of group 3 and in particular of group 4 show clearly more pronounced, network-like structures in the fluorescence images. From the results of the present work it can be concluded that the type of pre-cultivation can clearly influence later adipogenesis. A longer incubation period after induction of the preadipocytes to promote maturation to adipocytes before implantation promotes the formation of a higher number of adipocytes and the development of a characteristic ECM. These findings open up the possibility for future work to further advance the production of clinically suitable constructs from adipose tissue through the further optimization of the preculture, combined with a possibly even better survival rate of the originally introduced cells. KW - Tissue Engineering KW - Fettgewebe KW - Analyse Extrazellulärmatrix KW - 3D Gewebekonstrukte KW - tissue engineering KW - adipose tissue KW - analysis extracellular matrix KW - 3D scaffolds Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-215375 ER - TY - THES A1 - Wallstabe, Julia T1 - Induktion von GvHD-artigen Gewebeschäden an humanen artifiziellen Hautmodellen T1 - Induction of GvHD-like tissue damage in human artificial skin models N2 - Graft-versus-Host Disease (GvHD) stellt einen häufigen, den Gesamterfolg einer allogenen hämatopoetischen Stammzelltransplantation limitierenden Faktor dar. Bei dieser Komplikation attackieren vor allem alloreaktive T-Lymphozyten des Stammzellspenders gesunde Körperzellen des Patienten. Infolgedessen kommt es zu Gewebeschäden in den Zielorganen Haut, Leber und Darm. Die Behandlung der GvHD erfordert eine effektive Immunsuppression, was wiederum Graft-versusTumor-Effekte kompromittiert und den Rückfall der malignen Grunderkrankung bedingen kann. Viele Patienten sprechen aus bisher ungeklärten Gründen nicht auf die klassische immunsuppressive Therapie mit Steroiden oder second-line Therapien an. Neue zelluläre Therapien zur Behandlung der refraktären GvHD sind auf dem Vormarsch, bedürfen aber einer weiterführenden klinischen Testung, auch um die exakten Wirkungsmechanismen zu verstehen. Idealerweise könnten neue Testsysteme das GvHD-Potential von allogenen Stammzellpräparaten oder aber das immunsuppressive Potential von neuen GvHD-Therapien vorhersagen, bevor diese in klinischen Studien eingesetzt werden. Ziel der vorliegenden Arbeit war es, ein erstes, in multiplen Replikaten einsetzbares, humanes organotypisches Gewebemodell zur Simulation einer GvHD-Reaktion am Beispiel der Haut zu etablieren. Zu diesem Zweck wurden artifizielle humane Hautmodelle unter statischen (KollagenHautmodelle) und dynamischen Kulturbedingungen (vaskularisierte Hautmodelle) generiert. Die Injektion unstimulierter PBMCs (engl. peripheral blood mononuclear cells) führte zu keinen histomorphologischen Veränderungen in den KollagenHautmodellen. Im Gegensatz dazu hatte die Injektion vorstimulierter allogener PBMCs eine Zerstörung der epidermalen Strukturen der Kollagen-Hautmodelle zur Folge, welche vergleichbar waren mit Gewebeschäden bei einer akuten GvHD der Haut. Dieselben Schädigungen der Epidermis wurden durch die Injektion von Mediumüberständen vorstimulierter PBMCs in die Kollagen-Hautmodelle erreicht. Im Kulturmedium der Kollagen-Hautmodelle wurden hohe Konzentrationen von Interleukin 2 und 17, Interferon gamma sowie Tumornekrosefaktor alpha gemessen, wodurch auf die Beteiligung von Zytokinen an der inflammatorischen Reaktion geschlossen werden konnte. Auch im komplexeren vaskularisierten Hautmodell verursachte die Injektion vorstimulierter PBMCs histomorphologische Veränderungen entsprechend einer akuten Haut-GvHD sowie einen zeitabhängigen Anstieg proinflammatorischer Zytokine. Zusammenfassend zeigen die Resultate dieser Arbeit, dass die Induktion einer starken Inflammations- und Immunreaktion in artifiziellen humanen Hautmodellen, welche histomorphologisch eine GvHD imitiert, möglich ist. Dieses Modell könnte als Grundlage für die Entwicklung eines klinisch relevanten Testsystems zur Bestimmung des GvHD-Restpotentials oder zur Festlegung der immunsuppressiven Kapazität innovativer Zellpräparate dienen. Somit könnten humane artifizielle GvHDModelle in klinischen Studien eingesetzt werden und die Erfahrungen aus Tiermodellen ergänzen sowie erste in vitro Ergebnisse im humanen System liefern, welche dann mit dem tatsächlichen klinischen Resultat verglichen werden könnten. N2 - Graft-versus-Host Disease (GvHD) remains the most important limiting factor for the success of allogeneic hematopoietic stem cell transplantation. This major complication is caused by alloreactive donor T-lymphocytes that attack healthy tissues of the recipient leading to severe tissue damage within the target organs skin, liver and gut. Treatment of GvHD requires effective immunosuppression, which in turn impairs Graft-versus-Tumor activity and enhances the risk for relapse of the malignant disease. However, for still unknown reasons many patients do not respond to standard immunosuppressive therapy with steroids or to second-line therapies. Development of novel cellular therapies that gain more and more clinical relevance due to their high anti-tumor potency lead to a strong demand for advanced test platforms to further investigate their underlying functional mechanisms and exclude off-tumor effects against healthy tissues. Ideally, new test systems could be used for the prediction of the GvHD potential of allogeneic stem cell products or for prediction of an immunosuppressive potential of novel GvHD therapies before entering clinical studies. The aim of this study was to establish a GvHD test system based on human organotypic skin models allowing the simulation of GvHD reactions in the skin in multiple replicates. To this end, artificial human skin models were generated under static (collagen skin model) and dynamic culture conditions (vascularized skin model). Injection of unstimulated peripheral blood mononuclear cells (PBMCs) did not cause histomorphological changes in collagen skin models. In contrast, injection of prestimulated PBMCs resulted in disruption of the epidermis of collagen skin models mimicking acute skin GvHD. The same disruption of the epidermal layer was observed using cell culture supernatants of prestimulated PBMCs, suggesting the involvement of proinflammatory cytokines. Indeed, measurement of cytokine levels in culture supernatants revealed an increase of interleukin 2 and 17, interferon gamma and tumor necrosis factor alpha. In addition, injection of prestimulated PBMCs into more complex vascularized skin models also caused disruption of the epidermal layer and an increase of proinflammatory cytokine levels in a time dependent manner. Taken together, these findings demonstrate that it is possible to induce a strong immune reaction and inflammatory tissue damage in artificial human skin models mimicking histomorphological patterns of acute skin GvHD. Therefore, this model could contribute to the development of a clinically relevant GvHD test platform for prediction of the GvHD potential or immunosuppressive capacity of innovative cell products. Thus, artificial human GvHD models may be employed in clinical studies in order to gain first in vitro results in a human system and to extend information from animal models, which can then be compared to the actual clinical outcome. KW - Graft-versus-host-disease KW - Tissue Engineering KW - inflammatorische Gewebeschäden KW - artifizielle Hautmodelle Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-153966 ER - TY - THES A1 - Radakovic, Dejan T1 - Development of a Dialysis Graft Based on Tissue Engineering Methods T1 - Entwicklung einer Dialysegraft basierend auf Tissue Engineering-Methoden N2 - Despite advancements of modern medicine, the number of patients with the the end-stage kidney disease keeps growing, and surgical procedures to establish and maintain a vascular access for hemodialysis are rising accordingly. Surgical access of choice remains autogenous arteriovenous fistula, whereas approach “fistula first at all costs” leads to failure in certain subgroups of patients. Modern synthetic vascular grafts fail to deliver long-term results comparable with AV fistula. With all that in mind, this work has an aim of developing a new alternative vascular graft, which can be used for hemodialysis access using the methods of TE, especially electrospinning technique. It is hypothesized that electrospun scaffold, made of PCL and collagen type I may assemble mechanical properties similar to native blood vessels. Seeding such electrospun scaffolds with human microvascular endothelial cells (hmvECs) and preconditioning with shear stress and continuous flow might achieve sufficient endothelial lining being able to resist acute thrombosis. One further topic considered on-site infections, which represents one of the most spread complications of dialysis therapy due to continuous needle punctures. The main hypothesis was that during electrospinning process, polymers can be blended with antibiotics with the aim of producing scaffolds with antimicrobial properties, which could lead to reducing the risk of on-site infection on one side, while not affecting the cell viability. N2 - Trotz der Fortschritte in der modernen Medizin wächst die Zahl der Patienten mit Nierenerkrankungen im Endstadium weiter, und die chirurgischen Verfahren zur Herstellung und Aufrechterhaltung eines Gefäßzugangs für die Hämodialyse nehmen entsprechend zu. Der chirurgische Zugang der Wahl bleibt eine autogene arteriovenöse Fistel, während der Ansatz „Fistel zuerst um jeden Preis“ bei bestimmten Untergruppen von Patienten zum Versagen führt. Moderne synthetische Gefäßtransplantate liefern keine mit AV-Fisteln vergleichbaren Langzeitergebnisse. Vor diesem Hintergrund zielt diese Arbeit darauf ab, ein neues alternatives Gefäßtransplantat zu entwickeln, das für den Zugang zur Hämodialyse unter Verwendung der TE-Methoden, insbesondere der Elektrospinntechnik, verwendet werden kann. Es wird angenommen, dass ein elektrogesponnenes Gerüst aus PCL und Kollagen Typ I ähnliche mechanische Eigenschaften wie native Blutgefäße aufweisen kann. Die Besiedelung solcher elektrogesponnener Gerüste mit menschlichen mikrovaskulären Endothelzellen (hmvECs) und das Vorkonditionieren mit Scherbeanspruchung und kontinuierlichem Fluss könnte eine ausreichende Endothelialisierung erreichen, um eine akute Thrombose vermeiden zu können. Ein weiteres Thema waren lokale Infektionen, die eine der am weitesten verbreiteten Komplikationen der Dialysetherapie aufgrund kontinuierlicher Nadelstiche darstellen. Die Haupthypothese war, dass Polymere während des Elektrospinnprozesses mit Antibiotika gemischt werden können, um Gerüste mit antimikrobiellen Eigenschaften herzustellen, die dazu führen können, dass das Risiko einer Infektion vor Ort auf einer Seite verringert wird, ohne die Lebensfähigkeit der Zellen zu beeinträchtigen. KW - Elektrospinnen KW - Tissue Engineering KW - Electrospinning Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-208492 ER - TY - THES A1 - Wiesner, Miriam T1 - Stem Cell-based Adipose Tissue Engineering - Engineering of Prevascularized Adipose Tissue Constructs In Vitro & Investigation on Gap Junctional Intercellular Communication in Adipose-derived Stem Cells T1 - Stammzellbasiertes Tissue Engineering von Fettgewebe - Entwicklung eines prävaskularisierten Fettgewebekonstrukts in vitro & Untersuchung der interzellulären Kommunikation über Gap Junctions in Stammzellen aus dem Fettgewebe N2 - In reconstructive and plastic surgery, there exists a growing demand of adequate tissue implants, since currently available strategies for autologous transplantation are limited by complications including transplant failure and donor site morbidity. By developing in vitro and in vivo autologous substitutes for defective tissue sites, adipose tissue engineering can address these challenges, although there are several obstacles to overcome. One of the major limitations is the sufficient vascularization of in vitro engineered large constructs that remains crucial and demanding for functional tissues. Decellularized jejunal segments may represent a suitable scaffolding system with preexisting capillary structures that can be repopulated with human microvascular endothelial cells (hMVECs), and a luminal matrix applicable for the adipogenic differentiation of human adipose-derived stem cells (hASCs). Hence, co-culture of these cells in jejunal segments, utilizing a custom-made bioreactor system, was characterized in terms of vascularization and adipose tissue development. Substantial adipogenesis of hASCs was demonstrated within the jejunal lumen in contrast to non-induced controls, and the increase of key adipogenic markers was verified over time upon induction. The development of major extracellular matrix components of mature adipose tissue, such as laminin and collagen IV, was shown within the scaffold in induced samples. Successful reseeding of the vascular network with hMVECs was demonstrated in long-term culture and co-localization of vascular structures and adipogenically differentiated hASCs was observed. Therefore, these results represent a novel approach for in vitro engineering of vascularized adipose tissue constructs that warrants further investigations in preclinical studies. Another still existing obstacle in adipose tissue engineering is the insufficient knowledge about the applied cells, for instance the understanding of how cells can be optimally expanded and differentiated for successful engineering of tissue transplants. Even though hASCs can be easily isolated from liposuction of abdominal fat depots, yielding low donor site morbidity, huge numbers of cells are required to entirely seed complex and large 3D matrices or scaffolds. Thus, cells need to be large-scale expanded in vitro on the premise of not losing their differentiation capacity caused by replicative aging. Accordingly, an improved differentiation of hASCs in adipose tissue engineering approaches remains still desirable since most engineered constructs exhibit an inhomogeneous differentiation pattern. For mesenchymal stem cells (MSCs), it has been shown that growth factor application can lead to a significant improvement of both proliferation and differentiation capacity. Especially basic fibroblast growth factor (bFGF) represents a potent mitogen for MSCs, while maintaining or even promoting their osteogenic, chondrogenic and adipogenic differentiation potential. As there are currently different contradictory information present in literature about the applied bFGF concentration and the explicit effect of bFGF on ASC differentiation, here, the effect of bFGF on hASC proliferation and differentiation capacity was investigated at different concentrations and time points in 2D culture. Preculture of hASCs with bFGF prior to adipogenic induction showed a remarkable effect, whereas administration of bFGF during culture did not improve adipogenic differentiation capacity. Furthermore, the observations indicated as mode of action an impact of this preculture on cell proliferation capacity, resulting in increased cellular density at the time of adipogenic induction. The difference in cell density at this time point appeared to be pivotal for increased adipogenic capacity of the cells, which was confirmed in a further experiment employing different seeding densities. Interestingly, furthermore, the obtained results suggested a cell-cell contact-mediated mechanism positively influencing adipogenic differentiation. As a consequence, subsequently, studies were conducted focusing on intercellular communication of these cells, which has hardly been investigated to date. Despite the multitude of literature on the differentiation capacity of ASCs, little is reported about the physiological properties contributing to and controlling the process of lineage differentiation. Direct intercellular communication between adjacent cells via gap junctions has been shown to modulate differentiation processes in other cell types, with connexin 43 (Cx43) being the most abundant isoform of the gap junction-forming connexins. Thus, in the present study we focused on the expression of Cx43 and gap junctional intercellular communication (GJIC) in hASCs, and its significance for adipogenic differentiation of these cells. Cx43 expression in hASCs was demonstrated histologically and on the gene and protein expression level and was shown to be greatly positively influenced by cell seeding density. Functionality of gap junctions was proven by dye transfer analysis in growth medium. Adipogenic differentiation of hASCs was shown to be also distinctly elevated at higher cell seeding densities. Inhibition of GJIC by 18α-glycyrrhetinic acid significantly compromised adipogenic differentiation, as demonstrated by histology, triglyceride quantification, and adipogenic marker gene expression. Flow cytometry analysis showed a lower proportion of cells undergoing adipogenesis when GJIC was inhibited, further indicating the importance of GJIC in the differentiation process. Altogether, these results demonstrate the impact of direct cell-cell communication via gap junctions on the adipogenic differentiation process of hASCs and may contribute to further integrate direct intercellular crosstalk in rationales for tissue engineering approaches. N2 - In der rekonstruktiven und plastischen Chirurgie besteht ein wachsender Bedarf an adäquaten Gewebetransplantaten, da die derzeit verfügbaren Strategien für autologe Transplantationen von Geweben durch Komplikationen wie beispielsweise Transplantatversagen sowie Morbiditäten an der Entnahmestelle beeinträchtigt werden. Das Tissue Engineering kann dieser Problematik jedoch durch die Entwicklung von in vitro und in vivo gezüchtetem, autologen Gewebeersatz für defekte Gewebestellen begegnen, wobei es dabei noch mehrere Hindernisse zu überwinden gilt. Eine der größten Limitationen ist die ausreichende Vaskularisierung der in vitro hergestellten, großen Konstrukte, welche für die Funktion des Gewebes entscheidend ist. Hierfür können dezellularisierte, jejunale Segmente ein geeignetes Gerüstsystem darstellen, deren bereits vorhandene Kapillarstrukturen mit humanen, mikrovaskulären Endothelzellen (hMVECs) und deren luminale Matrix mit humanen Stammzellen aus dem Fettgewebe (hASCs), mit anschließender adipogen Differenzierung, besiedelt werden können. Im Rahmen der vorliegenden Arbeit wurden diese Konstrukte mit Hilfe eines maßgeschneiderten Bioreaktorsystems kultiviert und die Kokultur der Zellen in der jejunalen Matrix hinsichtlich der Fettgewebeentwicklung untersucht. Im Gegensatz zu nicht-induzierten Kontrollen wurde nach adipogener Induktion innerhalb des jejunalen Lumens eine substanzielle Fettgewebebildung der hASCs, sowie ein Anstieg wichtiger adipogener Marker im zeitlichen Verlauf nachgewiesen. Die Bildung wesentlicher extrazellulärer Matrixkomponenten des reifen Fettgewebes, wie beispielsweise Laminin und Kollagen IV, wurde innerhalb der Matrix bei induzierten Proben ebenso beobachtet. Die erfolgreiche Neubesiedlung des Gefäßnetzes mit hMVECs konnte in der Langzeitkultur gezeigt und eine Kolokalisation von Gefäßstrukturen und differenzierten hASCs beobachtet werden. Somit stellen diese Ergebnisse einen vielversprechenden, neuen Ansatz für die in vitro Entwicklung von vaskularisierten Fettgewebekonstrukten dar, welcher jedoch noch weitere Untersuchungen in präklinischen Studien erfordert. Eine weitere Limitation in der Entwicklung von Fettgewebe ist das unzureichende Wissen über die verwendeten Zellen – so zum Beispiel wie Zellen optimal expandiert und differenziert werden können, um einen Gewebeersatz erfolgreich herzustellen. Auch wenn hASCs leicht aus abdominalen Liposuktionen, welche zu einer relativ geringen Morbidität an der Entnahmestelle führen, isoliert werden können, ist eine sehr große Anzahl an Zellen erforderlich, um komplexe und große 3D-Matrizes vollständig mit Zellen zu besiedeln. So müssen Zellen in vitro im großen Maßstab expandiert werden, wobei auf die Erhaltung ihrer Differenzierungskapazität und die Vermeidung des replikativen Alterns geachtet werden muss. Da viele der entwickelten Konstrukte des Weiteren ein inhomogenes Differenzierungsmuster aufweisen, ist eine Verbesserung der adipogenen Differenzierung von ASCs im Rahmen von Tissue Engineering Ansätzen wünschenswert. Für mesenchymale Stammzellen (MSCs) wurde bereits gezeigt, dass die Anwendung von Wachstumsfaktoren zu einer deutlichen Verbesserung der Proliferations- und Differenzierungskapazität führen kann. Insbesondere der Wachstumsfaktor bFGF (basic fibroblast growth factor) stellt ein starkes Mitogen für MSCs dar, wobei er das osteogene, chondrogene und adipogene Differenzierungspotenzial der Zellen aufrechterhält und sogar fördert. Da es in der Literatur derzeit unterschiedliche und teilweise widersprüchliche Informationen über die verwendeten bFGF Konzentrationen und den expliziten Effekt von bFGF auf die Differenzierung von ASCs gibt, wurde der Effekt von bFGF auf die Proliferations- und Differenzierungsfähigkeit mit unterschiedlichen Konzentrationen und zu unterschiedlichen Zeitpunkten in der 2D Kultur untersucht. Die Vorkultur der hASCs mit bFGF vor der adipogenen Induktion hatte einen beachtlichen Effekt auf die Differenzierung, während die Verabreichung von bFGF während der Kultur, die adipogene Differenzierungsfähigkeit der Zellen nicht verbesserte. Darüber hinaus zeigten die Ergebnisse einen Einfluss der Vorkultur auf die Zellproliferation, was zu einer erhöhten Zelldichte zum Zeitpunkt der adipogenen Induktion führte. Der Unterschied in der Zelldichte zu diesem Zeitpunkt schien entscheidend für die gesteigerte Differenzierungskapazität der Zellen zu sein, was sich in einem weiteren Experiment mit unterschiedlichen Aussaatdichten bestätigte. Interessanterweise deuteten die Ergebnisse außerdem darauf hin, dass ein Zell-Zell-Kontakt-vermittelter Mechanismus die adipogene Differenzierung positiv beeinflusst. Daher wurden anschließend Untersuchungen zur interzellulären Kommunikation dieser Zellen durchgeführt, welche bisher kaum erforscht wurde. Trotz der Vielzahl an Literatur über die Differenzierungsfähigkeit von ASCs ist wenig über die physiologischen Prozesse bekannt, die zur Differenzierung in verschiedene Zelltypen beitragen und diese kontrollieren. So wurde gezeigt, dass die direkte interzelluläre Kommunikation zwischen benachbarten Zellen über Gap Junctions Differenzierungsprozesse moduliert. Connexin 43 (Cx43) stellt dabei die häufigste Isoform der Gap Junction-bildenden Connexine dar. Im Rahmen dieser Arbeit wurde die Expression von Cx43 und die interzelluläre Kommunikation durch Gap Junctions (gap junctional intercellular communication; GJIC) in hASCs, sowie ihre Bedeutung für die adipogene Differenzierung untersucht. Die Cx43 Expression in hASCs wurde histologisch und auf Gen- und Proteinexpressionsebene nachgewiesen und wurde durch die Zellaussaatdichte nachweislich stark beeinflusst. Die Funktionalität der Gap Junctions konnte mit Hilfe eines Assays zur Übertragung von Farbstoffen untersucht werden. Es zeigte sich hierbei eine zelldichteabhängige, adipogene Differenzierungkapazität der hASCs. Die Hemmung der GJIC durch 18α-Glycyrrhetinsäure beeinträchtigte die adipogene Differenzierung deutlich, wie sich durch die Histologie, die Triglyceridquantifizierung und die adipogene Markergenexpression beobachten ließ. Bei Hemmung der GJIC zeigte sich mit Hilfe der Durchflusszytometrie, dass weniger Zellen adipogen differenzieren konnten, was die Bedeutung von GJIC im Differenzierungsprozess hervorhebt. Zusammenfassend veranschaulichen diese Ergebnisse den Einfluss direkter Zell-Zell-Kommunikation über Gap Junctions auf den adipogenen Differenzierungsprozess von hASCs und könnten somit in Zukunft dazu beitragen, direkte interzelluläre Kommunikation in Tissue Engineering Ansätze zu integrieren. KW - Tissue Engineering KW - Fettgewebe KW - Gap Junction KW - Adipose Tissue Engineering Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-185005 ER - TY - THES A1 - Weigl, Elena Johanna Dorothée T1 - Dosis-Wirkungsbeziehungen von Gefitinib in einem humanen Lungentumormodell T1 - Characterization of dose and impact relations of Gefitinib in a human lung cancer model N2 - Als die häufigste tödliche Tumorerkrankung weltweit ist das Lungenkarzinom mit einer sehr schlechten Prognose verbunden. Eine Behandlungsoption für Lungenadenokarzinome, die eine aktivierende EGFR-Mutation aufweisen, ist der orale EGFR-TKI Gefitinib (Iressa®, ZD1839). Die Resistenzentwicklung von Tumoren gegen diese Therapie stellt ein großes klinisches Problem dar. Das Ziel dieser Arbeit war es, die Dosis-Wirkungs-Beziehung von Gefitinib, sowie die Entwicklung von Resistenzen in einem etablierten humanen 3D Lungentumormodell zu untersuchen und dieses Testsystem für eben diese Fragestellungen zu validieren. Vorliegende Arbeit bestätigt, dass pharmakologische Untersuchungen in Zellkulturen häufig zu einer Überschätzung des Behandlungserfolges führen. Das verwendete Modell entspricht mehr den in vivo Bedingungen. In dieser Arbeit wurden zwei ATP-Zellvitalitätsassays für die statischen 3D Lungentumormodelle etabliert und erfolgreich angewendet. Dabei zeigte sich eine konzentrationsabhängige Wirkung von Gefitinib auf das Wachstum, die Proliferation, die Apoptose, die Markerexpression sowie die Signalwegsaktivierungen. Im statischen 3D Lungentumormodell lag der IC50-Wert zwischen 0,05-0,1 µM Gefitinib welches den Werten aus klinischen Beobachtungen entspricht. Auch der in der Klinik bereits nach wenigen Stunden eintretende zeitliche Effekt von Gefitinib konnte in unserem Modell bestätigt werden. Eine dynamische Kultivierung der Lungentumorzellen, mit von Scherkräften verursachtem schnellerem Zellwachstum, führte zu einer weiteren Annährung an die klinischen Gegebenheiten. Das Netzwerk der Gefitinib-Wirkung auf die EGFR-Signalkaskade wurde in unserem Modell charakterisiert. Die Betrachtung einer resistenten Zell-Subpopulation zeigte einen Resistenzmechanismus über eine Epitheliale-Mesenchymale-Transition. Zusätzlich wurde versucht, eine neue medikamenten-resistente Zell-Subpopulation zu generieren. Das beschriebene 3D Lungentumormodell ermöglicht richtungsweisende Untersuchungen zu Dosis-Wirkungs-Beziehung von Gefitinib. Ansätze für eine weitere Optimierung des Modells wurden herausgearbeitet. N2 - Lung cancer is the deadliest proliferative disease worldwide and associated with a poor prognosis. One option for treatment of adenocarcinomas of the lung with an activating epidermal growth factor receptor (EGFR) mutation is the oral EGFR-tyrosine kinase inhibitor (TKI) Gefitinib (Iressa®, ZD1839). The development of resistances against EGFR-TKIs is a predominant clinical threat. The aim of this dissertation was to further explore the relations of dose and impact of Gefitinib and the development of resistances in an established three dimensional (3D) human lung cancer model. The models accuracy was analysed. This study confirmed that pharmacological testing in cell cultures often leads to an overestimation of the treatment while our model represents in vivo conditions in a more accurate way. Initially two ATP-cell viability assays were established and successfully used in the static 3D lung cancer model. Gefitinib had a concentration-dependent impact on cell growth, proliferation, apoptosis, the expression of markers and the activation of signalling pathways. In the static 3D lung cancer model the half maximal inhibitory concentration was reached between 0.05 µM and 0.1 µM Gefitinib. The effect of Gefitinib was apparent after several hours. These findings confirmed clinical observations. To mimic the clinical setting further the lung cancer cells were cultivated under dynamic conditions which lead to shear forces and a resulting rise in cell growth. In our model we characterized the network of the EGFR signalling pathways. Exploration of a resistant subpopulation of adenocarcinoma cells revealed an epithelial-mesenchymal transition of the cells. The generation of another resistant subpopulation was attempted. The described 3D lung cancer model can be used for an indicatory analysis of Gefitinib and its properties. Options for further improvement were explored. KW - Lungentumor KW - Dosis-Wirkungs-Beziehung KW - Adenocarcinom KW - Tissue Engineering KW - Protein-Tyrosin-Kinasen KW - Gefitinib KW - Tumormodell KW - Resistenzentwicklung Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204359 ER - TY - THES A1 - Krähnke, Martin T1 - Chondrogenic differentiation of bone marrow-derived stromal cells in pellet culture and silk scaffolds for cartilage engineering – Effects of different growth factors and hypoxic conditions T1 - Chondrogene Differenzierung von Stammzellen aus dem Knochenmark in Pelletkultur und Seidenimplantaten für die Knorpelregeneration - Effekte verschiedener Wachstumsfaktoren und hypoxischer Bedingungen N2 - Articular cartilage lesions that occur upon intensive sport, trauma or degenerative disease represent a severe therapeutic problem. At present, osteoarthritis is the most common joint disease worldwide, affecting around 10% of men and 18% of women over 60 years of age (302). The poor self-regeneration capacity of cartilage and the lack of efficient therapeutic treatment options to regenerate durable articular cartilage tissue, provide the rationale for the development of new treatment options based on cartilage tissue engineering approaches (281). The integrated use of cells, biomaterials and growth factors to guide tissue development has the potential to provide functional substitutes of lost or damaged tissues (2,3). For the regeneration of cartilage, the availability of mesenchymal stromal cells (MSCs) or their recruitment into the defect site is fundamental (281). Due to their high proliferation capacity, the possibility to differentiate into chondrocytes and their potential to attract other progenitor cells into the defect site, bone marrow-derived mesenchymal stromal cells (BMSCs) are still regarded as an attractive cell source for cartilage tissue engineering (80). However, in order to successfully engineer cartilage tissue, a better understanding of basic principles of developmental processes and microenvironmental cues that guide chondrogenesis is required. N2 - Verletzungen des Gelenkknorpels, die durch intensiven Sport, Trauma oder degenerative Krankheiten induziert wurden, stellen ein großes therapeutisches Problem dar. Heutzutage ist Arthrose die weltweit häufigste Gelenkerkrankung, die etwa 10% der männlichen und 18% der weiblichen Bevölkerung über 60 Jahre betrifft (302). Die geringe intrinsische Heilungskapazität von Knorpelgewebe und das Fehlen effizienter Behandlungsmethoden, um dauerhaften Gelenkknorpel zu erzeugen, bilden die Grundlage für die Entwicklung neuartiger Behandlungsmethoden auf Basis des Tissue Engineering (281). Hierbei verfügt speziell der integrierte Einsatz von Zellen, Biomaterialien und Wachstumsfaktoren über das Potential zerstörtes oder geschädigtes Gewebe zu ersetzen bzw. die Regeneration von neuem Gewebe zu fördern (2,3). Für die Regeneration von Knorpelgewebe ist vor allem die Verfügbarkeit von mesenchymalen Stammzellen (MSC) und deren Rekrutierung in die Defektzone von großer Bedeutung (281). Aufgrund ihrer hohen Proliferationsrate, der Fähigkeit in Chondrozyten zu differenzieren und des Potentials andere Vorläuferzellen in die Defektzone zu rekrutieren bilden MSCs auch heute noch einen attraktiven Ansatz im Knorpel-Tissue Engineering (80). Eine wichtige Voraussetzung für die erfolgreiche Entwicklung von Knorpelgewebe ist jedoch ein besseres Verständnis der grundlegenden Entwicklungsprozesse und der Einflussfaktoren der Mikroumgebung, die die Chondrogenese regulieren. KW - Hypoxie KW - Knorpelbildung KW - Tissue Engineering KW - Chondrogenesis KW - Hypoxia KW - Tissue Engineering Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-192999 ER - TY - THES A1 - Nelke, Lena T1 - Establishment and optimization of 3-dimensional mamma carcinoma models for therapy simulation and drug testing T1 - Etablierung und Optimierung 3-dimensionaler Mammakarzinommodelle für die Therapiesimulation und die Wirkstofftestung N2 - Breast cancer is the most common cancer among women worldwide and the second most common cause of cancer death in the developed countries. As the current state of the art in first-line drug screenings is highly ineffective, there is an urgent need for novel test systems that allow for reliable predictions of drug sensitivity. In this study, a tissue engineering approach was used to successfully establish and standardize a 3-dimensional (3D) mamma carcinoma test system that was optimized for the testing of anti-tumour therapies as well as for the investigation of tumour biological issues. This 3D test system is based on the decellularised scaffold of a porcine small intestinal segment and represents the three molecular subsets of oestrogen receptor-positive, HER2/Neu-overexpressing and triple negative breast cancer (TNBC). The characterization of the test system with respect to morphology as well as the expression of markers for epithelial-mesenchymal transition (EMT) and differentiation indicate that the 3D tumour models cultured under static and dynamic conditions reflect tumour relevant features and have a good correlation with in vivo tumour tissue from the corresponding xenograft models. In this respect, the dynamic culture in a flow bioreactor resulted in the generation of tumour models that exhibited best reflection of the morphology of the xenograft material. Furthermore, the proliferation indices of 3D models were significantly reduced compared to 2-dimensional (2D) cell culture and therefore better reflect the in vivo situation. As this more physiological proliferation index prevents an overestimation of the therapeutic effect of cytostatic compounds, this is a crucial advantage of the test system compared to 2D culture. Moreover, it could be shown that the 3D models can recapitulate different tumour stages with respect to tumour cell invasion. The scaffold SISmuc with the preserved basement membrane structure allowed the investigation of invasion over this barrier which tumour cells of epithelial origin have to cross in in vivo conditions during the process of metastasis formation. Additionally, the data obtained from ultrastructural analysis and in situ zymography indicate that the invasion observed is connected to a tumour cell-associated change in the basement membrane in which matrix metalloproteinases (MMPs) are also involved. This features of the model in combination with the mentioned methods of analysis could be used in the future to mechanistically investigate invasive processes and to test anti-metastatic therapy strategies. The validation of the 3D models as a test system with respect to the predictability of therapeutic effects was achieved by the clinically relevant targeted therapy with the monoclonal antibody trastuzumab which induces therapeutic response only in patients with HER2/Neu-overexpressing mamma carcinomas due to its specificity for HER2. While neither in 2D nor in 3D models of all molecular subsets a clear reduction of cell viability or an increase in apoptosis could be observed, a distinct increase in antibody-dependent cell-mediated cytotoxicity (ADCC) was detected only in the HER2/NEU-overexpressing 3D model with the help of an ADCC reporter gene assay that had been adapted for the application in the 3D model in the here presented work. This correlates with the clinical observations and underlines the relevance of ADCC as a mechanism of action (MOA) of trastuzumab. In order to measure the effects of ADCC on the tumour cells in a direct way without the indirect measurement via a reporter gene, the introduction of an immunological component into the models was required. This was achieved by the integration of peripheral blood mononuclear cells (PBMCs), thereby allowing the measurement of the induction of tumour cell apoptosis in the HER2/Neu-overexpressing model. Hence, in this study an immunocompetent model could be established that holds the potential for further testing of therapies from the emergent field of cancer immunotherapies. Subsequently, the established test system was used for the investigation of scientific issues from different areas of application. By the comparison of the sensitivity of the 2D and 3D model of TNBC towards the water-insoluble compound curcumin that was applied in a novel nanoformulation or in a DMSO-based formulation, the 3D test system was successfully applied for the evaluation of an innovative formulation strategy for poorly soluble drugs in order to achieve cancer therapy-relevant concentrations. Moreover, due to the lack of targeted therapies for TNBC, the TNBC model was applied for testing novel treatment strategies. On the one hand, therapy with the WEE1 kinase inhibitor MK 1775 was evaluated as a single agent as well as in combination with the chemotherapeutic agent doxorubicin. This therapy approach did not reveal any distinct benefits in the 3D test system in contrast to testing in 2D culture. On the other hand, a novel therapy approach from the field of cellular immunotherapies was successfully applied in the TNBC 3D model. The treatment with T cells that express a chimeric antigen receptor (CAR) against ROR1 revealed in the static as well as in the dynamic model a migration of T cells into the tumour tissue, an enhanced proliferation of T cells as well as an efficient lysis of the tumour cells via apoptosis and therefore a specific anti-cancer effect of CAR-transduced T cells compared to control T cells. These results illustrate that the therapeutic application of CAR T cells is a promising strategy for the treatment of solid tumours like TNBC and that the here presented 3D models are suitable for the evaluation and optimization of cellular immunotherapies. In the last part of this work, the 3D models were expanded by components of the tumour stroma for future applications. By coculture with fibroblasts, the natural structures of the intestinal scaffold comprising crypts and villi were remodelled and the tumour cells formed tumour-like structures together with the fibroblasts. This tissue model displayed a strong correlation with xenograft models with respect to morphology, marker expression as well as the activation of dermal fibroblasts towards a cancer-associated fibroblast (CAF) phenotype. For the integration of adipocytes which are an essential component of the breast stroma, a coculture with human adipose-derived stromal/stem cells (hASCs) which could be successfully differentiated along the adipose lineage in 3D static as well as dynamic models was established. These models are suitable especially for the mechanistic analysis of the reciprocal interaction between tumour cells and adipocytes due to the complex differentiation process. Taken together, in this study a human 3D mamma carcinoma test system for application in the preclinical development and testing of anti-tumour therapies as well as in basic research in the field of tumour biology was successfully established. With the help of this modular test system, relevant data can be obtained concerning the efficacy of therapies in tumours of different molecular subsets and different tumour stages as well as for the optimization of novel therapy strategies like immunotherapies. In the future this can contribute to improve the preclinical screening and thereby to reduce the high attrition rates in pharmaceutical industry as well as the amount of animal experiments. N2 - Brustkrebs ist die häufigste Krebsart bei Frauen und die zweithäufigste Todesursache bei Krebserkrankungen in den Industrienationen. Aufgrund der Ineffizienz der derzeit verwendeten Modelle für die Identifizierung neuer Therapeutika herrscht ein hoher Bedarf an neuartigen Testsystemen, welche aussagekräftige Vorhersagen über die Wirksamkeit ermöglichen. In dieser Arbeit wurde mit Hilfe des Tissue Engineerings erfolgreich ein 3-dimensionales (3D) Mammakarzinom-Testsystem etabliert, standardisiert und für die Testung von anti-tumoralen Therapien sowie weitere tumorbiologische Fragestellungen optimiert. Dieses 3D Testsystem basiert auf der dezellularisierten Gerüststruktur eines porcinen Dünndarmsegments und repräsentiert die drei molekularen Subtypen des Östrogen-Rezeptor-positiven, HER2/Neu-überexprimierenden sowie des tripel-negativen Brustkrebses (TNBC). Die Charakterisierung des Testsystems anhand der Morphologie sowie der Expression von Markern zur Bestimmung der epithelialen-mesenchymalen Transition (EMT) und der Differenzierung zeigte, dass die statisch und dynamisch kultivierten 3D Modelle Tumor-relevante Charakteristika widerspiegeln und eine deutliche Ähnlichkeit zu in vivo Tumormaterial aus entsprechenden Xenograft-Modellen aufweisen, wobei die dynamische Kultivierung in einem Flussreaktor zur Generierung von Tumormodellen führte, welche die Morphologie des Tumorgewebes aus Xenograft-Modellen am besten repräsentierten. Des Weiteren war die Proliferationsrate in den 3D Modellen im Vergleich zu 2-dimensionalen (2D) Zellkulturen signifikant reduziert und entspricht daher eher der Situation in vivo. Dies ist ein entscheidender Vorteil des Testsystems gegenüber der 2D Zellkultur, da durch die physiologischere Proliferationsrate eine Überschätzung des Therapieeffekts zytostatischer Medikamente vermieden wird. Zudem konnte gezeigt werden, dass mit Hilfe der 3D Modelle unterschiedliche Tumorstadien in Bezug auf die Tumorzellinvasion abgebildet werden können. Die Gerüststruktur SISmuc mit erhaltener Basalmembranstruktur ermöglichte eine Untersuchung der Invasion über diese Barriere, welche Tumorzellen epithelialen Ursprungs unter in vivo-Bedingungen beim Prozess der Metastasierung überwinden müssen. Zudem deuten die durch ultrastrukturelle Analysen und in situ Zymographie gewonnenen Daten darauf hin, dass die beobachtete Invasion mit einer Tumorzell-assoziierten Veränderung der Basalmembran, an der auch Matrix-Metalloproteinasen (MMPs) beteiligt sind, einhergeht. Diese Eigenschaften des Modells in Kombination mit den erwähnten Untersuchungsmethoden könnten in Zukunft dazu eingesetzt werden, Invasionsprozesse mechanistisch zu untersuchen sowie neue anti-metastatisch wirkende Therapiestrategien zu testen. Die Validierung der 3D Modelle als Testsystem bezüglich der Vorhersagbarkeit von Therapieeffekten erfolgte mit Hilfe der klinisch relevanten, zielgerichteten Therapie mit dem monoklonalen Antikörper Trastuzumab, welcher aufgrund seiner Spezifität für HER2/Neu nur in Patienten mit HER2/Neu-überexprimierendem Mammakarzinom einen Therapieerfolg erzielt. Während weder in 2D noch in den 3D Modellen aller molekularer Subtypen eine eindeutige Reduktion der Zellviabilität oder ein Anstieg der Apoptose gemessen werden konnte, zeigte sich mit Hilfe eines ADCC-Reportergenassays, der in dieser Arbeit für die Anwendung im 3D Modell angepasst wurde, ein deutlicher Anstieg der Antikörper-abhängigen zellvermittelten Zytotoxizität (ADCC) lediglich für das HER2/Neu-überexprimierende Modell. Dies entspricht den klinischen Beobachtungen und unterstreicht die Relevanz der ADCC als Wirkmechanismus des Antikörpers. Um die direkten Effekte einer ADCC auf die Tumorzellen im 3D Testsystem direkt – ohne den Umweg über ein Reportergen – messbar zu machen, war die Einführung einer immunologischen Komponente notwendig. Dies gelang mit Hilfe der Integration von mononukleären Zellen des peripheren Blutes (PBMCs), wodurch die Induktion der Apoptose im HER2/Neu-überexprimierenden Modell messbar war. Somit konnte im Rahmen dieser Arbeit ein immunkompetentes Modell etabliert werden, welche das Potenzial für weitere Testungen aus dem aufstrebenden Bereich der Krebsimmuntherapien bietet. Anschließend wurde das etablierte Testsystem zur Untersuchung von Fragestellungen aus unterschiedlichen Anwendungsbereichen eingesetzt. Durch den Vergleich der Sensitivität von Tumorzellen in 2D und im 3D Modell des TNBC gegenüber des wasserunlöslichen Wirkstoffs Curcumin, welcher in einer neuartigen Nanoformulierung bzw. in einer DMSO-basierten Formulierung appliziert wurde, konnte das 3D Testsystem für die Evaluation einer innovativen Formulierungsstrategie für unlösliche Wirkstoffe angewendet werden, um für die Krebstherapie relevante Dosierungen zu erreichen. Weiterhin wurden aufgrund des Mangels an zielgerichteten Therapien für das tripel-negative Mammakarzinom neuartige Therapiestrategien anhand des 3D Modells getestet. Zum einen wurde die Therapie mit dem WEE1-Kinase Inhibitor MK 1775 als Monotherapie sowie in Kombination mit dem Chemotherapeutikum Doxorubicin evaluiert. Diese zeigte im Gegensatz zu Testungen in 2D Kultur keinen eindeutigen Therapieeffekt im 3D Testsystem. Zum anderen wurde eine neuartige Behandlung aus dem Bereich der zellulären Immuntherapie erfolgreich im TNBC 3D Modell angewendet. Die Behandlung mit T-Zellen, welche einen chimären Antigen-Rezeptor (CAR) gegen ROR1 tragen, zeigte sowohl im statischen als auch im dynamischen Modell eine Migration der T-Zellen in das Tumorgewebe, eine erhöhte Proliferation der T-Zellen sowie eine effiziente Lyse der Tumorzellen mittels Apoptose und damit eine spezifische anti-tumorale Wirkung der CAR-transduzierten T-Zellen im Vergleich zu Kontroll-T-Zellen. Diese Ergebnisse verdeutlichen einerseits, dass die therapeutische Anwendung von CAR-T-Zellen eine vielversprechende Strategie für die Behandlung von soliden Tumoren wie des TNBC ist, zum anderen, dass die hier vorgestellten 3D Modelle als Testsystem für die Evaluierung und Optimierung von zellulären Immuntherapien geeignet sind. Im letzten Teil der Arbeit wurde das 3D Modell für die zukünftige Anwendung um Komponenten des Tumorstromas erweitert. Durch die Kokultur mit Fibroblasten wurden die natürlichen Strukturen der Darmmatrix, bestehend aus Krypten und Villi, umgebaut und die Krebszellen bildeten zusammen mit den Fibroblasten tumorartige Strukturen aus. Das so erzeugte Gewebemodell zeigte sowohl in morphologischer Hinsicht als auch bezogen auf die Markerexpression und die Aktivierung der dermalen Fibroblasten hin zu Krebs-assoziierten Fibroblasten (CAFs) starke Ähnlichkeit mit Xenograft-Modellen. Für die Integration von Adipozyten, welche ein wichtiger Bestandteil des Stromas in der Brust sind, wurde eine Kokultur mit humanen, aus dem Fettgewebe stammenden Stroma-/Stammzellen (hASCs) etabliert, welche sowohl im statischen als auch im dynamischen 3D Modell erfolgreich adipogen differenziert werden konnten. Diese Modelle eignen sich aufgrund des komplexen Differenzierungsprozesses vor allem für die mechanistische Untersuchung der Interaktionen zwischen Tumorzellen und Adipozyten. Zusammenfassend ist es in dieser Arbeit gelungen, ein humanes 3D Mammakarzinom-Testsystem zur Anwendung in der präklinischen Entwicklung und Testung anti-tumoraler Therapien sowie der Grundlagenforschung im Bereich der Tumorbiologie zu etablieren. Mit Hilfe dieses modularen Testsystems können relevante Daten zur Wirksamkeit von Therapien in Tumoren unterschiedlicher molekularer Subtypen sowie unterschiedlich fortgeschrittener Tumorstadien und zur Optimierung neuartiger Therapiestrategien wie Immuntherapien gewonnen werden. Dies kann in Zukunft dazu beitragen das präklinische Screening zu verbessern und somit die hohen klinischen Ausfallraten in der pharmazeutischen Industrie und die Zahl von Tierversuchen zu reduzieren. KW - Brustkrebs KW - Mamma carcinoma KW - Tissue Engineering KW - Drug testing KW - 3D model KW - therapy simulation KW - Mammakarzinom KW - Wirkstofftestung KW - 3D Modell KW - Therapiesimulation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172280 ER - TY - THES A1 - Schulz, Christian Andreas T1 - Tissue Engineering einer autologen Neofaszie in Kombination mit synthetischen Netzen im dynamischen Bioreaktor: Morphometrie und explorative Gen-Expressionsanalyse T1 - Tissue Engineering of an autologue neofascia in combination with synthetic meshes in a dynamic bioreactor: morphometrie and explorative analysis of gene-expression N2 - Zusammenfassung Einleitung: Die Inzidenz von Narbenhernien (operativ erworbene Schwachstellen der Bauchwand) ist abhängig von der Art der vorhergegangen Operation, nach Laparaskopien ist sie um einiges niedriger als nach Laparotomien, wird aber mit 2-20% in der Literatur angegeben. Aufgrund der möglichen Komplikationen (Platzbauch, Darminkarzeration, Schmerzen, Funktionseinschränkung, …) stellen Narbenhernien oftmals große Belastungen für die Patienten dar. Die operative Sanierung, in Abhängigkeit von Größe und Lage, wird zumeist durch einbringen eines Netzgewebes erreicht. Dieser Fremdkörper kann seinerseits wieder Komplikationen hervorrufen (Infektionen, Funktionsverlust, Schmerzen, Fisteln), die bis zur Explantation des Netzgewebes führen können. Das Risiko für das Auftreten von Narbenhernien bzw. deren Rezidiven hängt von vielen Faktoren ab, als Risikofaktoren wurden unter anderem Rauchen, männliches Geschlecht, Alter >45 Jahre und ein BMI >25 kg/cm² ausgemacht. Ein Teilbereich des Tissue Engineerings ist die Entwicklung von Modellen, anhand derer in vitro Prozesse des menschlichen Körpers nachvollzogen werden können. Mit dieser Arbeit soll ein Modell etabliert werden Anhand dessen die Untersuchung der Kollagenproduktion und der Netzinkorporation bzw. die Auswirkungen verschiedener Risikofaktoren auf diese Prozesse in vitro ermöglicht werden soll. Weiterhin wurden Studienfragen formuliert, die sich sowohl mit der Durchführbarkeit dieser Methode abzielten, als auch gezielt nach der Stützung der These der „guten und schlechten Heiler“ durch diese Arbeit abzielten. Sowie nach der Vergleichbarkeit der Ergebnisse mit bekannten Kollagenmustern die aus Netzexplantaten bekannt sind. Material und Methode: Für die vorliegende Arbeit wurden Biopsien von Faszien bzw. Narbenhernien im Rahmen einer Operation gewonnen, aus diesen wurden die Fibroblasten isoliert und anschliessend entweder eingefroren bzw. expandiert, um sie in einer Rattenkollagenmatrix mit und ohne synthetischem Netz im dynamisch mechanischen Bioreaktor zu kultivieren. Die Biopsien wurden Anhand der Kollagen I/III Ratio in „gute und schlechte Heiler“ eingruppiert. Anschließend wurden die so gezüchteten Neofaszien HE und Pikrosiriusrot gefärbt um zum einen einen Eindruck von der Verteilung der Fibroblasten innerhalb der Neofaszie zu gewinnen, als auch Aussagen zum Kollagenmuster, der Kollagen I/III Ratio und zur Kollagendensität treffen zu können. Die Dicke der kultivierten Neofaszien wurde sowohl in Sirius als auch in HE Färbung untersucht. Weiterhin wurden RT-PCR und Gene Arrays von Nativgeweben und von Neofaszien mit unterschiedlichen Netztypen durchgeführt. Ergebnisse: Bei gesunden Probanden konnten oftmals nicht genügend Zellen aus den Faszienbiopsaten gewonnen werden, deshalb wurde im Verlauf der Arbeit auf die Gewinnung von gesundem Fasziengewebe als Vergleichsgruppe verzichtet. Fibroblasten von als „schlechten Heilern“ klassifizierten Patienten zeigten meist ein langsameres Wachstum in der Expansionsphase. Der Bioreaktor bereitete kaum Probleme (ein paar Faszien trockneten anfänglich aus, dieses Problem lies sich durch bei Bedarf verkürzten Medienwechselintervallen in den Griff bekommen. Probleme mit Kontaminationen traten nicht auf. Bei den Histologischen Untersuchungen der Neofaszien waren Fibroblasten über den gesamten Bereich der Neofaszie zu sehen, auch in unmittelbarer Umgebung der Netzstrukturen. Die Kollagenmuster stimmten in Ansätzen mit den aus klinischen Netzexplantaten bekannten Mustern überein (Polydirektional bei Polyesternetz, Konzentrisch um die Netzstrukturen bei Polypropylen). Weiterhin war eine verstärkte Kollagenbildung quer zur Druckrichtung des Bioreaktors zu erkennen. Bei der Betrachtung der Dicke der Neofaszien zeigte sich (unter Vorbehalt, aufgrund der geringen Probenanzahl) eine Tendenz zu meist dünneren Faszien bei „schlechten Heilern“ während die Neofaszien von „guten Heilern“ meist eine kleinere Streuung um den Mittelwert zeigten (einheitlicher waren). Die Kollagendensität und auch die Kollagen I/III Ratio lieferten Ergebnisse Anhand derer Gesagt werden kann, dass je höher die Ausgangswerte im Nativgewebe waren, diese mit höherer Wahrscheinlichkeit von den Neofaszien nicht erreicht werden konnten. qRT-PCR und Gene Array zeigten in der Rangkorrelation nach Spearman große Übereinstimmungen. Beantwortung der Studienfragen: Es konnte gezeigt werden, dass es möglich ist Neofaszien mit synthetischen Netzen zu züchten, die über den gesamten Bereich mit Fibroblasten besiedelt waren. Die Ergebnisse der Kollagenmorphologie zeigten in Ansätzen die aus Netzexplantaten bekannten Muster. Bei Kollagen I/III Ratio und Densität war lediglich erkennbar, dass je höher die Ausgangswerte waren, diese mit zunehmender Wahrscheinlichkeit nicht reproduziert werden konnten. Es ließ sich keine Verbindung zwischen der Kollagen I/III Ratio der Histologischen Gewebeproben und den Molekularbiologischen Ergebnissen feststellen. Weiterhin konnte die Theorie der „guten und schlechten Heiler“ molekularbiologisch nicht gestützt werden, da die Proben der als „schlechte Heiler“ Klassifizierten Biopsien stärkere Gemeinsamkeiten mit als „gute Heiler“ Klassifizierten Biopsien aufwiesen als untereinander. Es konnte gezeigt werden dass die Kultur auf die MMP-8 und Elastinproduktion keinen Einfluss zu haben scheint. Diskussion: Im Verlauf der Diskussion wurde darauf hingewiesen, dass die Kollagensynthese, und Sekretion ein komplexes und höchst aktives System darstellt, welches im Rahmen der Wundheilung durch Co-Signalling, und der Interaktion zwischen Fibroblasten und Immunzellen (Makrophagen…) nochmals verändert wird, auch dadurch bedingt, dass Fibroblasten im Verlauf der Wundheilung selbst als immunmodulierende Zellen in Erscheinung treten können. So können weiterhin die Kollagen kodierenden Gene (Col1A1, Col1A2, Col3A1) als Marker für die Kollagenaktivität herangezogen werden, da aber zwischen Synthese und Sekretion des Kollagens ein nicht zu vernachlässigender Teil bereits intrazellulär wieder abgebaut wird kann nur durch Betrachtung dieser Gene die Theorie der „guten und schlechten Heiler“ nicht gestützt werden. Durch die hohe Korrelation der Ergebnisse aus gene-Array und qRT-PCR könnte für die Zukunft vorläufig auf die Durchführung von qRT-PCR verzichtet werden, um eventuell unterschiedliche Pathways mit dem Gene-Array zu identifizieren. Offene Fragen Ausblick und Perspektiven: Da das System der Wundheilung und Kollagensynthese und –Sekretion sehr komplex ist sollte für die Zukunft durch eine Kokultur mit Makrophagen bzw. durch die Zugabe von TNF-α, IL-6, PDGF, G-CSF, GM-CSF, Vitamin C oder Lysyloxidase zum Kulturmedium, geprüft werden ob sich eine Aktivitätsveränderung der Fibroblasten und damit eine andere Neofaszienstruktur erreichen lässt. Weiterhin sollte um einer Verfälschung der Ergebnisse durch das für die Gele verwendete Rattenkollagen vorzubeugen, entweder die Kulturdauer verlängert werden (mit dem Gedanken dass dann das gesamte Rattenkollagen durch humanes ersetzt wurde) bzw. ein Kollagenfreies Gel als Trägerstruktur entwickelt und verwendet werden. Um eine bessere Vergleichbarkeit der Ergebnisse des Gene-Arrays aus Spenderbiopsie und Neofaszie zu erreichen sollten die zur RNA-Gewinnung verwendeten Anteile der Biopsie noch innerhalb des OP in RNA-later bzw. in flüssigen Stickstoff gegeben werden, um einer verstärkten Degradation vorzubeugen. N2 - Summary Introduction: The incidence of scar hernias (surgically acquired weaknesses of the abdominal wall) depends on the type of previous operation, after laparascopies it is much lower than after laparotomies, but is reported to be 2-20% in the literature. Due to the possible complications (burst abdomen, intestinal incarceration, pain, functional limitations, ...), scar hernias often represent a great burden for patients. Surgical restoration, depending on size and location, is usually achieved by inserting a mesh tissue. This foreign body in turn can cause complications (infections, loss of function, pain, fistulas), which can lead to explantation of the mesh tissue. The risk of the occurrence of scar hernias or their recurrence depends on many factors, including smoking, male sex, age >45 years and a BMI >25 kg/cm². One goal of tissue engineering is the development of in vitro models to reproduce processes of the human body. The aim of this work is to establish a model that will enable the investigation of collagen production and mesh incorporation and the effects of different risk factors on these processes in vitro. Study questions were formulated, that were aimed to prove the feasibility of this method, to see if the results support the thesis of "good and bad healers", and to compare the results with known collagen patterns from net implants. Material and method: Biopsies of fascia and scar hernias were obtained during an abdominal surgery, from this tissue the fibroblasts were isolated and then either frozen or expanded in order to cultivate them in a rat collagen matrix with and without synthetic meshes in a dynamic-mechanical bioreactor. The biopsies were grouped into "good and bad healers" using the collagen I/III ratio. The neofasciae were then stained (HE and Pikrosirius red) to gain an impression of the distribution of the fibroblasts within the neofascia and to be able to make statements about the collagen pattern, the collagen I/III ratio and the collagen density. The thickness of the cultured neofascia was investigated in both Sirius and HE staining. Furthermore, RT-PCR and gene arrays of native tissues and neofascia with different net types were performed. Results: In healthy volunteers, it was often not possible to obtain a sufficient number of fibrobasts from the fascia biopsies. Therefore, in the course of the study, healthy fascia tissue was not obtained as a comparison group. Fibroblasts from patients classified as "bad healers" usually showed slower growth in the expansion phase. The bioreactor caused hardly any problems (a few fasciae initially dried out, this problem could be solved by shortening the intervals between media changes if necessary). Problems with contamination did not occur. During the histological examination of the neofascia, fibroblasts were visible over the entire area of the neofascia, even in the immediate vicinity of the mesh structures. The collagen patterns were similar to those already known from clinical mesh explants (polydirectional in the case of polyester mesh, concentric around the mesh structures in the case of polypropylene). Furthermore, an increased collagen formation transverse to the pressure direction of the bioreactor could be observed. When considering the thickness of the neofasciae, a tendency towards thinner fasciae in "bad healers" was observed (with reservations, due to the small number of samples), whereas the neofasciae of "good healers" showed a smaller scatter around the mean value (were more uniform). The collagen density and also the collagen I/III ratio also showed results, to state: the higher the initial values in the native tissue, the higher the probability that these could not be achieved by the neofasciae. qRT-PCR and Gene Array showed a high correlation (rank correlation according to Spearman). Answering the study questions: It could be shown that it is possible to breed neofasciae with synthetic meshes that were colonized with fibroblasts over the entire area. The results of the collagen morphology showed patterns known from mesh explants. With collagen I/III ratio and density it was only recognizable that the higher the initial values were, the more likely it was that they could not be reproduced. There was no connection between the collagen I/III ratio of the histological tissue samples and the molecular biological results. Furthermore, the theory of "good and bad healers" could not be supported by molecular biology, since the samples of the biopsies classified as "bad healers" had more in common with biopsies classified as "good healers" than with each other. It could be shown that the culture does not seem to have any influence on MMP-8 and elastin production. Discussion: In the course of the discussion, it was pointed out that collagen synthesis and secretion is a complex and highly active system, which is further altered in the context of wound healing by co-signalling and the interaction between fibroblasts and immune cells (macrophages...), also due to the fact that fibroblasts themselves can appear as immunomodulating cells in the course of wound healing. Thus, the collagen coding genes (Col1A1, Col1A2, Col3A1) can still be used as markers for collagen activity, but since between synthesis and secretion of the collagen a not negligible part is already degraded intracellularly, the theory of "good and bad healers" cannot be supported only by considering these genes. Due to the high correlation of the results from gene arrays and qRT-PCR, the use of qRT-PCR could be dispensed with for the time being in order to identify possible different pathways with the gene array. Open questions Outlook and perspectives: The system of wound healing and collagen synthesis and secretion is very complex, it should be examined whether a change in the activity of the fibroblasts and thus a different neofascia structure can be achieved in the future by cocultivation with macrophages or by adding TNF-α, IL-6, PDGF, G-CSF, GM-CSF, vitamin C or lysyl oxidase to the culture medium. Furthermore, in order to prevent falsification of the results by the rat collagen used for the culture medium, either the culture duration should be extended (with the thought that the entire rat collagen was then replaced by human collagen) or a collagen-free culture medium should be developed and used as carrier structure. In order to achieve a better comparability of the results of the gene array from donor biopsy and neofascia, the parts of the biopsy used for RNA extraction should be given in RNA later or in liquid nitrogen in the OR (operation room) to prevent an increased degradation. KW - Hernie KW - Hernia KW - Regenerative Medizin KW - Tissue Engineering KW - Herniengesellschaft KW - regenerative Medicine KW - tissue engineering KW - meshes KW - bioreactor Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-191876 ER - TY - THES A1 - Wiesbeck, Christina T1 - Fabrication and characterization of NCO-sP(EO-stat-PO)- crosslinked and functionalized electrospun gelatin scaffolds for tissue engineering applications T1 - Herstellung und Charakterisierung von elektrogesponnenen Nanofasern aus Gelatine und NCO-sP(EO-stat-PO) für Tissue Engineering Anwendungen N2 - In Tissue Engineering, scaffolds composed of natural polymers often show a distinct lack in stability. The natural polymer gelatin is highly fragile under physiological conditions, nevertheless displaying a broad variety of favorable properties. The aim of this study was to fabricate electrospun gelatin nanofibers, in situ functionalized and stabilized during the spinning process with highly reactive star polymer NCO-sP(EO-stat-PO) (“sPEG”). A spinning protocol for homogenous, non-beaded, 500 to 1000 nm thick nanofibers from different ratios of gelatin and sPEG was successfully established. Fibers were subsequently characterized and tested with SEM imaging, tensile tests, water incubation, FTIR, EDX, and cell culture. It was shown that adding sPEG during the spinning process leads to an increase in visible fiber crosslinking, mechanical stability, and stability in water. The nanofibers were further shown to be biocompatible in cell culture with RAW 264.7 macrophages. N2 - Tissue Engineering Scaffolds aus natürlichen Polymeren zeigen häufig mangelnde Stabilität, insbesondere unter physiologischen Bedingungen. Das natürliche Polymer Gelatine besitzt einige sehr vorteilhafte Eigenschaften für die Anwendung bei der Produktion künstlicher Körpergewebe. Beim Einsatz im menschlichen Organismus ist die Gelatine durch ihre Wasserlöslichkeit höchst fragil. Das Ziel dieser Arbeit war die Herstellung von Nanofaser-Scaffolds aus Gelatine mittels Elektrospinning und deren in situ Stabilisierung durch das Sternpolymer NCO-sP(EO-stat-PO) („sPEG“). Zunächst wurde ein Spinningprotokoll zur Fabrikation homogener, glatter, 500 bis 1000 nm dicker Nanofasern in verschiedenen Verhältnissen von Gelatine und sPEG erarbeitet. Mittels REM Bildgebung, Zugversuchen, Wasserinkubationsversuchen, FTIR, EDX und Zellkultur wurden die Fasern untersucht und charakterisiert. Es konnte gezeigt werden, dass die Zugabe von sPEG während des Spinningprozesses zu einer sichtbaren Quervernetzung der Fasern, sowie zu einem Anstieg der mechanischen Festigkeit und der Wasserstabilität führt. Des Weiteren wurde die Biokompatibilität der Nanofasern in der Zellkultur mit RAW 264.7 Makrophagen belegt. KW - Tissue Engineering KW - Electrospinning KW - Gelatine KW - Polyethylenglykole KW - NCO-sP(EO-stat-PO) KW - sPEG KW - starPEG Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-190988 ER - TY - THES A1 - Lotz, Christian T1 - Entwicklung eines Augenirritationstests zur Identifikation aller GHS-Kategorien für den Endpunkt Augenreizung T1 - Development of an eye irritation test to identify all GHS categories of eye irritation N2 - Die Risikobewertung von Chemikalien ist für die öffentliche Gesundheit von entschei-dender Bedeutung, weshalb strenge Testverfahren zu deren toxikologischer Begutach-tung angewandt werden. Die ursprünglich tierbasierten Testverfahren werden aufgrund von neuen wissenschaftlichen Erkenntnissen und wegen ökonomischer Ineffizienz sowie ethischer Fragwürdigkeit immer mehr durch alternative Methoden ohne Tiermodelle ersetzt. Für den toxikologischen Endpunkt der Augenreizung wurden bereits die ersten alternativen Testsysteme auf der Basis von ex vivo- oder in vitro-Modellen entwickelt. Jedoch ist bis dato kein alternatives Testsystem in der Lage, das gesamte Spektrum der verschiedenen Kategorien der Augenreizungen nach dem global harmonisierten System zur Einstufung und Kennzeichnung von Chemikalien (GHS) vorherzusagen und damit den tierbasierten Draize-Augenreizungstest vollends zu ersetzen. Gründe hierfür sind fehlende physiologische Merkmale im Modell sowie eine destruktive Analysemethode. Aufgrund dessen wurden in dieser Studie die Hypothesen getestet, ob ein verbessertes In-vitro-Modell oder eine zerstörungsfreie, hochsensitive Analysemethode die Vorher-sagekraft des Augenreizungstests verbessern können. Dafür wurden zunächst neue Mo-delle aus humanen Hornhaut- und Hautepithelzellen entwickelt. Die Modelle aus pri-mären cornealen Zellen zeigten eine gewebespezifische Expression der Marker Zytokera-tin 3 und 12 sowie Loricrin. In beiden Modellen konnte durch die Verkürzung der Kul-turdauer die Ausbildung einer Hornschicht verhindert werden. Die Modelle wiesen dadurch eine sensiblere Barriere vergleichbar der nativen Cornea auf. Darüber hinaus konnte durch die chemische Quervernetzung mit Polyethylenglykolsuccinimidylglutara-tester ein transparentes, nicht kontrahierendes Stroma-Äquivalent etabliert werden. Der Stroma-Ersatz konnte zur Generierung von Hemi- und Voll-Cornea-Äquivalenten einge-setzt werden und lieferte somit erste Ansatzpunkte für die Rekonstruktion der nativen Hornhaut. Parallel dazu konnte ein zerstörungsfreies Analyseverfahren basierend auf der Impe-danzspektroskopie entwickelt werden, das wiederholte Messungen der Gewebeintegri-tät zulässt. Zur verbesserten Messung der Barriere in dreidimensionalen Modelle wurde hierfür ein neuer Parameter, der transepitheliale elektrische Widerstand (TEER) bei der Frequenz von 1000 Hz, der TEER1000 Hz definiert, der eine genauere Aussage über die Integrität der Modelle zulässt. Durch die Kombination der entwickelten cornealen Epithelzellmodelle mit der TEER1000 Hz-Messung konnte die Prädikitivität des Augenrei-zungstests auf 78 - 100 % erhöht werden. Von besonderer Bedeutung ist dabei, dass die nicht destruktive Messung des TEER1000 Hz zum ersten Mal erlaubte, die Persistenz von Irritationen durch wiederholte Messungen in einem in vitro-Modell zu erkennen und somit die GHS-Kategorie 1 von GHS-Kategorie 2 zu unterscheiden. Der wissenschaftli-che Gewinn dieser Forschungsarbeit ist ein neues Testverfahren, das alle GHS-Kategorien in einem einzigen in vitro-Test nachweisen und den Draize-Augenreizungstest gänzlich ersetzen kann. N2 - The assessment of the risk of chemicals is of crucial importance for public health. Hence, strict test procedures have been developed for toxicological evaluation of consumer products. The original animal-based test methods are being replaced by alternative methods due to new scientific findings, economic inefficiency and ethical doubts. For the toxicological endpoint of eye irritation, the first alternative test systems based on ex vivo or in vitro models have been developed. However, to date no alternative test meth-od has been able to predict the entire spectrum of eye irritation categories specified in the globally harmonized system for the classification and labelling of chemicals (GHS). Thus, no stand-alone test methods can replace the animal-based Draize eye irritation test resulting in the need of complex integrated testing strategies. Reasons for this are the lack of key physiological characteristics of the implemented models, species specific differences and the employed destructive analysis method. Therefore, this study tested whether a refinement of the used models or a more sensitive analytical method could improve the predictive power of the eye irritation test. First, new models of human corneal and skin epithelial cells were developed. Since a key fea-ture of the human cornea is a lack of cornification, several parameters such as calcium and retinoic acid to reduce the cornification were investigated. In both models the for-mation of a stratum corneum could be prevented most effectively by shortening the cul-ture time. Hence, the models had a more sensitive barrier comparable to the native cor-nea. However, only the model based on primary cornea cells showed a cornea-specific expression of the markers cytokeratin 3 and 12 as well as loricrin. Models based on skin keratinocytes retained a skin-specific phenotype. In addition, a stromal matrix was de-veloped to allow for the generation of a full-thickness cornea model. For this a cell-seeded collagen hydrogel was chemically cross-linkined via a polyethylene glycol suc-cinimidyl glutarate generating a transparent, non-contracting stroma equivalent. In parallel, a non-destructive highly sensitive analysis method based on impedance spec-troscopy was developed that allows repeated measurements of the tissue integrity. To improve the measurement of the barrier in three-dimensional models, a new parameter, the transepithelial electrical resistance (TEER) at the frequency of 1000 Hz, the TEER1000 Hz was defined. By combining the developed corneal epithelial cell models with the TEER1000 Hz measurement, the predictivity of the eye irritation test could be increased to 78 - 100 %. Moreover, the TEER1000 Hz allowed for the first time to detect the persistence of irritative effects by repeated measurements in an in vitro model and thus to distinguish between all GHS categories. The scientific yield of this research work is therefore a new test method that can detect all GHS categories in a single in vitro test and holds the possibility to completely replace the Draize eye irritation test. KW - Tissue Engineering KW - Eye irritation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170126 ER - TY - THES A1 - Mineif, Anna Teresa T1 - Entwicklung und Charakterisierung eines humanen oralen Plattenepithelkarzinomäquivalentes T1 - Development and characterisation of a human oral squamous cell carcinoma equivalent N2 - Trotz hochmoderner Technologien und ausgefeilter therapeutischer und rekonstruktiver chirurgischer Heilungsmethoden beträgt die 5-Jahres Überlebensrate bei der Diagnose PECA der Mundhöhle im Durchschnitt auch im Jahre 2017 nur 55 % und die Heilungsmethoden haben sich in den letzten drei Jahrzehnten kaum verbessert. Umso wichtiger ist es deshalb, die Forschung voranzutreiben und ein aussagekräftiges Tumormodell zu etablieren, das bei der Entwicklung neuer Therapieansätze schnell und sicher gute Ergebnisse liefert. In dieser Studie soll mit Hilfe des Tissue Engineering (TE) ein in gesunder Mundschleimhaut (MSH) integriertes 3D-Tumormodell generiert werden, welches bestmöglich die Analyse pathologischer Mechanismen im Tumorzentrum, sowie im Randbereich von gesundem und erkranktem Gewebe, und auch die Analyse der Auswirkungen neuartiger Chemotherapeutika auf gesunde und maligne Zellen in direkter Nachbarschaft ermöglicht – ohne Tierversuche. In der Konsequenz könnte ein erheblicher Fortschritt mit höheren Erfolgsaussichten der Therapieansätze erzielt werden. Es wird ein Tumormodell generiert, in dem auf Basis eines gesunden MSH-Modells Tumorzellen eingebracht werden, um - genauso, wie die Tumorentstehung in vivo von statten gehen würde – Tumorentstehung und Tumorwachstum in der Umgebung von gesunder MSH analysieren zu können. Das Modell basiert dabei auf einer Matrix aus dezellularisierter, porciner, small-intestinal-submucosa (SIS/MUC), die mit primären Fibroblasten, primären Keratinozyten und Tumorzellen der Tumorzelllinie FaDu besiedelt wird. Eine Besonderheit der FaDu-Zellen ist die vorangegangene Transduktion mit dem Lentivirus RFP – um die eingewanderten Zellen von gesunden Zellen unterscheiden zu können. Der Vorgang der Transduktion war gelungen und es konnte eine Fluoreszenz der noch in Zellkulturschalen kultivierten Zellen erzielt werden. Allerdings waren die fluoreszierenden Zellen in den fixierten Schnitten nicht mehr nachweisbar. Zur Generierung eines Tumormodelles wurden auf Basis eines OMÄ drei unterschiedliche Applikationsformen zur Integration von Tumorzellen getestet. Die Integration von Tumorzellen fand in Form von Spots, Sphäroiden oder Tumorzellgemischen (prim. Keratinozyten/FaDu-Zellen) in zuvor kultivierte gesunde OMÄ statt. Dabei sollte das Applizieren von Spots oder Sphäroiden das Tumorzellwachstum auch in der Umgebung von gesundem Gewebe initiieren. Dies würde die Möglichkeit schaffen, auch in vitro, gesundes neben pathologischem Gewebe und den Übergang dazu genau analysieren zu können. Es sollen sowohl die optimale Konzentration der Tumorzellen, welche für die Entstehung von Tumoren nötig ist, als auch die geeignetste Applikationsmethode eruiert werden, um optimale Tumormodelle zuverlässig reproduzierbar ansetzen zu können. Die Modelle wurden histologisch und immunhistochemisch analysiert und die Ergebnisse mit ermittelten TEER-Werte in Korrelation gesetzt. In dieser Arbeit konnte mit der Applikation von Spots oder Sphäroiden kein suffizientes Tumorwachstum in Umgebung von gesunder MSH erzielt werden. Die Zellen lagen ohne Reaktion des angrenzenden Stratum corneums auf der zu stark ausgeprägten Hornschicht der OMÄ auf und es war keine Einwanderung in das darunterliegende Gewebe möglich. Allerdings ist es gelungen, durch Applikation eines Zellgemisches variierender Mischungsverhältnisse von primären Keratinozyten und Tumorzellen der Zelllinie FaDu ein 3D-Tumorwachstum unterschiedlicher Malignitätsstufen zu initiieren. Je kleiner das Mischungsverhältnis und je höher in der Konsequenz die Anzahl der FaDu-Tumorzellen, desto ausgeprägter waren die morphologischen Anzeichen einer Tumorbildung. Abhängig vom Mischungsverhältnis war dabei die Ausprägung des Tumors. Auch wenn dadurch keine Kombination von gesundem und pathologischem Gewebe in einem Modell mehr imitiert werden konnte, so konnten zumindest nach histologischen und immunhistochemischen Untersuchungen eindeutige pathologische, maligne Tumormodelle generiert werden. Die Tumormodelle zeigten durchgehend Zell- und Kernpleomorphismen, atypische und vermehrte suprabasale Mitosen, eine Störung der normalen Gewebearchitektur, die Ausbildung von Interzellularbrücken, Einzelzelldyskeratosen und Verhornungsknospen, sowie Stellen der Durchbrechung der Basalmembran und Invasion von Tumorzellen in die darunterliegende Lamina propria. All das sind eindeutige Kennzeichen malignen Wachstums Auch die Ergebnisse der TEER-Wert Messung stimmten mit den morphologischen Entwicklungen der Modelle überein. So stiegen die TEER-Werte der Kontrollmodelle konsequent an, was für eine deutliche Entwicklung von kontinuierlichem Gewebe spricht und im Gegensatz dazu fielen die TEER-Werte im zeitlichen Verlauf der Tumormodelle, bei denen die Basalmembran und somit die Kontinuität des Gewebes durchbrochen wurde rapide ab, bzw. lagen im konstant niedrigen Bereich. Der Erfolg der Etablierung dieses zuverlässig rekonstruierbaren 3D, in vitro generierten Tumormodells, das der in vivo Situation eines Plattenepithelkarzinoms sehr nahekommt, bietet der Wissenschaft eine sehr gute Möglichkeit, weitere Studien zum Tumorwachstum durchzuführen. Außerdem kann die Weiterentwicklung und Verbesserung vielversprechender, neuartiger chemotherapeutischer und radiologischer Therapieverfahren erheblich voran¬getrieben und dadurch die Heilungschancen mit geringeren Nebenwirkungen für den Patienten verbessert und eine erhöhte Lebensqualität erzielt werden. N2 - Despite state-of-the-art technologies and sophisticated therapeutic and reconstructive surgical methods, the average 5-year survival rate of patients diagnosed with oral squamous cell carcinoma (OSCC) is still only 55% in 2017. Healing methods have barely improved over the last three decades. Therefore, it is important to establish a meaningful tumour model that delivers fast and reliable results in the development of new therapeutic approaches. In this study, Tissue Engineering is used to generate a three-dimensional tumour model integrated into healthy oral mucosa. This enables an ideal analysis of pathological mechanisms in the tumour center, as well as in the margins of healthy and diseased tissue. It also allows the analysis of the effects of novel chemotherapeutic agents on healthy and malignant cells in proximity - without animal testing. Consequently, a considerable progress could be achieved with a higher chance of success of therapeutic approaches. A tumour model, based on a healthy oral mucosa equivalent (OME), is generated in which tumour cells are integrated in order to be able to analyse tumourigenesis and tumour growth in the environment of healthy oral mucosa just as the tumour development would take place in vivo. For this primary fibroblasts, primary keratinocytes and tumour cells were cultured on a matrix of decellularized, porcine, small intestinal submucosa (SIS/MUC). For this FaDu cells were transduced with the lentivirus RFP to be able to distinguish the immigrated cells from healthy cells. The transduction was successful. It was possible to achieve a fluorescence of the cells still cultivated in cell culture dishes. However, the fluorescent cells could no longer be detected in the fixed tissue sections. For the tumour model three different forms of application of the tumour cells on the OMEs have been tested. The application of cell-spots, spheroids or cell mixtures of primary keratinocytes and FaDu tumour cells in previously cultivated OME. The application of spots or spheroids should initiate tumour cell growth even in the environment of healthy tissue. This would enable the in vitro analysation of the area of healthy and pathological tissue in one model. Therefore, the optimal concentration of tumour cells, which is necessary for the tumour development, and the most suitable application method are to be determined to be able to apply a suitable reproducible tumour model. The models were analysed histologically and immunohistochemically, and the results were correlated with determined TEER values. In this work, the application of spots or spheroids did not achieve tumour growth in the environment of healthy oral mucosa. The cells were not responsive to the adjacent stratum corneum on the highly pronounced horn layer of the OME and no migration into the underlying tissue was possible. However, by applying a cell mixture of varying mixing ratios of primary keratinocytes and tumour cells of the FaDu cell line, it has been possible to initiate 3D tumour growth of different malignant stages. The smaller the mixing ratio and the higher the number of FaDu tumour cells, the more pronounced have been the morphological signs of tumour formation. Even if it was no longer possible to mimic a combination of healthy and pathological tissue in a model, clear pathological, malignant tumour models could be generated at least after histological and immunohistochemical investigations. The tumour models consistently showed cellular- and nuclearpleomorphisms, atypical and increased suprabasal mitoses, disruption of normal tissue architecture, the formation of intercellular bridges, single cell dyskeratosis and cornification buds, as well as sites of disruption of the basement membrane and invasion of tumour cells into the underlying lamina propria. All these are clear signs of malignant growth. The results of the TEER value measurement were also consistent with the morphological developments of the models. Thus, the TEER values of the control models rose consistently, which indicates a significant development of continuous tissue. In contrast, the TEER values over the course of time of the tumour models, in which the basal membrane and thus the continuity of the tissue was broken, fell rapidly or were in a constantly low range. The success of the establishment of this reliably reconstructable 3D, in vitro generated tumour model, which is very close to the in vivo situation of a squamous cell carcinoma, offers the science a very good opportunity to carry out further studies on tumour growth. In addition, the further development and improvement of promising, novel chemotherapeutic and radiological therapy methods can be considerably advanced, thereby improving the chances of recovery with fewer side effects for the patient and achieving an increased quality of life. KW - orales Plattenepithelkarzinomäquivalent KW - Tissue Engineering KW - SIS/MUC KW - TEER-Wert KW - Tumormodell KW - Mundschleimhautäquivalent Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-185512 ER - TY - THES A1 - Kremer, Antje T1 - Tissue Engineering of a Vascularized Meniscus Implant T1 - Tissue Engineering eines vaskularisierten Meniskus-Implantates N2 - The knee joint is a complex composite joint containing the C-shaped wedge-like menisci composed of fibrocartilage. Due to their complex composition and structure, they provide mechanical resilience to the knee joint protecting the articular cartilage. Because of the limited repair potential, meniscal injuries do not only affect the meniscus itself but also lead to altered joint homeostasis and inevitably to secondary osteoarthritis. The meniscus was characterized focusing on its anatomy, structure and meniscal markers such as aggrecan, collagen type I (Col I) and Col II. The components relevant for meniscus tissue engineering, namely cells, Col I scaffolds, biochemical and biomechanical stimuli were studied. Meniscal cells (MCs) were isolated from meniscus, mesenchymal stem cells (MSCs) from bone marrow and dermal microvascular endothelial cells (d-mvECs) from foreskin biopsies. For the human (h) meniscus model, wedge-shape compression of a hMSC-laden Col I gel was successfully established. During three weeks of static culture, the biochemical stimulus transforming growth factor beta-3 (TGF beta-3) led to a compact collagen structure. On day 21, this meniscus model showed high metabolic activity and matrix remodeling as confirmed by matrix metalloproteinases detection. The fibrochondrogenic properties were illustrated by immunohistochemical detection of meniscal markers, significant GAG/DNA increase and increased compressive properties. For further improvement, biomechanical stimulation systems by compression and hydrostatic pressure were designed. As one vascularization approach, direct stimulation with ciclopirox olamine (CPX) significantly increased sprouting of hd-mvEC spheroids even in absence of auxiliary cells such as MSCs. Second, a cell sheet composed of hMSCs and hd-mvECs was fabricated by temperature triggered cell sheet engineering and transferred onto the wedge-shaped meniscus model. Third, a biological vascularized scaffold (BioVaSc-TERM) was re-endothelialized with hd-mvECs providing a viable vascularized network. The vascularized BioVaSc-TERM was suggested as wrapping scaffold of the meniscus model by using two suture techniques, the all-inside-repair (AIR) for the posterior horn, and the outside-in-refixation (OIR) for the anterior horn and the middle part. This meniscus model for replacing torn menisci is a promising approach to be further optimized regarding vascularization, biochemical and biomechanical stimuli. N2 - Das Knie ist ein komplex zusammengesetztes Gelenk mit zwei C-förmigen Keilen aus Bindegewebsknorpel, die Menisken. Sie sorgen für die mechanische Belastbarkeit des Knies, wodurch der Gelenksknorpel geschützt wird. Aufgrund des limitierten Heilungspotentials beeinträchtigen Meniskusverletzungen nicht nur den Meniskus selbst, sondern schädigen auch das Gelenksgleichgewicht und führen zu sekundärer Osteoarthritis. Der Meniskus wurde in seiner Anatomie, Struktur und Meniskusmarkern wie Aggrekan, Kollagen I und Kollagen II charakterisiert. Die Komponenten von Meniskus Tissue Engineering, Zellen, Kollagen I Materialien, biochemische und biomechanische Stimuli wurden untersucht. Meniskuszellen (MCs) wurden aus Meniskus isoliert, mesenchymale Stammzellen (MSCs) aus Knochenmark und dermale mikrovaskuläre Endothelzellen (d-mvECs) aus Vorhautbiopsien. Für das humane (h) Meniskus-Modell wurde die keilförmige Kompression eines hMSC-beladenen Kollagen I Gels erfolgreich etabliert. Während drei Wochen statischer Kultur führte der biochemische Stimulus transformierender Wachs-tumsfaktor beta-3 (TGF beta-3) zu einer kompakten Kollagenstruktur. An Tag 21 zeigte dieses Meniskus-Modell eine hohe metabolische Aktivität und Matrixumbau durch die Detektion von Matrix-Metalloproteasen. Der Bindegewebsknorpel wurde durch immunhistochemische Detektion der Meniskusmarker, einem signifikanten GAG/DNA Anstieg und erhöhter Kompressionseigenschaften bestätigt. Für weitere Verbesserungen wurden biomechanische Stimulierungssysteme mittels Kompression und hydrostatischen Druck aufgebaut. Als Vaskularisierungsansatz führte die direkte Stimulierung mit Ciclopirox Olamine (CPX) sogar in Abwesenheit von Helferzellen wie MSCs zu einem erhöhten Sprouting der hd-mvEC Spheroide. Zweitens wurde ein hMSC/hd-mvEC Sheet mithilfe eines Temperatur-abhängigen Verfahrens produziert und auf das keilförmige Meniskus-Modell transferiert. Drittens wurde ein vaskularisiertes Biomaterial (BioVaSc-TERM) mit hd-mvECs besiedelt, wodurch ein vitales Gefäßystem bereitgestellt wurde. Die vaskularisierte BioVaSc-TERM wurde als Hülle des Meniskus-Modells unter der Verwendung von zwei Nahttechniken vorgeschlagen: die All-Inside-Repair (AIR) für das Hinterhorn und die Outside-In-Refixation (OIR) für das Vorderhorn und den mittleren Teil. Dieses Meniskus-Modell ist ein vielversprechender Ansatz für den Meniskusersatz, um in Vaskularisierung, biochemischer und biomechanischer Stimuli weiter optimiert zu werden. KW - Meniskus KW - Tissue Engineering KW - Regenerative Medizin KW - Meniskusimplantat KW - meniscus implant KW - Tissue Engineering KW - tissue engineering KW - vascularization KW - Vaskularisierung Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-184326 ER - TY - THES A1 - Göttlich, Claudia T1 - Etablierung eines humanen 3D Lungentumor-Testsystems zur Analyse von Behandlungseffekten T1 - Establishment of a human 3D lung tumor test system for the analysis of treatment effects N2 - Lungenkrebs ist weltweit für die meisten krebsassoziierten Tode verantwortlich. Ursache dafür ist unter anderem, dass viele Medikamente in der klinischen Anwendung, aufgrund nicht übertragbarer Ergebnisse aus der Präklinik, scheitern. Zur Entwicklung neuer Therapiestrategien werden deshalb Modelle benötigt, welche die in vivo Situation besser widerspiegeln. Besonders wichtig ist es dabei, zu zeigen, für welche Fragestellungen ein neues Testsystem valide Ergebnisse liefert. In dieser Arbeit ist es mit Hilfe des Tissue Engineering gelungen, ein humanes 3D in vitro Lungentumor-Testsystem weiter zu entwickeln und für verschiedene Fragestellungen zu validieren. Zudem konnten sowohl für die Herstellung als auch für die Behandlung der Tumormodelle SOPs etabliert werden. Hier wurde zunächst beobachtet, dass die Auswerteparameter für die Beurteilung von Behandlungseffekten eine geringe Varianz aufweisen und das 3D Modell deshalb als Testsystem geeignet ist. Ein Vergleich der Morphologie, des EMT-Status und der Differenzierung der Tumorzelllinien im 3D Modell mit Tumorbiopsaten von Adenokarzinompatienten verdeutlichte, dass die 3D Modelle tumorrelevante Merkmale besitzen. So sind die Zelllinien auf der biologischen Matrix, verglichen mit der jeweiligen 2D Kultur, durch eine reduzierte Proliferationsrate gekennzeichnet, welche eher der in vivo Situation entspricht. Für die Etablierung und Validierung des 3D Modells als Testsystem war es notwendig, klinisch relevante Therapien in dem Modell anzuwenden und die Ergebnisse der Behandlung in vitro mit denen im Patienten zu vergleichen. Dabei konnte zunächst bestätigt werden, dass eine zielgerichtete Therapie gegen den EGFR in dem 3D System zu einer verstärkten Induktion der Apoptose im Vergleich zu 2D führt. Dies entspricht klinischen Beobachtungen, bei denen EGFR-mutierte Patienten gut auf eine Therapie mit Tyrosin-Kinase-Inhibitoren (TKI) ansprechen. Anschließend wurde in dieser Arbeit erstmals in vitro gezeigt, dass die Behandlung mit einem HSP90-Inhibitor bei KRAS-Mutation wie in behandelten Patienten keine eindeutigen Vorteile bringt, diese jedoch in Experimenten der 2D Zellkultur mit den entsprechenden Zelllinien vorhergesagt werden. Die Ergebnisse aus dem in vitro Modell spiegeln damit verschiedene klinische Studien wider und unterstreichen das Potenzial des 3D Lungentumor-Testsystems die Wirkung zielgerichteter Therapien vorherzusagen. Durch die Messung von Signalwegsaktivierungen über Phospho-Arrays und Western Blot konnten in dieser Arbeit Unterschiede zwischen 2D und 3D nach Behandlung gezeigt werden. Diese lieferten die Grundlage für bioinformatische Vorhersagen für Medikamente. Mit fortschreitender Erkrankung und dem Entstehen invasiver Tumore, die möglicherweise Metastasen bilden, verschlechtert sich die Prognose von Krebspatienten. Zudem entwickeln Patienten, die zunächst auf eine Therapie mit TKI ansprechen, bereits nach kurzer Zeit Resistenzen, die ebenfalls zur Progression des Tumorwachstums führen. Zur Wirkungsuntersuchung von Substanzen in solchen fortgeschrittenen Erkrankungsstadien wurde das bestehende Testsystem erweitert. Zum einen wurde mit Hilfe des Wachstumsfaktors TGF-β1 eine EMT ausgelöst. Hier konnte beobachtet werden, dass sich die Expression verschiedener EMT- und invasionsassoziierter Gene und Proteine veränderte und die Zellen vor allem in dynamischer Kultur verstärkt die Basalmembran der Matrix überquerten. Zum anderen wurde die Ausbildung von Resistenzen gegenüber TKI durch die Generierung von resistenten Subpopulationen aus einer ursprünglich sensitiven Zelllinie und anschließender Kultivierung auf der Matrix abgebildet. Dabei zeigte sich keine der klinisch bekannten Mutationen als ursächlich für die Resistenz, sodass weitere Mechanismen untersucht wurden. Hier konnten Veränderungen in der Signaltransduktion sowie der Expression EMT-assoziierter Proteine festgestellt werden. Im letzten Teil der Arbeit wurde eine neuartige Behandlung im Bereich der Immuntherapie erfolgreich in dem 3D Modell angewendet. Dafür wurden T-Zellen, die einen chimären Antigen-Rezeptor (CAR) gegen ROR1 tragen, in statischer und dynamischer Kultur zu den Tumorzellen gegeben und der Therapieeffekt mittels histologischer Färbung und der Bestimmung der Apoptose evaluiert. Zusätzlich konnten Eigenschaften der T-Zellen, wie deren Proliferation sowie Zytokinausschüttung quantifiziert und damit eine spezifische Wirkung der CAR transduzierten T-Zellen gegenüber Kontroll-T-Zellen nachgewiesen werden. Zusammenfassend ist es in dieser Arbeit gelungen, ein humanes 3D Lungentumor-Testsystem für die Anwendung in der präklinischen Entwicklung von Krebsmedikamenten sowie der Grundlagenforschung im Bereich der Tumorbiologie zu etablieren. Dieses Testsystem ist in der Lage relevante Daten zu Biomarker-geleiteten Therapien, zur Behandlung fortgeschrittener Tumorstadien und zur Verbesserung neuartiger Therapiestrategien zu liefern. N2 - Lung cancer is the most common cause of cancer related deaths worldwide. One reason for this is that many drugs fail in the clinical application due to inefficient transferability of preclinical results. Consequently, for the development of new treatment strategies tumor models that better reflect the in vivo situation are required. It is of special significance to show for which questions a new test system provides valid results. In the here presented work, a human 3D in vitro lung tumor test system was refined and validated for different interrogations using tissue engineering methods. The generation of the model as well as its treatment were defined in SOPs. First, it was shown that the variance of the analysis parameters was low, demonstrating the 3D model to be suitable as a test system. A comparison of the morphology, the EMT status and the differentiation of the tumor cell lines in the 3D model with tumor biopsies from adenocarcinoma patients revealed that the 3D tumor models exhibit tumor relevant characteristics. The cells on the matrix had a lower proliferation rate compared to the respective 2D culture that better mimic the in vivo situation. For the establishment and validation of the test system, clinically relevant therapies were applied and the results of the treatment in vitro were compared to those in patients. By doing so, it was confirmed that a targeted therapy against the EGFR led to an increased apoptosis induction in the 3D system compared to 2D. This resembles clinical observations, in which EGFR-mutated patients respond to the therapy with tyrosine kinase inhibitors (TKIs). Next, it was shown for the first time in vitro in the 3D model that the treatment with a HSP90 inhibitor in the context of a KRAS mutation has no clear advantages as observed in patients, but which had been predicted in 2D cell culture. The results from the in vitro model match several clinical studies and emphasize the potential of the 3D lung tumor test system to predict the effect of targeted treatments. By measuring the activation of signal transduction pathways using phospho-arrays and western blots, differences between 2D and 3D after treatment were shown. These provided the basis for bioinformatic drug predictions. With the progress of the disease and the development of invasive tumors that might form metastases, the prognosis of patients worsens. Additionally, patients that initially respond to a therapy with TKIs develop resistances that also lead to the progression of tumor growth. To evaluate the effect of substances in these life-threatening disease stages, the existing test system was enhanced. On the one hand EMT was induced by addition of the growth factor TGF-β1. Here, it was observed that the expression of several EMT- and invasion-associated genes and proteins changed and the cells crossed the basement membrane to a higher extent, especially in the dynamic culture. On the other hand, the development of resistances against TKIs was represented by the generation of resistant subpopulations from an initial sensitive cell line and subsequent culture on the matrix. In the course of this experiment, none of the known mutations could be attributed to the resistance, so that other potential mechanisms were investigated. Here, changes in the signal transduction as well as in the expression of EMT-associated proteins were found. In the last part of the thesis, a new treatment strategy in the field of immune therapies was successfully tested in the 3D model. For that, T cells bearing a chimeric antigen receptor (CAR) against ROR1 were added to the tumor cells in static and dynamic culture. The therapy effect was determined by histological staining and apoptosis meas-urement. Moreover, the characteristics of the T cells, such as proliferation or cytokine release, were quantified and exhibited a specific effect of the CAR transduced T cells compared to the control T cells. In summary, in this thesis a human 3D lung tumor test system was established for the application in preclinical testing of cancer drugs as well as for basic research in tumor biology. It was shown that the test system can provide relevant data on biomarker-driven therapies, the treatment of advanced tumor stages and the improvement of new treatment strategies. KW - Tissue Engineering KW - Lungentumor KW - 3D Tumormodell KW - zielgerichtete Therapien KW - Resistenz KW - EMT KW - CAR T-Zelltherapie Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164132 ER - TY - THES A1 - Rücker, Christoph T1 - Development of a prevascularized bone implant T1 - Entwicklung eines prävaskularisierten Knochenimplantats N2 - The skeletal system forms the mechanical structure of the body and consists of bone, which is hard connective tissue. The tasks the skeleton and bones take over are of mechanical, metabolic and synthetic nature. Lastly, bones enable the production of blood cells by housing the bone marrow. Bone has a scarless self-healing capacity to a certain degree. Injuries exceeding this capacity caused by trauma, surgical removal of infected or tumoral bone or as a result from treatment-related osteonecrosis, will not heal. Critical size bone defects that will not heal by themselves are still object of comprehensive clinical investigation. The conventional treatments often result in therapies including burdening methods as for example the harvesting of autologous bone material. The aim of this thesis was the creation of a prevascularized bone implant employing minimally invasive methods in order to minimize inconvenience for patients and surgical site morbidity. The basis for the implant was a decellularized, naturally derived vascular scaffold (BioVaSc-TERM®) providing functional vessel structures after reseeding with autologous endothelial cells. The bone compartment was built by the combination of the aforementioned scaffold with synthetic β-tricalcium phosphate. In vitro culture for tissue maturation was performed using bioreactor technology before the testing of the regenerative potential of the implant in large animal experiments in sheep. A tibia defect was treated without the anastomosis of the implant’s innate vasculature to the host’s circulatory system and in a second study, with anastomosis of the vessel system in a mandibular defect. While the non-anastomosed implant revealed a mostly osteoconductive effect, the implants that were anastomosed achieved formation of bony islands evenly distributed over the defect. In order to prepare preconditions for a rapid approval of an implant making use of this vascularization strategy, the manufacturing of the BioVaSc-TERM® as vascularizing scaffold was adjusted to GMP requirements. N2 - Das Skelett bildet die mechanische Struktur des Körpers und besteht aus Knochen, einem harten Bindegewebe. Knochen übernehmen mechanische, metabolische und synthetische Aufgaben. Schlussendlich ermöglichen Knochen die Synthese von Blutzellen durch die Beherbergung des Knochenmarks. Wird die Heilungskapazität von Knochen durch Trauma, operative Entfernung von infiziertem oder tumorösem Knochen oder als Ergebnis behandlungsbedingter Osteonekrose, überschritten, findet keine vollständige Heilung statt. Knochendefekte, die eine kritische Größe überschreiten, sind daher immer noch Gegenstand umfangreicher, klinischer Forschung. Bei herkömmlichen Behandlungsmethoden können Eingriffe notwendig werden, die den Patienten belasten, wie bei der Gewinnung von autologem Knochenmaterial. Das Ziel der vorliegenden Arbeit war die Herstellung eines prävaskularisierten Implantats unter Verwendung minimalinvasiver Methoden, um die Belastung von Patienten und die Morbidität an der Entnahmestelle, zu verringern. Zur Herstellung eines vaskularisierten Implantats bildete ein dezellularisiertes Darmsegment (Jejunum) porcinen Ursprungs die Grundlage (BioVasc-TERM®). Diese Trägerstruktur stellte ein funktionales Blutgefäßsystem nach Wiederbesiedelung mit autologen Endothelzellen bereit. Der Knochenanteil des Implantats wurde durch die Kombination der genannten Trägerstruktur mit dem synthetischen Knochenersatzmaterial β-Tricalciumphosphat gebildet. In-vitro-Kultivierung in einem Bioreaktor führte zur Reifung des Implantats vor der Testung seines Potenzials zur Knochenregeneration in Großtierversuchen bei Schafen. Ein Tibiadefekt wurde behandelt ohne die Anastomose des implantateigenen Gefäßsystems an den Blutkreislauf und ein Mandibeldefekt wurde mit Gefäßanschluss behandelt. Das Implantat ohne Gefäßanschluss hatte einen osteokonduktiven Effekt, während das anastomosierte Implantat zur Bildung zahlreicher Knocheninseln, gleichmäßig über den Defekt verteilt, führte. Um eine zügige Zulassung eines Implantats, das diese Strategie zur Vaskularisierung von Knochen nutzt, zu ermöglichen, wurde die Herstellung der BioVaSc-TERM® an die Vorgaben der Guten Herstellungspraxis angepasst. KW - Tissue Engineering KW - Knochenregeneration KW - Regenerative Medizin KW - Angiogenese KW - Implantat KW - bone KW - implant KW - Knochenimplantat KW - Vaskularisierung Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178869 ER - TY - THES A1 - Kreß, Sebastian T1 - Development and proof of concept of a biological vascularized cell‐based drug delivery system T1 - Entwicklung und Proof of Concept eines biologischen, vaskularisierten, zellbasierten Drug‐Delivery‐Systems N2 - A major therapeutic challenge is the increasing incidence of chronic disorders. The persistent impairment or loss of tissue function requires constitutive on‐demand drug availability optimally achieved by a drug delivery system ideally directly connected to the blood circulation of the patient. However, despite the efforts and achievements in cell‐based therapies and the generation of complex and customized cell‐specific microenvironments, the generation of functional tissue is still unaccomplished. This study demonstrates the capability to generate a vascularized platform technology to potentially overcome the supply restraints for graft development and clinical application with immediate anastomosis to the blood circulation. The ability to decellularize segments of the rat intestine while preserving the ECM for subsequent reendothelialization was proven. The reestablishment of a functional arteriovenous perfusion circuit enabled the supply of co‐cultured cells capable to replace the function of damaged tissue or to serve as a drug delivery system. During in vitro studies, the applicability of the developed miniaturized biological vascularized scaffold (mBioVaSc‐TERM®) was demonstrated. While indicating promising results in short term in vivo studies, long term implantations revealed current limitations for the translation into clinical application. The gained insights will impact further improvements of quality and performance of this promising platform technology for future regenerative therapies. N2 - Eine kontinuierlich steigende Inzidenz chronischer Krankheiten stellt eine immer größer werdende therapeutische Herausforderung dar. Der anhaltende Funktionsverlust von Geweben erfordert die bedarfsgerechte Verfügbarkeit von Wirkstoffen, deren kontinuierliche Bereitstellung und Verteilung über die Blutzirkulation von implantierbaren Pharmakotherapie‐Produkten gelöst werden kann. Trotz der Fortschritte und Erfolge mit Zelltherapien sowie der Nachbildung der Zell‐eigenen Nischen konnten bisher noch keine funktionellen Gewebe für die medizinische Anwendbarkeit hergestellt werden. Diese Studie zeigt die Möglichkeit zur Herstellung einer vaskularisierten Plattform‐ Technologie um die Beschränkung der Nährstoff‐Versorgung zu überwinden für die Entwicklung von Transplantaten für die klinische Anwendung und deren sofortige Anastomose an die Blutzirkulation. Die Möglichkeit Rattendarmsegmente zu dezellularisieren, die Extrazellulärmatrix und das interne Gefäßsystem dabei jedoch zu erhalten um diese Strukturen wiederzubesiedeln wurde bewiesen. Das Wiederherstellen des funktionellen arteriovenösen Perfusionskreislaufs ermöglichte die Versorgung von Ko‐kultivierten Zellen um damit funktionalen Gewebeersatz bzw. ‐modelle aufzubauen oder als Medizin‐ Produkt Einsatz zu finden. In vitro‐Studien zeigten eindrucksvoll Reife und Anwendbarkeit des hier entwickelten miniaturisierten, biologischen, vaskularisierten Scaffold (mBioVaSc‐TERM®). Während in in vivo‐Studien zunächst vielversprechende Ergebnisse erzielt wurden, zeigten Langzeit Implantationen die aktuellen Grenzen zur Translation in die klinische Anwendung. Die gewonnenen Erkenntnisse werden dazu dienen Qualität und Funktionalität dieser vielversprechenden Plattform‐Technologie zu verbessern um zukünftige regenerative Therapien zu ermöglichen. KW - Vaskularisation KW - Dezellularisierung KW - Tissue Engineering KW - Therapeutisches System KW - Implantat KW - Vascularized KW - drug delivery Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178650 ER - TY - THES A1 - Böck, Thomas T1 - Multifunctional Hyaluronic Acid / Poly(glycidol) Hydrogels for Cartilage Regeneration Using Mesenchymal Stromal Cells T1 - Multifunktionale Hyaluronsäure / Poly(glycidol) Hydrogele für die Knorpelregeneration mit Mesenchymalen Stromazellen N2 - Improved treatment options for the degenerative joint disease osteoarthritis (OA) are of major interest, since OA is one of the main sources of disability, pain, and socioeconomic burden worldwide [202]. According to epidemiological data, already 27 million people suffer from OA in the US [23]. Moreover, the WHO expects OA to be the fourth most common cause of disability in 2020 [203], illustrating the need for effective and long-lasting therapy options of severe cartilage defects. Despite numerous clinically available products for the treatment of cartilage defects [62], the development of more cartilage-specific materials is still at the beginning. Hyaluronic acid (HA) is a major component of the cartilaginous extracellular matrix (ECM) and inherently creates a cell-friendly niche by providing cell attachment and migration sites. Furthermore, it is known that the functional groups of HA are well suited for chemical modification. These characteristics render HA an attractive material for hydrogel-based tissue engineering approaches. Poly(glycidol) (PG) as chemical crosslinker basically features similar chemical characteristics as the widely used poly(ethylene glycol) (PEG), but provides additional side groups at each repeating unit that can be further chemically functionalized. With the introduction of PG as multifunctional crosslinker for HA gels, a higher cross-linking density and, accordingly, a greater potential for biomimetic functionalization may be achieved. However, despite the mentioned potential benefits, PG has not been used for cartilage regeneration approaches so far. The initial aim of the study was to set up and optimize a HA-based hydrogel for the chondrogenic differentiation of mesenchymal stromal cells (MSCs), using different amounts and variations of cross-linkers. Therefore, the hydrogel composition was optimized by the utilization of different PEG diacrylate (PEGDA) concentrations to cross-link thiol-modified HA (Glycosil, HA-SH) via Michael addition. We aimed to generate volumestable scaffolds that simultaneously enable a maximum of ECM deposition. Histological and biochemical analysis showed 0.4% PEGDA as the most suitable concentration for these requirements (Section 5.1.2). In order to evaluate the impact of a differently designed cross-linker on MSC chondrogenesis, HA-SH was cross-linked with PEGTA (0.6%) and compared to PEGDA (0.4%) in a next step. Following this, acrylated PG (PG-Acr) as multifunctional cross-linker alternative to acrylated PEG was evaluated. It provides around five times more functional groups when utilized in PG-Acr (0.6%) HA-SH hydrogels compared to PEGTA (0.6%) HA-SH hydrogels, thus enabling higher degrees of biomimetic functionalization. Determination of cartilage-specific ECM components showed no substantial differences between both cross-linkers while the deposition of cartilaginous matrix appeared more homogeneous in HA-SH PG-Acr gels. Taken together, we were able to successfully increase the possibilities for biomimetic functionalization in the developed HA-SH hydrogel system by the introduction of PG-Acr as cross-linker without negatively affecting MSC chondrogenesis (Section 5.1.3). The next part of this thesis focused extensively on the biomimetic functionalization of PG-Acr (0.6%) cross-linked HA-SH hydrogels. Here, either biomimetic peptides or a chondrogenic growth factor were covalently bound into the hydrogels. Interestingly, the incorporation of a N-cadherin mimetic (HAV), a collagen type II binding (KLER), or a cell adhesion-mediating peptide (RGD) yielded no improvement of MSC chondrogenesis. For instance, the covalent binding of 2.5mM HAV changed morphology of cell nuclei and reduced GAG production while the incorporation of 1.0mM RGD impaired collagen production. These findings may be attributed to the already supportive conditions of the employed HA-based hydrogels for chondrogenic differentiation. Most of the previous studies reporting positive peptide effects on chondrogenesis have been carried out in less supportive PEG hydrogels or in significantly stiffer MeHA-based hydrogels [99, 101, 160]. Thus, the incorporation of peptides may be more important under unfavorable conditions while inert gel systems may be useful for studying single peptide effects (Section 5.2.1). The chondrogenic factor transforming growth factor beta 1 (TGF-b1) served as an example for growth factor binding to PG-Acr. The utilization of covalently bound TGF-b1 may thereby help overcome the need for repeated administration of TGF-b1 in in vivo applications, which may be an advantage for potential clinical application. Thus, the effect of covalently incorporated TGF-b1 was compared to the effect of the same amount of TGF-b1 without covalent binding (100nM TGF-b1) on MSC chondrogenesis. It was successfully demonstrated that covalent incorporation of TGF-b1 had a significant positive effect in a dose-dependent manner. Chondrogenesis of MSCs in hydrogels with covalently bound TGF-b1 showed enhanced levels of chondrogenesis compared to hydrogels into which TGF-b1 was merely mixed, as shown by stronger staining for GAGs, total collagen, aggrecan and collagen type II. Biochemical evaluation of GAG and collagen amounts, as well as Western blot analysis confirmed the histological results. Furthermore, the positive effect of covalently bound TGF-b1 was shown by increased expression of chondrogenic marker genes COL2A1, ACAN and SOX9. In summary, covalent growth factor incorporation utilizing PG-Acr as cross-linker demonstrated significant positive effects on chondrogenic differentiation of MSCs (Section 5.2.2). In general, PG-Acr cross-linked HA hydrogels generated by Michael addition represent a versatile hydrogel platform due to their high degree of acrylate functionality. These hydrogels may further offer the opportunity to combine several biological modifications, such as the incorporation of biomimetic peptides together with growth factors, within one cell carrier. A proof-of-principle experiment demonstrated the suitability of pure PG gels for studying single peptide effects. Here, the hydrogels were generated by the utilization of thiol-ene-click reaction. In this setting, without the supportive background of hyaluronic acid, MSCs showed enhanced chondrogenic differentiation in response to the incorporation of 1.0mM HAV. This was demonstrated by staining for GAGs, the cartilage-specific ECM molecules aggrecan and type II collagen, and by increased GAG and total collagen amounts shown by biochemical analysis. Thus, pure PG gels exhibit the potential to study the effects and interplay of peptides and growth factors in a highly modifiable, bioinert hydrogel environment. The last section of the thesis was carried out as part of the EU project HydroZONES that aims to develop and generate zonal constructs. The importance of zonal organization has attracted increased attention in the last years [127, 128], however, it is still underrepresented in tissue engineering approaches so far. Thus, the feasibility of zonal distribution of cells in a scaffold combining two differently composed hydrogels was investigated. A HA-SH(FMZ) containing bottom layer was generated and a pure PG top layer was subsequently cast on top of it, utilizing both times thiol-ene-click reaction. Indeed, stable, hierarchical constructs were generated that allowed encapsulated MSCs to differentiate chondrogenically in both zones as shown by staining for GAGs and collagen type II, and by quantification of GAG amount. Thus, the feasibility of differently composed zonal hydrogels utilizing PG as a main component was successfully demonstrated (Section 5.4). With the first-time utilization and evaluation of PG-Acr as versatile multifunctional cross-linker for the preparation of Michael addition-generated HA-SH hydrogels in the context of cartilage tissue engineering, a highly modifiable HA-based hydrogel system was introduced. It may be used in future studies as an easily applicable and versatile toolbox for the generation of biomimetically functionalized hydrogels for cell-based cartilage regeneration. The introduction of reinforcement structures to enhance mechanical resistance may thereby further increase the potential of this system for clinical applications. Additionally, it was also demonstrated that thiol-ene clickable hydrogels can be used for the generation of cell-laden, pure PG gels or for the generation of more complex, coherent zonal constructs. Furthermore, thiol-ene clickable PG hydrogels have already been further modified and successfully been used in 3D bioprinting experiments [204]. 3D bioprinting, as part of the evolving biofabrication field [205], offers the possibilities to generate complex and hierarchical structures, and to exactly position defined layers, yet at the same time alters the requirements for the utilized hydrogels [159, 206–209]. Since a robust chondrogenesis of MSCs was demonstrated in the thiol-ene clickable hydrogel systems, they may serve as a basis for the development of hydrogels as so called bioinks which may be utilized in more sophisticated biofabrication processes. N2 - Es ist von großem Interesse die Therapieoptionen für die degenerative Gelenkerkrankung Osteoarthrose (OA) zu verbessern, da OA als eine der weltweit häufigsten Ursachen von Bewegungseinschränkungen und Schmerzen gilt und somit eine sozioökonomische Belastung darstellt [202]. Laut epidemiologischen Studien leiden bereits 27 Millionen Menschen in den USA an OA [23]. Darüber hinaus geht die WHO davon aus, dass OA bereits im Jahr 2020 die vierthäufigste Ursache von körperlichen Behinderungen sein wird [203], was die Notwendigkeit für effektive und langanhaltende Therapien von schweren Knorpeldefekten zeigt. Obwohl sich bereits eine Vielzahl von Therapien in klinischer Anwendung für die Behandlung von Knorpeldefekten befindet [62], ist die Entwicklung von knorpelspezifischen Produkten noch nicht weit fortgeschritten. Hyaluronsäure (HA), als Hauptbestandteil der Extrazellulären Matrix (ECM) von Knorpel, stellt eine generell zytokompatible Umgebung dar, die Zellen von Natur aus Bindungsstellen zur Adhäsion und Fortbewegung bietet. Zudem ist bekannt, dass die funktionellen Gruppen von HA besonders gut für chemische Modifikationen geeignet sind. Aufgrund dieser Eigenschaften wird HA häufig als Material für das hydrogelbasierte Tissue Engineering verwendet. Durch die Verwendung von Poly(glycidol) (PG) als Cross-linker stehen die gleichen chemischen Eigenschaften wie bei der Verwendung des gängigen Cross-linkers Poly(ethylene glycol) (PEG) zur Verfügung, allerdings bietet es zusätzliche Seitenketten an jeder Wiederholungseinheit. Durch die Einführung von PG als multifunktionalem Cross-linker zur Herstellung von HA-Gelen ergibt sich letztlich eine höhere Vernetzungsdichte und damit auch ein größeres Potenzial für biomimetische Funktionalisierungen. Trotz dieser genannten Vorteile wird PG bisher noch nicht im Bereich der Knorpelregeneration verwendet. Das erste Ziel dieser Arbeit beinhaltete die Etablierung und Optimierung eines HA-basierten Hydrogels für die chondrogene Differenzierung von Mesenchymalen Stromazellen (MSCs). Hierzu wurden verschiedene Mengen und Derivate von Cross-linkern eingesetzt. Zunächst wurde die Hydrogelzusammensetzung mithilfe von verschiedenen PEG-Diacrylat (PEGDA)-Konzentrationen zur Vernetzung von thiolmodifizierter HA (Glycosil, HASH) mittels Michael-Addition optimiert. Das Ziel war hierbei die Herstellung eines volumenstabilen Konstrukts, das gleichzeitig die größtmögliche Ablagerung von ECM erlaubt. Histologische und biochemische Analysen zeigten in Bezug darauf, dass eine Konzentration von 0,4% PEGDA die zuvor genannten Anforderungen am besten erfüllte (Abschnitt 5.1.2). Um im weiteren Verlauf den Einfluss von verschiedenen Cross-linkern auf die chondrogene Differenzierung von MSCs zu untersuchen, wurde die HA-SH vergleichend mit PEGTA (0,6%) und PEGDA (0,4%) vernetzt. Nachfolgend wurde acryliertes PG (PG-Acr) als eine Alternative zu acrylierten PEG-Derivaten evaluiert. Der Vorteil in der Verwendung von PG-Acr (0,6%) im Vergleich zu PEGTA (0,6%) liegt darin, dass es eine ca. fünfmal höhere Anzahl an funktionellen Gruppen bietet, was wiederum ein deutlich höheres Maß an biomimetischer Funktionalisierung ermöglicht. Hierbei zeigte die Untersuchung der knorpelspezifischen ECM-Bestandteile keine grundlegenden Unterschiede zwischen beiden Cross-linkern, wobei durch die Verwendung von PG-Acr eine gleichmäßigere Ablagerung von Knorpelmatrix in die entsprechenden Gele zu erkennen war. Zusammenfassend lässt sich feststellen, dass die Möglichkeiten für eine biomimetische Funktionalisierung durch die Verwendung von PG-Acr deutlich erhöht wurden, ohne dabei die Chondrogenese von MSCs negativ zu beeinträchtigen (Abschnitt 5.1.3). Der nächste Teil dieser Arbeit befasste sich mit der umfangreichen biomimetischen Funktionalisierung von mit PG-Acr (0,6%) vernetzten HA-SH Hydrogelen. Hierzu wurden entweder biomimetische Peptide oder ein chondrogener Wachstumsfaktor kovalent in das Hydrogel eingebunden. Interessanterweise führte weder das Einbringen des N-Cadherin-mimetischen (HAV), des Kollagen II-bindenden (KLER), noch des Zelladhäsions-vermittelnden (RGD) Peptids zu einer Verbesserung der chondrogenen Differenzierung der MSCs. Beispielsweise führte das kovalente Anbinden von 2,5mM HAV zu einer Veränderung der Zellkernmorphologie und einer Verringerung der Glykosaminoglykan (GAG)-Produktion, wohingegen das Einbringen von 1,0mM RGD die Kollagenproduktion hemmte. Diese Ergebnisse könnten möglicherweise darauf zurückzuführen sein, dass die hier verwendeten HA-SH-Hydrogele selbst bereits ausreichend effizient für die chondrogene Differenzierung von MSCs sind. Im Vergleich dazu wurden die vorherigen Studien, die positive Effekte von Peptiden nachweisen konnten, entweder in neutralen PEG-Hydrogelen oder in wesentlich festeren MeHA-Hydrogelen durchgeführt [99, 101, 160]. Daraus lässt sich folgern, dass die Verwendung von Peptiden gerade unter ungünstigen Bedingungen von Bedeutung sein könnte und ein neutrales Gelsystem für die Untersuchung von einzelnen Peptideffekten geeignet scheint (Abschnitt 5.2.1). Als nächstes wurde exemplarisch der chondrogene Wachstumsfaktor Transforming Growth Factor Beta 1 (TGF-b1) kovalent an PG-Acr angebunden. Durch die Verwendung von kovalent gebundenem TGF-b1 könnte somit die Notwendigkeit einer wiederholten Zugabe von TGF-b1 bei in vivo-Anwendungen vermieden werden, was wiederum bei einer potentiellen klinischen Anwendung von Vorteil sein könnte. Deshalb wurde der Einfluss von kovalent gebundenem TGF-b1 auf die Chondrogenese von MSCs mit der gleichen Menge ungebundenem TGF-b1 (100nM TGF-b1) verglichen. Hierbei wurde ein signifikant positiver, dosisabhängiger Effekt von kovalent gebundenem TGF-b1 erfolgreich nachgewiesen. Die Chondrogenese von MSCs in Hydrogelen mit kovalent gebundenem TGF-b1 war dabei der Chondrogenese von MSCs in Hydrogelen, in die TGF-b1 lediglich gemischt wurde, deutlich überlegen. Dies wurde anhand von stärkeren Färbungen für GAGs, Gesamtkollagen, Aggrecan und Kollagen II in den TGF-b1-modifizierten Gelen gezeigt. Darüber hinaus bestätigten sowohl biochemische Analysen des GAG- und Kollagengehalts, als auch Western Blot-Analysen die histologischen Daten. Zusätzlich wurde der positive Effekt von kovalent gebundenem TGF-b1 durch erhöhte Expressionsraten der chondrogenen Markergene COL2A1, ACAN und SOX9 nachgewiesen. Zusammenfassend konnte gezeigt werden, dass durch die kovalente Bindung des Wachstumsfaktors TGF-b1 ein signifikant positiver Effekt auf die chondrogene Differenzierung von MSCs entsteht (Abschnitt 5.2.2). Generell stellen die auf Basis von Michael-Addition hergestellten PG-Acr-HA-SH-Hydrogele aufgrund ihrer hohen Acrylat-Funktionalität eine vielseitige Hydrogelplattform dar. So bieten diese Hydrogele zahlreiche Möglichkeiten für das Einbringen von verschiedensten biologischen Modifikationen wie die kovalente Bindung von biomimetischen Peptiden zusammen mit Wachstumsfaktoren in ein und demselben Zellträger. Anhand eines Proof-of-principle-Experiments wurde die generelle Eignung von reinen PG-Hydrogelen für die Evaluation von einzelnen Peptideffekten demonstriert. Dazu wurden die Hydrogele unter Verwendung der Thiol-ene-click-Reaktion hergestellt. In diesem Hydrogelsystem, ohne den unterstützenden Effekt von HA, zeigten MSCs eine verstärkte chondrogene Differenzierung in Anwesenheit von 1,0mM HAV. Diese ließ sich anhand von stärkeren Färbungen für GAGs, Aggrecan und Kollagen II nachweisen. Außerdem waren die GAG- und Gesamtkollagen-Werte deutlich erhöht. Hiermit wurde gezeigt, dass sich die vielseitig modifizierbaren, reinen PG-Hydrogele für die Analyse von Peptideffekten und deren Interaktion mit Wachstumsfaktoren eignen (Abschnitt 5.3). Der letzte Teil dieser Arbeit wurde im Rahmen des EU-Projektes HydroZONES durchgeführt, welches an der Entwicklung und Herstellung von zonalen Konstrukten arbeitet. Der Aspekt der zonalen Organisation von Knorpel rückte in den letzten Jahren verstärkt in den Fokus [127, 128], jedoch findet er im Bereich des Tissue Engineering noch immer wenig Beachtung. Deshalb wurde im Folgenden die zonale Verteilung von Zellen innerhalb eines Zellträgers realisiert. Dazu wurden zwei unterschiedlich zusammengesetzte Hydrogele mithilfe der Thiol-ene-click-Reaktion hergestellt: eine aus HA-SH(FMZ) bestehende untere Lage und eine darauf liegende Lage aus reinem PG. Hierbei gelang es stabile, zonale Konstrukte herzustellen, in denen MSCs in beiden Zonen chondrogen differenzierten, was anhand von GAG- und Kollagen II-Färbungen, sowie durch die Quantifizierung des GAG-Gehalts bestätigt wurde. Hiermit konnte ein aus zwei verschiedenen Hydrogelen zusammengesetztes zonales Konstrukt erfolgreich hergestellt werden (Abschnitt 5.4). Durch den erstmaligen Einsatz des multifunktionalen Cross-linkers PG-Acr für das Tissue Engineering von Knorpel wurde ein auf Michael-Addition basierendes, vielseitiges HA-SH-Hydrogelsystem etabliert. Das hier vorgestellte Hydrogelsystem besitzt das Potenzial zukünftig als eine einfach anwendbare und vielseitige Toolbox zur Herstellung von biomimetischen Hydrogelen für die zellbasierte Knorpelregeneration verwendet zu werden. Vor allem könnte dabei der Einsatz von Stützstrukturen von entscheidender Bedeutung sein, um die mechanische Widerstandskraft der Zellträger zu erhöhen und somit das Potenzial für klinische Anwendungen zu vergrößern. Zusätzlich wurde gezeigt, dass Thiol-ene-click-Hydrogele sowohl zur Herstellung von zellbeladenen, reinen PG-Gelen, als auch zur Herstellung von deutlich komplexeren, zonalen Konstrukten geeignet sind. Diese Thiol-ene-click-Hydrogele wurden bereits erfolgreich weiterentwickelt und für 3D-Bioprinting-Prozesse verwendet [204]. 3D-Bioprinting ist eine Teildisziplin des sich immer weiter entwickelnden Feldes der Biofabrikation [205]. Die Verwendung in diesem Bereich verändert zwar die Anforderungen an die hierfür verwendeten Hydrogele, ermöglicht es aber gleichzeitig deutlich komplexere sowie hierarchische Strukturen herzustellen und kleinere Lagen noch exakter zu positionieren [159, 206–209]. Da in den hier vorgestellten Thiol-ene-click-Hydrogelen eine deutliche chondrogene Differenzierung von MSCs nachgewiesen wurde, ist es vorstellbar, dass sie als Basis für die Herstellung sogenannter Bioinks dienen, welche in zukünftigen, anspruchsvollen Biofabrikationsprozessen Anwendung finden sollen. KW - Hyaluronsäure KW - Hydrogel KW - Knorpel KW - Tissue Engineering KW - Hyaluronic acid KW - Poly(glycidol) KW - Hydrogel KW - Cartilage Regeneration KW - Mesenchymal Stromal Cells Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-155345 ER - TY - THES A1 - Kreutner, Jakob T1 - Charakterisierung des Knochens und seiner Mikrostruktur mit hochauflösender 3D-MRT T1 - Characterization of Bone and its Microstructure using High-resolution 3D-MRI N2 - Neue Therapieansätze durch Tissue Engineering erfordern gleichzeitig angepasste Diagnosemöglichkeiten und nicht-invasive Erfolgskontrollen. Speziell die 3D-MR-Bildgebung ist ein vielversprechendes Instrument, um Parameter mit hoher räumlicher Präzision zu quantifizieren. Vor diesem Hintergrund wurden im Rahmen dieser Arbeit neue Ansätze für die hochauflösende 3D-MRT in vivo entwickelt und deren Eignung im Bereich des Tissue Engineerings gezeigt. Welchen Vorteil die Quantifizierung von Parametern bietet, konnte im Rahmen einer prä-klinischen Studie an einem Modell der Hüftkopfnekrose gezeigt werden. Der Therapieverlauf wurde zu verschiedenen Zeitpunkten kontrolliert. Trotz der niedrigen räumlichen Auflösung, konnten durch eine systematische Auswertung der Signalintensitäten von T1- und T2-FS-gewichteten Aufnahmen Rückschlüsse über Veränderungen in der Mikrostruktur gezogen werden, die darüber hinaus in guter Übereinstimmung mit Ergebnissen von ex vivo µCT-Aufnahmen waren. Dort konnte eine Verdickung der Trabekelstruktur nachgewiesen werden, welche sehr gut mit einer Signalabnahme in den T1-gewichteten Aufnahmen korrelierte. Die radiale Auswertung der Daten erlaubte dabei eine komprimierte Darstellung der Ergebnisse. Dadurch wurde eine effiziente Auswertung der umfangreichen Daten (verschiedene Tiere an mehreren Zeitpunkten mit einer Vielzahl an Einzelaufnahmen) ermöglicht und eine unabhängige Bewertung erreicht. Um die Limitationen der begrenzten Auflösung von 2D-Multi-Schichtaufnahmen aufzuheben, wurden neue Ansätze für eine hochaufgelöste 3D-Aufnahme entwickelt. Hierfür wurden Spin-Echo-basierte Sequenzen gewählt, da diese eine genauere Abbildung der Knochenmikrostruktur erlauben als Gradienten-Echo-basierte Methoden. Zum einen wurde eine eigene 3D-FLASE-Sequenz entwickelt und zum anderen eine modifizierte 3D-TSE-Sequenz. Damit an Patienten Aufnahmen bei klinischer Feldstärke von 1,5 T mit einer hohen räumlichen Auflösung innerhalb einer vertretbaren Zeit erzielt werden können, muss eine schnelle und signalstarke Sequenz verwendet werden. Eine theoretische Betrachtung bescheinigte der TSE-Sequenz eine um 25 % höhere Signaleffizienz verglichen mit einer FLASE-Sequenz mit identischer Messzeit. Dieser Unterschied konnte auch im Experiment nachgewiesen werden. Ein in vivo Vergleich der beiden Sequenzen am Schienbein zeigte eine vergleichbare Darstellung der Spongiosa mit einer Auflösung von 160 × 160 × 400 µm. Für die Bildgebung des Hüftkopfs mit der neuen Sequenz waren jedoch aufgrund der unterschiedlichen Anatomie weitere Modifikationen notwendig. Um längere Messzeiten durch ein unnötig großes Field-of-View zu vermeiden, mussten Einfaltungsartefakte unterdrückt werden. Dies wurde durch die orthogonale Anwendung der Anregungs- und Refokussierungspulse in der TSE-Sequenz effizient gelöst. Technisch bedingt konnte jedoch nicht eine vergleichbare Auflösung wie am Schienbein realisiert werden. Der Vorteil der 3D-Bildgebung, dass Schichtdicken von deutlich weniger als 1 mm erreicht werden können, konnte jedoch erfolgreich auf den Unterkiefer übertragen werden. Der dort verlaufende Nervus Mandibularis ist dabei eine wichtige Struktur, deren Verlauf im Vorfeld von verschiedenen operativen Eingriffen bekannt sein muss. Er ist durch eine dünne knöcherne Wand vom umgebenden Gewebe getrennt. Im Vergleich mit einer 3D-VIBE-Sequenz zeigte die entwickelte 3D-TSE-Sequenz mit integrierter Unterdrückung von Einfaltungsartefakten eine ähnlich gute Lokalisierung des Nervenkanals über die gesamte Länge der Struktur. Dies konnte in einer Studie an gesunden Probanden mit verschiedenen Beobachtern nachgewiesen werden. Durch die neue Aufnahmetechnik konnte darüber hinaus die Auflösung im Vergleich zu bisherigen Studien deutlich erhöht werden, was insgesamt eine präzisere Lokalisierung des Nervenkanals erlaubt. Ein Baustein des Tissue Engineerings sind bio-resorbierbare Materialien, deren Abbau- und Einwachsverhalten noch untersucht werden muss, bevor diese für die klinische Anwendung zugelassen werden. Die durchgeführten in vitro µMR-Untersuchungen an Polymerscaffolds zeigten die reproduzierbare Quantifizierung der Porengröße und Wandstärke. Darüber hinaus wurde eine inhomogene Verteilung der Strukturparameter beobachtet. Die Ergebnisse waren in guter Übereinstimmung mit µCT-Aufnahmen als Goldstandard. Unterschiedliche Varianten der Scaffolds konnten identifiziert werden. Dabei bewies sich die MR-Bildgebung als zuverlässige Alternative. Insgesamt zeigen die Ergebnisse dieser Arbeit, welche Vorteile und Anwendungsmöglichkeiten die 3D-MRT-Bildgebung bietet, und dass auch mit klinischer Feldstärke in vivo Voxelgrößen im Submillimeterbereich für alle Raumrichtungen erreichbar sind. Die erzielten Verbesserungen in der räumlichen Auflösung erhöhen die Genauigkeit der verschiedenen Anwendungen und ermöglichen eine bessere Identifikation von kleinen Abweichungen, was eine frühere und zuverlässigere Diagnose für Patienten verspricht. N2 - New tissue engineering based therapies require adjusted diagnostic methods as well as non-invasive therapy monitoring. Especially 3D MR imaging is a promising tool for parameter quantification at high spatial precision. To serve that need new approaches for high resolution in vivo 3D MRI were developed and their applications in combination with tissue engineering have been demonstrated. The advantages of parameter quantification have been demonstrated in a preclinical study of a femoral heck necrosis model in a large animal. Therapy progress has been monitored at different time points. Despite a commonly used 2D imaging protocol a systematic evaluation of signal intensities from T1 and T2-FS weighted images allowed to draw conclusions about changes in bone microstructure. These results were in good agreement with ex vivo µCT images. The observed increase of trabecular thickness were highly correlated with a signal decrease in the T1 weighted images. The radial evaluation of the data allowed a compressed representation of the results. This lead to an efficient evaluation of numerous data (different animals at various time points with huge number of images each) and allowed an observer independent evaluation. To overcome the limitations from the limited spatial resolution in 2D multi slice images, new approaches for a high-resolution 3D imaging were developed. The focus was on spin echo based sequences due to their better representation of bone microstructure compared to gradient echo based sequences. On one hand a 3D FLASE sequence was developed and on the other hand a modified 3D TSE sequence. To achieve a high resolution in vivo at clinical field strength of 1.5 T within a reasonable scan time, a fast and signal intense sequence is strongly required. A theoretical evaluation of signal equations attributed an increase of 25 % to the TSE sequence compared to the FLASE sequence at identical scan time and resolution. This difference was also observed in experimental results. An in vivo comparison of both sequences at the distal tibia showed a comparable depiction of bone microstructure at a resolution of 160 × 160 × 400 µm. To apply this sequence for high resolution imaging of the femoral head, further modifications were necessary due to the different anatomy. A large field of view had to be avoided to reduce the overall scan time, thus aliasing artifacts had to be suppressed. This was achieved by orthogonal application of excitation and refocusing pulses in the TSE sequence. However, due to technical limitations the achievable resolution was lower than at the distal tibia. A slice thickness much smaller than 1 mm is one of the biggest advantages of 3D MRI and this sequence was successfully applied to imaging of the mandible. The course of the mandibular canal must be known before many surgeries, in order to avoid damaging this structure. The canal is separated from the surrounding only by a small bony wall. In comparison to a 3D VIBE sequence the developed 3D TSE sequence with incorporated aliasing suppression showed a comparable good localization of the canal across the full length of the structure. This was demonstrated in a study with various healthy volunteers and different observers. In comparison to previous results the new imaging technique allowed an increase of spatial resolution to a isotropic voxel size of 0.5 mm, which in total provides a higher precision for localizing the nerve canal. One important element in tissue engineering are bio resorbable materials. Their degradation and ingrowth process must be evaluated before they can be approved for clinical application. The performed in vitro µMRstudies at polymer scaffolds showed a reproducible quantification of pore size and wall thickness for different samples. Additionally, an inhomogeneous distribution of parameters in some samples was observed. The results were in good agreement with data based on µCT images, which are considered to be gold standard for this evaluation and showed significant differences between different groups of scaffolds. The results of this work demonstrate the advantages and possible applications of 3D MRI in clinical applications. Even at clinical field strength it is possible to achieve submillimeter resolution for all three spatial dimension within reasonable scan time. The achieved improvements in spatial resolution allow for an improved precision of the different applications as well as a better identification of small local deviations, which promises an earlier and more reliable diagnosis for patients. KW - Kernspintomografie KW - Mikrostruktur KW - Knochen KW - hochauflösende Bildgebung KW - 3D-Bildgebung KW - Knochenstruktur KW - Spin-Echo KW - Trabekel KW - Hüftkopfnekrose KW - Tissue Engineering Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-168858 ER - TY - THES A1 - Lennartz, Simon T1 - Tissue Engineering der menschlichen Speicheldrüse unter Verwendung von Epithel- und mikrovaskulären Endothelzellen auf einer Matrix aus dezellularisiertem Schweinedarm T1 - Tissue engineering of human salivary gland using epithelial and microvascular endothelial cells on a decellularized porcine matrix N2 - Eine ausgeprägte Mundtrockenheit, Xerostomie, entsteht häufig durch eine irreversible Funktionseinschränkung der Speicheldrüsen. Diese ist unter anderem durch die Einnahme bestimmter Medikamente, Autoimmunerkrankungen, fortgeschrittenes Alter oder die Bestrahlungstherapie von Tumoren der Kopf-Hals-Region bedingt, wobei letztere eine der häufigsten Ursachen darstellt. Konsequenzen der eingeschränkten Drüsenfunktion sind herabgesetzte Speichelflussraten, eine Reduktion des Mund-pH-Werts, eine veränderte Elektrolyt- und Immunglobulin-Zusammensetzung des Speichels und somit eine Verringerung des Infektionsschutzes. Die resultierenden Komplikationen erstrecken sich von Karies und rezidivierenden Infektionen bis hin zu Pilzbesiedelungen der Mundschleimhaut. Diese schränken die Lebensqualität der Patienten stark ein und führen häufig zu Therapieunterbrechungen. Fast die Hälfte der Patienten leidet unter Depressionen oder psychischen Belastungszuständen. Es gibt wenige Therapieansätze zur Behandlung der postradiogenen Xerostomie: Pilocarpin erhöht zwar die Speichelflussraten, hat jedoch keinen signifikanten Effekt auf die Lebensqualität. Die operative Translokation der Glandula submandibularis hat den Weg in die klinische Routine noch nicht gefunden, während die intensitätsmodulierte Bestrahlung (IMRT) nicht für jeden Patienten geeignet ist; beide zeigen jedoch einen positiven Effekt auf die Lebensqualität. Gentechnische und stammzellbasierte Ansätze zur Regeneration des Drüsengewebes befinden sich im Experimentalstadium. Somit ergibt sich ein dringender Bedarf an innovativen Optionen zur Behandlung der postradiogenen Xerostomie. Das Tissue Engineering, die Erstellung einer künstlichen Speicheldrüse aus körpereigenen Zellen, böte hier ein potentielles Behandlungskonzept. Diese Studie soll deshalb untersuchen, ob humane Speicheldrüsenepithelzellen (hSEZ) auf einer Matrix aus dezellularisiertem, porzinem Jejunum, der sogenannten Small intestinal submucosa + mucosa (SIS-muc), kultiviert werden können. Können die Zellen innerhalb der Wachstumsperiode wichtige physiologische Differenzierungsmarker beibehalten? Kann die Produktion von α-Amylase, einem der wichtigsten Enzyme des menschlichen Speichels, erhalten werden? Welchen Einfluss hat die Kokultur mit mikrovaskulären Endothelzellen (mvEZ)? Und zuletzt: Ist dezellularisierter Schweinedarm eine potentiell geeignete Matrix für das Tissue Engineering der menschlichen Speicheldrüse? Zunächst erfolgte die Entnahme von humanem Speicheldrüsengewebe, woraus hSEZ isoliert wurden. Diese wurden dann sowohl in Mono- als auch in Kokultur mit mvEZ auf die SIS-muc aufgebracht und auf dieser kultiviert. Die SIS-muc wurde aus kurzen Schweinedarm-Segmenten gewonnen, die in einem mehrstufigen Verfahren dezellularisiert wurden. Die besiedelte SIS-muc wurde mittels konventioneller sowie Immunfluoreszenzfärbungen, Raster- und Transmissionsektronenmikroskopie (REM/TEM) sowie quantitativer Polymerasekettenreaktion (qPCR) untersucht, darüber hinaus erfolgte die Messung der α-Amylase-Enzymaktivität. Histologisch sowie in der REM zeigte sich sowohl in der Mono- als auch in der Kokultur eine konfluente Besiedelung der SIS-muc mit hSEZ. In der Kokultur formten mvEZ einen Monolayer auf der serosalen Matrixseite. Bei der Charakterisierung der hSEZ zeigte sich in den Immunfluoreszenzaufnahmen eine starke Ausprägung von Zytokeratin, α-Amylase und Aquaporin-5 und eine moderate Ausprägung von Claudin-1. Bei der Untersuchung der Funktion der α-Amylase konnte in der Kokultur von hSEZ mit mvEZ eine im Gegensatz zur Mono- und 2D-Kultur signifikant erhöhte Enzymaktivität der α-Amylase nachgewiesen werden. In der qPCR-Analyse der α-Amylase-Genexpression war die 3D-Kultur der 2D-Kultur überlegen. Die vorliegende Arbeit zeigt, dass die Kultur von hSEZ auf der SIS-muc möglich ist. Es konnte nachgewiesen werden, dass die Zellen in 3D-Kultur spezifische Differenzierungsmerkmale beibehalten, die in der 2D-Kultur teils verloren gehen und dass hSEZ in Kokultur mit mvEZ eine gegenüber der Monokultur signifikant erhöhte Produktion von α-Amylase aufweisen. Diese Arbeit liefert die Datengrundlage für zukünftige Studien im dynamischen Bioreaktor-Modell (BioVaSc), die auf dem Weg zur klinischen Translation notwendig sind. Somit stellt sie einen wichtigen Schritt in Richtung einer auf Tissue Engineering basierten Therapie der belastenden Xerostomie dar. N2 - Xerostomia or dryness of the mouth often results from irreversible loss of function of the salivary glands. This medical condition can either be induced by certain drugs, autoimmune diseases, high age or radiotherapy of head and neck cancer with the latter being one of the most common causes. Impaired glands lead to a decrease in saliva flow rate as well as pH level inside the mouth and cause an alteration in the composition of saliva (e.g. electrolytes, immunoglobulins) lowering its anti-inflammatory capacity. Complications imply caries and recurring infections as well as mycosis of the oral cavity which negatively impact the patients’ quality of life, often leading to therapy interruptions. Moreover, almost half of the patients suffer from depression or other mental disorders. The treatment of radiogenic xerostomia is based on only a few therapeutic approaches currently available: Pilocarpin increases saliva flow rate yet does not significantly improve the patiens’ quality of life or reduce mucositis. Although indicating positive effects on quality of life, operative translocation of the submandibular gland has not yet been established in the clinical routine, while intensity modulated radiotherapy (IMRT) is not suitable for every patient. On the other hand, genetic or stem-cell-based approaches for regeneration of salivary gland tissue are still at an experimental stage. Thus, there is a strong demand for innovative options for the treatment of radiation-induced xerostomia which could potentially be supplied by an approach based on the tissue engineering of the salivary gland using autologous cells. The aim of this study is to investigate, whether human salivary gland epithelial cells (hSGEs) can be cultured on a scaffold made from decellularized porcine jejunum, the so-called small intestinal submucosa (SIS-muc). Do the cells maintain the expression of certain cellular markers over the given cell culture time? Can the production of α-amylase, a key enzyme of human saliva, be perpetuated? And lastly: Is the SIS-muc an appropriate scaffold for the tissue engineering (TE) of the human salivary gland? To examine this, human salivary gland tissue was obtained and salivary gland epithelial cells were isolated. The cells were cultured both in mono- and co-culture with microvascular endothelial cells (mvECs) on the SIS-muc. Colonized SIS-muc was analyzed in H&E and immunofluorescence stainings, scanning- and transmission electron microscopy as well as quantitative polymerase chain reaction (qPCR). Furthermore, enzyme activity of α-amylase was quantified. H&E stainings as well as scanning electron microscopy (SEM) revealed a confluent cell layer of hSGECs on the scaffold both in mono-and co-culture. Immunofluorescence stainings indicated a strong expression of cytoceratin, α-amylase and aquaporin-5 and a moderate expression of claudin-1. Enzyme assay revealed that SGECs co-cultured with mvECs yielded a significantly increased activity of α-amylase compared to the monocultured cells. Quantitative PCR (qPCR) indicated an increase in α-amylase gene expression in 3D-culture compared to 2D-culture. This study shows that hSGECs can successfully be cultured on the SIS-muc and maintain important cellular markers which partly vanish in 2D-culture. Moreover, co-culture with mvECs increased α-amylase enzyme activity of hGECs compared to monoculture. Those results significantly contribute to the base of evidence needed for following studies focusing on dynamic cell culture using the BioVaSc which are necessary to evaluate the possibilities for clinical translation. Thus, this study takes an important step towards a tissue engineering-based therapy of the burdensome xerostomia. KW - Tissue Engineering KW - Xerostomie KW - Speicheldrüse KW - postradiogene Xerostomie KW - SIS-muc KW - 3D-Kultur KW - BioVaSc Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164116 ER - TY - THES A1 - Mildenberger, Michael T1 - Untersuchung von im Tissue-Engineering-Verfahren hergestellten Oral-Mukosa-Äquivalenten mittels RT-qPCR (reverse transcription quantitative real-time polymerase chain reaction) T1 - Examination of tissue engineered oral mucosa equivalents by RT-qPCR (reverse transcription quantitative real-time polymerase chain reaction) N2 - Im Rahmen dieser Arbeit wurden Fibroblasten und Keratinozyten, welche in vitro auf unterschiedlichen Scaffolds sowohl gemeinsam als auch in Monokulturen gezüchtet wurden, mittels Real-time PCR auf ihre Genausschüttung untersucht, um festzustellen wie sich die Unterlage auf die Genausschüttung auswirkt. Hierzu wurden die Proben sowohl auf die Genexpressionsmarker für die Basallamina Kollagen IV, Laminin 1 und 5 als auch auf die Genexpressionsmarker für die frühe Differenzierung Keratin K13 und K14 untersucht. Als Referenzgen wurde β-Actin ausgewählt, da dieses Gen in den Vorversuchen mit zwei weiteren Referenzgenen die stabilste Expression gezeigt hatte. Die Genexpressionsanalyse zeigte, dass nur in den Kokulturen von Keratinozyten und Fibroblasten eine ausgewogene Genexpression stattfindet, da sich die Zellen darin beeinflussen und regulieren. N2 - Fibroblasts and keratinocytes were cultured in vitro on different scaffolds in monocultures and cocultures and examined by RT-qPCR for gene expression. Gene expression analysis was made for genes coding for basement Membrane collagen IV, laminin 1 and 5 and for early differentiation keratin K13 and K14. β-Actin was used as reference gene, because it showed in preliminary tests with two other reference genes most stable expression. Gene expression analysis showed only in cocultures of fibroblasts and keratinocytes balanced gene expression, because the two cell types affect and regulate each other. KW - Real time quantitative PCR KW - Tissue Engineering KW - Mundschleimhaut KW - Referenzgen Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-155286 ER - TY - THES A1 - Bersi, Heidi T1 - Etablierung eines 3D in vitro Blutgefäß-/Gewebemodells zur Testung spezifischer Therapeutika zur Leukämiebehandlung T1 - Establishment of a 3D in vitro blood vessel /tissue model to test specific therapeutic agents to treat leukemia N2 - In Deutschland erkranken jährlich etwa 500.000 Menschen an Krebs, wovon circa 12.000 die Diagnose „Leukämie“ gestellt bekommen [1]. Unter den Leukämien weist die akute myeloische Leukämie (AML) die ungünstigste Prognose auf, sodass hier erheblicher Forschungsbedarf besteht. Zusätzlich schnitten viele potentielle Therapeutika, die sich in bisherigen präklinischen Testsystemen als vielversprechend erwiesen haben, in klinischen Studien schlecht ab [8]. Ziel dieser Arbeit war daher die Etablierung eines 3D in vitro Blutgefäß-/Gewebemodells als verbessertes präklinisches System zur Testung von Therapeutika, die zur erfolgreichen Behandlung von Leukämien beitragen sollen. Das 3D Blutgefäßmodell bestand aus humanen primären Endothelzellen, welche als Monolayer auf der Serosaseite einer dezellularisierten, porzinen, intestinalen Kollagenmatrix (SIS-Ser) wuchsen. Nach 14-tägiger Zellkultur wurden dem Versuchsansatz entsprechend nichtadhärente THP-1 Zellen (AML-M5-Zelllinie) und Tipifarnib oder entsprechende Kontrolllösungen beziehungsweise bimolekulare Antikörperkonstrukte mit PBMCs als Effektorzellen hinzupipettiert. Nach 5-tägiger Inkubation mit Tipifarnib beziehungsweise 24-stündiger Behandlung mit Antikörperkonstrukten wurde der therapiebedingte Anstieg der Apoptoserate in den malignen THP-1 Zellen mittels durchflusszytometrischer Analyse der Modellüberstände ermittelt. Zum Ausschluss verbliebener und durchflusszytometrisch zu analysierender Zellen wurde, stellvertretend für alle Suspensionszellen, eine Anti-CD13/DAB-Färbung durchgeführt, welche negativ ausfiel. Mögliche Kollateralschäden am Endothel wurden mittels histologischen Färbemethoden an Gewebeparaffinschnitten untersucht. In der Durchflusszytometrie zeigte Tipifarnib sowohl im 2D als auch im 3D Modell äquivalente, dosisabhängige und antileukämische Auswirkungen auf die THP-1 Zellen. Bei Applikation der Antikörperkonstrukte ließ lediglich die Kombination beider Hemibodies signifikante Effekte auf die THP-1 Zellen erkennen. Dabei zeigten sich bei konstanten Konzentrationen der Antikörperkonstrukte im 3D Modell deutlich höhere Apoptoseraten (58%) als im 2D Modell (38%). Stellt man Vergleiche von Tipifarnib mit den T-Zell-rekrutierenden Antikörperkonstrukten an, so ließen sich im 2D Modell ähnliche Apoptoseraten in den THP-1 Zellen erzielen (jeweils 38% bei Anwendung von 500 nM Tipifarnib). In den 3D Modellen erzielten jedoch die niedriger konzentrierten Antikörperkonstrukte bei kürzerer Inkubationsdauer eine noch höhere spezifische Apoptoserate in den THP-1 Zellen (im Mittel 58%) als 500 nM Tipifarnib (mittlere Apoptoserate 40%). Bezüglich der Nebenwirkungen ließ sich im 3D Modell nach Applikation von Antikörperkonstrukten kein wesentlicher Einfluss auf das Endothel erkennen, während Tipifarnib/DMSO als auch die mit DMSO versetzten Kontrolllösungen zu einer dosisabhänigen Destruktion des ursprünglichen Endothelzellmonolayers führten. Damit stellt die hier beschriebene, hoch spezifische, Hemibody-vermittelte Immuntherapie einen vielversprechenden Ansatz für zukünftige onkologische Therapien dar. Mithilfe des etablierten humanen 3D in vitro Modells konnte im Vergleich zur konventionellen Zellkultur eine natürlichere Mikroumgebung für Zellen geschaffen und die Auswirkungen der Testsubstanzen sowohl auf maligne Zellen, als auch auf die Gefäßstrukturen untersucht werden. N2 - In Germany every year about 500,000 people contract cancer whereof about 12,000 have leukemia [1]. Among all types of leukemia, acute myeloid leukemia (AML) has the worst prognosis so that there is an increased need for research. In addition many potential therapeutic agents, which had been very promising in previous preclinical tests, subsequently performed poorly in clinical studies [8]. The aim of this work was to establish a 3D in vitro blood vessel /tissue model as an enhanced preclinical test system for therapeutic agents, which could contribute to successful treatment of leukemia. The 3D blood vessel model consists of human primary endothelial cells growing as a monolayer on the serosa site of a decellularized porcine intestinal collagen matrix (called SIS-Ser). After 14 days in cell culture non-adherent THP-1 cells (AML-M5) and Tipifarnib or control solution, or other bimolecular antibody constructs and PBMC as effector cells were added to the experimental setting. After 5 days treatment with Tipifarnib or 24 hours with antibody constructs the therapy related effects on THP-1 cells were observed by flow cytometric analysis of the model remants. For exclusion of adherent suspension cells on the matrix an anti CD-13/DAB labeling was carried out, which was negative. Damaging effects on endothelial cells were assessed by histological staining of paraffin sections. In 2D as well as in 3D tipifarnib showed equivalent dose-dependent antileukemic effects on THP-1 by flow cytometry. After application of antibody constructs only the combination of both hemibodies showed significant effects on THP-1. While having constant concentrations in 2D and 3D the antibody constructs resulted in higher apoptotic rate in 3D (58%) than in 2D (38%). In comparison to tipifarnib, the t-cell recruting antibody constructs resulted in a similar apoptotic rate in THP-1 in 2D (38% when using 500 nM tipifarnib) whereas they had higher specific effects on THP-1 in 3D by a shorter incubation period and lower concentrations (58% versus 40% after incubation with 500 nM tipifarnib). Concerning side effects, the hemibodies had no significant influence on the endothelial monolayer whereas tipifarnib/DMSO and DMSO alone led to damage in a dose-dependent manner. So highly specific hemibody- mediated immunotherapy shows a promising approach for future cancer treatment. With this human 3D in vitro model a more natural mico-environment was created for the cells in comparison to conventional cell cultures and it is was possible to investigate the anti-leukemic effects of therapeutic drugs as well as their impact on the endothelial monolayer. KW - Tissue Engineering KW - Gewebekultur KW - Akute myeloische Leukämie KW - Antikörper KW - Immuntherapie KW - 3D in vitro Modell KW - Akute myeloische Leukämie KW - Tipifarnib KW - T-Zell-rekrutierende Antikörperkonstrukte KW - 3D in vitro model KW - acute myeloid leukemia KW - t-cell recruting antibody constructs Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-152506 ER - TY - THES A1 - Rossi, Angela Francesca T1 - Development of functionalized electrospun fibers as biomimetic artificial basement membranes T1 - Entwicklung funktionalisierter elektrogesponnener Fasern als biomimetische künstliche Basalmembranen N2 - The basement membrane separates the epithelium from the stroma of any given barrier tissue and is essential in regulating cellular behavior, as mechanical barrier and as structural support. It further plays an important role for new tissue formation, homeostasis, and pathological processes, such as diabetes or cancer. Breakdown of the basement membrane is believed to be essential for tumor invasion and metastasization. Since the basement membrane is crucial for many body functions, the development of artificial basement membranes is indispensable for the ultimate formation of engineered functional tissue, however, challenging due to their complex structure. Electrospinning enables the production of fibers in the nano- or microscale range with morphological similarities to the randomly orientated collagen and elastic fibers in the basement membrane. However, electrospun fibers often lack the functional similarity to guide cells and maintain tissue-specific functions. Hence, their possible applications as matrix structure for tissue engineering are limited. Herein, the potential of polyester meshes, modified with six armed star-shaped pre-polymers and cell-adhesion-mediating peptides, was evaluated to act as functional isotropic and bipolar artificial basement membranes. Thereby, the meshes were shown to be biocompatible and stable including under dynamic conditions, and the degradation profile to correlate with the rate of new tissue formation. The different peptide sequences did not influence the morphology and integrity of the fibers. The modified membranes exhibited protein-repellent properties over 12 months, indicating the long-term stability of the cross-linked star-polymer surfaces. Cell culture experiments with primary fibroblasts and a human keratinocyte cell line (HaCaT) revealed that cell adhesion and growth strongly depends on the peptide sequences and their combinations employed. HaCaT cells grew to confluence on membranes modified with a combination of laminin/collagen type IV derived binding sequences and with a combination of fibronectin/laminin/collagen type IV derived peptide sequences. Fibroblasts strongly adhered to the fibronectin derived binding sequence and to membranes containing a combination of fibronectin/laminin/collagen type IV derived peptide sequences. The adhesion and growth of fibroblasts and HaCaT cells were significantly reduced on membranes modified with laminin, as well as collagen IV derived peptide sequences. HaCaT cells and fibroblasts barely adhered onto meshes without peptide sequences. Co-culture experiments at the air-liquid interface with fibroblasts and HaCaT cells confirmed the possibility of creating biocompatible, biofunctional and biomimetic isotropic and bipolar basement membranes, based on the functionalized fibers. HaCaT cells grew in several layers, differentiating towards the surface and expressing cytokeratin 10 in the suprabasal and cytokeratin 14 in the basal layers. Migration of fibroblasts into the electrospun membrane was shown by vimentin staining. Moreover, specific staining against laminin type V, collagen type I, III, IV and fibronectin illustrated that cells started to remodel the electrospun membrane and produced new extracellular matrix proteins following the adhesion to the synthetic surface structures. The culturing of primary human skin keratinocytes proved to be difficult on electrospun fibers. Cells attached to the membrane, but failed to form a multilayered, well-stratified, and keratinized epidermal layer. Changing the fiber composition and fixation methods did not promote tissue development. Further investigations of the membrane demonstrated the tremendous influence of the pore size of the membrane on epithelial formation. Furthermore, primary keratinocytes reacted more sensitive to pH changes in the medium than HaCaT cells did. Since primary keratinocytes did not adequately develop on the functionalized meshes, polycarbonate membranes were used instead of electrospun meshes to establish oral mucosa models. The tissue-engineered models represented important features of native human oral mucosa. They consisted of a multilayered epithelium with stratum basale, stratum spinosum, stratum granulosum, and stratum corneum. The models formed a physical barrier and the expression of characteristic cell markers was comparable with that in native human oral mucosa. The results from the ET-50 assay and the irritation study reflected the reproducibility of the tissue equivalents. Altogether, electrospinning enables the production of fibers with structural similarity to the basement membrane. Incorporating extracellular matrix components to mimic the functional composition offers a safe and promising way to modify the fibers so that they can be used for different tissue engineering applications. The resultant biomimetic membranes that can be functionalized with binding sequences derived from widely varying proteins can be used as a toolbox to study the influence of isotropic and bipolar basement membranes on tissue formation and matrix remodeling systematically, with regards to the biochemical composition and the influence and importance of mono- and co-culture. The oral mucosa models may be useful for toxicity and permeation studies, to monitor the irritation potential of oral health care products and biomaterials or as a disease model. N2 - Die Basalmembran trennt das Epithel vom Stroma eines jeden Wandgewebes und ist entscheidend bei der Regulierung des Zellverhaltens, als mechanische Barriere, und als strukturelle Unterstützung. Darüber hinaus spielt sie eine wichtige Rolle sowohl bei der Neubildung von Gewebe und der Homöostase, als auch bei pathologischen Prozessen, wie Diabetes mellitus oder Krebs. Es wird angenommen, dass die Überquerung der Basalmembran eine entscheidende Rolle bei der Tumorinvasion und Metastasierung spielt. Wegen der großen Bedeutung der Membran für eine Vielzahl an Körperfunktionen, ist die Entwicklung von strukturierten und funktionalen künstlichen Basalmembranen für den Aufbau von im Labor entwickeltem funktionalem Gewebe unerlässlich; nichtsdestotrotz stellt die Herstellung aufgrund der komplexen Struktur eine Herausforderung dar. Das elektrostatische Verspinnen ermöglicht es, Fasern im Nano oder Mikrometer Maßstab mit morphologischen Ähnlichkeiten zu den zufällig orientierten Kollagen und elastischen Fasern in der Basalmembran herzustellen. Allerdings fehlt den elektrogesponnenen Fasern häufig die funktionale Ähnlichkeit um die Zellbewegung innerhalb des Gewebes zu regulieren und gewebespezifische Funktionen aufrecht zu erhalten. Daher sind ihre Anwendungsmöglichkeiten als Membranen für das Tissue Engineering begrenzt. In dieser Arbeit wurde das Potential eines Polyestergerüsts beurteilt, das mit einem sechsarmigen sternförmigen Additiv und Zelladhäsion vermittelnden Peptiden modifiziert worden war, als isotrope und bipolare künstliche Basalmembran. Zunächst wurden die Materialeigenschaften der Faservliese untersucht. Dabei konnte gezeigt werden, dass die Vliese biokompatibel, und auch unter dynamischen Bedingungen stabil sind. Zudem korrelierte der Abbau der Vliese mit dem Aufbau von neuem Gewebe. Die Modifizierung der Faseroberfläche mit Peptidsequenzen beeinflusste nicht die Morphologie und die Integrität der Fasern. Die funktionalisierten Gerüste zeigten proteinabweisende Eigenschaften über 12 Monate, was die langfristige Stabilität der quervernetzten Stern Polymer Oberflächen bestätigte. Zellkulturversuche mit primären Fibroblasten und einer humanen Keratinozyten Zelllinie (HaCaT) ergaben, dass die Zelladhäsion und das Wachstum stark von den Peptidsequenzen und deren Kombinationen abhängig sind. HaCaT Zellen wuchsen zur Konfluenz auf Vliesen, die mit einer Kombination aus Laminin/Kollagen Typ IV stammenden Peptidsequenzen und mit einer Kombination aus Fibronektin/Laminin/Kollagen Typ IV stammenden Peptidsequenzen funktionalisiert worden waren. Fibroblasten dagegen adhärierten und proliferierten stark auf Vliesen, die mit Fibronektin, und einer Kombination aus Fibronektin/Laminin/Kollagen Typ IV stammenden Bindungssequenzen modifiziert worden waren. Die Adhäsion und das Wachstum von Fibroblasten und HaCaT Zellen waren dagegen auf mit Laminin sowie mit Kollagen Typ IV funktionalisierten Membranen deutlich geringer. Fibroblasten und HaCaT Zellen adhärierten kaum auf Vliesen ohne Peptidsequenzen. Ko Kultur Versuche an der Luft Flüssigkeits Grenzfläche mit Fibroblasten und HaCaT Zellen bestätigten, dass es möglich ist, basierend auf funktionalisierten Fasern, biokompatible, biofunktionale und biomimetische isotrope und anisotrope Basalmembranen aufzubauen. HaCaT Zellen wuchsen mehrschichtig, differenzierten und polarisierten, dies wurde belegt durch den Nachweis von Zytokeratin 14 in den basalen und Zytokeratin 10 in den oberen Schichten des Epithels. Die Vimentin Färbung zeigte, dass die Fibroblasten in das Vlies einwandern. Durch spezifische Färbung von Laminin V, Kollagen I, III, IV und Fibronektin konnte gezeigt werden, dass die Zellen beginnen das Vlies umzubauen und extrazelluläre Matrix Proteine zu produzieren. Die Kultivierung von primären Keratinozyten, sowohl aus der humanen Haut als auch aus der humanen Mundschleimhaut, erwies sich als komplex auf elektrogesponnenen Fasern. Die Zellen adhärierten auf der Membran, bildeten aber weder mit noch ohne Fibroblasten ein mehrschichtiges, verhorntes Epithel aus. Die Anpassung der Faserzusammensetzung und der Fixierungsmethoden begünstigte die Entwicklung des Epithels nicht. Weiterführende experimentelle Studien belegten, dass der Porendurchmesser des Vlieses eine wichtige Rolle für die Entwicklung des Epithels spielt und dass primäre Keratinozyten stärker auf pH Veränderungen reagieren als HaCaT Zellen. Da die funktionalisierten Fasern sich nicht als geeignete Struktur für primäre Keratinozyten erwiesen, wurden Polycarbonat Membranen anstelle von elektrogesponnenen Strukturen als Träger für den Aufbau von Mundschleimhautmodellen verwendet. Die Modelle zeigten wichtige Eigenschaften der nativen Mundschleimhaut. Es bildete sich ein mehrschichtiges, polarisiertes Epithel aus basalen Zellen, einer Stachelzellschicht, Körnerzellschicht und Hornschicht. Die Modelle entwickelten eine physikalische Barriere und exprimierten Zellmarker ähnlich der nativen Mundschleimhaut. Die Ergebnisse des ET 50 Assays und der Irritationsstudie legten dar, dass die Modelle reproduzierbar hergestellt werden können. Das elektrostatische Spinnen ermöglicht es, fibrilläre Strukturen, die der Basalmembran sehr ähnlich sind, herzustellen. Die Funktionalisierung der Fasern mit Zelladhäsionssignalen stellt eine vielversprechende Möglichkeit dar, diese Fasern so zu modifizieren, dass sie als Basalmembranen für verschiedene Anwendungen des Tissue Engineerings geeignet sind. Die biomimetischen Membranen können mit Bindungssequenzen von sehr unterschiedlichen Proteinen modifiziert werden. Darüber hinaus können sie genutzt werden, den Einfluss von isotropen und anisotropen Basalmembranen auf die Gewebebildung und den Matrixumbau systematisch in Bezug auf die biochemische Zusammensetzung und den Einfluss sowie die Bedeutung von Mono und Ko Kultur zu untersuchen. Die Mundschleimhautmodelle können für toxikologische Untersuchungen, Permeationsstudien, sowie als Krankheitsmodelle eingesetzt werden. Außerdem können sie verwendet werden, um das Irritationspotenzial von Mundhygieneprodukten und Biomaterialien einzuschätzen. KW - Tissue Engineering KW - Basalmembran KW - Skin KW - Basement membrane KW - Bipolar Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137618 N1 - die Online-Version weicht insofern von der gedruckten Fassung ab als im Appendix die Arbeitsanweisungen aus dem Labor fehlen (diese dürfen nicht im WWW veröffentllicht sein) ER - TY - THES A1 - Schürlein, Sebastian T1 - Entwicklung von Technologien zur Optimierung von Tissue Engineering Prozessen am Beispiel der Herstellung von kardialem Gewebe T1 - Development of technologies to optimize tissue engineering processes, documented on the example of the generation of cardiac tissue N2 - Kardiovaskuläre Erkrankungen, wie beispielsweise der Herzinfarkt, sind die häufigste Todesursache weltweit. Bei einem Herzinfarkt sterben Areale des Herzens aufgrund einer Unterversorgung mit Blut ab. Da das Herzmuskelgewebe ein sogenanntes terminal differenziertes Gewebe ist, kommt es zu keiner Regeneration des Gewebes, mit der Folge einer Herzinsuffizienz beziehungsweise dem Tod des Patienten. Eine alternative Behandlungsmöglichkeit zu einer Herztransplantation stellt das Tissue Engineering dar. Mit Hilfe des Tissue Engineerings können dreidimensionale Gewebe aufgebaut und kultiviert werden, um auf diese Weise ein funktionelles Gewebe zu erhalten, durch welches das abgestorbene Gewebeareal des Herzens zukünftig auch ersetzt werden könnte. In der vorliegenden Arbeit wurden notwendige Technologien für den Aufbau von Geweben entwickelt sowie erste Versuche für die Erzeugung eines funktionellen Herzmuskelgewebes durchgeführt. Beim Aufbau von dreidimensionalen Geweben finden Trägerstrukturen Anwendung, die mit Zellen besiedelt werden. Solche Trägerstrukturen können aus biologischen oder synthetischen Polymeren hergestellt sein oder aus der extrazellulären Matrix eines dezellularisierten Gewebes bestehen. Für eine standardisierte Dezellularisierung von Geweben wurde eine computergesteuerte Pumpeneinheit, für die Herstellung von Nanofaserscaffolds eine Elektrospinninganlage entwickelt. Mit Hilfe der Dezellularisierungseinheit können komplexe Organe, wie ein Herz im Ganzen, reproduzierbar dezellularisiert werden. Untersuchungen der mittels Elektrospinning hergestellten Nanofaserscaffolds, welche als Alternative zu der dezellularisierten, natürlichen Matrix eingesetzt werden können, zeigten bei allen hergestellten Zusammensetzungen eine Orientierung der Zellen entlang der Fasern. Die Kultivierung von Zellmatrixkonstrukten erfolgt im Tissue Engineering häufig unter dynamischen Bedingungen. Hierfür wurde ein mobiler Stand Alone Inkubator mit der erforderlichen Peripherie für eine Kultur unter Perfusion des Gewebes entwickelt. Als Weiterentwicklung des Stand Alone Inkubators ist eine modulare Bioreaktorplattform, bestehend aus Wärmetauscher, Beutelpumpe und Gasaustauscher, aufgebaut worden. In dieses System kann über Standard Anschlüsse jegliche Art von Bioreaktor in das System eingebunden werden. Durch die Kompaktheit des Systems ist es möglich mehrere Ansätze parallel auf engem Raum durchzuführen. Die Funktion der Plattform, wurde in der vorliegenden Arbeit durch die Gewebekultur einer nativen porzinen Karotis nachgewiesen. Für den Aufbau des kardialen Gewebes dient die small intestinal submucosa ohne Serosa (SISser) als Trägerstruktur. Der Aufbau des Gewebekonstrukts erfolgte in verschiedenen Ansätzen unter Einsatz verschiedener Zellarten. Native, aus Herzbiopsien generierte Cardiosphere derived cells (CDCs) verteilten sich gleichmäßige über die Oberfläche der Matrix, jedoch konnten immunhistologisch keine spezifischen kardialen Marker bei den artifiziellen Geweben nachgewiesen werden. Zellmatrixkonstrukte aus einer Mono Kultur von Kardiomyozyten, differenziert aus induzierten pluripotenten Stammzellen (iPS Zellen) sowie einer Co Kultur dieser Kardiomyozyten mit mesenchymalen Stammzellen und Zellen aus einer Herzbiopsie zeigten nach wenigen Tagen in Kultur ein kontraktiles Verhalten. Immunhistologische Färbungen der beiden Gewebe bestätigten die Expression der spezifischen kardialen Marker, wie beispielsweise kardiales Troponin T, kardiales Troponin C und alpha Actinin. Die Kardiomyozyten der Mono Kultur sind jedoch nicht über die gesamte Matrixoberfläche verteilt, sondern bilden Aggregate. Bei der Co Kultur kann eine gleichmäßige Verteilung der Zellen auf der Matrix beobachtet werden. Der vielversprechendste Ansatz für den Aufbau eines Herzmuskelgewebes, welches als Implantat oder Testsystem eingesetzt werden kann, bildet nach den in dieser Arbeit erzielten Ergebnissen, ein Konstrukt aus der SISser und der Co Kultur der Zellen. Allerdings muss die Zusammensetzung der Co Kultur sowie das Verhältnis der Zellzahlen optimiert werden. N2 - Cardiovascular diseases as myocardial infarction are the most frequent cause of death worldwide. During a myocardial infarction, areas of the heart are being damaged because of an insufficient nutrient supply. Heart tissue is a terminal differentiated tissue, this means that it can’t be regenerated by itself. The consequence of this characteristic is a heart insufficiency or the death of the patient. An alternative treatment to heart transplantation is promised by tissue engineering. By using the methods of tissue engineering, cells can be cultured on a scaffold to generate a mature tissue, which can be used to replace the damaged areas of the heart. In the present work systems for the generation of tissues have been developed and first experiments to build up a functional cardiac patch were performed. To generate three-dimensional tissues, scaffolds colonized with cells are necessary. These scaffolds can be produced with biological or synthetic polymers or even decellularized tissues can be used. A computer controlled decellularization platform was designed to ensure a standardized, reproducible decellularization of complex organs like hearts. Furthermore, an electrospinning device was developed for the production of nanofiber scaffolds. On such matrices, seeded cells grow along the fibers. Most cell-matrix-constructs are cultured under dynamic conditions in tissue engineering. A stand alone incubator system containing the required periphery to apply different culture conditions was developed. As further development a compact modular bioreactor platform consisting of a heat exchanger, a bag pump and a gas exchanger was established. All kinds of bioreactors can be enclosed to the system via standard Luer Lock Connectors. Due to the compactness of the system, it is possible to parallelize and run experiments easily on narrow space. The functionality of the platform was demonstrated by a tissue culture of a native porcine carotid artery. The small intestinal submucosa without serosa (SISser) was employed as matrix for the development of a functional cardiac patch. In different experiments diverse cell types were used to generate a cardiac construct. Cardiosphere derived cells (CDC) seeded on the SISser showed an equal distribution all over the surface of the matrix, but no expression of specific cardiac markers. Constructs consisting of a mono culture of induced pluripotent stem cell derived cardiomyocytes (CM iPS cells) or a co culture of CM iPS cells, mesenchymal stem cells and cells isolated form a heart biopsy showed a contraction of the whole matrix after a few days in culture. Furthermore, cardiac markers like cardiac troponin T, cardiac troponin C and alpha actinin could be observed by immunohistological staining. Regarding the morphology of the different tissues, the mono culture of the CM iPS cells formed agglomerates on the surface of the matrix whereas the co culture showed a well distribution of the cells all over the surface of the matrix. Consequently, the co culture on the SISser is the most promising approach for the development of a functional cardiac patch. However, the combination of cell types within the co culture and their ratio has to be optimized. KW - Tissue Engineering KW - Herzmuskel KW - Bioreaktorplattform KW - Elektrospinning KW - kardiales Tissue Engineering KW - kardiales Gewebe KW - bioreactor plattform KW - electrospinning KW - cardiac tissue engineering KW - Biomaterial KW - Gewebekultur Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142432 ER - TY - THES A1 - Stuckensen, Kai T1 - Fabrication of hierarchical cell carrier matrices for tissue regeneration by directional solidification T1 - Herstellung hierarchischer Zellträger-Matrices zur Geweberegeneration mittels gerichteter Erstarrung N2 - The key hypothesis of this work represented the question, if mimicking the zonal composition and structural porosity of musculoskeletal tissues influences invading cells positively and leads to advantageous results for tissue engineering. Conventional approaches in tissue engineering are limited in producing monolithic “scaffolds” that provide locally variating biological key signals and pore architectures, imitating the alignment of collagenous fibres in bone and cartilage tissues, respectively. In order to fill this gap in available tissue engineering strategies, a new fabrication technique was evolved for the production of scaffolds to validate the hypothesis. Therefore, a new solidification based platform procedure was developed. This process comprises the directional solidification of multiple flowable precursors that are “cryostructured” to prepare a controlled anisotropic pore structure. Porous scaffolds are attained through ice crystal removal by lyophilisation. Optionally, electrostatic spinning of polymers may be applied to provide an external mesh on top or around the scaffolds. A consolidation step generates monolithic matrices from multi zonal structures. To serve as matrix for tissue engineering approaches or direct implantation as medical device, the scaffold is sterilized. An Adjustable Cryostructuring Device (ACD) was successively developed; individual parts were conceptualized by computer aided design (CAD) and assembled. During optimisation, a significant performance improvement of the ACDs accessible external temperature gradient was achieved, from (1.3 ± 0.1) K/mm to (9.0 ± 0.1) K/mm. Additionally, four different configurations of the device were made available that enabled the directional solidification of collagenous precursors in a highly controlled manner with various sample sizes and shapes. By using alginate as a model substance the process was systematically evaluated. Cryostructuring diagraphs were analysed yielding solidification parameters, which were associated to pore sizes and alignments that were determined by image processing. Thereby, a precise control over pore size and alignment through electrical regulation of the ACD could be demonstrated. To obtain tissue mimetic scaffolds for the musculoskeletal system, collagens and calcium phosphates had to be prepared to serve as raw materials. Extraction and purification protocols were established to generate collagen I and collagen II, while the calcium phosphates brushite and hydroxyapatite were produced by precipitation reactions. Besides the successive augmentation of the ACD also an optimization of the processing steps was crucial. Firstly, the concentrations and the individual behaviour of respective precursor components had to be screened. Together with the insights gained by videographic examination of solidifying collagen solutions, essential knowledge was gained that facilitated the production of more complex scaffolds. Phenomena of ice crystal growth during cryostructuring were discussed. By evolutionary steps, a cryostructuring of multi-layered precursors with consecutive anisotropic pores could be achieved and successfully transferred from alginate to collagenous precursors. Finally, very smooth interfaces that were hardly detectable by scanning electron microscopy (SEM) could be attained. For the used collagenous systems, a dependency relation between adjustable processing parameters and different resulting solidification morphologies was created. Dehydrothermal-, diisocyanate-, and carbodiimide- based cross linking methods were evaluated, whereby the “zero length” cross linking by carbodiimide was found to be most suitable. Afterwards, a formulation for the cross linking solution was elaborated, which generated favourable outcomes by application inside a reduced pressure apparatus. As a consequence, a pore collapse during wet chemical cross linking could be avoided. Complex monolithic scaffolds featuring continuous pores were fabricated that mimicked structure and respective composition of different areas of native tissues by the presence of biochemical key stimulants. At first, three types of bone scaffolds were produced from collagen I and hydroxyapatite with appropriate sizes to fit critical sized defects in rat femurs. They either featured an isotropic or anisotropic porosity and partly also contained glycosaminoglycans (GAGs). Furthermore, meniscus scaffolds were prepared by processing two precursors with biomimetic contents of collagen I, collagen II and GAGs. Here, the pore structures were created under boundary conditions, which allowed an ice crystal growth that was nearly orthogonal to the external temperature gradient. Thereby, the preferential alignment of collagen fibres in the natural meniscus tissue could be mimicked. Those scaffolds owned appropriate sizes for cell culture in well plates or even an authentic meniscus shape and size. Finally, osteochondral scaffolds, sized to either fit well plates or perfusion reactors for cell culture, were fabricated to mimic the composition of subchondral bone and different cartilage zones. Collagen I and the resorbable calcium phosphate brushite were used for the subchondral zone, whereas the cartilage zones were composed out of collagen I, collagen II and tissue mimetic contents of GAGs. The pore structure corresponded to the one that is dominating the volume of natural osteochondral tissue. Energy dispersive X-ray spectroscopy (EDX) and SEM were used to analyse the composition and pore structure of the individual scaffold zones, respectively. The cross section pore diameters were determined to (65 ± 25) µm, (88 ± 35) µm and(93 ± 42) µm for the anisotropic, the isotropic and GAG containing isotropic bone scaffolds. Furthermore, the meniscus scaffolds showed pore diameters of (93 ± 21) µm in the inner meniscus zone and (248 ± 63) µm inside the outer meniscus zone. Pore sizes of (82 ± 25) µm, (83 ± 29) µm and (85 ± 39) µm were present inside the subchondral, the lower chondral and the upper chondral zone of osteochondral scaffolds. Depending on the fabrication parameters, the respective scaffold zones were also found to feature a specific micro- and nanostructure at their inner surfaces. Degradation studies were carried out under physiological conditions and resulted in a mean mass loss of (0.52 ± 0.13) %, (1.56 ± 0.10) % and (0.80 ± 0.10) % per day for bone, meniscus and osteochondral scaffolds, respectively. Rheological measurements were used to determine the viscosity changes upon cooling of different precursors. Micro computer tomography (µ-CT) investigations were applied to characterize the 3D microstructure of osteochondral scaffolds. To obtain an osteochondral scaffold with four zones of tissue mimetic microstructure alignment, a poly (D, L-lactide-co-glycolide) mesh was deposited on the upper chondral zone by electrostatic spinning. In case of the bone scaffolds, the retention / release capacity of bone morphogenetic protein 2 (BMP-2) was evaluated by an enzyme linked immunosorbent assay (ELISA). Due to the high presence of attractive BMP binding sites, only less than 0.1 % of the initially loaded cytokine was released. The suitability of combining the cryostructuring process with 3D powder printed calcium phosphate substrates was evaluated with osteochondral scaffolds, but did not appear to yield more preferable results than the non-combined approach. A new custom build confined compression setup was elaborated together with a suitable evaluation procedure for the mechanical characterisation under physiological conditions. For bone and cartilage scaffolds, apparent elastic moduli of (37.6 ± 6.9) kPa and (3.14 ± 0.85) kPa were measured. A similar behaviour of the scaffolds to natural cartilage and bone tissue was demonstrated in terms of elastic energy storage. Under physiological frequencies, less than 1.0 % and 0.8 % of the exerted energy was lost for bone and cartilage scaffolds, respectively. With average relaxation times of (0.613 ± 0.040) sec and (0.815 ± 0.077) sec, measured for the cartilage and bone scaffolds, they respond four orders of magnitude faster than the native tissues. Additionally, all kinds of produced scaffolds were able to withstand cyclic compression at un-physiological frequencies as high as 20 Hz without a loss in structural integrity. With the presented new method, scaffolds could be fabricated whose extent in mimicking of native tissues exceeded the one of scaffolds producible by state of the art methods. This allowed a testing of the key hypothesis: The biological evaluation of an anisotropic pore structure in vivo revealed a higher functionality of immigrated cells and led finally to advantageous healing outcomes. Moreover, the mimicking of local compositions in combination with a consecutive anisotropic porosity that approaches native tissue structures could be demonstrated to induce zone specific matrix remodelling in stem cells in vitro. Additionally, clues for a zone specific chondrogenic stem cell differentiation were attained without the supplementation of growth factors. Thereby, the hypothesis that an increased approximation of the hierarchically compositional and structurally anisotropic properties of musculoskeletal tissues would lead to an improved cellular response and a better healing quality, could be confirmed. With a special focus on cell free in situ tissue engineering approaches, the insights gained within this thesis may be directly transferred to clinical regenerative therapies. N2 - Die Schlüsselhypothese dieser Arbeit bestand darin zu überprüfen, ob eine Nachahmung der zonalen Zusammensetzungen und Porenstruktur muskulo-skelettaler Gewebe einwandernde Zellen beeinflusst und zu vorteilhafteren Ergebnissen im Tissue Engineering führt. Obwohl bereits zahlreiche konventionelle Ansätze existieren, so sind diese in ihrem Vermögen spezielle Zellträgermatrices („Scaffolds“) herzustellen limitiert. Insbesondere können dabei lokal variierende biologische Schlüsselreize nicht mit einer Porenstruktur, welche die Ausrichtung der Kollagenfasern in Knochen- und Knorpelgeweben imitiert, kombiniert werden. Um diese Lücke in den verfügbaren Tissue Engineering Strategien zu schließen, wurde ein neues Verfahren entwickelt. Dieses erlaubte die Herstellung monolithischer Scaffolds, welche eine Validierung der Hypothese ermöglichten. Das neue Plattform-Verfahren basiert auf der gerichteten Erstarrung mehrerer fließfähiger Vorstufen, um somit eine kontrollierte anisotrope Porenstruktur vorzubereiten. Ein Entfernen der erstarrten Lösungsmittel durch Lyophilisation führt zu porösen Scaffolds. Optional besteht die Möglichkeit, Polymere mittels elektrostatischem Verspinnen als umhüllendes Vlies zu inkorporieren. Nach einem Vernetzungsschritt resultieren monolithische Matrices, bestehend aus mehreren Zonen mit unterschiedlichen Zusammensetzungen. Vor einer Verwendung als Tissue Engineering Matrix oder implantierbares Medizinprodukt erfolgt eine Sterilisation. Hierfür wurde ein “Adjustable Cryostructuring Device“ (ACD) entwickelt, einzelne Bauteile mit Computer Aided Design entworfen und zu einer Apparatur montiert. Die Optimierung der Anlage ermöglichte eine signifikante Erhöhung des verfügbaren externen Temperaturgradienten von (1.3 ± 0.1) K/mm auf (9.0 ± 0.1) K/mm. Außerdem erlauben vier unterschiedliche Konfigurationen des ACD die gerichtete Erstarrung von kollagenen Vorstufen in einer besonders kontrollierten Art und Weise bei einer Vielzahl an Probengrößen und Formen. Die systematische Evaluation des Prozesses erfolgte mit Alginat als Modell-Substanz. Aus den zeitlichen Verläufen der Gefrierstrukturierung resultierten Erstarrungsparameter, die mittels Bildverarbeitung den entstandenen Porengrößen und -ausrichtungen zugeordnet wurden. Dies demonstrierte eine präzise Kontrolle der Ergebnisse durch elektrische Ansteuerung der ACD. Zur Erzeugung von Rohmaterialien war eine Etablierung von Extraktions- und Aufreinigungsprotokollen für Kollagen I und Kollagen II notwendig, während eine Herstellung der Calciumphosphate Bruschit und Hydroxylapatit mittels Präzipitations-Reaktionen verlief. Neben der sukzessiven Verbesserung des ACD, stellte auch die Optimierung einzelner Prozessschritte wichtige Aspekte dar. Die Untersuchung und Diskussion des Verhaltens einzelner Vorstufenkomponenten sowie der Erstarrungs-phänomene von Kollagenlösungen führte zu einem Verständnis welches die Produktion von komplexeren Scaffolds zuließ. Somit war es auch möglich eine Abhängigkeitsrelation der einstellbaren Prozessparameter zu den resultierenden Erstarrungsmorphologien der verwendeten Kollagensysteme abzuleiten. Die Gefrierstrukturierung von mehreren Lagen unterschiedlicher Vorstufen konnte erfolgreich von Alginat- auf Kollagenvorstufen transferiert werden. Nach einer Optimierung der jeweiligen Grenzflächenübergänge, waren diese selbst mittels Rasterelektronenmikroskopie kaum noch zu erkennen. Eine Evaluierung von dehydrothermal-, diisocyanat- und carbodiimid- basierten Quervernetzungs-methoden zeigte die vorteilhaftesten Ergebnisse für die Vernetzung durch Carbodiimide. Zusätzlich wurde eine Zusammensetzung der Vernetzungslösung ermittelt, welche beim Einsatz in einer Unterdruckapparatur einen Porenstrukturkollaps durch nasschemische Vernetzung vermeidet. Eine erweiterte Kontrolle der Gefrierprozesse erlaubte es Struktur und Zusammensetzung verschiedener Zonen nativer Gewebe durch eine monolithische Zellträgermatrix mit durchgängiger Porenstruktur und biochemischen Schlüsselreizen nachzuahmen. Zuerst wurden drei Arten von Knochenscaffolds aus Kollagen I und Hydroxylapatit hergestellt, die Defekten kritischer Größe in Rattenoberschenkel-knochen entsprachen. Diese zeichneten sich durch eine isotrope oder eine anisotrope Porenstruktur aus und enthielten teilweise Glycosaminoglycane (GAGs). Weiterhin erfolgte die Produktion von Meniskusscaffolds aus zwei Vorstufen mit biomimetischen Anteilen an Kollagen I, Kollagen II und GAGs. Dabei verlief die Gefrierstrukturierung unter Grenzbedingungen, welche ein nahezu senkrechtes Eiskristallwachstum zu dem äußeren Temperaturgradienten erlaubten. Somit konnte der bevorzugte Verlauf von Kollagenfasern in nativem Meniskusgewebe nachgeahmt werden. Die Scaffolds waren entweder passend für „Well Plates“ der Zellkultur bemaßt oder besaßen sogar Form und Größe von authentischen Menisken. Zuletzt wurden osteochondrale Scaffolds hergestellt, deren Zusammensetzung den jeweiligen Bereichen von Subchondralzone und verschiedenen Gelenkknorpelzonen entsprach. Kollagen I und die bioresorbierbare Calciumphosphatphase Bruschit fanden Verwendung in der Subchondralzone, während die Knorpelzonen aus Kollagen I, Kollagen II und entsprechenden biomimetischen Anteilen an GAGs bestanden. Außerdem bildete die Scaffoldporenstruktur die Volumendominierende in natürlichem Osteochondralgewebe nach, wobei die Dimensionierungen der Scaffolds Well Plates oder Perfusionsreaktoren der Zellkultur angepasst waren. Mittels energiedispersiver Röntgenspektroskopie und Rasterelektronenmikroskopie erfolgte die Analyse von Zusammensetzung und Porenstruktur der jeweiligen Scaffoldzonen. Die Größe der Porenquerschnitte betrug (65 ± 25) µm, (88 ± 35) µm und (93 ± 42) µm für die anisotropen, die isotropen und die GAG-haltigen isotropen Knochenscaffolds. Die Meniskusscaffolds besaßen Porendurchmesser von (93 ± 21) µm in der inneren Meniskuszone und (248 ± 63) µm innerhalb der äußeren Meniskuszone. Im Falle der osteochondralen Scaffolds wurden Porengrößen von (82 ± 25) µm, (83 ± 29) µm und (85 ± 39) µm in der subchondralen, der unteren chondralen und der oberen chondralen Zone gemessen. In Abhängigkeit von den Prozessparametern zeigten die inneren Oberflächen der jeweiligen Scaffoldzonen eine spezifische Mikro- und Nanostruktur. Eine Prüfung des Degradationsverhaltens unter physiologischen Bedingungen ergab einen mittleren Massenverlust von (0.52 ± 0.13) %, (1.56 ± 0.10) % und (0.80 ± 0.10) % pro Tag für die Knochen-, Meniskus- und osteochondralen Scaffolds. Die Untersuchung der Viskositätsveränderungen während der Abkühlung unterschiedlicher Vorstufen geschah mit rheologischen Messungen. Weiterhin wurde die 3D Mikrostruktur von osteochondralen Matrices mit Mikro Computer Tomographie charakterisiert. Um einen osteochondralen Scaffold mit vier Zonen gewebeähnlich ausgerichteter Mikrostruktur zu erhalten, konnte die Scaffoldoberfläche durch ein elektroversponnenes Poly (D, L-Lactid-co-Glycolid) Vlies modifiziert werden. Ein „enzyme linked immunosorbent assay“ (ELISA) diente zur Evaluation des Rückhalte- bzw. Freisetzungsverhaltens von „bone morphogenetic protein 2“ (BMP-2) in Knochenscaffolds. Bedingt durch die hohe Präsenz von attraktiven BMP Bindungsstellen betrug die freigesetzte Menge des initial beladenen Zytokins nur weniger als 0.1 %. Die Eignung einer Kombination des Gefrierstrukturierungsprozesses mit 3D gedruckten Calciumphosphatsubstraten wurde anhand von osteochondralen Scaffolds überprüft, aber zeigte keine vorteilhafteren Resultate als die nicht kombinierte Vorgehensweise. Für die mechanische Charakterisierung unter physiologischen Bedingungen konnte ein neues Test-Setup mitsamt Auswertungsverfahren entwickelt werden. Die gemessenen Elastizitätsmoduln betrugen (37.6 ± 6.9) kPa für Knochen- und (3.14 ± 0.85) kPa für Knorpelscaffolds. Da unter physiologischen Frequenzen nur weniger als 1.0 % der eingebrachten Energie verloren ging, entsprach die Fähigkeit der Zellträgermatrices zur elastischen Energiespeicherung dem von natürlichem Knochen- und Knorpelgewebe. Bei mittleren Relaxationszeiten von (0.613 ± 0.040) sec und (0.815 ± 0.077) sec für Knorpel- und Knochenscaffolds reagieren diese vier Größenordnungen schneller als die nativen Gewebe. Außerdem waren alle produzierten Matrices dazu in der Lage zyklischen Kompressionen bei unphysiologisch hohen Frequenzen von 20 Hz zu wiederstehen, ohne an struktureller Integrität zu verlieren. Mit dem vorgestellten neuen Verfahren konnten Scaffolds hergestellt werden, deren Ausmaß in der Nachahmung nativer Gewebe mit etablierten Methoden nicht erreichbar war und welche eine Überprüfung der Schlüsselhypothese erlaubten: Die biologische Evaluation einer anisotropen Porenstruktur in vivo zeigte eine höhere Funktionalität eingewanderter Zellen, was zu vorteilhafteren Heilungsergebnissen führte. Darüber hinaus demonstrierte eine Imitation der lokalen Zusammensetzungen in Kombination mit einer durchgängigen anisotropen Porenstruktur, welche an diejenige in nativen Geweben angenähert ist, eine Induktion von zonenspezifischer Matrixremodellierung von Stammzellen in vitro. Außerdem waren Hinweise auf eine zonale chondrogene Stammzelldifferenzierung ohne eine gesonderte Zugabe von Wachstumsfaktoren zu beobachten. Somit konnte die Hypothese, dass eine verbesserte Nachahmung der hierarchischen Zusammensetzung und anisotroper Struktur von muskuloskelettalen Geweben zu einer optimierten zellulären Reaktion und somit einer besseren Heilungsqualität führt, bestätigt werden. Mit einem speziellen Fokus auf zellfreies in situ Tissue Engineering, könnten die Erkenntnisse dieser Arbeit direkt für klinische Therapien eingesetzt werden. KW - directional solidification KW - collagen KW - cartilage KW - bone KW - scaffold KW - Tissue Engineering KW - Knochen KW - Knorpel KW - Gerichtete Erstarrung Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-145510 ER - TY - THES A1 - Schönwälder, Sina Maria Siglinde T1 - Entwicklung und Charakterisierung von Gelatine-basierten Hydrogelen und PLGA-basierten Janus-Partikeln T1 - Development and characterization of gelatin-based hydrogels and PLGA-based Janus particles N2 - Zusammenfassung In der Regenerativen Medizin sind polymerbasierte Biomaterialien von großer Bedeutung für die Entwicklung und Anwendung verbesserter bzw. neuer Therapien. Die Erforschung der Oberflächeneigenschaften von Biomaterialien, welche als Implantate eingesetzt werden, ist eine grundlegende Voraussetzung für deren erfolgreichen Einsatz. Die Protein-Oberflächen- Interaktion geschieht initial, sobald ein Implantat mit Körperflüssigkeiten oder mit Gewebe in Kontakt kommt, und trägt maßgeblich zur direkten Wechselwirkung von Implantat und umgebenden Zellen bei. Dieser Prozess wird in der vorliegenden Arbeit an Gelatine untersucht. Daher bestand ein Ziel darin, stabile, nanometerdünne Gelatineoberflächen herzustellen und darauf die Adsorption von humanen Plasmaproteinen und bakteriellen Proteinen zu analysieren. Die Abscheidung der Gelatinefilme in variabler Schichtdicke auf zuvor mit PPX-Amin modifizierten Oberflächen wurde unter Verwendung eines Rotationsbeschichters durchgeführt. Um stabile Hydrogelfilme zu erhalten, wurden die Amingruppen der disaggregierten Gelatinefibrillen untereinander und mit denen der Amin-Modifizierung durch ein biokompatibles Diisocyanat quervernetzt. Dieser Prozess lieferte einen reproduzierbaren und chemisch stabilen Gelatinefilm, welcher durch die substratunabhängige Amin-Modifizierung kovalent auf unterschiedlichste Oberflächen aufgebracht werden konnte. Die durch den Herstellungsprozess präzise eingestellte Schichtdicke (Nano- bzw. Mikrometermaßstab) wurde mittels Ellipsometrie und Rasterkraftmikroskopie ermittelt. Die ebenso bestimmte Rauheit war unabhängig von der Schichtdicke sehr gering. Gelatinefilme, die auf funktionalisierte und strukturierte Proben aufgebracht wurden, konnten durch Elektronenmikroskopie dargestellt werden. Mit Hilfe der Infrarot-Reflexions-Absorptions-Spektroskopie wurden die Gelatinefilme im Hinblick auf ihre Stabilität chemisch charakterisiert. Zur Quantifizierung der Adsorption humaner Plasmaproteine (Einzelproteinlösungen) und komplexer Proteingemische aus steril filtrierten Kulturüberständen des humanpathogenen Bakteriums Pseudomonas aeruginosa wurde die Quarzkristall-Mikrowaage mit Dissipationsüberwachung eingesetzt. Hiermit konnte nicht nur die adsorbierte Menge an Proteinen auf dem Gelatinehydrogel bzw. Referenzoberflächen (Gold, PPX-Amin, Titan), sondern auch die viskoelastischen Eigenschaften des adsorbierten Proteinfilms bestimmt werden. Allgemein adsorbierte auf dem Gelatinehydrogel eine geringere Proteinmasse im Vergleich zu den Referenzoberflächen. Circa ein Viertel der adsorbierten Proteine migrierte in die Poren des gequollenen Gels und veränderte dessen viskoelastische Eigenschaften. Durch anschließende MALDI-ToF/MS- und MS/MS-Analyse konnten die bakteriellen Proteine auf den untersuchten Oberflächen identifiziert und untereinander verglichen werden. Hierbei zeigten sich nur geringfügige Unterschiede in der Proteinzusammensetzung. Zudem wurde eine Sekundärionenmassenspektrometrie mit Flugzeitanalyse an reinen Gelatinefilmen und an mit humanen Plasmaproteinen beladenen Gelatinefilmen durchgeführt. Durch eine anschließende multivariante Datenanalyse konnte zwischen den untersuchten Proben eindeutig differenziert werden. Dieser Ansatz ermöglicht es, die Adsorption von unterschiedlichen Proteinen auf proteinbasierten Oberflächen markierungsfrei zu untersuchen und kann zur Aufklärung der in vivo-Situation beitragen. Darüber hinaus bietet dieser Untersuchungsansatz neue Perspektiven für die Gestaltung und das schnelle und effiziente Screening von unterschiedlichen Proteinzusammensetzungen. Biomaterialien können jedoch nicht nur als Implantate oder Implantatbeschichtungen eingesetzt werden. Im Bereich des drug delivery und der Depotarzneimittel sind biologisch abbaubare Polymere, aufgrund ihrer variablen Eigenschaften, von großem Interesse. Die Behandlung von bakteriellen und fungalen Pneumonien stellt insbesondere bei Menschen mit Vorerkrankungen wie Cystische Fibrose oder primäre Ziliendyskinesie eine große Herausforderung dar. Oral oder intravenös applizierte Wirkstoffe erreichen die Erreger aufgrund der erhöhten Zähigkeit des Bronchialsekretes oft nicht in ausreichender Konzentration. Daher besteht ein weiteres Ziel der vorliegenden Arbeit darin, mittels electrohydrodynamic cojetting mikrometergroße, inhalierbare, wirkstoffbeladene Partikel mit zwei Kompartimenten (Janus-Partikel) herzustellen und deren Eignung für die therapeutische Anwendung bei Lungeninfektionen zu untersuchen. Durch das in dieser Arbeit entwickelte Lösungsmittelsystem können Janus-Partikel aus biologisch abbaubaren Co-Polymeren der Polymilchsäure (Poly(lactid-co-glycolid), PLGA) hergestellt und mit verschiedenen Wirkstoffen beladen werden. Darunter befinden sich ein Antibiotikum (Aztreonam, AZT), ein Antimykotikum (Itraconazol, ICZ), ein Mukolytikum (Acetylcystein, ACC) und ein Antiphlogistikum (Ibuprofen, IBU). Die Freisetzung der eingelagerten Wirkstoffe, mit Ausnahme von ICZ, konnte unter physiologischen Bedingungen mittels Dialyse und anschließender Hochleistungsflüssigkeitschromatographie gemessen werden. Die Freisetzungsrate wird von der Kettenlänge des Polymers beeinflusst, wobei eine kürzere Kettenlänge zu einer schnelleren Freisetzung führt. Das in die Partikel eingelagerte Antimykotikum zeigte in vitro eine gute Wirksamkeit gegen Aspergillus nidulans. Durch das Einlagern von ICZ in die Partikel ist es möglich diesen schlecht wasserlöslichen Wirkstoff in eine für Patienten zugängliche und wirksame Applikationsform zu bringen. In Interaktion mit P. aeruginosa erzielten die mit Antibiotikum beladenen Partikel in vitro bessere Ergebnisse als der Wirkstoff in Lösung, was sich in einem in vivo-Infektionsmodell mit der Wachsmotte Galleria mellonella bestätigte. AZT-beladene Partikel hatten gegenüber einer identischen Wirkstoffmenge in Lösung eine 27,5% bessere Überlebensrate der Wachsmotten zur Folge. Des Weiteren hatten die Partikel keinen messbaren negativen Einfluss auf die Wachsmotten. Dreidimensionale Atemwegsschleimhautmodelle, hergestellt mit Methoden des Tissue Engineerings, bildeten die Basis für Untersuchungen der Partikel in Interaktion mit humanen Atemwegszellen. Die Untersuchung von Apoptose- und Entzündungsmarkern im Überstand der 3D-Modelle zeigte diesbezüglich keinen negativen Einfluss der Partikel auf die humanen Zellen. Diese gut charakterisierten und standardisierten in vitro-Testsysteme machen es möglich, Medikamentenuntersuchungen an menschlichen Zellen durchzuführen. Hinsichtlich der histologischen Architektur und funktionellen Eigenschaften der 3D-Modelle konnte eine hohe in vitro-/in vivo-Korrelation zu menschlichem Gewebe festgestellt werden. Humane Mucine auf den 3D-Modellen dienten zur Untersuchung der schleimlösenden Wirkung von ACC-beladenen Partikeln. Standen diese in räumlichem Kontakt zu den Mucinen, wurde deren Zähigkeit durch das freigesetzte ACC herabgesetzt, was qualitativ mittels histologischen Methoden bestätigt werden konnte. Die in dieser Arbeit entwickelten Herstellungsprotokolle dienen als Grundlage und können für die Synthese ähnlicher Systeme, basierend auf anderen Polymeren und Wirkstoffen, modifiziert werden. Gelatine und PLGA erwiesen sich als vielseitig einsetzbare Werkstoffe und bieten eine breite Anwendungsvielfalt in der Regenerativen Medizin, was die erzielten Resultate bekräftigen. N2 - In the field of regenerative medicine, polymer-based biomaterials are of great importance for the development and application of improved or new therapies. The research on the surface properties of biomaterials, which are used as implants, is essential for their successful use. The protein-surface interaction is the initial step and occurs when an implant comes into contact with bodily fluids or tissues and significantly increases direct interaction of the implant and the surrounding cells. This thesis investigates these processes on gelatin. Accordingly, one of the project’s major goals was to produce stable nanometer-thin gelatin surfaces and analyze the adsorption of human plasma and bacterial proteins. The deposition of gelatin films and the assortment of layer thicknesses on PPX-amine modified surfaces were carried out using a spin coater. To gain hydrogel films with reproducible properties, the amine groups of the disaggregated gelatin fibrils were cross- linked with each other and with those of the amine modification by a biocompatible diisocyanate. The result was a reproducible and chemically stable gelatin film, which could be applied to a wide variety of surfaces through the substrate-independent amine modification. The manufacturing process precisely adjusted the layer thickness to the nano- or micrometer scale which could be determined applying ellipsometry and atomic- force microscopy. The roughness was very low regardless of the layer thickness. Gelatin films applied to the functionalized and patterned samples could be visualized by electron microscopy. With the help of infrared reflection absorption spectroscopy, the gelatin films were chemically characterized in terms of stability. The adsorption of human plasma proteins (single protein solutions) as well as the complex protein mixtures of sterile filtered supernatants belonging to Pseudomonas aeruginosa, a human pathogenic bacterium, were quantified by quartz crystal microbalance with dissipation monitoring. Both the adsorbed amount of proteins on the gelatin hydrogel or reference surfaces (gold, PPX-amine, titanium) and the viscoelastic properties of the adsorbed protein film were determined. In general, there was less protein mass adsorbed on the gelatin hydrogel compared to the reference surfaces. About a quarter of the adsorbed proteins migrated into the pores of the swollen gel and changed its viscoelastic properties. Subsequent MALDI-ToF/MS and MS/MS analysis were used to identify and compare the adsorbed bacterial proteins on the investigated surfaces. Only slight differences were found in the adsorbed protein composition. A secondary ion mass spectrometry with time-of-flight analysis was performed on pure gelatin films and gelatin films loaded with human plasma proteins. By subsequent multivariate data analysis, it was possible to clearly differentiate between the examined samples. Not only does this approach enable us to screen the adsorption of different proteins on protein-based surfaces without labeling, but it also contributes to the elucidation of the in vivo-situation. ach provides new perspectives regarding the design and efficient screening of different protein compositions. ... KW - PLGA KW - Partikel KW - Gelatine KW - Polylactid-co-Glycolid KW - Hydrogel KW - Tissue Engineering Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142636 ER - TY - THES A1 - Schweinlin, Matthias Oliver T1 - Development of advanced human intestinal in vitro models T1 - Entwicklung von erweiterten humanen intestinalen in vitro Modellen N2 - The main function of the small intestine is the absorption of essential nutrients, water and vitamins. Moreover, it constitutes a barrier protecting us from toxic xenobiotics and pathogens. For a better understanding of these processes, the development of intestinal in vitro models is of great interest to the study of pharmacological and pathological issues such as transport mechanisms and barrier function. Depending on the scientific questions, models of different complexity can be applied. In vitro Transwell® systems based on a porous PET-membrane enable the standardized study of transport mechanisms across the intestinal barrier as well as the investigation of the influence of target substances on barrier integrity. However, this artificial setup reflects only limited aspects of the physiology of the native small intestine and can pose an additional physical barrier. Hence, the applications of this model for tissue engineering are limited. Previously, tissue models based on a biological decellularized scaffold derived from porcine gut tissue were demonstrated to be a good alternative to the commonly used Transwell® system. This study showed that preserved biological extracellular matrix components like collagen and elastin provide a natural environment for the epithelial cells, promoting cell adhesion and growth. Intestinal epithelial cells such as Caco-2 cultured on such a scaffold showed a confluent, tight monolayer on the apical surface. Additionally, myofibroblasts were able to migrate into the scaffold supporting intestinal barrier formation. In this thesis, dendritic cells were additionally introduced to this model mimicking an important component of the immune system. This co-culture model was then successfully proven to be suitable for the screening of particle formulations developed as delivery system for cancer antigens in peroral vaccination studies. In particular, nanoparticles based on PLGA, PEG-PAGE-PLGA, Mannose-PEG-PAGE-PLGA and Chitosan were tested. Uptake studies revealed only slight differences in the transcellular transport rate among the different particles. Dendritic cells were shown to phagocytose the particles after they have passed the intestinal barrier. The particles demonstrated to be an effective carrier system to transport peptides across the intestinal barrier and therefore present a useful tool for the development of novel drugs. Furthermore, to mimic the complex structure and physiology of the gut including the presence of multiple different cell types, the Caco-2 cell line was replaced by primary intestinal cells to set up a de novo tissue model. To that end, intestinal crypts including undifferentiated stem cells and progenitor cells were isolated from human small intestinal tissue samples (jejunum) and expanded in vitro in organoid cultures. Cells were cultured on the decellularized porcine gut matrix in co-culture with intestinal myofibroblasts. These novel tissue models were maintained under either static or dynamic conditions. Primary intestinal epithelial cells formed a confluent monolayer including the major differentiated cell types positive for mucin (goblet cells), villin (enterocytes), chromogranin A (enteroendocrine cells) and lysozyme (paneth cells). Electron microscopy images depicted essential functional units of an intact epithelium, such as microvilli and tight junctions. FITC-dextran permeability and TEER measurements were used to assess tightness of the cell layer. Models showed characteristic transport activity for several reference substances. Mechanical stimulation of the cells by a dynamic culture system had a great impact on barrier integrity and transporter activity resulting in a tighter barrier and a higher efflux transporter activity. In Summary, the use of primary human intestinal cells combined with a biological decellularized scaffold offers a new and promising way to setup more physiological intestinal in vitro models. Maintenance of primary intestinal stem cells with their proliferation and differentiation potential together with adjusted culture protocols might help further improve the models. In particular, dynamic culture systems and co culture models proofed to be a first crucial steps towards a more physiological model. Such tissue models might be useful to improve the predictive power of in vitro models and in vitro in vivo correlation (IVIVC) studies. Moreover, these tissue models will be useful tools in preclinical studies to test pharmaceutical substances, probiotic active organisms, human pathogenic germs and could even be used to build up patient-specific tissue model for personalized medicine. N2 - Die Hauptfunktion des Dünndarms besteht in der Aufnahme von lebenswichtigen Nährstoffen, Wasser und Vitaminen. Zudem stellt er eine Barriere dar, die uns vor toxischen Fremdstoffen und Pathogenen schützt. Um diese Prozesse besser zu verstehen, ist die Entwicklung neuer in vitro Modellen des Darms von großem Interesse um pharmakologische und pathologische Studien durchzuführen. Abhängig von der wissenschaftlichen Fragestellung können Modelle von unterschiedlicher Komplexität zur Anwendung kommen. In vitro Transwell® Systeme basierend auf einer porösen PET-Membran ermöglichen die Untersuchung von Transportmechanismen über die intestinal Barriere und den Einfluss von Wirkstoffen auf deren Integrität. Dieser künstliche Aufbau ähnelt jedoch nur eingeschränkt der Physiologie des Dünndarms und kann eine zusätzliche physikalische Barriere darstellen. Die Anwendungsmöglichkeiten dieses Modells im Tissue Engineering sind daher begrenzt. Gewebemodelle basierend auf einer dezellularisierten biologischen Matrix hergestellt aus Schweinedarmgewebe haben sich als gute Alternative zum herkömmlichen Transwell® System herausgestellt. Diese Studie zeigt, dass die erhaltenen Komponenten der biologischen Extrazellulärmatrix wie Kollagen und Elastin eine natürliche Umgebung für die Epithelzellen bieten und Zelladhäsion und Wachstum der Zellen fördern. Darmepithelzellen wie Caco-2 Zellen, welche auf einer solchen Matrix kultiviert wurden, bildeten einen konfluenten, dichten Monolayer auf der apikalen Oberfläche aus. Zusätzlich ermöglichte dieser Aufbau die Migration von Myofibroblasten in die Matrix, was die Bildung der intestinalen Barriere unterstützt. In dieser Doktorarbeit wurden zusätzlich dendritische Zellen als wichtige Komponente des adaptiven Immunsystems in das Modell integriert. Dieses Ko-Kultur Modell erwies sich als geeignet um partikuläre Formulierungen zu testen, welche als Transportsysteme für Tumorantigene entwickelt wurden. Es wurden Partikel basierend auf PLGA, PEG-PAGE-PLGA, Mannose-PEG-PAGE-PLGA und Chitosan untersucht. Aufnahmestudien ergaben nur geringfügige Unterschiede in den Transportraten zwischen den verschiedenen Partikeln. Es konnte ausserdem gezeigt werden, dass dendritische Zellen die Partikel phagozytieren, nachdem sie die intestinale Barriere überwunden haben. Die Partikel erwiesen sich als effektives Transportsystem um Peptide über die intestinale Barriere zu schleusen und stellen daher ein nützliches Werkzeug für die Entwicklung neuartiger Medikamente dar. Um die komplexe Struktur und Physiologie des Darms noch besser nachzustellen, wurde für den Aufbau des Modells die Caco-2 Zelllinie durch primäre Darmzellen ersetzt. Die Darmkrypten, welche undifferenzierte Stammzellen und Vorläuferzellen enthalten, wurden aus humanen Dünndarmgewebe, dem Jejunum, isoliert und in vitro expandiert. Die Zellen wurden zusammen mit Myofibroblasten auf der dezellularisierten Schweinedarmmatrix, unter statischen und dynamischen Bedingungen, kultiviert. Die primären Darmepithelzellen bildeten einen konfluenten Monolayer, welcher alle differenzierten intestinalen Zelltypen aufwies, gezeigt durch Zellen positiv für Mucin (Becherzellen), Villin (Enterozyten), Chromogranin A (enteroendokrine Zellen) und Lysozym (Paneth-Zellen). Mit Hilfe von Elektronenmikroskopie ließen sich essentielle funktionelle Einheiten eines intakten Epithels darstellen, wie die Mikrovilli und Tight Junctions. Um die Dichtigkeit des Epithels zu überprüfen wurde mit FITC-Dextran die Permeabilität bestimmt und TEER-Messungen durchgeführt. Die Modelle zeigten einen charakteristischen Transport für mehrere Referenzsubstanzen. Mechanische Stimulation durch ein dynamisches Kultivierungssystem hatte einen starken Einfluss auf die Barriereintegrität und Transporteraktivität der Modelle, was sich in einer dichteren Barriere und erhöhten Efflux-Transporteraktivität widerspiegelte. Alles in allem bietet die Verwendung primärer intestinaler Zellen in Kombination mit einer dezellularisierten biologischen Matrix eine neue, vielversprechende Möglichkeit physiologischere in vitro Modelle des Darms aufzubauen. Der Erhalt intestinaler Stammzellen mit ihrem Proliferations- und Differenzierungspotential zusammen mit angepassten Protokollen könnte dabei helfen die Modelle weiter zu verbessern. Insbesondere die dynamische Kultivierung und die Ko-Kultur-Modelle erwiesen sich als entscheidender Schritt auf dem Weg zu physiologischeren Modellen. Solche Gewebemodelle könnten sich als nützlich erweisen, wenn es darum geht die Vorhersagekraft der in vitro Modelle, sowie die in vitro-in vivo Korrelation zu verbessern. Solche Gewebemodelle können ein nützliches Werkzeuge in der präklinischen Forschung für die Testung von pharmazeutischen Wirkstoffen, probiotisch aktiven Organismen, sowie humaner pathogener Keime sein und sogar zum Aufbau personalisierter Modelle für die regenerative Medizin dienen. KW - Tissue Engineering KW - in vitro KW - Dünndarm KW - intestinal in vitro model KW - intestine Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142571 ER - TY - THES A1 - Klug, Alexander T1 - Biomechanische und zellbiologische Untersuchung zu augmentierten Biomaterial-basierten Kreuzbandkonstrukten T1 - Mechanical and cell-biological properties of crosslinked kollagen scaffolds for acl reconstruction N2 - Aktueller Goldstandard bei der Rekonstruktion des ACL des Menschen sind au-tologe Transplantate. Diese sind allerdings je nach Entnahmeort mit einer mehr oder weniger hohen Entnahmemorbidität und dem Risiko für Folgeerkrankungen verbunden. Um dies zu umgehen, wurde ein xenogenes Kollagenimplantat aus Kollagen-I-Fasern von Ratten entwickelt und das native Konstrukt bereits in einer Vorläuferstudie getestet. Im Rahmen dieser Arbeit wurden diese Kreuzbandkonstrukte mit Hilfe diverser Crosslinker modifiziert und hinsichtlich ihrer Biomechanik, Biokompatibilität und ihres in-vivo Verhaltens untersucht. Bewusst wurde dabei auf die Zellbesiedlung dieser Konstrukte verzichtet, da un-ter Berücksichtigung wirtschaftlicher Gesichtspunkte eines späteren humanen Einsatzes hierfür eine Arzneimittelzulassung notwendig gewesen wäre. Mit Hilfe der Crosslinker wurde versucht, die mechanische Stabilität sowie die Resistenz gegen kollagenabbauende Enzyme der Synovia zu erhöhen, um die Gefahr post-operativer Instabilitäten zu verringern. Dabei sollten Fragen bezüglich Immun-antwort, Biokompatibilität sowie Biodegradierbarkeit genau berücksichtigt wer-den. Als Crosslinker wurden für einen Vergleich in vitro neben 0,5 % Genipin auch 10 % HMDI sowie Glukose und EDC/NHS herangezogen. Dabei zeigten die Genipin-gecrosslinkten Einzelfasern die größte Reißfestigkeits-zunahme, wohingegen auf Minikonstruktbasis 10 % HMDI zu den höchsten UTS-Werten führte. Ebenso ließen sich bezüglich der Biokompatibilutät in vitro bei den Crosslinkern 0,5 % Genipin und 10 % HMDI Vorteile gegenüber den beiden an-deren erkennen. Schließlich erfolgte im Rahmen eines Tierversuchs an 16 Minipigs der Einbau von 0,5 % Genipin-gecrosslinkten Konstrukten als Kreuzbandersatz und an-schließend die biomechanische Testung sowie nach Paraffineinbettung auch eine durchlichtmikrokopische deskriptive Auswertung der Transplantate. Während nach 6 Wochen eine deutliche Reißfestigkeitsabnahme zu verzeichnen war, erreichte diese nach 6 Monaten wieder fast 60 % ihrer ursprünglichen UTS. Somit konnte ein Remodeling des eingesetzten Implantats angenommen wer-den. Dies bestätigte sich in der durchgeführten histologischen Untersuchung. Hier war das Implantat deutlich vaskularisiert, von zahlreichen Fibroblasten durchsetzt und wies eine synoviale Deckschicht auf. Allerdings scheint vor allem wegen der Schwäche der Konstrukte nach 6 Wochen sowie den vermutlich auf-grund des Crosslinkers auftretenden Reaktionserscheinungen innerhalb des Kniegelenks ein Einsatz im humanen Bereich zum gegenwärtigen Zeitpunkt noch nicht ausgereift. Dennoch lässt sich gerade anhand des stattfindenden Remodelings das große Potential kollagenbasierter Materialien für den Kreuzbandersatz erkennen. Eine weitere Optimierung des bestehenden Konstrukts sollte deshalb forciert werden. N2 - We developed an ACL-scaffold consisting of crosslinked preformed rat collagen fibres. In this study we examined the influence of several crosslinking substances on the mechanical and cell-biological properties of this scaffold in vitro as well as in vivo as part of a minipig model. The results were promising thus more studies have to be made before an use for humans can be recommended. KW - Tissue Engineering KW - Kreuzband Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142379 ER - TY - THES A1 - Krätzig, Theresa T1 - Pilotstudie zum Vergleich der Knorpelrekonstruktion durch Autologe Chondrozytentransplantation und Autologe Stammzelltransplantation in Kollagen I Hydrogelen am Göttinger Mini-Pig T1 - Repair of full-thickness cartilage defects with autologous chondrocytes and autologous mesenchymal stem cells in a collagen-I-hydrogel - a pilot study in mini-pigs N2 - Traumatische und/oder degenerative, umschriebene Knorpeldefekte sind aufgrund der schlechten intrinsischen Regenerationseigenschaften des Knorpelgewebes immer noch eine chirurgische Herausforderung. Therapiemöglichkeiten mittels Knorpelrekonstruktion durch autologes Knorpelgewebe hat den Nachteil der „donor-site-morbidity“ und auch die mit guten klinischen und bildmorphologischen Ergebnissen bereits in der Klinik angewandte matrixgekoppelte autologe Chondrozytentransplantation kommt nicht ohne eine zusätzliche Operation und Entnahme von Knorpelgewebe aus. Autologe mesenchymale Stammzellen sind einfach mittels Beckenkammpunktion zu gewinnen und stellen aufgrund ihres Proliferations- und chondrogenen Differenzierungsvermögens eine vielversprechende Alternative dar. Die Tissue Engineering Division des orthopädischen König-Ludwig-Hauses in Würzburg befasst sich nun seit mehreren Jahren in verschiedenen Versuchsreihen unter anderem mit dieser Alternative der Knorpelrekonstruktion. Vor allem die Optimierung der Nutzung von Stammzellen, die Vordifferenzierungsmöglichkeiten in vitro und das Verhalten in verschiedenen Trägermatrizes wird erforscht. Die vorliegende Arbeit stellt eine Pilotstudie zur Anwendung von Stammzellen analog zu der in klinischer Anwendung befindlichen MACT in vivo in Göttinger Minipigs vor. Wir haben zeigen können, wenn auch nur mit einer geringen Fallzahl und fehlenden signifikanten Aussagen, dass Stammzellen eine vielversprechende Alternative zu Chondrozyten in der Versorgung von Gelenkknorpeldefekten darstellen. Eine Verarbeitung in Kollagen I Hydrogelen ist in gleicher Weise wie mit den Chondrozyten möglich und auch die mechanische Stabilität differiert nicht. Die histologischen und immunhistochemischen Auswertungen haben in den Stammzelltransplantaten gleich gute, in einigen Aspekten sogar gering bessere Ergebnisse erzielt als die bewährten Chondrozytentransplantate. In der Nachbehandlung schien die sofortige volle Belastung der frisch operierten Kniegelenke bei den Minipigs möglicherweise problematisch in Bezug auf die Fixierung und den Verbleib der Gel-Transplantate im Defekt. In der Klinik ist eine zeitweise Teilbelastung und anfangs lediglich passive Bewegung des Gelenks natürlich problemlos möglich. In der Zukunft werden durch Vordifferenzierung und Markierung der Stammzellen sowie durch Vorauswahl von Zellen mit einem hohen chondrogenen Differenzierungspotential die Ergebnisse von ähnlichen Versuchsreihen sicher noch optimiert werden können. N2 - Repair of full-thickness cartilage defects with autologous chondrocytes and autologous mesenchymal stem cells in a collagen-I-hydrogel - a pilot study in mini-pigs KW - Mesenchymale Stammzelle KW - Knorpelzelle KW - Tissue Engineering KW - Knorpelrekonstruktion KW - Chondrozytentransplantation KW - Stammzelltransplantation Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-138822 ER - TY - THES A1 - Stichel, Thomas Günther T1 - Die Herstellung von Scaffolds aus funktionellen Hybridpolymeren für die regenerative Medizin mittels Zwei-Photonen-Polymerisation T1 - Fabrication of scaffolds of hybrid polymers for regenerative medicine using two photon polymerization N2 - In der vorliegenden Arbeit wurde das Verfahren der Zwei-Photonen-Polymerisation von anorganisch-organischen Hybridpolymeren (ORMOCER®e) untersucht. Untersuchungsschwerpunkte bildeten dabei die theoretischen Betrachtungen der Wechselwirkung zwischen Laser und Hybridpolymer, die experimentelle Charakterisierung unterschiedlicher ORMOCER®e sowie die Aufskalierung der Technologie im Hinblick auf die Herstellung von Scaffold-Strukturen für die regenerative Medizin. Hierbei wurde u. a. ein innovativer Belichtungsaufbau entworfen und aufgebaut, der es erlaubt makroskopische, poröse Scaffold-Strukturen mit minimalen Strukturgrößen im Bereich von wenigen Mikrometern herzustellen. ORMOCER®e sind typischerweise für optische Anwendungen konzipiert, weisen allerdings z. T. biokompatible Eigenschaften auf. Das Material ORMOCER® MB-47 wurde von M. Beyer eigens für biologische Anwendungen synthetisiert. Es zeichnet sich durch Biokompatibilität, teilweiser Biodegradierbarkeit und hervorragende Strukturierbarkeit durch die Zwei-Photonen-Polymerisation aus. Das in dieser Arbeit verwendete Mikrostrukturierungssystem beinhaltet im Wesentlichen einen Ultrakurzpulslaser, der 325 fs Pulse bei 1030 nm emittiert (verwendet wird die zweite Harmonische bei 515 nm), ein hochpräzises Positionierungssystem, bestehend aus drei luftgelagerten Lineartischen mit einer Reichweite von 10 cm (y-, z-Richtung) bzw. 15 cm (x-Richtung) sowie diversen Objektiven zur Fokussierung. Mit diesen Komponenten lassen sich komplexe dreidimensionale Strukturen mit minimalen Strukturgrößen von bis unter 100 nm erzeugen. In Kapitel 5.1 wurden theoretische Untersuchungen im Hinblick auf das Wechselwirkungsverhalten zwischen der fokalen Intensitätsverteilung und dem Materialsystem zur Bildung eines Voxels durchgeführt, wobei das technische Wechselwirkungsvolumen und das chemische Wechselwirkungsvolumen samt den reaktionskinetischen Abläufen separat betrachtet wurde. Das technische Wechselwirkungsvolumen beschreibt die Wechselwirkung zwischen der fokalen Intensitätsverteilung und dem Materialsystem im Rahmen eines Schwellwertprozesses, der es erlaubt Strukturdimensionen unterhalb des Beugungslimits zu realisieren. Die theoretischen Untersuchungen diesbezüglich ergaben, dass sphärische Aberrationen die fokale Intensitätsverteilung (Intensity-Point Spread Function (IPSF)) in Abhängigkeit der Belichtungskonfiguration z. T. sehr stark beeinflussen. Darüber hinaus wurde durch Betrachtung des Schwellwertverhaltens ein mathematischer Zusammenhang zwischen der IPSF und der Leistungsabhängigkeit der Charakteristik des technischen Wechselwirkungsvolumens geschaffen. Das chemische Wechselwirkungsvolumen beschreibt das tatsächliche Volumen der stattfindenden Polymerisationsreaktion. Dieses geht über das des technischen hinaus, was eine Folge von raumeinnehmendem Kettenwachstum im Rahmen von reaktionskinetischen Teilprozessen ist. Durch die Simulationen dieser reaktionskinetischen Abläufe wurde das leistungsabhängige, zeitliche Verhalten der Reaktionsteilnehmer (Radikale, Monomer, Photoinitiator) und des Vernetzungsgrades ermittelt. Die Simulation wurden für sehr kurze Belichtungszeiten (< 10 ms) auf der Basis von gekoppelten Differentialgleichungen nach Uppal & Shiakolas durchgeführt. Dabei wurde der Einfluss der Teilchendiffusion sowie der Temperaturentwicklung als gering erachtet und in den Berechnungen vernachlässigt. Die Simulationsergebnisse zeigen, dass eine geringe Belichtungszeit nicht unbedingt durch größere Laserleistungen ausgeglichen werden kann, um einen bestimmten Vernetzungsgrad zu erzielen. Vielmehr führt eine höhere Leistung zu einem raschen Verbrauch des Photoinitiators im Reaktionsvolumen und damit einem schnelleren Erliegen der Polymerisationsreaktion. Um dennoch hohe Vernetzungsgrade erzielen zu können, sind die Reaktionsgeschwindigkeitskoeffizienten der Propagation und der Terminierung k_P und k_T sowie eine ausreichende Photoinitiatorkonzentration von entscheidender Bedeutung. Je größer das Verhältnis k_P/k_T, desto höhere Vernetzungsgrade können auch bei kurzen Belichtungszeiten realisiert werden, wobei ein wesentlicher Teil der Polymerisation als Dunkelreaktion stattfindet. Diese Erkenntnis ist für die Aufskalierung der Technologie der Zwei-Photonen-Polymerisation von großer Bedeutung, welche mit einer Verkürzung der Belichtungszeiten einhergehen muss. Des Weiteren zeigen die Simulationen, dass das spatiale Konversionsprofil eines Voxels ein lokales Minimum im Zentrum aufweisen kann. Dieses Phänomen tritt dann auf, wenn aufgrund der applizierten Leistung, welche gemäß des Profils der IPSF im Zentrum am höchsten ist, der Photoinitiator im Zentrum rasch verbraucht wird. In Kapitel 5.2 wurde die Voxelbildung, das Vernetzungsverhalten sowie die mechanischen Eigenschaften belichteter ORMOCER®e bei unterschiedlichen Parametern und Materialsystemen experimentell untersucht. An Hand von Voxelfeldern wurden die Voxelgröße, das Aspektverhältnis und das Voxelvolumen bei unterschiedlichen Laserleistungen ermittelt. Die Ergebnisse wurden mit den berechneten technischen Wechselwirkungsvolumina verglichen, wobei die Differenz von tatsächlicher Voxelgröße und technischem Wechselwirkungsvolumen als eine weitere charakteristische Größe eingeführt wurde. Dabei zeigte sich, dass besonders die Voxellänge von der Länge des technischen Wechselwirkungsvolumens derart abweicht, dass dies nicht durch raumeinnehmendes Kettenwachstum im Rahmen der Reaktionskinetik erklärt werden kann. Mögliche Erklärungsansätze basieren hierbei auf Wechselwirkungseffekte zwischen Lichtfeld und Material. Beispielsweise könnten durch den nichtlinearen optischen Kerr-Effekt oder die Polymerisation selbst Brechzahlinhomogenitäten induziert werden, welche die Voxelbildung durch Selbstfokussierung beeinflussen. Der Unterschied der Voxelbreite, also das laterale chemische Voxelwachstum, zur Breite des technischen Wechselwirkungsvolumens wurde hingegen mit Hilfe der Reaktionskinetik erklärt. Dabei zeigte sich, dass dieser Unterschied sowohl vom Material selbst als auch von der Fokussieroptik abhängt. Des Weiteren wurde die Polymerisationsrate der unterschiedlichen Materialien aus der Auftragung des Voxelvolumens gegenüber der Laserleistung durch lineare Approximation bestimmt. Hierbei wurde festgestellt, dass die Materialsysteme z. T. erhebliche Unterschiede aufweisen. Als das Materialsystem mit der höchsten Polymerisationsrate hat sich das auf Acrylaten als vernetzbare Gruppen basierende OC-V in Kombination mit dem Irgacure® Oxe02 Photoinitiator herausgestellt. Aus diesem Grund wurde es für die Herstellung von makroskopischen Strukturen durch die Zwei-Photonen-Polymerisation bevorzugt verwendet. Die unterschiedlichen Materialien wurden ferner mit Hilfe der µ-Raman-Spektroskopie auf ihr Vernetzungsverhalten untersucht. Konkret wurden hierbei Linienfelder unter Variation der Scan-Geschwindigkeit und der Laserleistung mit Hilfe der 2PP hergestellt und vermessen. Die Vernetzungsgrade wurden semi-quantitativ aus den Spektren ermittelt. Insgesamt wurden Vernetzungsgrade im Bereich zwischen 40 % und 60 % gemessen, wobei mit OC-V und 2 Gew.-% Irgacure® Ox02 die höchsten Vernetzungsgrade erzielt wurden. Des Weiteren hat sich gezeigt, dass die Konversionsgrade für die jeweiligen Materialsysteme bei allen Scan-Geschwindigkeiten sich auf einem im Rahmen der Fehlergrenzen gleichem Niveau befinden. Damit kann der durch Simulationen theoretisch prognostizierte Abfall des Sättigungskonversionsgrades mit zunehmender Scan-Geschwindigkeit mit entsprechend variierenden Belichtungszeiten nicht als verifiziert angesehen werden. Die verschiedenen Materialsysteme wurden außerdem bezüglich ihrer mechanischen Eigenschaften charakterisiert. Zu diesem Zweck wurden zylindrische Formkörper unter verschiedenen Bedingungen (1PP, 2PP, verschiedene Photoinitiatorkonzentrationen) hergestellt und Druckfestigkeitsmessungen durchgeführt, sowie die Dichten und die Vernetzungsgrade aus den Formkörpern bestimmt. Insgesamt wurden Elastizitätsmodule im Bereich zwischen 0,40 und 1,37 GPa und Bruchfestigkeitswerte zwischen 117 bis 310 MPa ermittelt. Es konnte festgestellt werden, dass die Konzentration des Photoiniators das Vernetzungsverhalten und damit die mechanischen Eigenschaften der Formkörper stark beeinflusst. Während geringe Konzentrationen zu geringeren Vernetzungsgraden und niedrigen Elastizitätsmodulen führten, zeigten die Formkörper höherer Konzentration ein deutlich spröderes Verhalten mit höheren Vernetzungsgraden und Elastizitätsmodulen. Das höchste Elastizitätsmodul wurde an Hand von Formkörpern vermessen, welche aus OC-V mit 2 Gew.-% Irgacure® Ox02 hergestellt wurden. Darüber hinaus wurde festgestellt, dass sich die mechanischen Eigenschaften von durch 2PP hergestellten Formkörpern durch die applizierte Laserleistung beeinflussen lassen. Die Ursache hierfür ist, dass durch die Laserleistung die Voxelgröße und damit der Überlapp zwischen den Voxeln eingestellt werden kann. Im Bereich des Überlapps findet dann eine Doppelbelichtung des Materials statt, was zu höheren Vernetzungsgraden führen kann. Außerdem wurden durch die 2PP bei hinreichend großen Belichtungsleistungen auch Formkörper realisiert, welche höhere Elastizitätsmodule und Bruchfestigkeitswerte aufwiesen als Körper, welche durch UV-Belichtung hergestellt wurden. Die Aufskalierung der Zwei-Photonen-Technologie wurde in Kapitel 5.3 behandelt. Neben einer ausführlichen Diskussion zu den Herausforderungen diesbezüglich, wurden zwei Belichtungsstrategien zur Herstellung von makroskopischen Scaffold-Strukturen eingesetzt und optimiert. Hierbei ist insbesondere der Badaufbau hervorzuheben, der es erlaubte Strukturen von prinzipiell unbegrenzter Höhe mit Hilfe der Zwei-Photonen-Polymerisation herzustellen. Eine wesentliche Herausforderung der Aufskalierung der 2PP ist die Beschleunigung des Prozesses. Aus den Betrachtungen geht hervor, dass für eine gravierende Beschleunigung der 2PP-Strukturierung neben der Scan-Geschwindigkeit auch das Beschleunigungsvermögen des Positionierungssystems entscheidend ist. Des Weiteren sind auch Parallelisierungsmethoden mit z. B. diffraktiven optischen Elementen nötig, um ausreichende Prozessgeschwindigkeiten zu erzielen. Der Standardaufbau mit Luftobjektiven wurde dazu verwendet millimetergroße Strukturen mit hoher Qualität aus ORMOCER®en herzustellen. Auch wenn die maximale Strukturhöhe durch den Arbeitsabstand des Objektivs beschränkt ist, hat sich gezeigt, dass dieser Aufbau sich für die einfache Herstellung von millimetergroßen Test-Scaffold-Strukturen eignet, welche z. B. für Zellwachstumsversuche oder mechanische Belastungstest eingesetzt werden können. Das biodegradierbare MB-47 wurde hierbei ebenfalls erfolgreich eingesetzt und u. a. für die Herstellung von Drug-Delivery-Strukturen verwendet. Der Badaufbau, basierend auf einem Materialbad mit durchsichtigem Boden, einem darin befindlichen und in der Vertikalen (z-Richtung) beweglichen Substrathalter sowie einer Belichtung von unten durch eine sich in der Ebene bewegende Fokussieroptik, wurde verwendet um eine Freiheitsstatue mit 2 cm Höhe sowie millimetergroße Scaffold-Strukturen mit Porengrößen im Bereich von 40 bis 500 µm in ORMOCER-V zu realisieren. Weitere Strukturierungsresultate mit z. T. anwendungsbezogenem Hintergrund sind die Gehörknöchelchen des menschlichen Ohrs in Lebensgröße, ein Scaffold in Form eines Steigbügels des menschlichen Ohrs, Test-Scaffold-Strukturen für mechanische oder biologische Untersuchungen sowie Drug-Delivery Strukturen. Es wurden Bauraten von bis zu 10 mm^3/h erzielt. Bezüglich der Prozessgeschwindigkeit und Strukturhöhe wurde bei Weitem noch nicht das Potential des luftgelagerten Positioniersystems ausgeschöpft. Dafür bedarf es einer Gewichtsoptimierung des bestehenden Belichtungsaufbau, um höhere Beschleunigungswerte und Scan-Geschwindigkeiten realisieren zu können. Unter Annahme einer effektiven Gewichtsoptimierung und der damit verbundenen Erhöhung der Beschleunigung auf 10 m/s^2 könnte eine Baurate bei einer Scan-Geschwindigkeit von 225 mm/s und einem Slice- und Hatch-Abstand von 15 und 10 µm von etwa 60 mm^3/h erzielt werden. Im Rahmen der Aufskalierung wurde ebenfalls der experimentelle Einsatz von diffraktiven optischen Elementen zur Fokus-Multiplikation untersucht. Die Experimente wurden mit Hilfe eines Elements durchgeführt, welches eine 2 x 2 Punkte-Matrix neben der ungebeugten 0. Ordnung bereitstellt und Bestandteil eines experimentellen Setups war, welches aus Linsen, Blenden und einem Objektiv zur Fokussierung bestand. Mit Hilfe der erzeugten Spot-Matrix wurden zum einen simultan vier Drug-Delivery-Strukturen hergestellt und zum anderen einzelne Scaffold-Strukturen realisiert. In jedem Fall wurde eine Beschleunigung des Prozess bzw. eine Erhöhung der Polymerisationsrate um den Faktor 4 für die verwendeten Parameter erreicht. Bei der Herstellung der Scaffolds wurden zwei unterschiedliche Strategien verfolgt. Während zum einen die Periodizität der inneren Scaffold-Struktur auf die Fokusabstände angepasst und damit simultan vier aneinandergereihte Einheitszellen hergestellt wurden, konnte zum anderen auch demonstriert werden, dass durch die geschickte Bewegung der Fokusse eine ineinander verschobene Struktur möglich ist. Der Vorteil der letzteren Strategie ist, dass auf diese Weise eine komplette Schicht gescannt werden kann und damit hohe Scan-Geschwindigkeiten realisiert werden können. Die erzielten Bauraten waren dennoch nicht größer als die Bauraten, die mit einem einzelnen Spot im Rahmen des Standardaufbaus oder des Badaufbaus erreicht wurden. Hierfür bedarf es weiterer Optimierung der Parameter und des Setups. Transmittiert fokussiertes Licht eine Grenzfläche zweier Medien mit unterschiedlichen Brechungsindizes, dann tritt sphärische Aberration auf, welche sich durch die Verbreiterung des Fokus besonders in axiale Richtung bemerkbar macht. Da diese im Rahmen der verwendeten Belichtungsstrategien die Strukturierungsergebnisse nachweislich beeinträchtigen, wurden experimentelle Untersuchungen sowie Optimierungsroutinen diesbezüglich durchgeführt. Im Zusammenhang mit dem Standardaufbau wurde eine Leistungsanpassung während der Strukturierung vorgenommen. Auf diese Weise wurde erreicht, dass bei variabler Fokustiefe im Material die maximale Intensität trotz sphärischer Aberration konstant gehalten wurde, wodurch sich die strukturelle Homogenität der Scaffolds entlang der axialen Richtung (optische Achse) deutlich verbesserte. Des Weiteren wurde der Badaufbau dazu verwendet, die axiale Intensitätsverteilung in-situ für diskrete Fokustiefen unter der Verwendung eines Objektivs mit der NA von 0,60 abzubilden. Zu diesem Zweck wurde aus hergestellten Voxelfeldern eine Voxelfeldfunktion ermittelt und mit der axialen IPSF korreliert. Dabei wurde angenommen, dass sich das chemische Wechselwirkungsvolumen vernachlässigbar gering vom technischen Wechselwirkungsvolumen unterscheidet. Die experimentellen Ergebnisse zeigten deutlich die für sphärische Aberrationen typischen Nebenmaxima auf. Die Lage bzw. Abstände dieser entsprachen in guter Übereinstimmung den jeweiligen Simulationen. Schließlich wurde noch die sphärische Aberration durch den Korrekturring der Objektive für verschiedene Deckglasdicken korrigiert. Die resultierende IPSF wurde ebenfalls mit Hilfe des Badaufbaus abgebildet, wobei keinerlei Nebenmaxima gefunden werden konnten. Die Breite des Hauptmaximums konnte deutlich verringert werden. Zusammengefasst lässt sich sagen, dass im Rahmen dieser Arbeit erhebliche Fortschritte bei der Aufskalierung der 2PP zur Erzeugung von Scaffold-Strukturen für die regenerative Medizin erzielt wurden. Die erreichten Strukturdimensionen und die Bauraten übertreffen alle bis dato bekannten Ergebnisse. Dabei wurden auch durch theoretische Betrachtungen und experimentellen Methoden grundlegende Erkenntnisse über die Reaktionsdynamik der durch die Zwei-Photonen-Absorption initiierten Polymerisationsreaktion gewonnen. Nichtsdestotrotz sind einige Fragestellungen offen sowie Problematiken des Prozesses vorhanden, die für eine Realisierung von makroskopischen Scaffold-Strukturen gelöst werden müssen. So sind die realisierten Bauraten noch zu gering, um in angemessener Zeit makroskopische Scaffolds-Strukturen herzustellen, welche deutlich größer als 1 cm^3 sind. Aus diesem Grund müssen weitere Verbesserungen bezüglich der Scan-Geschwindigkeit sowie des Einsatzes von diffraktiven optischen Elementen zur Erhöhung der Polymerisationsrate erzielt werden. Da bei der Verwendung von Multi-Spot-Arrays, welche mit Hilfe gewöhnlicher diffraktiver optischer Elemente erzeugt wurden, die Realisierung von beliebigen und detaillierten äußeren Scaffold-Formen eingeschränkt ist, empfiehlt es sich den Einsatz von Spatial Light-Modulatoren zu verfolgen. Diese fungieren als dynamisch modulierbares DOE, mit dem einzelne Spots gezielt ein- und ausgeblendet und Spotabstände dynamisch variiert werden können. Schließlich ist es vorstellbar, den Spatial Light-Modulator mit dem Badaufbau zu kombinieren, um uneingeschränkte, große Strukturen in annehmbarer Zeit mit hochaufgelösten Details herstellen zu können. Dieses Vorgehen bedarf allerdings noch der tiefgreifenden Untersuchung der Potentiale des Spatial Light-Modulators. Darüber hinaus weisen die theoretischen und experimentellen Untersuchungen zur Reaktionskinetik darauf hin, dass die Voxelentstehung ein komplexer Prozess ist, der möglicherweise auch durch nichtlineare optische Wechselwirkungseffekte abseits der Zwei-Photonen-Absorption beeinflusst wird. Daher sind hier weitere Untersuchungen und Berechnungen zu empfehlen, um z. B. den Einfluss einer intensitätsabhängigen Brechzahl auf die Voxelbildung quantifizieren zu können. Entsprechende Ergebnisse könnten schließlich dazu dienen, dass im Rahmen dieser Arbeit entwickelte Modell zur Voxelbildung, welches auf der getrennten Betrachtung von technischen und chemischen Wechselwirkungsvolumen basiert, zu verbessern. Ein leistungsfähiges Modell, welches die Voxelbildung in Abhängigkeit des Materials und der Fokussieroptik präzise vorhersagen kann, wäre für das Erzielen optimaler Strukturierungsergebnissen ein Gewinn. N2 - In this thesis, the two photon polymerization technique using ORMOCER®s was investigated thoroughly. The main aspects of matter were the theoretical investigations of the interaction between laser and polymer, the experimental characterization of the different ORMOCER®s, and the scale-up of the photon polymerization technique in order to fabricate scaffolds for the regenerative medicine. The latter was achieved by designing and building up an innovative exposure device[38] which enables the fabrication of scaffold structures with minimal structure sizes of a view microns. The experiments were done using UV sensitive anorganic-organic hybrid polymers, also known as ORMOCER®s. These are typically synthesized for optical applications, but some are also biocompatible. The ORMOCER® MB-47 was invented by M. Beyer for biological application and possesses biocompatibility, partial biodegradability, and advanced 2PP structuring behavior. The micro-structuring system used contains an ultra-short pulse laser which emits 325 fs pulses at 1030 nm (applied was 515 nm using second harmonic generation), a highly precise positioning system which consists of three air-bearing stages with a travel range of 10 cm (y, z direction) and 15 cm (x direction), respectively, and some objectives for focusing. With these components, complex three-dimensional structures with minimal structure size below 1 µm can be produced. In Capital 5.1, theoretical studies of the interaction between the focal intensity distribution and the material, which defines voxel growth, were performed. Therefore, the technical interaction volume and the chemical interaction volume were separately investigated. The technical interaction volume describes the threshold driven interaction between the focal intensity distribution and the material system, which allows the realization of structure sizes below the resolution limit (diffraction) of the wavelength used. The theoretical investigations showed that spherical aberration influences the focal intensity distributions (Intensity-Point Spread Function (IPSF)) which were calculated for different experimental exposure configuration. The results propose a severe influence with increasing focus depth into the material. Moreover, a formal relation between the IPSF and the technical interaction volume was derived by using the threshold assumption. By using the Gaussian beam assumption as IPSF, the analogy of the derived formula to the voxel growth model of Serbin et al. was recognized. The chemical interaction volume represents the actual volume of the polymerization reaction. Its amount exceeds the technical interaction volume due to the space-consuming chain growth during the polymerization. By the simulation of the reaction kinetics of the polymerization, the time- and power-depending behavior of the different reactants (radicals, monomer, photo initiator) as well as the degree of conversion was calculated. The simulations were done for very short exposure times (< 10 ms) by using a system of coupled differential equations which are based on a model invented by Uppal & Shiakolas. Therefore, the influence of diffusion and temperature was estimated to be small on short time scales and thus neglected. The results of the simulations show that a short exposure time cannot be necessarily compensated by high laser powers to achieve a certain degree of conversion. Higher laser power leads rather to a swift consumption of the photo initiator and thus to a disruption of the polymerization. In order to achieve high degrees of conversions, the reactive rate coefficients of the propagation and termination k_P and k_T as well as a sufficient amount of photo initiator concentration is essential. The larger the ratio k_P/k_T the higher degree of conversion can be realized even with short exposure times whereas a significant part of the reaction takes place during the dark period. This finding is important for the scale-up of the photon polymerization technique which has to involve shorter exposure times. Moreover, the simulations show that the spatial profile of the degree of conversion can feature a central minimum. This phenomenon occurs when the central maximum intensity of the IPSF consumes the entire photo initiators in short times which leads to a disruption of the polymerization. In Capital 5.2, the voxel growth, the behavior of conversion as well as the mechanical properties of hardened ORMOCER®s were experimentally investigated with different parameters and material systems. By means of voxel fields, voxel sizes, aspect ratios and voxel volumes at different laser powers were determined. The results were compared with the calculated technical interaction volume, whereas the difference was invented as a new characteristic value. It has been shown that the voxel length deviates clearly from the length of the technical interaction volume which cannot be explained by space-consuming chain growth during the polymerization. Instead, it was assumed that this observation is reasoned by interaction effects between light and material (optical Kerr effect, polymerization) leading to an inhomogeneous refractive index distribution and thus to self-focusing and self-trapping. In contrast to that, the difference between the voxel diameter and the diameter of the technical interaction volume was correlated with reaction kinetic influences. Additionally, the dependency of the voxel volume on the laser power was linear approximated in order to determine the polymerization rate of different material systems. Here, strong differences between the materials were identified. The material with the highest polymerization rate was OC-V with the Irgacure® Oxe02 photo initiator which consists of acrylates as cross-linkable group. Because of this, this material system was preferred for 2PP structuring of large scale structures. The different materials were investigated concerning their conversion behavior by means of µ-Raman spectroscopy. Therefore, fields of lines were produced by 2PP with varying scan speed and laser power and measured. The degree of conversion was then semi-quantitative extracted from the spectra. All in all, the degrees of conversion were determined to be in the range of 40 to 60 % for all materials. The material with the highest degree of conversion was the OC-V with 2 wt.-% Irgacure® Ox02. Moreover, the measurements showed that the degree of conversion for each material system does not vary with the scan speed (exposure time) within the limits of measurement error. Thus, the simulations from Capital 5.1.3, which predicted that shorter exposure times cannot be necessarily compensated by higher laser powers, could not be confirmed. Furthermore, the mechanical properties of the different materials were characterized. Therefore, cylindrical samples were produced with different processes and parameters and tested with a compressive load. Also the densities and degrees of conversion were determined. All in all, elastic moduli between 0,40 and 1,37 GPa and load failures between 117 and 310 MPa were measured. It was detected that the photo initiator concentration influences the conversion behavior and thus the mechanical properties of the samples. While low concentrations led to lower degrees of conversion and lower elastic moduli, the samples produced with higher concentrations were more brittle with higher degrees of conversion and elastic moduli. The highest elastic modulus was measured for samples which were produced in OC-V with 2 wt.-% Irgacure® Ox02. Moreover, the mechanical properties of samples produced with 2PP can be influenced by the utilized laser power. This is reasoned by the voxel sizes which can be adjusted by the laser power and which determine the overlap of vicinal voxels at distinct hatch and slice distances. In the overlap area double exposure takes place which can lead to higher degrees of conversion. It was found that with sufficient laser powers the 2PP leads to higher elastic moduli and load failures than the 1PP. Capital 5.3 deals with the scale-up of the photon polymerization technique. After the discussion of the challenges, two exposure strategies were used to produce macroscopic scaffold structures. Especially, the vat setup has to be emphasized which can be used to build structures with basically unlimited structure heights by means of the 2PP technique. One of the major challenges concerning the scale-up of the 2PP is the speed-up of the process. Therefore, the scan speeds as well as the acceleration of the positioning system play important roles. Moreover it was detected that further parallelizing techniques as the utilization of diffraction optical elements are needed in order to achieve a sufficient speed-up of the 2PP technology. The standard exposure setup with air objectives was used to fabricate millimeter-sized structures in ORMOCER®s which high quality. Though the maximal achievable structure height is limited by the working distance of the objective used, the setup is suitable for the fabrication of macroscopic scaffolds which can be utilized for biological or mechanical testing. Moreover, the biodegradable MB-47 was successfully used for the fabrication of Drug Delivery structures. The vat setup bases on a vat/bath as material reservoir with transparent bottom, a sample holder moveable in the vertical (z) direction, and an upside down x-y-scanning objective. The sample can be moved upwards which enables one to build structures whose heights are not limited by the working distance of the employed objective anymore. This setup was used to fabricate a model of the statue of liberty with a height of 2 cm and millimeter-sized scaffolds with pore sizes in the area between 40 and 500 µm in ORMOCER®-V. Moreover, the human ossicles in life size, a scaffold in the shape of the human stapes, different test scaffold structures for mechanical and biological investigations and drug delivery structures were build. The achieved maximum building rate was 10 mm^3/h. So far, the speed-up and scale-up potentials of the air-bearing positioning system haven’t been exhausted when using the vat setup. Therefore, the setup has to be optimized regarding weight and stability in order to realize higher accelerations of up to 10 m/s^2. This would enable build rates of up to 60 mm3/h with a scan speed of 224 mm/s and slice and hatch distances of 15 and 10 µm. Moreover, the speed-up by means of diffractive optical elements was experimentally investigated. Therefore, an optical setup was constructed which includes the diffractive optical element, some lenses, an objective, and a blind to blank the zero order. By this a 2 x 2 spot matrix was generated which was used for the simultaneous fabrication of four drug delivery structures and the production of single scaffold structures. In both cases an increase of the polymerization rate was achieved regarding to structuring without diffractive optical elements. For the fabrication of the scaffold structures two different scan strategies were performed. Using the first one, a scaffold was built up by the simultaneous structuring of four scaffolds’ gyroid unit cells. After finishing these cells, more cells were stitched to them until a millimeter-sized scaffold was achieved. For this strategy, it’s important that the size of the unit cell design is adjusted to the focal matrix distances. With the second strategy a scanning of the whole spot matrix along the whole scaffold flank is performed. By this it was possible to produce a pile of interleaved beams which represents a woodpile-like scaffold. The fact that the produce lines of each layer are as long as scaffold flank leads to the advantage that higher scan speeds and thus build rates can be achieved than with the first strategy. Nevertheless, the realized maximum build rates weren’t exceeding the build rates which were reached by using the standard setup or the vat setup. Thus, more optimization of parameters and setup is needed. If focused laser lights transmits through an interface of two materials with different refractive indices, spherical aberration occurs which leads to blurring of the focal intensity distribution especially in the axial direction. When using air objectives this blurring affects the structuring results. Hence theoretical and experimental investigations were done in order to optimize exposure routines. When using the standard exposure setup, power adoption was performed during the structuring process which allows holding the maximum focal intensity constant at varying focal depths in the presence of spherical aberration influences. By this, a clear improvement of the scaffolds’ quality and homogeneity along the axial direction was achieved. Furthermore, the vat setup with the NA 0.60 objective was used to perform an experimental in situ mapping of the focal axial intensity distribution for different focal depths. A voxel field function was extracted from produced voxel fields and correlated with the axial intensity distribution. Therefore, it was assumed that the chemical interaction volume is equal to the technical interaction volume. The experimental results showed clearly the presence of side maxima which are typical for spherical aberration influences. The distances between them were predicted quite exactly by theoretical simulations. Finally, the spherical aberrations were reduced by the correction collar of the objective. The resulting intensity distribution was also mapped with the vat setup and no side maxima were found for the experimental intensity distribution. Moreover the contrast of the main maximum was clearly improved. Overall, it can be concluded that within this work a noticeable progress in the scale-up of the two-photon polymerization technique was achieved which is important for the fabrication of scaffold structures for the regenerative medicine. The realized structure dimensions and build rates exceed all, so far, known specifications of structures fabricated by two-photon polymerization. Moreover, basic knowledge of the most important aspects of the scale-up was discovered by thoroughly theoretical and experimental investigations. Nevertheless, there is still much improvement necessary to establish the two photon polymerization technique as a competitive tool for the production of scaffold structures which are larger than 1 cm^3. Higher scan speeds and advanced setups with diffractive optical elements must be applied to achieve build rates in the range over 1 cm^3/h. Due to the lack in flexibility of usual diffractive optical elements, it is recommended to use spatial light modulators which are dynamic adjustable diffractive optical elements. With them it is possible to vary the spot intensity distribution, spot number as well as the spot distances during the process. Finally, it is imaginable that in future the vat setup combined with a spatial light modulator can be used for the fabrication of large macro structures with finest details in adequate time. But therefore, it is necessary to perform thoroughly investigations concerning the potentials of spatial light modulators. Moreover, the theoretical and experimental investigations on the reaction kinetics show that voxel growth is a complex process which is possibly affected by nonlinear optical interactions aside from the two-photon absorption phenomenon. Thus, intensive study should be done in order to, for example, quantify the influence of an intensity-dependent refractive index on the voxel growth. Maybe, results could be used to improve the voxel growth model of this work which bases on the separate consideration of the technical and chemical interaction volumes. A powerful tool enabling the prices prediction of voxel growth characteristics depending on material and focusing optics would help to improve the detail quality of fabricated scaffolds. KW - Tissue Engineering KW - Polymere KW - Mikrofertigung KW - Two-photon polymerization KW - Two-photon absorption KW - Scaffold fabrication KW - Zwei-Photonen-Polymerisation KW - Zweiphotonenabsorption KW - Reaktionskinetik KW - Raman-Spektroskopie Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130161 ER - TY - THES A1 - Wittmann, Katharina T1 - Adipose Tissue Engineering - Development of Volume-Stable 3-Dimensional Constructs and Approaches Towards Effective Vascularization T1 - Tissue Engineering von Fettgewebe - Generierung volumenstabiler 3-dimensionaler Fettgewebe-Konstrukte und Entwicklung effektiver Vaskularisierungsstrategien N2 - Adipose tissue defects and related pathologies still represent major challenges in reconstructive surgery. Based on to the paradigm ‘replace with alike’, adipose tissue is considered the ideal substitute material for damaged soft tissue [1-3]. Yet the transfer of autologous fat, particularly larger volumes, is confined by deficient and unpredictable long term results, as well as considerable operative morbidity at the donor and recipient site [4-6], calling for innovative treatment options to improve patient care. With the aim to achieve complete regeneration of soft tissue defects, adipose tissue engineering holds great promise to provide functional, biologically active adipose tissue equivalents. Here, especially long-term maintenance of volume and shape, as well as sufficient vascularization of engineered adipose tissue represent critical and unresolved challenges [7-9]. For adipose tissue engineering approaches to be successful, it is thus essential to generate constructs that retain their initial volume in vivo, as well as to ensure their rapid vascularization to support cell survival and differentiation for full tissue regeneration [9,10]. Therefore, it was the ultimate goal of this thesis to develop volume-stable 3D adipose tissue constructs and to identify applicable strategies for sufficient vascularization of engineered constructs. The feasibility of the investigated approaches was verified by translation from in vitro to in vivo as a critical step for the advancement of potential regenerative therapies. For the development of volume-stable constructs, the combination of two biomaterials with complementary properties was successfully implemented. In contrast to previous approaches in the field using mainly non-degradable solid structures for mechanical protection of developing adipose tissue [11-13], the combination of a cell-instructive hydrogel component with a biodegradable porous support structure of adequate texture was shown advantageous for the generation of volume-stable adipose tissue. Specifically, stable fibrin hydrogels previously developed in our group [14] served as cell carrier and supported the adipogenic development of adipose-derived stem cells (ASCs) as reflected by lipid accumulation and leptin secretion. Stable fibrin gels were thereby shown to be equally supportive of adipogenesis compared to commercial TissuCol hydrogels in vitro. Using ASCs as a safe source of autologous cells [15,16] added substantial practicability to the approach. To enhance the mechanical strength of the engineered constructs, porous biodegradable poly(ε caprolactone)-based polyurethane (PU) scaffolds were introduced as support structures and shown to exhibit adequately sized pores to host adipocytes as well as interconnectivity to allow coherent tissue formation and vascularization. Low wettability and impaired cell attachment indicated that PU scaffolds alone were insufficient in retaining cells within the pores, yet cytocompatibility and differentiation of ASCs were adequately demonstrated, rendering the PU scaffolds suitable as support structures for the generation of stable fibrin/PU composite constructs (Chapter 3). Volume-stable adipose tissue constructs were generated by seeding the pre-established stable fibrin/PU composites with ASCs. Investigation of size and weight in vitro revealed that composite constructs featured enhanced stability relative to stable fibrin gels alone. Comparing stable fibrin gels and TissuCol as hydrogel components, it was found that TissuCol gels were less resilient to degradation and contraction. Composite constructs were fully characterized, showing good cell viability of ASCs and strong adipogenic development as indicated by functional analysis via histological Oil Red O staining of lipid vacuoles, qRT-PCR analysis of prominent adipogenic markers (PPARγ, C/EBPα, GLUT4, aP2) and quantification of leptin secretion. In a pilot study in vivo, investigating the suitability of the constructs for transplantation, stable fibrin/PU composites provided with a vascular pedicle gave rise to areas of well-vascularized adipose tissue, contrasted by insufficient capillary formation and adipogenesis in constructs implanted without pedicle. The biomaterial combination of stable fibrin gels and porous biodegradable PU scaffolds was thereby shown highly suitable for the generation of volume-stable adipose tissue constructs in vivo, and in addition, the effectiveness of immediate vascularization upon implantation to support adipose tissue formation was demonstrated (Chapter 4). Further pursuing the objective to investigate adequate vascularization strategies for engineered adipose tissue, hypoxic preconditioning was conducted as a possible approach for in vitro prevascularization. In 2D culture experiments, analysis on the cellular level illustrated that the adipogenic potential of ASCs was reduced under hypoxic conditions when applied in the differentiation phase, irrespective of the oxygen tension encountered by the cells during expansion. Hypoxic treatment of ASCs in 3D constructs prepared from stable fibrin gels similarly resulted in reduced adipogenesis, whereas endothelial CD31 expression as well as enhanced leptin and vascular endothelial growth factor (VEGF) secretion indicated that hypoxic treatment indeed resulted in a pro-angiogenic response of ASCs. Especially the observed profound regulation of leptin production by hypoxia and the dual role of leptin as adipokine and angiogenic modulator were considered an interesting connection advocating further study. Having confirmed the hypothesis that hypoxia may generate a pro-angiogenic milieu inside ASC-seeded constructs, faster vessel ingrowth and improved vascularization as well as an enhanced tolerance of hypoxia-treated ASCs towards ischemic conditions upon implanatation may be expected, but remain to be verified in rodent models in vivo (Chapter 5). Having previously been utilized for bone and cartilage engineering [17-19], as well as for revascularization and wound healing applications [20-22], stromal-vascular fraction (SVF) cells were investigated as a novel cell source for adipose tissue engineering. Providing cells with adipogenic differentiation as well as vascularization potential, the SVF was applied with the specific aim to promote adipogenesis and vascularization in engineered constructs in vivo. With only basic in vitro investigations by Lin et al. addressing the SVF for adipose repair to date [23], the present work thoroughly investigated SVF cells for adipose tissue construct generation in vitro, and in particular, pioneered the application of these cells for adipose tissue engineering in vivo. Initial in vitro experiments compared SVF- and ASC-seeded stable fibrin constructs in different medium compositions employing preadipocyte (PGM-2) and endothelial cell culture medium (EGM-2). It was found that a 1:1 mixture of PGM-2 and EGM-2, as previously established for co-culture models of adipogenesis [24], efficiently maintained cells with adipogenic and endothelial potential in SVF-seeded constructs in short and long-term culture setups. Observations on the cellular level were supported by analysis of mRNA expression of characteristic adipogenic and endothelial markers. In preparation of the evaluation of SVF-seeded constructs under in vivo conditions, a whole mount staining (WMS) method, facilitating the 3D visualization of adipocytes and blood vessels, was successfully established and optimized using native adipose tissue as template (Chapter 6). In a subcutaneous nude mouse model, SVF cells were, for the first time in vivo, elucidated for their potential to support the functional assembly of vascularized adipose tissue. Investigating the effect of adipogenic precultivation of SVF-seeded stable fibrin constructs in vitro prior to implantation on the in vivo outcome, hormonal induction was shown beneficial in terms of adipocyte development, whereas a strong vascularization potential was observed when no adipogenic inducers were added. Via histological analysis, it was proven that the developed structures were of human origin and derived from the implanted cells. Applying SVF cells without precultivation in vitro but comparing two different fibrin carriers, namely stable fibrin and TissuCol gels, revealed that TissuCol profoundly supported adipose formation by SVF cells in vivo. This was contrasted by only minor SVF cell development and a strong reduction of cell numbers in stable fibrin gels implanted without precultivation. Histomorphometric analysis of adipocytes and capillary structures was conducted to verify the qualitative results, concluding that particularly SVF cells in TissuCol were highly suited for adipose regeneration in vivo. Employing the established WMS technique, the close interaction of mature adipocytes and blood vessels in TissuCol constructs was impressively shown and via species-specific human vimentin staining, the expected strong involvement of implanted SVF cells in the formation of coherent adipose tissue was confirmed (Chapter 7). With the development of biodegradable volume-stable adipose tissue constructs, the application of ASCs and SVF cells as two promising cell sources for functional adipose regeneration, as well as the thorough evaluation of strategies for construct vascularization in vitro and in vivo, this thesis provides valuable solutions to current challenges in adipose tissue engineering. The presented findings further open up new perspectives for innovative treatments to cure soft tissue defects and serve as a basis for directed approaches towards the generation of clinically applicable soft tissue substitutes. N2 - In der rekonstruktiven Chirurgie besteht ein ständig wachsender Bedarf an geeigneten Implantaten, um Weichteildefekte nach Tumorresektionen, Traumata, oder aufgrund von kongenitalen Missbildungen adäquat ersetzen zu können [1]. Hierbei stellt körpereigenes Fettgewebe als Weichteilersatz das ideale Substitutionsmaterial dar [2-4]. Derzeit angewandte Wiederherstellungsmethoden verwenden frei transplantierbare und gestielte Lappenplastiken aus autologem Fettgewebe oder greifen auf künstliche Kollagen- und Silikonimplantate zurück [5]. Diese Ansätze sind jedoch zum Teil mit gravierenden Nachteilen behaftet, wie Absorption und Nekrotisierung bei transplantiertem körpereigenem Fettgewebe, sowie Fremdkörperreaktionen und fibrotischen Verkapselungen bei Kollagen und Silikon. Insbesondere die Versorgung großvolumiger Defekte ist mit komplexen chirurgischen Eingriffen verbunden und geht häufig mit Komplikationen wie Infektionen, Narbenbildung und Volumenverlust, sowie Defiziten an der Hebe- und Empfängerstelle einher [1,5-8]. Es besteht daher ein großer Bedarf an innovativen Methoden und der Entwicklung neuer Materialien, die einen dauerhaften körpereigenen Weichteilersatz ermöglichen. Das interdisziplinäre Feld des Tissue Engineerings von Fettgewebe zielt auf die Entwicklung neuer Ansätze zur Regeneration von Weichteildefekten und der Bereitstellung von biologisch äquivalentem Gewebeersatz, vor allem für die Rekonstruktion großvolumiger Defekte. Verringerte Volumenstabilität und unzureichende Blutgefäßversorgung stellen jedoch auch bei durch Tissue Engineering hergestelltem Gewebe zentrale Limitationen dar [5,8,9]. Für die erfolgreiche Substitution von Weichteildefekten mit Methoden des Tissue Engineerings ist es daher essenziell, Gewebekonstrukte mit ausreichender Volumenstabilität bereitzustellen, um auch nach Implantation in vivo langfristig zu bestehen, sowie eine adäquate Blutgefäßversorgung zu gewährleisten, um Zellüberleben und Differenzierung für eine vollständige Geweberegeneration zu garantieren [5,10]. Folglich war es Ziel dieser Arbeit, volumenstabile Fettgewebekonstrukte zu entwickeln und neue Strategien zur Vaskularisierung der generierten Konstrukte zu evaluieren. Als wichtiger Schritt in Bezug auf eine potenzielle klinische Anwendbarkeit wurden außerdem vielversprechende In-vitro-Ansätze auf den In-vivo-Kontext in etablierten Mausmodellen übertragen. Für die Entwicklung volumenstabiler Fettgewebekonstrukte wurde die Kombination zweier Biomaterialien mit komplementären Eigenschaften verfolgt. So wurden für die Konstruktherstellung Fibrinhydrogele als Zellträger mit hochporösen bioabbaubaren Scaffolds als mechanische Schutzstrukturen kombiniert. Im Gegensatz zu bisherigen Ansätzen zur Verbesserung der Volumenstabilität, in denen hauptsächlich nicht abbaubare, rigide Gerüst- oder Hohlkörperstrukturen zum mechanischen Schutz des entstehenden Gewebes appliziert wurden [11-13], wurden hier ausschließlich bioabbaubare und Gewebe kompatible Materialien verwendet. Dabei konnte auf bereits zuvor entwickelte stabile Fibringele [14] zurückgegriffen werden, die in dieser Arbeit erstmals für das Fettgewebe Engineering als Zellträger für mesenchymale Stammzellen aus dem Fettgewebe (adipose-derived stem cells; ASCs) verwendet wurden. Mittels sich ergänzender Analysemethoden auf zellulärer (Oil Red O-Färbung) und molekularer Ebene (Leptin Sekretion; ELISA) konnte erfolgreich die adipogene Differenzierung der in den Fibringelen inkorporierten ASCs nachgewiesen werden. Im Vergleich zu kommerziell erhältlichem Fibrin (TissuCol, Baxter) zeigten ASCs in den stabilen Fibringelen eine mit TissuCol vergleichbare, gute adipogene Differenzierbarkeit. Durch die Verwendung von ASCs als sichere und autologe Zellquelle [15,16] für die Konstruktherstellung wurde zudem die potenzielle klinische Anwendbarkeit der generierten Zell-Biomaterial-Konstrukte erhöht. Zur Verbesserung der Volumenstabilität wurden bioabbaubare Poly(ε caprolacton)-basierte Polyurethan-Scaffolds als zusätzliche Gerüststruktur evaluiert. Aufgrund ihrer hohen Porosität und Interkonnektivität stellten sich die Scaffolds als besonders geeignet für die Differenzierung von Adipozyten sowie für die Generierung von kohärentem Fettgewebe heraus. Bei direkter Besiedelung mit ASCs wiesen die PU-Scaffolds zwar eine geringe Zelladhäsion und inhomogene Zellverteilung auf, die adipogene Differenzierung der Zellen war jedoch nicht beeinträchtigt. Daraufhin wurde die Generierung von Fibrin/PU Kompositkonstrukten durch Kombination der PU-Scaffolds mit den zuvor untersuchten stabilen Fibringelen angestrebt (Kapitel 3). Durch Zusammenführung der stabilen Fibringele als Zellträger für ASCs mit den PU Scaffolds als zusätzlicher Gerüststruktur konnten in folgenden Arbeiten erfolgreich homogene und mechanisch stabile Fettgewebekonstrukte hergestellt werden. Die detaillierte Evaluation von Größe und Gewicht zeigte, dass in den Kompositkonstrukten durch die zusätzliche poröse PU-Scaffoldstruktur eine erhöhte Stabilität im Vergleich zu den stabilen Fibringelen als alleinigem Zellträger erreicht werden konnte. Der Vergleich der stabilen Fibringele mit TissuCol als Hydrogelkomponente zeigte, dass TissuCol-Gele unter In vitro Kulturbedingungen stärker kontrahierten und schneller abgebaut wurden. Die in den Kompositkonstrukten inkorporierten ASCs zeigten gute Viabilität sowie deutliche adipogene Differenzierung auf histologischer (Oil Red O-Färbung) als auch auf molekularer Ebene (qRT-PCR; ELISA). In einer In-vivo-Pilotstudie wurden die Kompositkonstrukte auf ihre Transplantierbarkeit hin überprüft und durch mikrochirurgische Insertion eines Durchflussgefäßes bei der Implantation unmittelbar vaskularisiert. In stabilen Fibrin/PU Konstrukten mit integriertem Gefäßstiel wurde so die Entwicklung von vaskularisiertem Fettgewebe im Vergleich zu ungestielten Konstrukten entschieden verbessert. Mittels der erfolgreichen In-vivo-Implantation der Kompositkonstrukte konnte die Anwendbarkeit der Biomaterialkombination aus stabilem Fibrin und porösen PU Scaffolds für die Generierung volumenstabiler Fettgewebekonstrukte demonstriert und gleichzeitig der positive Effekt einer direkten Vaskularisierung durch Integration eines Gefäßstiels gezeigt werden (Kapitel 4). Im Rahmen der weiteren Evaluation potenzieller Vaskularisierungsstrategien wurden im Anschluss Ansätze zur Prävaskularisierung in vitro untersucht. Hierbei stellte die hypoxische Vorkultur von mittels Tissue Engineering generierten Fettgewebekonstrukten einen möglichen Ansatz zur Schaffung eines pro-angiogenen, vaskularisierungsfördernden Milieus innerhalb der Konstrukte dar. Ebenso von Interesse waren in diesem Zusammenhang die Auswirkungen von Hypoxie auf die adipogene Differenzierung von ASCs. Erste Versuche im 2D-Kulturformat mit ASCs zeigten, dass das adipogene Potenzial der Zellen unter Hypoxie in der Differenzierungsphase stark vermindert war, wobei der während der Expansionsphase der Zellen bestehende Sauerstoffpartialdruck keinen Einfluss auf die Fettentwicklung hatte. Auch in 3D-Konstrukten basierend auf stabilen Fibringelen konnte eine verringerte adipogene Differenzierung von ASCs unter hypoxischer Kultur nachgewiesen werden, dabei wurden im Gegenzug endotheliale Marker (CD31) und pro angiogene Wachstumsfaktoren, wie z.B. vaskulärer endothelialer Wachstumsfaktor (VEGF), aber auch das Adipokin Leptin, stark hochreguliert. Insbesondere die deutliche Veränderung der Leptinsekretion unter hypoxischen Kulturbedingungen und die duale Rolle von Leptin als adipogener und pro-angiogener Faktor ergeben interessante Perspektiven für weiterführende Untersuchungen. Basierend auf den gezeigten Ergebnissen konnte insgesamt bestätigt werden, dass die hypoxische Vorkultur in vitro zur Entstehung eines pro angiogenen und potenziell vaskularisierungsfördernden Milieus beitragen kann. Es gilt nun in Folgestudien das Potenzial der hypoxischen Vorkultur zur Verbesserung der Vaskularisierung in vivo, sowie eine erhöhte Toleranz der implantierten Zellen gegenüber hypoxischen Bedingungen nach der Implantation in etablierten In-vivo-Mausmodellen zu verifizieren (Kapitel 5). Ein weiterer Ansatz zur Generierung von vaskularisiertem Fettgewebe in vitro und in vivo wurde durch den Einsatz der stromalen-vaskulären Fraktion (SVF) als neue Zellquelle für das Fettgewebe-Engineering verfolgt. Bisher wurde die SVF hauptsächlich für das Tissue Engineering von Knochen- und Knorpelgewebe [17-19] oder für Vaskularisierungs- und Wundheilungsansätze [20-22] untersucht. In der SVF enthalten sind sowohl Fettvorläuferzellen als auch Endothelzellen, Perizyten, Fibroblasten und Immunzellen [8]. Durch Verwendung dieses heterogenen Zellgemisches sollte die simultane Entwicklung von Fettzellen und vaskulären Strukturen erreicht werden, und damit eine schnellere und effizientere Fettgewebeentwicklung in vivo. Da sich bisher nur eine In-vitro-Studie explizit dem Tissue Engineering von Fettgewebe mit SVF-Zellen widmet [23], wurden in dieser Arbeit SVF-besiedelte Fettgewebekonstrukte basierend auf Fibringelen als Zellträger zunächst umfassend in vitro charakterisiert und erstmals die Fettgewebeentwicklung der Zellen im Mausmodell in vivo untersucht. In vorbereitenden In-vitro-Arbeiten wurden SVF-besiedelte stabile Fibringele mit den bisher verwendeten ASC-basierten Konstrukten verglichen. Dabei wurde zunächst die adipogene und endotheliale Differenzierbarkeit der SVF in unterschiedlichen Zellkulturmedien untersucht. Eine 1:1-Mischung aus Präadipozytenmedium (PGM-2) und Endothelzellmedium (EGM-2), die zuvor schon für Kokulturexperimente von ASCs und Endothelzellen verwendet worden war [24], stellte sich als besonders geeignet für die Kurz- und Langzeitkultur der SVF in stabilen Fibringelen heraus. Umfassende histologische Untersuchungen zeigten, dass mit Hilfe dieser Medienkomposition insbesondere das adipogene und endotheliale Differenzierungspotenzial der verschiedenen Zelltypen in der SVF innerhalb der generierten 3D-Konstrukte erhalten werden kann. Die auf zellulärer Ebene gewonnenen Erkenntnisse konnten mittels qRT-PCR-Analyse von adipogenen und endothelialen Markern (PPARγ, aP2, CD31) auf mRNA-Ebene bestätigt werden. Um in Zukunft die In-vivo-Untersuchung der generierten Fettgewebekonstrukte zu erleichtern, sowie eine strukturelle Analyse des Gewebeverbands und insbesondere die Interaktion von Adipozyten und Blutgefäßen zu ermöglichen, wurde zusätzlich eine 3D-Färbetechnik (Whole Mount Staining), zunächst unter Verwendung von nativem humanem Fettgewebe, etabliert (Kapitel 6). In einer anschließenden umfassenden Studie in immundefizienten Nacktmäusen (NMRI Foxn1nu/Foxn1nu) wurden SVF-Zellen zum ersten Mal in vivo für das Engineering von vaskularisiertem Fettgewebe untersucht. Hierbei wurden sowohl der Effekt der In vitro Vorkultur der SVF-basierten Konstrukte als auch der Einfluss des Trägermaterials auf die Gewebeentwicklung in vivo evaluiert. Die adipogene Vorkultur der SVF-besiedelten Konstrukte in vitro über einen Zeitraum von 7 Tagen vor Implantation wirkte sich positiv auf die Fettdifferenzierung in vivo aus, wohingegen die Vorkultur unter nicht-induzierten Bedingungen ohne adipogene Induktion verstärkt zur Bildung von vaskulären Strukturen führte. Durch Spezies-spezifische Färbung gegen humanes Vimentin konnte gezeigt werden, dass die beobachteten Strukturen humanen Ursprungs waren und daher von den implantierten SVF-Zellen stammten. Der Einfluss des Trägermaterials auf die Gewebebildung in vivo wurde durch Besiedelung stabiler Fibringele und TissuCol-Gele mit SVF-Zellen verglichen. Die Konstrukte wurden ohne In-vitro-Vorkultur direkt nach der Herstellung implantiert. Hier zeigte sich in stabilen Fibringelen nach 4 Wochen in vivo keine nennenswerte Gewebeentwicklung, wobei auch der Anteil an humanen Zellen innerhalb der Konstrukte zum Zeitpunkt der Explantation stark verringert war. Im Gegensatz dazu konnte in TissuCol-Gelen die Entwicklung von kohärentem und maturem Fettgewebe nachgewiesen werden von dem große Teile humanen Ursprungs waren. Die histologischen Ergebnisse wurden mittels histomorphometrischer Quantifizierung von Adipozyten und Blutgefäßstrukturen verifiziert, wodurch das herausragende Potenzial der SVF für das Fettgewebe-Engineering in vivo nochmals verdeutlicht wurde. Unter Verwendung der zuvor etablierten 3D-Färbetechnik (Whole Mount Staining) konnten anschließend Adipozyten und Blutgefäße innerhalb des entstandenen kohärenten Gewebeverbands in TissuCol-Gelen visualisiert werden. Mit Hilfe einer humanspezifischen Färbung in 3D konnte zusätzlich die weitreichende Beteiligung der implantierten SVF Zellen bei der Gewebeentwicklung nachgewiesen werden (Kapitel 7). Die in der Dissertation entwickelten bioabbaubaren volumenstabilen Fettgewebekonstrukte, die Untersuchung von ASCs und SVF-Zellen als vielversprechende regenerative Zellquellen für die Generierung funktioneller Konstrukte, sowie die Evaluation unterschiedlicher Vaskularisierungsstrategien in vitro und in vivo leisten einen wichtigen Beitrag zu neuen und innovativen Ansätzen im Bereich des Tissue Engineerings von Fettgewebe. Die Ergebnisse stellen eine Grundlage für die zielgerichtete Entwicklung regenerativer Implantate dar und eröffnen neue Perspektiven für die Generierung klinisch anwendbarer Fettgewebekonstrukte als Weichteilersatz. KW - Tissue Engineering KW - Fettgewebe KW - Tissue Engineering KW - Adipose Tissue KW - Vascularization KW - Fibrin Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-107196 ER - TY - THES A1 - Werner, Katharina Julia T1 - Adipose Tissue Engineering - In vitro Development of a subcutaneous fat layer and a vascularized adipose tissue construct utilizing extracellular matrix structures T1 - Fettgewebe Engineering - In vitro Entwicklung einer subkutanen Fettschicht und eines vaskularisierten Fettgewebskonstruktes unter Verwendung extrazellulärer Matrixstrukturen N2 - Each year millions of plastic and reconstructive procedures are performed to regenerate soft tissue defects after, for example, traumata, deep burns or tumor resections. Tissue engineered adipose tissue grafts are a promising alternative to autologous fat transfer or synthetic implants to meet this demand for adipose tissue. Strategies of tissue engineering, especially the use of cell carriers, provide an environment for better cell survival, an easier positioning and supplemented with the appropriate conditions a faster vascularization in vivo. To successfully engineer an adipose tissue substitute for clinical use, it is crucial to know the actual intended application. In some areas, like the upper and lower extremities, only a thin subcutaneous fat layer is needed and in others, large volumes of vascularized fat grafts are more desirable. The use and interplay of stem cells and selected scaffolds were investigated and provide now a basis for the generation of fitted and suitable substitutes in two different application areas. Complex injuries of the upper and lower extremities, in many cases, lead to excessive scarring. Due to severe damage to the subcutaneous fat layer, a common sequela is adhesion formation to mobile structures like tendons, nerves, and blood vessels resulting in restricted motion and disabling pain [Moor 1996, McHugh 1997]. In order to generate a subcutaneous fat layer to cushion scarred tissue after substantial burns or injuries, different collagen matrices were tested for clinical handling and the ability to support adipogenesis. When testing five different collagen matrices, PermacolTM and StratticeTM showed promising characteristics; additionally both possess the clinical approval. Under culture conditions, only PermacolTM, a cross-linked collagen matrix, exhibited an excellent long-term stability. Ranking nearly on the same level was StratticeTM, a non-cross-linked dermal scaffold; it only exhibited a slight shrinkage. All other scaffolds tested were severely compromised in stability under culture conditions. Engineering a subcutaneous fat layer, a construct would be desirable with a thin layer of emerging fat for cushioning on one side, and a non-seeded other side for cell migration and host integration. With PermacolTM and StratticeTM, it was possible to produce constructs with ASC (adipose derived stem cells) seeded on one side, which could be adipogenically differentiated. Additionally, the thickness of the cell layer could be varied. Thereby, it becomes possible to adjust the thickness of the construct to the surrounding tissue. In order to reduce the pre-implantation time ex vivo and the costs, the culture time was varied by testing different induction protocols. An adipogenic induction period of only four days was demonstrated to be sufficient to obtain a substantial adipogenic differentiation of the applied ASC. Thus, seeded with ASC, PermacolTM and StratticeTM are suitable scaffolds to engineer subcutaneous fat layers for reconstruction of the upper and lower extremities, as they support adipogenesis and are appropriately thin, and therefore would not compromise the cosmesis. For the engineering of large-volume adipose tissue, adequate vascularization still represents a major challenge. With the objective to engineer vascularized fat pads, it is important to consider the slow kinetics of revascularization in vivo. Therefore, a decellularized porcine jejunum with pre-existing vascular structures and pedicles to connect to the host vasculature or the circulation of a bioreactor system was used. In a first step, the ability of a small decellularized jejunal section was tested for cell adhesion and for supporting adipogenic differentiation of hASC mono-cultures. Cell adhesion and adipogenic maturation of ASC seeded on the jejunal material was verified through histological and molecular analysis. After the successful mono-culture, the goal was to establish a MVEC (microvascular endothelial cells) and ASC co-culture; suitable culture conditions had to be found, which support the viability of both cell types and do not interfere with the adipogenic differentiation. After the elimination of EGF (epidermal growth factor) from the co-culture medium, substantial adipogenic maturation was observed. In the next step, a large jejunal segment (length 8 cm), with its pre-existing vascular structures and arterial/venous pedicles, was connected to the supply system of a custom-made bioreactor. After successful reseeding the vascular structure with endothelial cells, the lumen was seeded with ASC which were then adipogenically induced. Histological and molecular examinations confirmed adipogenic maturation and the existence of seeded vessels within the engineered construct. Noteworthily, a co-localization of adipogenically differentiating ASC and endothelial cells in vascular networks could be observed. So, for the first time a vascularized fat construct was developed in vitro, based on the use of a decellularized porcine jejunum. As this engineered construct can be connected to a supply system or even to a patient vasculature, it is versatile in use, for example, as transplant in plastic and reconstruction surgery, as model in basic research or as an in vitro drug testing system. To summarize, in this work a promising substitute for subcutaneous fat layer reconstruction, in the upper and lower extremities, was developed, and the first, as far as reported, in vitro generated adipose tissue construct with integrated vascular networks was successfully engineered. N2 - Jedes Jahr werden Millionen von plastischen und wiederherstellenden Eingriffe durchgeführt, um zum Beispiel nach Traumata, hochgradigen Verbrennungen oder Tumorekonstruktionen, die natürliche Erscheinung und Funktion im Bereich von Weichgewebsdefekt wiederherzustellen. Gezüchtete Fettgewebskonstrukte sind eine vielversprechende Alternative zu autologen Fettgewebstransfers oder synthetischen Implantaten, um dem Bedarf an Fettgewebe gerecht zu werden. Die Strategien der Gewebezüchtung, besonders das Verwenden von Zellträgern, schaffen eine Umgebung für besseres Zellüberleben, eine einfachere Positionierung und - versehen mit den entsprechenden Eigenschaften - eine schnellere Vaskularisierung in vivo. Um erfolgreich einen Fettgewebe-Ersatz für die klinische Anwendung herzustellen, ist es notwendig das spätere Anwendungsgebiet zu kennen. In manchen Bereichen, wie in den oberen und unteren Extremitäten, braucht man nur eine dünne Unterhautfettschicht, und in anderen Bereichen wiederum ist ein großes Volumen an vaskularisiertem Fettgewebskonstrukt anzustreben. Die Nutzung und das Zusammenspiel von Stammzellen und ausgewählten Zellträgern wurden untersucht und legen nun eine Basis für die Herstellung von passendem und zweckmäßigem Ersatzgewebe zweier unterschiedlicher Anwendungsgebiete. Komplexe Verletzungen der oberen und unteren Extremitäten führen oftmals zu beträchtlicher Narbenbildung. Eine häufige Folgeerscheinung, hervorgerufen durch eine schwere Beschädigung des Unterhautfettgewebes, ist die Adhäsion zwischen mobilen Strukturen wie Sehnen, Nerven und Blutgefäßen. Dies resultiert dann in eingeschränkter Beweglichkeit und lähmenden Schmerzen [Moor 1996, McHugh 1997]. Um eine subkutane Fettschicht herzustellen, die das vernarbte Gewebe nach schwerer Verbrennung oder Verletzung polstert, wurden verschiedene Kollagenmaterialien auf die klinische Handhabung und die Unterstützung der Adipogenese untersucht. In der Untersuchung von fünf verschiedenen Kollagenmatrices zeigten PermacolTM und StratticeTM vielversprechende Eigenschaften. Beide besitzen außerdem die klinische Zulassung. PermacolTM, eine chemisch quervernetzte Kollagenmatrix, zeigte unter Kulturbedingungen hervorragende Langzeitstabilität. Fast ebenso gute Eigenschaften konnten bei StratticeTM, einem nicht vernetzten dermalen Gerüstmaterial, beobachtet werden; es zeigte lediglich leichte Schrumpfung. Alle sonst getesteten Kollagenmaterialien waren unter Kulturbedingungen stark in ihrer Stabilität beeinträchtigt. Zur Herstellung einer subkutanen Fettschicht wäre ein Konstrukt wünschenswert mit einer dünnen, gerade entstehenden Fettschicht für die Polsterung auf der einen Seite und einer nicht besiedelten anderen Seite für die Zelleinwanderung und die Integration in das umliegende Gewebe. Mit PermacolTM und StratticeTM war es möglich Konstrukte herzustellen, welche auf einer Seite mit ASC (aus dem Fettgewebe isolierte Stammzellen) besiedelt und anschließend adipogen differenziert werden konnten. Zusätzlich konnte die Dicke der Zellschicht hierbei variiert werden. Somit ist es möglich die Dicke des Konstruktes an das umliegende Gewebe anzupassen. Um die Preimplantationszeit ex vivo zu verkürzen und damit auch die Kosten zu senken, wurde die Kulturzeit variiert, indem verschiedene Induktionsprotokolle getestet wurden. Eine adipogene Induktionsperiode von nur vier Tagen erwies sich als ausreichend, um eine substantielle adipogene Differenzierung der eingesetzten ASC zu erreichen. Das heißt, die mit ASC besiedelten PermacolTM und StratticeTM Matrices sind zweckdienliche Zellträgermaterialien, um eine subkutane Fettschicht für die oberen und unteren Extremitäten herzustellen, da sie die Adipogenese unterstützen und durch die nur geringe und anpassbare Dicke die Kosmesis nicht beeinträchtigen. Für die Entwicklung von großvolumigem Fettgewebe stellt die adäquate Vaskularisierung noch immer eine große Herausforderung dar. Mit dem Ziel ein vaskularisiertes Fettkonstrukt herzustellen, ist es wichtig die langsame Kinetik der Revaskularisierung in vivo zu berücksichtigen. Daher wurde hier ein dezellularisiertes Schweinedarmsegment mit schon vorhandenen Gefäßstrukturen und Gefäßanschlüssen für die Verbindung zum Kreislaufsystem des Patienten oder eines Bioreaktor-Systems verwendet. Im ersten Schritt wurden auf einem kleinen dezellularisierten Schweinedarm-Stück die Zelladhäsion und die adipogene Differenzierung der ASC in Monokultur getestet. Die Zelladhäsion und die adipogene Reifung konnte mittels histologischer und molekularer Analysen auf dem jejunalen Material nachgewiesen werden. Nach der erfolgreichen Monokultur musste die Co-Kultur von MVEC (micro vaskuläre Endothelzellen) und ASC etabliert werden. Um dieses Ziel zu erreichen, wurden geeignete Kulturbedingungen gesucht, die die Lebensfähigkeit beider Zelltypen unterstützen und gleichzeitig die adipogene Differenzierung nicht beeinträchtigen. Nach dem Ausschluss von EGF (epidermaler Wachstumsfaktor) aus dem Co-Kulturmedium wurde eine substantielle adipogene Reifung der ASC beobachtet. Im nächsten Schritt wurde ein großes dezellularisiertes jejunales Darmsegment (Länge 8 cm) mit der schon existenten Gefäßstruktur und dem arteriellen und venösen Gefäßstiel an den spezialangefertigten Bioreaktor angeschlossen. Nach der erfolgreichen Wiederbesiedelung der Gefäßstrukturen mit Endothelzellen wurde das Darmlumen mit ASC besiedelt, welche anschließend adipogen induziert wurden. Histologische und molekulare Untersuchungen konnten die adipogenen Reifung und die Existenz von besiedelten Gefäßen im hergestellten Konstrukt bestätigen. Besonders erwähnenswert ist die Beobachtung der Co-Lokalisierung von adipogen differenzierenden ASC und Endothelzellen in vasculären Netzwerken. Somit wurde zum ersten Mal - basierend auf einem dezellularisierten Schweinedarm - ein vaskularisiertes Fettgewebskonstrukt in vitro hergestellt. Da dieses Konstrukt an das Versorgungssystem angeschlossen oder mit dem Blutkreislauf des Patienten verbunden werden kann, ist es vielfältig einsetzbar, zum Beispiel in der plastisch-rekonstruktiven Chirurgie, als Modell in der Grundlagenforschung oder als ein in vitro Medikamenten-Testsystem. Zusammengefasst, wurde in der vorgelegten Arbeit ein vielversprechendes Ersatzmaterial für die Rekonstruktion des Unterhautfettgewebes für die unteren und oberen Extremitäten entwickelt, und zum ersten Mal erfolgreich, so weit in der Literatur bekannt, ein Fettgewebskonstrukt mit integriertem vaskularisiertem Netzwerk in vitro generiert. KW - Tissue Engineering KW - Fettgewebe KW - Extrazelluläre Matrix KW - Vascularisation KW - adipose tissue engineering KW - subcutaneous fat layer KW - scar revision surgery KW - vascularized fat construct KW - Bioreactor System KW - extracellular matrix KW - adipose tissue Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-104676 ER - TY - THES A1 - Ramos Tirado, Mario T1 - Stammzellbasierte Behandlungsstrategien zur Stimmlippenaugmentation und laryngealen Defektrekonstruktion T1 - Stem cell-based treatment strategies for laryngoplasty and reconstruction of laryngeal defects N2 - Der Kehlkopf ist ein stimmerzeugendes knorpelhaltiges Organ und spielt eine wichtige Rolle in der Atemfunktion und beim aspirationsfreien Schluckakt. Funktionsstörungen des Kehlkopfs wie Stimmbandlähmungen werden durch Schädigungen des Kehlkopfnervs nach operativen Eingriffen und Halsverletzungen hervorgerufen. Des Weiteren führen durch Traumen, Teil- und komplette Resektionen verursachte Substanzdefekte des Kehlkopfs zu Funktionsverlusten. Die hierfür notwendigen und komplexen Rekonstruktionen werden durch das schlechte Regenerationspotential von Knorpelgewebe eingeschränkt und können nur bedingt durch synthetische Ersatzmaterialen oder körpereigenes Ersatzgewebe bewerkstelligt werden. Ist es möglich, mit Hilfe des Tissue Engineerings aus körpereigenen Stammzellen und biokompatiblen Trägermaterialien implantierbares Knorpelersatzgewebe herzustellen, welches zur dauerhaften Wiederherstellung der Kehlkopffunktionen eingesetzt werden kann? Die zusätzliche Markierung von Stammzellen mit superparamagnetischen Eisenoxidnanopartikeln (VSOP) als Zellmarker bietet die Möglichkeit der Detektion und der Verfolgung der Zellen mittels nicht-invasiver Nachweismethoden nach deren Implantation. Ist die Verwendung dieser Nanopartikel ohne negative Folgen für die Stammzellen möglich und sind diese für den Einsatz in der Laryngologie geeignet? Fettgewebsstammzellen (ASC) wurden aus humanem Liposuktionsmaterial und Kaninchen-Nackenfett isoliert und expandiert. Die Zellen wurden in Hydrogelkombinationen aus Kollagen Typ-I, Agarose, Fibrin und Hyaluronsäure eingebettet und mit den chondrogenen Wachstumsfaktoren TGF-β3, BMP-6 und IGF-I über 14 Tage differenziert. Anschließend wurden diese Zell-Hydrogelkonstrukte bezüglich Morphologie, extrazellulärer Matrixanreicherung und knorpelspezifischer Genexpression histologisch, immunhistochemisch und molekularbiologisch analysiert. In einem weiteren Schritt wurden die Integration der Zell-Hydrogelkonstrukte in natives Knorpelgewebe sowie die Defektdeckung in einem in vitro- und einem in vivo-Knorpeldefektmodell mit vor- und nicht-vordifferenzierten Zell-Hydrogelkonstrukten untersucht. Die Analyse möglicher zyto- und genotoxischer Effekte von VSOP sowie des Einflusses der Markierung von ASC mit VSOP auf die Proliferation, Migration und das Multidifferenzierungspotential erfolgte nach der Markierung der Zellen mit unterschiedlichen VSOP-Konzentrationen. Außerdem wurden VSOP-markierte ASC in Kaninchenstimmlippen injiziert und die Nachweisbarkeit dieser Zellen im Injektionsareal histologisch und mittels Magnetresonanztomographie (MRT) untersucht. Nach 14-tägiger chondrogener Differenzierung wurde in den Zell-Hydrogelkonstrukten eine knorpelähnliche Morphologie, die Anreicherung knorpelspezifischer Matrixproteine und die Expression chondrogener Markergene nachgewiesen. Die Kombination der chondrogenen Wachstumsfaktoren zeigte keinen verstärkenden Einfluss auf die Chondrogenese von ASC. Hydrogele aus Kollagen Typ I und Hyaluronsäure wiesen die stärkste extrazelluläre Matrixanreicherung auf. Bei den agarosefreien Hydrogelen war eine ausgeprägte Gelschrumpfung auffällig. In den beiden Knorpeldefektmodellen konnte weder eine Integration der Zell-Hydrogelkonstrukte in den Nativknorpel noch eine vollständige Defektdeckung nachgewiesen werden. Nach der Markierung von ASC mit VSOP zeigte sich bei der höchsten Konzentration von 1,5 mM eine genotoxische Wirkung. Zytotoxische Effekte sowie Einflüsse der Markierung auf die Proliferation, Migration und das Multidifferenzierungspotential von ASC waren nicht nachweisbar. VSOP-markierte ASC konnten nach deren Injektion in Kaninchenstimmlippen im Injektionsareal nur vereinzelt mittels MRT und histologisch nachgewiesen werden. Es ist möglich, mit Hilfe des Tissue Engineerings aus körpereigenen Stammzellen und biokompatiblen Trägermaterialien implantierbares knorpelähnliches Gewebe herzustellen. Dabei begünstigen agarosefreie Trägermaterialien die chondrogene Differenzierung von ASC. Diese könnte durch die jeweilige Erhöhung der Zelldichte und Wachstumsfaktorkonzentrationen sowie die Verlängerung der Induktionszeit verstärkt werden. Eine mögliche klinische Anwendung dieser knorpelähnlichen Gewebe in der Laryngologie ist jedoch durch deren Schrumpfung wie auch mangelnde Integration und Defektdeckung noch weit entfernt. Aufgrund ihrer genotoxischen Wirkung kann eine Verwendung von VSOP als Zellmarker auch unterhalb von 1,5 mM ohne negative Folgen für den Organismus nicht sicher ausgeschlossen werden. Der inhomogene Gewebekontrast im Kehlkopf, die schlechte Auflösung im MRT und die geringe Größe von VSOP erschweren die Nachweisbarkeit und Verfolgung markierter Zellen mittels MRT. Daher sind andere nicht-invasive Nachweismethoden für die Verwendung von VSOP im Kehlkopf zu evaluieren. Der möglichen Anwendung dieser knorpelähnlichen Gewebe und VSOP in der rekonstruktiven Laryngologie muss eine erfolgreiche Optimierung und ausführliche positive Validierung in klinischen Tests vorausgehen. N2 - The larynx is a voice-producing and cartilage-containing organ that plays an important role in the respiratory function and aspiration-free swallowing. Dysfunctions of the larynx, such as vocal cord paralysis, are caused by damage to the laryngeal nerve after surgery and neck injuries. Furthermore, tissue defects caused by trauma and partial or complete resection of the larynx lead to loss of functions. The required and complex reconstructions are limited by the poor regeneration potential of cartilage, and can only be partially accomplished by synthetic graft materials or autologous replacement tissue. Is it possible to generate implantable cartilage replacement tissues that can be used for permanent restoration of laryngeal functions out of autologous stem cells and biocompatible scaffolds by the means of tissue engineering? The supplementary labeling of stem cells with very small superparamagnetic iron oxide nanoparticles (VSOP) as cell markers offers the possibility to identify and trace the cells after their implantation using non-invasive detection methods. Can VSOP be used without negative consequences for the stem cells, and are these nanoparticles suitable for application in laryngology? Adipose tissue-derived stem cells (ASC) were isolated from human liposuction material and rabbit nuchal fat. After expansion, the cells were embedded in hydrogel combinations of collagen type I, agarose, fibrin and hyaluronic acid and then differentiated with the chondrogenic growth factors TGF-β3, BMP-6, and IGF-I for 14 days. Subsequently, these cell-seeded hydrogel constructs were analyzed histologically, immunohistochemically and molecular biologically regarding morphology, extracellular matrix accumulation and cartilage-specific gene expression. In a further step, the integration of pre- and non predifferentiated cell-seeded hydrogel constructs into native cartilage tissue and defect coverage were examined in cartilage defect models in vitro and in vivo. The analysis of potential cytotoxic and genotoxic effects of VSOP, as well as the influence of the nanoparticles on proliferation, migration, and multilineage potential of ASC, was performed after labeling the cells with different VSOP concentrations. In addition, VSOP-labeled ASC were injected into rabbit vocal folds and the detectability of these cells in the injection area was examined histologically and by magnetic resonance imaging (MRI). A cartilage-like morphology, the accumulation of cartilage-specific matrix proteins and the expression of chondrogenic marker genes, was observed in the cell-seeded hydrogel constructs after 14 days of chondrogenic differentiation. The combination of the chondrogenic growth factors had no reinforcing effect on the chondrogenesis of ASC. Hydrogels of collagen type I and hyaluronic acid showed the strongest extracellular matrix accumulation. A pronounced shrinkage was observed with agarose-free hydrogels. In the cartilage defect models neither an integration of the cell-seeded hydrogel constructs into the native cartilage nor a complete defect coverage were detected. The labeling of ASC with the highest VSOP concentration of 1.5 mM induced genotoxic effects. Cytotoxic effects and influences of labeling with VSOP on proliferation, migration and multilineage potential of ASC could not be observed. After their injection into rabbit vocal folds VSOP-labeled ASC were only sporadically detected histologically and by MRI in the injection area. It is possible to generate implantable cartilage-like tissues out of autologous stem cells and biocompatible scaffolds by the means of tissue engineering. Here, agarose-free scaffolds promote the chondrogenic differentiation of ASC. This may be enhanced by increasing the cell density and growth factor concentrations as well as extending the induction time. Because of their shrinkage and the lack of integration and defect coverage, a possible clinical application of these cartilage-like tissues in laryngology is still far away. Due to the genotoxic effects of 1.5 mM VSOP, the use of these nanoparticles as cell markers without negative consequences for the organism cannot be ruled out with certainty at lower concentrations. The inhomogeneous tissue contrast in the larynx, a poor resolution in MRI and the small size of VSOP make labeled cells difficult to detect and trace in the larynx by MRI. Therefore, other non-invasive detection methods for the use of VSOP in the larynx have to be evaluated. The potential application of these cartilage-like tissues and VSOP in reconstructive laryngology must be preceded by successful optimization and extensive positive validation in clinical trials. KW - Tissue Engineering KW - Hydrogele KW - Hydrogel KW - Fettgewebsstammzellen KW - Eisenoxidnanopartikel KW - Stammzelle KW - Kehlkopf Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117528 ER - TY - THES A1 - Weyhmüller Reboredo, Jenny T1 - Tissue Engineering eines Meniskus - Vom Biomaterial zum Implantat T1 - Tissue Engineering of a meniscus - from a biomaterial to the implant N2 - Der Meniskus, ein scheibenförmiger Faserknorpel, spielt im Kniegelenk eine bedeutende Rolle, weil er Kräfte und Druck im Kniegelenk gleichmäßig verteilt, Stöße dämpft sowie der Kraftübertragung und Stabilisierung dient. Durch die Entfernung des Gewebes, der sogenannten Totalmeniskektomie, nach einer Meniskusverletzung oder einem Riss, verändern sich die mechanischen Eigenschaften des Gelenks stark und verursachen durch die erhöhte Belastung der Gelenkflächen Arthrose. Arthrose ist weltweit die Häufigste aller Gelenkerkrankungen. Der Erhalt der körperlichen Leistungsfähigkeit und Mobilität bis ins hohe Alter sowie die Bewahrung der Gesundheit von Herz-Kreislauf- und Stoffwechselorganen zählen aufgrund des demografischen Wandels zu den großen medizinischen Herausforderungen. Die Erkrankung des muskuloskelettalen Systems stellte 2010 im Bundesgebiet die am häufigsten vorkommende Krankheitsart dar. Während Risse in den äußeren Teilen des Meniskus aufgrund des Anschlusses an das Blutgefäßsystem spontan heilen können, können sie dies in tieferen Zonen nicht. Durch die begrenzte Heilungsfähigkeit des Knorpels bleibt langfristig der Einsatz eines Ersatzgewebes die einzige therapeutische Alternative. In der vorliegenden Arbeit wurde als therapeutische Alternative erfolgreich ein vaskularisiertes Meniskusersatzgewebe mit Methoden des Tissue Engineering entwickelt. Es soll in Zukunft als Implantat Verwendung finden. Tissue Engineering ist ein interdisziplinäres Forschungsfeld, in dem Gewebe außerhalb des Körpers generiert werden. Schlüsselkomponenten sind Zellen, die aus einem Organismus isoliert werden, und Trägerstrukturen, die mit Zellen besiedelt werden. Die Biomaterialien geben den Zellen eine geeignete Umgebung, die die Extrazelluläre Matrix (EZM) ersetzen soll, um die Funktion der Zellen beizubehalten, eigene Matrix zu bilden. Zum Erhalt eines funktionelles Gewebes werden oftmals dynamische Kultursysteme, sogenannte Bioreaktoren, verwendet, die natürliche Stimuli wie beispielsweise den Blutfluss oder mechanische Kompressionskräfte während der in vitro Reifungsphase des Gewebes, zur Verfügung stellen. Das Gewebekonstrukt wurde auf Basis natürlicher Biomaterialien aufgebaut, unter Verwendung ausschließlich primärer Zellen, die später direkt vom Patienten gewonnen werden können und damit Abstoßungsreaktionen auszuschließen sind. Da der Meniskus teilvaskularisiert ist und die in vivo Situation des Gewebes bestmöglich nachgebaut werden sollte, wurden Konstrukte mit mehreren Zelltypen, sogenannte Ko-Kulturen aufgebaut. Neben mikrovaskulären Endothelzellen (mvEZ) und Meniskuszellen (MZ) erfolgten Versuche mit mesenchymalen Stammzellen (MSZ). Zur Bereitstellung einer zelltypspezifischen Matrixumgebung, diente den mvEZ ein Stück Schweinedarm mit azellularisierten Gefäßstrukturen (BioVaSc®) und den MZ diente eine geeig- nete Kollagenmatrix (Kollagen Typ I Hydrogel). Die Validierung und Charakterisierung des aufgebauten 3D Meniskuskonstrukts, welches in einem dynamischen Perfusions-Bioreaktorsystem kultiviert wurde, erfolgte mit knorpeltypischen Matrixmarkern wie Aggrekan, Kollagen Typ I, II und X sowie mit den Transkriptionsfaktoren RunX2 und Sox9, die in der Knorpelentstehung von großer Bedeutung sind. Zusätzlich erfolgten Auswertungen mit endothelzellspezifischen Markern wie vWF, CD31 und VEGF, um die Vaskularisierung im Konstrukt nachzuweisen. Analysiert wurden auch die Zellvitalitäten in den Konstrukten. Aufgrund einer nur geringen Verfügbarkeit von MZ wurden Kulturansätze mit alternativen Zellquellen, den MSZ, durchgeführt. Dafür erfolgte zunächst deren Isolation und Charakterisierung und die Auswahl einer geeigneten 3D Kollagenmatrix. Die beste Zellintegration der MSZ konnte auf einer eigens hergestellten elektrogesponnenen Matrix beobachtet werden. Die Matrix besteht aus zwei unterschiedlichen Kollagentypen, die auf insgesamt fünf Schichten verteilt sind. Die Fasern besitzen weiter unterschiedliche Ausrichtungen. Während die Kollagen Typ I Fasern in den äußeren Schichten keiner Ausrichtung zugehören, liegen die Kollagen Typ II Fasern in der mittleren Schicht parallel zueinander. Der native Meniskus war für den Aufbau einer solchen Kollagen-Trägerstruktur das natürliche Vorbild, das imitiert werden sollte. Nach der Besiedelung der Matrix mit MSZ, konnte eine Integration der Zellen bereits nach vier Tagen bis in die Mittelschicht sowie eine spontane chondrogene Differenzierung nach einer insgesamt dreiwöchigen Kultivierung gezeigt werden. Das Biomaterial stellt in Hinblick auf die Differenzierung der Zellen ohne die Zugabe von Wachstumsfaktoren eine relevante Bedeutung für klinische Studien dar. Zur Kultivierung des 3D Meniskuskonstrukts wurde ein Bioreaktor entwickelt. Mit diesem können neben Perfusion der Gefäßsysteme zusätzlich Kompressionskräfte sowie Scherspannungen auf das Ersatzgewebe appliziert und die Differenzierung von MZ bzw. MSZ während der in vitro Kultur über mechanische Reize stimuliert werden. Ein anderes Anwendungsfeld für den neuartigen Bioreaktor ist seine Verwendung als Prüftestsystem für die Optimierung und Qualitätssicherung von Gewebekonstrukten. N2 - The meniscus, a disk-shaped fibrous cartilage, plays an important role in the equal distribution of pressure, shock absorption, power transmission and stability within the knee joint. After a meniscus injury or a meniscus tear, a total meniscectomy is done where the complete tissue is removed. This leads to a change of mechanical properties in the joint and causes arthrosis by an increased strain on the joint surfaces. Wordwide arthrosis is the most frequent of all joint diseases. Due to the demographic change, maintaining physical fitness and mobility up to an old age are the main challenges besides ensuring health of the heart and circulatory system and of the metabolic organs. Musculoskeletal disorders represented the most frequent type of disease in Germany in 2010. While tears in the outer zone of the meniscus heal spontaneously because of its connection to the blood vessel system, tears in the deeper zones do not heal. Due to the limited healing capacity of cartilage the use of a replacement tissue is the only therapeutic alternative in the long run. In the present work a vascularized meniscus construct as therapeutic alternatives has been developed with the Tissue Engineering method for the further use as an implant. Tissue En- gineering is an interdisciplinary research field to generate tissues outside the body. The key components are isolated cells from an organism, and scaffolds, which are seeded with cells. Biomaterials provide a suitable environment that replaces the extracellular matrix (ECM) to maintain cell functionality to let cells build up their own matrix. To maintain a functional tissue during in vitro dynamic culture, bioreactor systems are used to provide natural stimuli such as blood flow or mechanical compression forces. The tissue construct is based on natural biomaterials and solely on primary cells, which later can be isolated directly from the patient and thereby exclude repulsion reactions. Due to its limited vascularity of the meniscus and the aim to build up at its best the in vivo situation more than one cell type is used to generate constructs, so called co-culture systems. Mesen- chymal stem cells (MSZ) besides microvascular endothelial cells (mvEZ) and meniscus cells (MZ) were used in the experiments. To supply a cell type specific matrix environment, a segment of a porcine jejunum with decellularized vascular structures (BioVaSc®) for the mvEZ and a collagen based matrix (collagen type I hydrogel) for the MZ were employed. The validation and characterization of the de- veloped 3D meniscus construct, that was cultured in a dynamic perfusion bioreactor system, was performed by using cartilage matrix specific markers, such as aggrecan, collagen type I, II and X, as well as the transcription factors RunX2 and Sox9 that are of major importance for cartilage development. Further analysis with endothelial cell specific markers, such as vWF, CD31 and VEGF were performed to evaluate the vascularization of the construct. Furthermore, cell vitality tests of the construct were made. Because of the limited availability of primary MZ, culture approaches with MSZ as an alter- native cell source were investigated. Cell isolation and characterization were performed and a suitable 3D collagen matrix was selected. The best cell integration of the MSZ could be observed on a specifically engineered electrospun matrix. The matrix consists of two different collagen types that are arranged in a total of five layers. The fibers are further orientated in different directions. While outer layers consist of randomly-aligned collagen type I fibers, the collagen type II fibers in the middle layer are aligned parallel to each other. The native meniscus tissue serves as natural example and its structure is replicated in such a collagen scaffold. After seeding the scaffold with MSZ, cell integration into the middle layer could be observed after four days, as well as a spontanous chondrogenic differentation after three weeks of culture. The biomaterial developed in this work has to be considered as relevant for clinical studies with regard to cell differentiation without adding growth factors to the culture. For the culture of 3D meniscus construct a bioreactor was successfully developed, that can apply compressive strength and shear stress to the tissue model in addition to perfusing the vascular system. With these measures the differentiation of MZ or MSZ could be induced with mechanical strains during the in vitro culture. Another field of application for the new bioreactor is its use as a test system for the optimization and quality control of the tissue models. KW - Tissue Engineering KW - Meniskustransplantation KW - Bioreaktor KW - Gewebekultur KW - Biomaterial KW - Elektrospinning KW - Implantatentwicklung Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-108477 ER - TY - THES A1 - Dally, Iris T1 - Entwicklung eines bioartifiziellen Rekonstruktionsgewebes für die Luftröhrenchirugie und Umsetzung in einen GMP-Prozess T1 - Development of a bioartificial tissue for reconstruction of the trachea and its implementation in a GMP process N2 - Das Ziel dieser Arbeit war die Entwicklung eines vaskularisierten, autologen Implantats zur Behandlung von schweren Verletzungen der Trachea im Umfeld der guten Herstellungspraxis. Die Matrix besteht aus einem circa 14 cm langen Stück porcinen, azellularisierten Dünndarm und BioVaSc (Biological Vascularized Scaffold) genannt wird. Dieses wird dann mit isolierten und kultivierten Zellen des Patienten besiedelt und reift für zwei Wochen in einem speziell hierfür entwickelten Bioreaktorsystem. Danach erfolgt die Analyse bzw. die Implantation in den Patienten. Nach der Präparation und Überprüfung der Qualität, erfolgte die Azellularisierung der BioVaSc zur Entfernung der porcinen Zellen und der enzymatische Abbau der DNS, unter Erhalt des natürlichen Gefäßsystems. Hierfür ist Natriumdesoxycholat verwendet worden, wobei Rückstände davon das Ansiedeln der autologen Zellen negativ beeinflussen könnten. Deshalb wurde ein Test etabliert, mit dessen Hilfe, das Auswaschen der Azellularisierungsdetergenz bis zur Sterilisation nachweisbar war. Des Weiteren könnten in der BioVaSc natürlicherweise enthaltene Endotoxine Immunreaktionen im späteren Empfänger auslösen. Die gesetzlichen Grenzwerte konnten durch Modifikationen des Protokolls, unter Berücksichtigung der guten Herstellungspraxis, erreicht werden. Weiterhin konnte histologisch eine weitgehende DNS- und Zellfreiheit nachgewiesen werden, in der quantitativen Analyse ergab sich eine Abreicherung von 97% im Vergleich zum Ausgangsmaterial. Zur Bestimmung der funktionellen Stabilität der azellularisierten Matrix wurde die maximal tolerable Zugspannung bestimmt. Zur Besiedlung der Gefäße der Matrix wurden mikrovaskuläre Endothelzellen und für das Lumen Fibroblasten und Skelettmuskelzellen verwendet. Die Protokolle zur Isolation und Kultur sind hierzu unter den Bedingungen der guten Herstellungspraxis etabliert, optimiert und mit, soweit möglich, zertifizierten Reagenzien durchgeführt worden. Zur genauen Charakterisierung der Zellen wurden diese immunhistologisch über vier Passagen analysiert, wobei sich je nach Zelltyp und Differenzierungsstadium unterschiedliche Expressionsmuster ergaben. Zur Herstellung des autologen Implantats wurden zunächst die mikrovaskulären Endothelzellen in das vorhandene Gefäßsystem der BioVaSc eingebracht und dann für sieben Tage im etablierten Bioreaktorsystem kultiviert. Danach erfolgte die Besiedlung des Lumens mit Skelettmuskelzellen und Fibroblasten und die weitere siebentägige Kultur im Bioreaktorsystem. Die Besiedlung des Gefäßsystems musste optimiert werden, um sowohl die Besiedlungsdichte zu steigern als auch die Effizienz zu erhöhen. Das Lumen konnte mit der etablierten Methode vollständig besiedelt werden. Nach vierzehntägiger Kultur im Bioreaktorsystem erfolgte die Kontrolle der Zellvitalität, wobei sowohl in den Gefäßstrukturen als auch im Lumen der BioVaSc vitale Zellen nachweisbar waren. Histologische Analysen zeigten, dass die mikrovaskulären Endothelzellen in den verbliebenen vaskulären Strukturen CD31 und den vWF exprimieren. Wohingegen die histologische Unterscheidung zwischen Fibroblasten und Skelettmuskelzellen nicht möglich ist. Zusätzlich wurde die BioVaSc mit upcyte mvEC der Firma Medicyte besiedelt. Nach der vierzehntägigen Kultur im Bioreaktorsystem waren die Zellen sowohl in den Gefäßstrukturen als auch im Lumen und im Bindegewebe vital nachweisbar. In der histologischen Analyse konnte die Ausbildung von CD31, eNOS und vWF nachgewiesen werden. Des Weiteren wurde die Matrix mit mesenchymalen Stammzellen besiedelt, um zu analysieren, ob die Scherkräfte die Ausbildung endothelialer Marker stimulieren können. Nach vierzehntägiger Kultur konnte in den histologischen Analysen keine Ausbildung von CD31 oder dem vWF gefunden, allerdings vitale Zellen nachgewiesen werden. N2 - In this work, a vascularized implant for the treatment for tracheal defects was developed according to GMP standards. For this purpose, a part of porcine small intestine was prepared, decellularized and sterilized. The remaining matrix, trademarked BioVaSc “Biological, Vascularized Scaffold”, was colonized with isolated and cultured cells from the patient and then matured for two weeks in a bioreactor system. Finally, the prepared for implantation autologous implant was extensively characterized. After the integrity check of the vessel system the decellularization process was started, which is performed by removing the porcine cells with sodium desoxycholat and enzymatic degradation of the residual DNA. As traces of sodium desoxycholat could negatively affect the seeding of the autologous cells, a test was established to demonstrate the depletion of sodium desoxycholat to acceptable traces in the final matrix preparation. Furthermore, the porcine starting material for the BioVaSc contains endotoxins, which could trigger immune reactions in the recipient if not efficiently removed. The legal limit for endotoxine levels in pharmaceutical products could be achieved through modifications of the protocol. In order to establish a GMP compliant process, specially certified chemicals were used wherever possible. The protocol was optimized until histological analysis showed only few residual cells and DNA residues. The quantitative DNA analysis revealed a decrease of 97 % of the initial DNA content. To determine storage stability, a tensile test to check elasticity of the BioVaSc was established. To colonize the matrix, autologous microvascular endothelial cells, fibroblasts and skeletal muscle cells were used. The protocols were established and optimized under GMP conditions and, wherever possible, certified reagents were used. For accurate characterization of these cells, immunohistology analyses were performed at each of the four passages for all cell types. For the final manufacturing of the autologous implant, microvascular endothelial cells were introduced into the vascular system of the BioVaSc and were cultured for seven days in a custom made bioreactor system under defined shear stress conditions resembling the human blood pressure. This was followed by culturing of skeletal muscle cells and fibroblasts in the lumen of the gut, followed by an additional seven-day culture period. Colonization of the vascular system had to be optimized in order to increase the population density as well as the efficiency of reseeding. The lumen was fully populated with fibroblasts and skeletal muscle cells by the established protocol. However, the discrimination between fibroblasts and skeletal muscle cells with normal histology was difficult because no fitting antibody was available. After a two-week culture in the custom made bioreactor system the analysis showed vital cells in the vascular structures and in the lumen of the BioVaSc. Further histological analysis were performed. In order to explore alternative cell sources, the BioVaSc was reseeded with upcyte mvEC. These transfected cells are highly proliferative and show typical endothelial markers. After fourteen days of culture in the bioreactor system, cells could be detected in vascular structures, lumen and in connective tissue. Live / dead staining and MTT identified vital cells within vascular structures. The histological analysis revealed expression of CD31, eNOS and vWF. Furthermore, the matrix was reseeded with mesenchymal stem cells; to test if shear stress triggers differentiation into endothelial like cells. This was checked through displaying the corresponding endothelial markers in histological analyses. After fourteen days of culture in the bioreactor system, histological analyzes show no expression of CD31 or vWF factor. Vital cells could be detected. KW - Regenerative Medizin KW - Luftröhre KW - GMP-Regeln KW - bioartifizielles Rekonstruktionsgewebe KW - bioartificial tissue KW - Tissue Engineering KW - Advanced Therapy Medicinal Product KW - Arzneimittel für neuartige Therapien KW - windpipe KW - Trachea Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-98422 ER - TY - THES A1 - Dickhuth, Janike T1 - Steigerung der Proliferationsfähigkeit primärer humaner Keratinozyten aus oraler Mukosa im Zellkultursystem durch Anreicherung von humanen epidermalen Stammzellen T1 - Enhanced proliferation of oral mucosal keratinocytes by the use of enriched human epidermal stem cells in vitro N2 - Da Defekte im Bereich der oralen Schleimhaut infolge von Traumata, angeborenen sowie erworbenen Krankheiten die ungestörte Funktionsweise in Bezug auf Atmung, Nahrungsaufnahme und Sprache des Menschen empfindlich beeinträchtigen und ein adäquater, alle Funktionen wiederherstellender Wundverschluss mit dem limitierten Eigengewebe oft nicht möglich ist, bietet das Tissue Engineering durch die Entwicklung eines Hautäquivalents eine aussichtsreiche Alternative. Um eine ausreichende Menge an Zellen für die Herstellung eines autologen Transplantates in kurzer Zeit zur Verfügung zu stellen, sollte in der vorliegenden Arbeit eine Methode zur Steigerung der Proliferationsfähigkeit primärer humaner Keratinozyten aus oraler Mukosa im Zellkultursystem etabliert werden. Dazu mussten zunächst über die Explantation von Gewebeproben gesunder Patienten orale Schleimhautzellen gewonnen und die primären Keratinozyten von den mitwachsenden Fibroblasten isoliert werden. Dies wurde durch chemische und mechanische Separationsmethoden erreicht. Die Kultivierung der exprimierten Zellen erfolgte unter ständiger Beobachtung und physiologischen Bedingungen über einen Zeitraum von mehreren Wochen. Nach Konfluenz der zweiten Passage wurden die Zellen geerntet und für die Versuche vorbereitet. Die Steigerung der Proliferationsfähigkeit der Keratinozyten sollte durch die Anreicherung epidermaler Stammzellen erreicht werden, da diese insbesondere durch ihre Fähigkeit zur asymmetrischen Teilung die Grundlage für die Regeneration, Differenzierung und Homöostase des Gewebes bilden. Eine Möglichkeit zur Isolation von Zellen mit Stammzelleigenschaften stellt die Adhäsion an beschichteten Zellkulturgefäßen dar. Die Affinität des hauptsächlich in Stammzellen vorkommenden ß1­‐Integrin‐Rezeptors zu Bestandteilen der Basalmembran wie Kollagen­‐IV und Laminin sollte die Trennung hoch proliferativer Zellen von weniger teilungsaktiven Zellen leisten und das Protein indirekt als Marker für die Stammzellen fungieren. Über die Adhäsion der Keratinozyten an mit den Komponenten Kollagen‐IV und Laminin beschichteten Gefäßen ließen sich zwei Zellpopulationen (adhärente und nicht-adhärente Zellen) gewinnen. Unabhängig von der verwendeten Adhäsionskomponente zeigten die Fraktionen den charakteristischen Wachstumsverlauf (lag­‐Phase, log­‐ Phase, stationäre Phase und Absterbephase) in vitro kultivierter Zellen, allerdings konnte kein signifikanter Unterschied in Bezug auf die Vitalität und die Proliferationskinetik der Keratinozyten festgestellt werden. Eine nach der geleisteten Auftrennung der Keratinozyten zwischengeschaltete Analyse und Identifikation von Stammzellen mittels ß1­‐Integrin­‐Marker (z.B. durch einen Immunfluoreszenztest) könnte klären ob die adhärente Population überhaupt einen erhöhten Anteil an hoch proliferativen Keratinozyten beinhaltet oder ob die zahlreichen notwendigen, aber für die Zellen belastenden, Zwischenschritte der hier angewendeten indirekten Methode auslösend für die geringen Unterschiede sind. In Anlehnung an die von Stein et al. erarbeiteten guten Ergebnisse bezüglich der Proliferationskapazität oraler Keratinozyten nach Adhäsion an Kollagen­‐IV­‐beschichteten Zellkulturgefäßen wurde bei der vorliegenden Arbeit auf die aufwändige immunhistochemische Untersuchung verzichtet. Ein verstärktes Wachstum der adhärenten Population konnte nur bei vereinzelten Proben festgestellt werden; insgesamt konnte die prioritär gewünschte Steigerung der Proliferation primärer humaner Keratinozyten im Zellkultursystem zur raschen Bereitstellung von Zellen für die Entwicklung eines autologen Mundschleimhaut‐Transplantates nicht erreicht werden. Die drei angewandten Verfahren zur Erfassung der Quantität führten hinsichtlich der Wachstumssteigerung zu ähnlichen Ergebnissen. Da sie aber zum einen durch das Wegfallen der für die Zellzählung und den WST‐1‐Test notwendigen Zwischenschritte eine non­‐invasive (ohne mechanische Irritation und Interaktion mit Zusatzstoffen), d.h. für die Zellen schonende Methode darstellt und sich zum anderen die Ergebnisse der Real-Time-­Zellanalyse, im Gegensatz zur Endpunkt-­Messung, direkt auf die vorangegangenen Messungen beziehen, überzeugte die Auswertung mittels Impedanzmessung in Genauigkeit und Darstellung der Veränderung des Zellwachstums über die Zeit. N2 - PURPOSE The limited availability of autogenous oral mucosa in oral and maxillofacial surgery for intraoral grafting after trauma or tumor resection can be balanced by the use of tissue engineered oral mucosa. The aim of this study was to evaluate conditions that lead to a rapid proliferation of vital and highly proliferative oral keratinocytes for application in tissue engineering. MATERIAL AND METHODS Human oral keratinocytes were obtained from oral mucosal specimens and cultivated. According to their affinity to β1-integrin, epidermal stem cells population were isolated using collagen type IV and laminin coated dishes. Cell proliferation and cell viability were measured using the CASY cell counter, WST-1 assays, and real-time cell analysis (xCELLigence). RESULTS Measurements on cell proliferation (CASY cell counter) and cell viability (WST-1 assay) showed the characteristic proliferation stages of in-vitro cultivated cells. No statistically significant differences could be monitored. Real-time cell analysis as a more direct and precise technique revealed a steeper growth curve of adherent cells and therefore generally higher proliferation kinetics compared to cells derived from the supernate. DISCUSSION Data from real-time cell analysis showed an increased proliferation of adherent cells compared to those derived from the supernate. These results demonstrate the increase of the proliferation capacity by cultivation of keratinocytes derived by adhesion to ECM proteins. KW - Tissue Engineering KW - Keratinozyt KW - Basalmembran KW - Zellkultur KW - Tissue Engineering KW - Keratinozyt KW - Proliferationsfähigkeit KW - Kollagen KW - Laminin Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-94084 ER - TY - THES A1 - Hoppensack, Anke T1 - Entwicklung eines humanen In-vitro-Modells des renalen proximalen Tubulus T1 - Development of a human in vitro model of the renal proximal tubule N2 - Die Epithelzellen des renalen proximalen Tubulus resorbieren große Mengen an Wasser, Glucose und weiteren wertvollen Substanzen aus dem Primärharn, um deren Ausscheidung zu verhindern. Weiterhin sekretieren sie harnpflichtige Substanzen in den Primärharn und sind in der Lage, in die Zelle aufgenommene Substanzen enzymatisch umzusetzen. Diese Funktionen machen den renalen proximalen Tubulus zu einer wichtigen Einheit für die Nie-renfunktion. Sie führen aber auch zu einer hohen Empfindlichkeit gegenüber toxischen Effek-ten von Fremdstoffen. Daher ist ein In-vitro-Modell des renalen proximalen Tubulusepithels sowohl für die Erforschung physiologischer und pathologischer Mechanismen als auch zur Testung der Toxizität von Substanzen, insbesondere neuen Arzneimitteln, bedeutend. Ein weiteres Forschungsfeld, für das ein In-vitro-Gewebe von großem Nutzen wäre, ist die Ent-wicklung von bioartifiziellen Nierenersatzsystemen. Aufgrund Spezies-spezifischer Unterschiede, z.B. in der Expression von Transportproteinen und Enzymen, ist ein Modell mit humanen Zellen anzustreben. Bisher besteht jedoch ein Mangel an Modellen, die das renale proximale Tubulusepithel für die oben genannten An-wendungsbereiche adäquat abbilden. Das Ziel dieser Arbeit war deshalb der Aufbau eines humanen In-vitro-Modells des renalen proximalen Tubulus unter Verwendung von humanen Nierenzellen (human kidney-derived cells, hKDCs), die Eigenschaften renaler Vorläuferzellen aufweisen. In Kombination mit die-sen Zellen wurden verschiedene Kultursubstrate getestet. Dabei zeigte sich, dass die Zellen sowohl in Zellkulturplatten als auch auf Kollagen-Typ-I-beschichteten Insertmembranen mehrschichtig wachsen, ohne die typische Morphologie renaler proximaler Tubuluszellen auszubilden. In einem dreidimensionalen Kollagen-Typ-I-Hydrogel bildeten die hKDCs hin-gegen tubuläre bzw. zystäre Strukturen mit einer kubischen bis hochprismatischen Morpho-logie. Da für die oben erwähnten Anwendungsbereiche jedoch eine planare Zellschicht benö-tigt wird, erfolgte die Testung weiterer biologischer Matrices. Diese waren die Small intestinal submucosa (SIS) und das Biological vascularized scaffold (BioVaSc). Beide ließen sich aus porcinem Dünndarm herstellen, wobei bei der SIS die Mucosa sowie das Mesenterium ent-fernt wurden. Bei der BioVaSc handelt es sich um ein Darmsegment mit erhaltenem Ge-fäßsystem, dass zur Perfusion genutzt wird. Nach ihrer Kultur auf der SIS wiesen die hKDCs das typische Wachstum und die charakteris-tische Morphologie des renalen proximalen Tubulusepithels auf. Dazu gehören die Kontakt-hemmung, die das einschichtige Wachstum ermöglicht, die kubisch bis hochprismatische Morphologie sowie die Bildung eines Bürstensaums an der apikalen Zellmembran. Anhand einer Kollagen-Typ-IV- und einer Alcianblau-Färbung ließ sich die Bildung einer Basalmemb-ran an der Grenze zur SIS nachweisen. Bürstensaum- und Basalmembranbildung zeigten die zelluläre Polarisierung. Weiterhin waren typische Markerproteine renaler proximaler Tu-buluszellen wie N-Cadherin und Aquaporin-1 immunhistochemisch, zum Teil deutlich stärker als bei den Ausgangszellen, nachweisbar. Dies belegt einen positiven Einfluss der extrazellu-lären Matrixkomponenten der SIS auf die Ausbildung von Charakteristika des renalen proxi-malen Tubulusepithels. Die Albuminaufnahme als spezifische Funktion war ebenfalls nach-weisbar. Die molekularen Veränderungen der hKDCs während der Kultivierung auf der SIS ließen sich weiterhin mittels Raman-Spektroskopie bestätigen. Aufgrund der starken Interak-tion zwischen Tubulusepithel und umgebenden Kapillarnetzwerk wurde weiterhin die Co-Kultur mit Endothelzellen etabliert. Für den Vergleich der hKDCs mit einer etablierten humanen Zelllinie renaler proximaler Tu-buluszellen wurde die HK-2-Zelllinie verwendet. Mit dieser Zelllinie ließen sich die Ergebnisse der hKDCs jedoch nicht reproduzieren, was auf die fehlende Sensitivität der transformierten Zelllinie auf die Substrateigenschaften zurückzuführen ist. In der dynamischen Kultur mit der BioVaSc als Matrix waren ein inhomogenes Wachstum sowie eine variierende Markerexpression zu beobachten. Die ließ sich vor allem auf den starken Einfluss der Aussaatdichte sowie die Festigkeit der Matrix zurückführen. Bei einer erfolgreichen Optimierung der Kultur kann dieses Modell jedoch für komplexere Studien in der pharmakologischen Entwicklung nützlich sein. Mit der Kombination aus hKDCs und SIS ist es gelungen, eine einzelne, durchgängige Zell-schicht zu generieren, die wichtige Charakteristika des renalen proximalen Tubulusepithels aufweist. Weitere Untersuchungen sind nun nötig, um die Funktionalität des Modells weiter-gehend zu charakterisieren (z.B. der Transport von Substanzen und Sensitivität gegenüber toxischen Substanzen). Anschließend kann es für die spezifischen Anwendungen weiterentwickelt werden. N2 - The epithelial cells of the renal proximal tubule resorb high amounts of water, glucose and other valuable substances from the primary urine to prevent their excretion. Furthermore, they secrete metabolic waste products into the primary urine and are able to enzymatically alter absorbed substances. These functions make the renal proximal tubule an important unit for kidney function, but also lead to a high sensitivity towards toxicity of xenobiotics. There-fore, an in vitro model of the renal proximal tubular epithelium is important not only for the investigation of physiological and pathological processes, but also for toxicity testing of sub-stances, in particular, new pharmaceuticals. A further research area, for which an in vitro tis-sue would be of great value, is the development of bioartificial kidney assist devices. Due to species-specific differences, e.g. regarding the expression of transport proteins and enzymes, a model with human cells should be aimed. Until recently, there has been a lack of models that adequately simulate the renal proximal tubular epithelium for the above men-tioned fields. Therefore, the aim of this work was to develop a human in vitro model of the renal proximal tubule using human kidney-derived cells (hKDCs), which exhibit renal progenitor cell charac-teristics. Different culture substrates were tested in combination with these cells. hKDCs in cell culture plates as well as on collagen type I-coated insert membranes grew in multilayers without developing the typical morphology of renal proximal tubular cells. In contrast, in a three-dimensional collagen type I hydrogel, hKDCs formed tubular and cystic structures with a cubic to high-prismatic morphology. However, since a planar cell layer is required for the above mentioned research fields, small intestinal submucosa (SIS) and the biological vascu-larized scaffold (BioVaSc) were tested, which are both made of porcine small intestine. For SIS production, the mucosa and the mesenterium were removed, whereas the BioVaSc is a segment of the small intestine with a preserved vascular system, which can be used for per-fusion. Following their culture on the SIS, hKDCs featured the typical growth and characteristic mor-phology of the renal proximal tubule epithelium. hKDCs were contact-inhibited, which allows monolayered growth; they had a cubic to high-prismatic morphology and developed a brush border at their apical cell membrane. By collagen type IV and alcian blue staining, the for-mation of a basement membrane at the cell-matrix border was detectable. Brush border and basement membrane formation showed cellular polarization. Furthermore, marker proteins of renal proximal tubular cells such as aquaporin-1 and N-cadherin were shown by immuno-histochemistry, which were partially stronger than before SIS culture. This demonstrates a positive influence of the extracellular matrix components of the SIS on the development of characteristics of the renal proximal tubular epithelium by hKDCs. Albumin uptake as a spe-cific function was likewise detectable. The molecular changes of hKDCs during their culture on the SIS were also identified by Raman spectroscopy. Due to the strong interaction of the tubule epithelium with the peritubular capillaries, the co-culture of hKDCs with endothelial was established as well. For comparison of hKDCs with a well-established human cell line of renal proximal tubular origin, the HK-2 cell line was used. With this cell line, the results of hKDCs were not repro-ducible, which can be explained by the lacking sensitivity of the transformed cell line towards the substrate properties. In the dynamic culture with the BioVaSc scaffold, an inhomogeneous growth and a varying marker expression were observed. This was ascribed to the strong influence of the cell seed-ing density and the low matrix stiffness. If successfully optimized, this culture model can be useful for more complex studies in the pharmacological development. In summary, with the combination of hKDCs and the SIS, a single, continuous cell layer could be generated that exhibits essential characteristics of the renal proximal tubular epithelium. More studies are required to further characterize the functionality of the model (e.g. transport of substances and sensitivity towards toxic substances). Subsequently, it can be further de-veloped for specific applications. KW - Niere KW - In vitro KW - Tissue Engineering KW - Gewebekultur KW - Zellkultur KW - Tissue Engineering KW - Kidney KW - in vitro Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-81562 ER - TY - THES A1 - Scheller, Katharina T1 - Charakterisierung und Anwendung von humanen, primären mikrovaskulären Endothelzellen mit erweiterter Proliferationsfähigkeit T1 - Characterization and application of human primary microvascular endothelial cells with extended proliferation capacity N2 - Das Arbeitsgebiet Tissue Engineering befasst sich mit der Klärung der Mechanismen, die der Funktionen verschiedener Gewebearten zu Grunde liegen sowie mit der Entwicklung alternativer Strategien zur Behandlung von Organversagen bzw. Organverlusten. Einer der kritischsten Punkte im Tissue Engineering ist die ausreichende Versorgung der Zellen mit Nährstoffen und Sauerstoff. Bioartifizielle Gewebe mit einer Dicke von bis zu 200 µm können mittels Diffusion ausreichend versorgt werden. Für dickere Transplantate ist die Versorgung der Zellen alleine durch Diffusion jedoch nicht gegeben. Hierfür müssen Mechanismen und Strategien zur Prävaskularisierung der artifiziellen Gewebekonstrukte entwickelt werden, damit die Nährstoff- und Sauerstoffversorgung aller Zellen, auch im Inneren des Transplantates, von Anfang an gewährleistet ist. Eine wichtige Rolle bei der Prävaskularisierung spielt die Angiogenese. Dabei ist die Wahl einer geeigneten Zellquelle entscheidend, da die Zellen die Basis für die Angiogenese darstellen. Mikrovaskuläre Endothelzellen (mvEZ) sind maßgeblich an der Angiogenese beteiligt. Das Problem bei der Verwendung von humanen primären mvEZ ist ihre geringe Verfügbarkeit, ihre limitierte Proliferationskapazität und der schnelle Verlust ihrer typischen Endothelzellmarker in-vitro. Der Aufbau standardisierter in-vitro Testsysteme ist durch die geringe Zellausbeute auch nicht möglich. Die upcyte® Technologie bietet hierfür einen Lösungsansatz. In der vorliegenden Arbeit konnten upcyte® mvEZ als Alternative zu primären mvEZ generiert werden. Es konnte gezeigt werden, dass die Zellen eine erweiterte Proliferationsfähigkeit aufweisen und im Vergleich zu primären mvEZ durchschnittlich 15 zusätzliche Populationsverdopplungen leisten können. Dadurch ist es möglich 3x104-fach mehr upcyte® mvEZ eines Spenders zu generieren verglichen mit den korrespondierenden Primärzellen. Die gute und ausreichende Verfügbarkeit der Zellen macht sie interessant für die Standardisierung von in-vitro Testsystemen, ebenso können die Zellen zur Prävaskularisierung von Transplantaten eingesetzt werden. Upcyte® mvEZ zeigen zahlreiche Primärzellmerkmale, die in der Literatur beschrieben sind. Im konfluenten Zustand zeigen sie die für primäre mvEZ spezifische pflastersteinartige Morphologie. Darüber hinaus exprimieren upcyte® mvEZ typische Endothelzellmarker wie CD31, vWF, eNOS, CD105, CD146 und VEGFR-2 vergleichbar zu primären mvEZ. Eine weitere endothelzellspezifische Eigenschaft ist die Bindung von Ulex europaeus agglutinin I Lektin an die alpha-L-Fucose enthaltene Kohlenhydratstrukturen von mvEZs. Auch hier wurden upcyte® Zellen mit primären mvEZ verglichen und zeigten die hierfür charkteristischen Strukturen. Zusätzlich zu Morphologie, Proliferationskapazität und endothelzellspezifischen Markern, zeigen upcyte® mvEZ auch mehrere funktionelle Eigenschaften, welche in primären mvEZ beobachtet werden können, wie beispielsweise die Aufnahme von Dil-markiertem acetyliertem Low Density Lipoprotein (Dil-Ac-LDL) oder die Fähigkeit den Prozess der Angiognese zu unterstützen. Zusätzlich bilden Sphäroide aus upcyte® mvEZ dreidimensionale luminäre Zellformationen in einer Kollagenmatrix aus. Diese Charakteristika zeigen den quasi-primären Phänotyp der upcyte® mvEZs. Upcyte® mvEZ stellen darüber hinaus eine neuartige mögliche Zellquelle für die Generierung prävaskularisierter Trägermaterialien im Tissue Engineering dar. In der vorliegenden Arbeit konnte die Wiederbesiedlung der biologisch vaskularisierte Matrix (BioVaSc) mit upcyte® mvEZ vergleichbar zu primären mvEZ gezeigt werden. Der Einsatz von upcyte® mvEZ in der BioVaSc stellt einen neuen, vielversprechenden Ansatz zur Herstellung eines vaskularisierten Modells für Gewebekonstrukte dar, wie beispielsweise einem Leberkonstrukt. Zusammenfassend konnte in der vorliegenden Arbeit gezeigt werden, dass upcyte® mvEZ vergleichbar zu primären mvEZs sind und somit eine geeignete Alternative für die Generierung prävaskulierter Trägermaterialien und Aufbau von in-vitro Testsystemen darstellen. Darüber hinaus wurde ein neues, innovatives System für die Generierung einer perfundierten, mit Endothelzellen wiederbesiedelten Matrix für künstliches Gewebe in-vitro entwickelt. N2 - The scope of tissue engineering includes researching mechanisms underlying the function of different types of tissue, as well as the development of alternative strategies for the treatment of organ failure or organ loss. One of the critical aspects of tissue engineering is the adequate supply of cells with nutrition and oxygen. Bioartificial tissue up to a thickness of 200µm can be supplied sufficiently via diffusion. For thicker transplants, the supply of cells, only via diffusion is not sufficient. For this purpose, mechanisms and strategies for pre-vascularization of artificial tissue constructs need to be developed in order to ensure the supply of nutrition and oxygen to the inside of a transplant from the beginning. An important part of pre-vascularization is angiogenesis. Thereby, the selection of a suitable cell source is crucial, as these cells form the basis of angiogenesis. Microvascular endothelial cells (mvEC) are an important part of angiogenesis. Using human primary mvEC is critical due to the quick loss of their endothelial cell marker in-vitro but their limited availability and capacity of proliferation presents a problem. Additionally, the number of cells is also not sufficient for setup a standardized in-vitro test system. Upcyte® technology provides an approach to solving this problem. This work focused on the generation of upcyte® mvEC as alternative to primary mvEC. It was shown that cells treated with upcyte® technology have an enhanced capability of proliferation, resulting in 15 additional population doublings, compared to primary mvEC. Thus, it is possible to generate 3x104-fold more upcyte® mvEC from one donor compared to corresponding primary cells. The sufficient cell availability is important for the standardization of in-vitro test systems, as well as the usage for pre-vascularization of transplants. Upcyte® mvEC show many primary cell-like characteristics, which are described in literature. In the confluent state, upcyte® mvEC show a primary cell-specific cobblestone-like morphology. Furthermore, upcyte® mvEC express typical endothelial cell markers, such as CD31, vWF, eNOS, CD105, CD146 and VEGFR-2, at a similar level to primary mvEZ. An additional endothelial cell-specific attribute is the linkage of Ulex europaeus agglutinin I lectin to carbohydrate-structures of mvEC, which contain alpha-L-fucose. These data showed that there was a good comparison between the characteristics of upcyte® and primary mvEC. In addition to morphology, proliferation capacity and endothelial cell-specific markers, upcyte® mvEC showed functional characteristics, which are also observed in primary mvEC. Examples include the uptake of Dil-marked acetylated low density lipoprotein (Dil-Ac-LDL) and the ability to support the process of angiogenesis. In addition, spheroids formed from upcyte® mvEC formed three dimensional luminal cell formations in a collagen matrix. These characteristics show the quasi-phenotype of upcyte® mvEC. Upcyte® mvEC also represents a new promising cell source for the generation of pre-vascularized scaffolds in the tissue engineering context. The use of upcyte® mvEC in BioVaSc represents a promising new approach for producing a model for vascularized tissue constructs, such as a liver constructs. In summary, this work focussed on the development of upcyte® mvEC which were shown to be comparable to primary mvEC and therefore represent a sufficient and reliable alternative cell source for the generation of pre-vascularized scaffolds and the construction of in-vitro test systems. Moreover, a new and innovative system for the generation of a perfusable, endothelialized matrix for artificial tissue in-vitro has been developed. KW - Tissue Engineering KW - Angiogenese KW - Endothelzellen KW - Tissue Engineering KW - Angiogenese KW - Endothelial cells KW - tissue engineering KW - angiogenesis Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-76577 ER - TY - THES A1 - Haddad-Weber, Meike T1 - Development of stem cell-based ACL- and tendon reconstruction T1 - Entwicklung Stammzell-basierter Konstrukte für den Kreuzband- und Sehnenersatz N2 - Ruptures of the anterior cruciate ligament (ACL) and defects of the rotator cuff represent the most common ligament and tendon injuries in knee and shoulder. Both injuries represent significant implications for the patients. After an injury, the ACL and the rotator cuff both exhibit poor intrinsic healing capacities. In order to prevent further defects such as arthritis of the knee and fatty infiltration of the rotator cuff, surgical interaction is essential. In both cases, the currently used surgical techniques are far from optimal because even after the therapy many patients report problems ranging from pain and reduced mobility to complete dysfunction of the involved joint and muscles. Tissue engineering may be a possible solution. It is a promising field of regenerative medicine and might be an advantageous alternative for the treatment of musculoskeletal injuries and diseases in the near future. In this thesis, different tissue engineering based approaches were investigated. For the reconstruction of damaged or diseased ligaments and tendons, the use of MSCs and gene therapy with growth factors is especially suitable and possesses a great therapeutic potential. Therefore, the first method studied and tested in this thesis was the development of a biomaterial based construct for the repair of a ruptured ACL. The second approach represents a cell based strategy for the treatment of the fatty infiltration in the rotator cuff. The third approach was a combined cell, biomaterial, and growth factor based strategy for ACL ruptures. Biomaterial based ACL construct The implant is currently tested in a preclinical in vivo study in mini pigs. This proof-of-principle study is performed to validate the functional capability of the collagen fiber based implant under load in vivo and its population with fibroblasts which produce a ligamentogenic matrix. Cell based treatment of the fatty infiltration in the rotator cuff Regarding the treatment of the fatty infiltration of the rotator cuff in a rabbit model, the in vivo results are also promising. The group treated with autologous MSCs (+MSC group) showed a lower fat content than the untreated group (–MSC group) 6 weeks after the treatment. Furthermore, the SSP muscle of the MSC-treated animals revealed macroscopically and microscopically only few differences compared to the healthy control group. The exact underlying mechanisms leading to the positive results of the treatment are not yet fully understood and have therefore to be further investigated in the future. Cell, biomaterial, and growth factor based treatment of ACL ruptures Studies described in current literature show that collagen hydrogel scaffolds are not ideal for a complete ligament or tendon reconstruction, because of their insufficient mechanical stability. Introduced as an alternative and superior therapy, the combined strategy used in this thesis proves that the cultivation of BMP-12, -13, and IGF-1 transduced MSCs and ACL fibroblasts in a collagen hydrogel is successful. The results of the performed in vitro study reveal that the cells exhibit a fibroblastic appearance and produce a ligamentogenic matrix after 3 weeks. Furthermore, the adenoviral transduction of MSCs and ACL fibroblasts showed no negative effects on proliferation or viability of the cells nor was apoptosis caused. Therefore, the application of these cells represents a possible future therapy for a partial ligament and tendon rupture where the mechanical stability of the remaining ligament or tendon is sufficient and the healing can be improved substantially by this therapy. In general, prospective randomized clinical trials still have to prove the postulated positive effect of MSCs for the treatment of various musculoskeletal diseases, but the results obtained here are already very promising. Ideally, the treatment with MSCs is superior compared to the standard surgical procedures. Because of current safety issues the use of genetically modified cells cannot be expected to be applied clinically in the near future. In summary, the different tissue engineering approaches for novel therapies for musculoskeletal injuries and diseases invested in this thesis showed very promising results and will be further developed and tested in preclinical and clinical trials. N2 - 7.2 Zusammenfassung Kreuzbandrupturen und Defekte im Bereich der Rotatorenmanschette stellen die häufigsten Band- und Sehnenverletzungen im Kniegelenk bzw. in der Schulter dar. Beide Verletzungen haben erhebliche Auswirkungen für den Patienten. Sowohl das Kreuzband als auch die Rotatorenmanschette weisen ein sehr schlechtes Heilungspotential nach einer Verletzung auf. Um weiteren Schäden wie einer Kniegelenksarthrose oder einer Verfettung der Rotatorenmanschette vorzubeugen, ist ein operativer Eingriff erforderlich. In beiden Fällen sind die zurzeit verwendeten Behandlungsstandards nicht optimal, da auch nach einer Therapie viele Patienten über Beschwerden klagen, die von Schmerzen und einer eingeschränkten Mobilität bis hin zu einer kompletten Dysfunktion des betroffenen Gelenks und Muskels reichen. Tissue Engineering ist ein zukunftsträchtiges Feld der Regenerativen Medizin und kann ein möglicher Lösungsansatz sein. Vor allem bei der Behandlung von muskuloskelettalen Verletzungen und Erkrankungen kann es zukünftig eine vorteilhafte Behandlungsalternative darstellen. In dieser Doktorarbeit wurden verschiedene Tissue Engineering-basierte Lösungsansätze untersucht. Zur Rekonstruktion von defektem Band- und Sehnengewebe sind sowohl der Einsatz von mesenchymalen Stammzellen (MSZ) als auch die Gentherapie mit Wachstumsfaktoren besonders geeignet und weisen ein großes therapeutisches Potential auf. Deswegen wurde in der vorliegenden Doktorarbeit als erster innovativer Therapieansatz ein Biomaterial-basiertes Konstrukt für den Ersatz eines gerissenen Kreuzbandes entwickelt und getestet. Der zweite Lösungsansatz stellt eine Zell-basierte Therapie zur Behandlung einer fettigen Atrophie der Rotatorenmanschette dar. Die dritte Methode kombiniert Zellen, Biomaterialien und Wachstumsfaktoren zur Therapie von Kreuzbandrupturen. Biomaterial-basiertes Kreuzbandkonstrukt Das Implantat wird zurzeit in einer präklinischen in vivo Studie am Mini Pig getestet. Diese Proof-of-Principle Studie wird durchgeführt, um die Funktionsfähigkeit der Kollagenfaser-basierten Implantate unter Belastung in vivo zu validieren und ihre Besiedelung mit Fibroblasten, die eine ligamentäre Matrix ausbilden, zu beobachten. Zell-basierte Behandlung der fettig-infiltrieten Rotatorenmanschette Auch bei der Behandlung der fettigen Infiltration der Rotatorenmanschette im Kaninchenmodel, wurden in vivo sehr viel versprechende Ergebnisse erzielt. Die mit autologen MSZ (+MSZ-Gruppe) behandelte Gruppe zeigte nach 6 Wochen einen deutlich geringeren Fettanteil als die unbehandelte Gruppe (-MSZ-Gruppe). Des Weiteren wies der SSP-Muskel aller MSZ-behandelten Tiere sowohl makroskopisch als auch mikroskopisch nur geringe Unterschiede im Vergleich zur gesunden Kontrollgruppe auf. Der genaue zugrunde liegende Mechanismus dieser erfolgreichen Behandlung konnte bisher noch nicht genau geklärt werden und muss in zukünftigen Studien weiter untersucht werden. Zell-, Biomaterial- und Wachstumsfaktor-basierte Behandlung von Kreuzbandrupturen In der aktuellen Literatur beschriebenen Studien zeigen, dass Kollagenhydrogel-konstrukte aufgrund der fehlenden biomechanischen Stabilität nicht geeignet sind für den kompletten Band- bzw. Sehnenersatz. Als vorteilhafte Behandlungsalternative wurde in der vorliegenden Arbeit eine kombinierte Strategie entwickelt und erfolgreich in vitro getestet: Die Kultivierung von BMP-12-, -13- bzw. IGF-1-transduzierten MSZ und Kreuzbandfibroblasten in einem Kollagenhydrogel verlief sehr viel versprechend und ergab, dass die Zellen nach 3 Wochen im Kollagenhydrogel eine fibroblastäre Morphologie aufweisen und eine ligamentäre Matrix ausbilden. Des Weiteren führte die adenovirale Transduktion der Zellen weder zu negativen Auswirkungen auf das Proliferationsverhalten noch auf die Vitalität der Zellen und löste auch keine Apoptose bei den transduzierten Zellen aus. Zukünftig kann der Einsatz dieser Zellen deswegen ein möglicher Ansatz zur Behandlung von Teilrupturen bei Bändern und Sehnen darstellen, bei denen die biomechanische Stabilität ausreichend ist und die Heilung durch die Therapie wesentlich verbessert wird. Im Allgemeinen müssen prospektive randomisierte klinische Studien zeigen, ob sich der positive Effekt der MSZ bei der Behandlung von Erkrankungen des muskuloskelettalen Systems in der Orthopädie und Unfallchirurgie bewährt, wobei die in der vorliegenden Arbeit erzielten Ergebnisse sehr Erfolg versprechend sind. Idealerweise erweist sich die Behandlung mit MSZ als deutlich vorteilhaft gegenüber den bisher etablierten chirurgischen Standardverfahren. Aufgrund der bestehenden Sicherheitsrichtlinien für den Einsatz von gentherapeutischen modifizierten Zellen ist mit deren Verwendung zur Behandlung von Band- und Sehnenerkrankungen in naher Zukunft nicht zu rechnen. Zusammenfassend führte die Untersuchung der unterschiedlichen Tissue Engineering Ansätze, die in dieser Doktorarbeit als neue Therapien zur Behandlung von muskuloskelettalen Verletzungen und Erkrankungen evaluiert wurden, zu sehr viel versprechende Ergebnisse. Diese Therapieansätze sollen weiterentwickelt und in präklinischen und klinischen Studien getestet werden. KW - Kreuzband KW - Sehne KW - Tissue Engineering KW - Mesenchymale Stammzellen KW - Gentherpie KW - Zell-basierte Therapie KW - ACL KW - tendon KW - MSC KW - genetherapy KW - cell-based therapy Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-66796 ER - TY - THES A1 - Kriegebaum, Ulrike T1 - Entwicklung eines gewebenahen Konstruktes aus einer Matrix mit in vitro kultivierten Fibroblasten und Keratinozyten zum Ersatz der Oralmukosa unter Einsatz von Tissue Engineering T1 - Development of a tissue-related construct of a matrix with in vitro cultured fibroblasts and keratinocytes to replace oral mucosa using tissue engineering N2 - In der Mund-, Kiefer- und Gesichtschirurgie besteht ein großer Bedarf an Transplantaten zur intra- und extraoralen Defektdeckung in der chirurgischen Therapie, insbesondere für die Rekonstruktion nach Traumen oder Tumorresektionen für den Erhalt von Funktion und Ästhetik. Konventionelle Methoden wie die Verwendung von autologen, freien Spalt- und Vollhaut-Transplantaten zeigen Nachteile wie z. B. die Entnahmemorbidität der Spenderregion oder die Notwendigkeit eines zweiten chirurgischen Eingriffs zur Deckung des Entnahmedefektes. Zudem sind diese Transplantate nur in kleinen Mengen verfügbar oder haben eine unterschiedliche Gewebestruktur sowie andere Keratinisierungsmuster. Diese Nachteile sollen mit Hilfe eines im Tissue Engineering hergestellten Oralmukosa-Äquivalentes umgangen werden. Dazu wurden zunächst Methoden zur Isolierung und Kultivierung primärer, oraler Fibroblasten bzw. Keratinozyten entwickelt, die das Ausgangsmaterial für die Herstellung von Dermal-Äquivalenten bzw. von organotypischen Kokulturen in vitro bilden. Die Zellen wurden sowohl histologisch als auch immunhistochemisch charakterisiert und nach Optimierung der Kulturbedingungen zur Entwicklung von Oralmukosa-Äquivalenten (OMÄs) eingesetzt. Dabei ist auch die Wahl eines geeigneten Trägermaterials ein entscheidender Faktor. Deshalb wurden in dieser Arbeit verschiedene Unterlagen auf Eignung als Scaffold für das Tissue Engineering von Oralmukosa getestet. Unter anderem wurden die Materialien Vicryl (resorbierbares Polyglactin-910-Netz), DRT (dermale Regenerationsmatrix aus bovinem Kollagen-I vernetzt mit einem Glycosaminoglycan) und TFE (equine Kollagen-I-Membran) in Zellkulturversuchen auf Biokompatibilität und Stabilität geprüft. Dazu wurden zunächst Fibroblasten auf die Scaffolds ausgesät um Dermal-Äquivalente (DÄs) zu erhalten. Das Wachstum der Zellen wurde mittels Elektronenmikroskopie sowie immunhistochemischen Methoden untersucht. Die Analyse zeigte gutes Zellwachstum und somit gute Biokompatibilität auf allen verwendeten Materialien. In folgenden Experimenten wurden zusätzlich Keratinozyten auf DÄs ausgesät und somit organotypische OMÄs entwickelt. Die generierten Konstrukte wurden mit Hilfe von IIF-Färbungen von Kryoschnitten sowie RT-qPCR bezüglich ihrer Zellarchitektur, ihrer Fähigkeit zur Bildung einer Basalmembran und ihrer Fähigkeit zur Differenzierung untersucht. Es stellte sich heraus, dass auf allen drei Trägern Fibroblasten-Keratinozyten Kulturen hergestellt werden konnten. Dabei zeigte Vicryl eine gute Biostabilität, jedoch ohne Ausbildung der natürlichen Stratifizierung der Keratinozytenschichten. Auf TFE dagegen zeigte sich die beste Architektur und Proliferation der Zellen mit Stratifizierung der Keratinozyten, allerdings eine schlechte Biostabilität. DRT stellte sich als die Matrix heraus, die die gewünschten Eigenschaften am besten vereint. Das Ergebnis war jedoch im Bezug auf die Dicke der Epithelschicht sowie deren Differenzierung und Ausbildung einer Basalmembran noch zu verbessern. Dies konnte mit Hilfe der Kulturmethode an der Luft-Flüssigkeits-Grenzfläche erreicht werden. Jedoch gelang bezüglich der Zellarchitektur noch immer kein optimales Ergebnis. Erst der Einsatz einer weiteren Membran, SIS (azellularisierter Schweinedarm), die durch ihren natürlichen Ursprung ähnlich strukturiert ist wie humane Submukosa, zeigte, dass die angewandte Methodik zur Herstellung von OMÄs funktionierte. Auf diesem Träger gelang die Herstellung eines Transplantates, das eine mit normaler Oralmukosa vergleichbare, reguläre Zellarchitektur mit dermaler und epidermaler Komponente aufwies, die qualitativ noch besser war als auf TFE. Auch die Biostabilität während des Versuchszeitraumes war wie bei Vicryl und DRT gegeben. Die Neusynthese einer Basalmembran konnte mittels IIF-Färbung nachgewiesen werden. Die Proliferation der Keratinozyten war in der Basalschicht lokalisiert und nahm Richtung apikal ab. Lediglich eine Differenzierung des Transplantates war mittels immunhistochemischer Methoden nicht nachweisbar. Auf diese Weise konnte in der vorliegenden Arbeit ein OMÄ entwickelt werden, dessen Aufbau mit dem von natürlicher Oralmukosa vergleichbar war. Die in dieser Arbeit gewonnen Erkenntnisse dienen somit als Grundlage zur Optimierung und Verwirklichung des klinischen Einsatzes von mittels Tissue Engineering hergestellten, autologen OMÄs. N2 - In oral and maxillofacial surgery, there is a great demand for oral mucosa equivalents for intra- and extraoral grafting as oral reconstruction after trauma or tumor resections to preserve function and aesthetics. Current methods of covering intraoral defects with autologous epidermal and dermal grafts show disadvantages, e.g. donor site morbidity or the need for a second surgical procedure to cover the harvesting site. These grafts are either only available in small amounts or have a different texture, such as a different keratinization pattern. These disadvantages could be avoided by using autologous tissue engineered mucosa equivalents. In a first step, a method for isolation and cultivation of primary oral fibroblasts and keratinocytes was developed. They formed the starting material for production of dermal equivalents (DEs) and organotypic cocultures in vitro. The cells were characterized both by histological staining and by immunohistochemical staining. After optimization of the cell culture conditions they were used for the development of oral mucosa equivalents (OMEs). Thereby the selection of a suitable scaffold is a decisive factor. Therefore, different matrices for the tissue engineering of oral mucosa have been studied in this thesis. Amongst others, the materials Vicryl (woven membrane of polyglactin 910), DRT (dermal regeneration template of cross-linked bovine tendon collagen and a glycosaminoglycan) and TFE (equine collagen I membrane) have been tested in cell-culture experiments for biocompatibility and stability. For this purpose first only fibroblasts were seeded on scaffolds to obtain DEs. Cell growth was examined by electron microscopy and immunohistochemical methods. The analysis showed good cell growth and good biocompatibility as well on all the used materials. In following experiments keratinocytes were seeded on dermal equivalents to develop organotypic co-cultures. The obtained constructs were characterized by immunohistochemical staining and gene expression analysis using RT-qPCR to get information about cell architecture, formation of a basal membrane and status of differentiation. It has been found, that it was possible to create fibroblast-keratinocyte-cultures on all three scaffolds. Thereby Vicryl showed a good biostability but no formation of the natural stratification of the epidermal cells. These findings are in contrast to the results on TFE. Here was the best architecture and proliferation of the cells with stratification of the newly formed epidermis, but bad biostability of the membrane. The combination of the desired properties could only be seen on DRT, but the thickness, differentiation and basal membrane formation of the epithelial layer needed to be improved. This was achieved by cultivation of the cells in the air liquid interface but there was still no optimal result. Only the use of another scaffold, SIS (acellular matrix from porcine small bowel) which has a similar structure to humane submucosa, shows functionality of the developed method of OME generation. On this scaffold the generation of a transplant succeeded even better than on TFE. It had dermal and epidermal components with regular cell architecture like native oral mucosa. Also the biostability during the experimental period was comparable with Vicryl and DRT. It has been possible to demonstrate the formation of a basal membrane by IIF staining. Keratinocyte proliferation was localized in the basal layer with declining proliferation activity in apical direction. Only differentiation could not be proven by means of immunohistochemistry. Thus the present thesis developed a method for creation of an OME with comparable organization to that of the native oral mucosa. The findings summarized in this study will serve as basis for optimization and realization of the clinical use of tissue engineered autologous OMEs. KW - Tissue Engineering KW - Mundschleimhaut KW - Transplantat KW - Keratinozyten KW - Fibroblasten KW - Kokultur KW - Tissue Engineering KW - Biocompatible Materials KW - Oral Mucosa KW - Keratinocytes KW - Co-culture KW - Composite Graft Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-57403 ER - TY - THES A1 - Nöth, Alexia Irmgard T1 - Rekonstruktion von Gelenkknorpeldefekten mit einer Kollagen I Hydrogel Matrix - klinische Ergebnisse einer Fallseriestudie T1 - Reconstruction of articular cartilage defects with a collagen I hydrogel matrix - clinical results of a case control study N2 - Für die Rekonstruktion von Gelenkknorpeldefekten des Kniegelenkes in Folge eines Traumas oder einer Osteochondrosis dissecans (OD) stehen verschiedene operative Verfahren zur Verfügung. Die Autologe Chondrozytentransplantation (ACT) hat sich als zuverlässiges Rekonstruktionsverfahren erwiesen. In der vorliegenden Arbeit wurde eine prospektive Fallseriestudie für eine neue Form der ACT mit einem Kollagen I Hydrogel (CaReS-Technologie) durchgeführt. Die Vorteile der Technologie liegen zum Einen darin, dass sich die Zellen homogen im Gel verteilen und zum Anderen, dass die Zellen unmittelbar nach dem Herauslösen aus dem Gelenkknorpel in das Gel eingebracht werden und dadurch eine geringere Dedifferenzierung der Chondrozyten stattfindet. Von März 2003 bis Ende 2006 wurden 29 Patienten in die Studie eingeschlossen. Die Ein- und Ausschlusskriterien erfüllten die Kriterien der Arbeitsgruppe ACT und Tissue Engineering der Deutschen Gesellschaft für Orthopädie und Unfallchirurgie. Die Eingangs- und Nachuntersuchungsbögen wurden an die IKDC Form 2000 angelehnt. Insgesamt zeigte sich ein signifikanter Anstieg des IKDC Scores im mittleren follow-up von 30,7 Monaten von 47,3 auf 74,9 bei den 29 Patienten. Bei Aufschlüsselung der Patienten bzgl. Diagnose, Defektgröße, Lokalisation und Defektanzahl zeigte sich bei den Behandlungsgruppen OD, Trauma/degenerativ, > 4 cm2, mediale Femurkondyle und Einzeldefekte eine signifikante Zunahme des IKDC Scores im zeitlichen Verlauf. Der postoperative Schmerz zeigte einhergehend mit dem Anstieg des IKDC Scores eine signifikante Abnahme der Schmerzintensität in den Behandlungsgruppen OD, Trauma/degenerativ, > 4 cm2, mediale Femurkondyle und Einzeldefekte. Nachgewiesen wurde ebenfalls ein Anstieg des SF36 Scores, der den gegenwärtigen Gesundheitszustand sowohl körperlich als auch psychisch beurteilt. Zusammen mit einer globalen Patientenzufriedenheit von 80% und einem IKDC Funktionsstatus von I und II bei 77% der Patienten spiegeln die gewonnenen Daten die Ergebnisse der klassischen ACT bzw. anderer matrixgekoppelten Verfahren wieder. Die CaReS-Technologie stellt somit ein gleichwertiges Verfahren zu den bisher auf dem Markt befindlichen Techniken der ACT dar. N2 - For the reconstruction of articular cartilage defects of the knee resulting from osteochondritis dissecans (OD) or trauma different surgical techgniques are available. Autologous chondrocyte implantation (ACI) has proven to be a reliable reconstructive technique. In this work, we have performed a prospective case control study using a new form of ACI with a collagen type I hydrogel (CaReS-technology). The advantages of the technology are that the cells can be distributed homogeneously within the hydrogel and immidiatly after their release from the cartilage they are brought into the gel, resulting in less dedifferentiation of the chondrocytes. From March 2003 to the end of 2006 we enrolled 29 patients in this study. The inclusion and exclusion criteria were adopted from the criteria of the working group for ACT and Tissue Engineereing of the German Society for Orthopaedic and Trauma Surgery. The inital clinical and follow-up examinations were performed according to the IKDC form 2000. In general, we found a significant increase of the IKDC score at the follow-up of 30.7 months from 47.3 to 74.9 of the 29 patients. When seperating the patients by diagnosis, defect size, defect location and defect number we found in the groups with OD, trauma/degenerativ, > 4 cm2, medial condyle and single defects a significant increase of the IKDC score over the follow-up period. The postoperative pain showed accoring to the increased IKDC score a significant decrease of the pain intensity in the groups with OD, trauma/degenerativ, > 4 cm2, medial condyle and single defects. We also found an increase of the SF36 score, which describes the current physical and mental health status. Together with a global patient satisfaction of 80% and an IKDC functional status of I and II in 77% of the patients our data reflect the results of the classical ACI, as well as other matrix-based technologies. Therefore, the CaReS-technology is comparable to other technologies which are currently on the market. KW - Gelenkknorpel KW - Hydrogel KW - Kollagen KW - Knorpelzelle KW - Tissue Engineering KW - Regenerative Medizin KW - Autologe Chondrozytentransplantation KW - Autologous Chondrocyte Transplantation Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-52630 ER - TY - THES A1 - Wenzel, Sonja T1 - Etablierung eines dynamischen Kultursystems auf Calciumphosphat-Scaffolds unter Verwendung zweier verschiedener Zelllinien T1 - Establishment of a dynamic culture system with calcium phosphate scaffolds using two different cell lines N2 - Der Ersatz von Knochengewebe durch die Methode des Tissue Engineerings stellt eine viel versprechende Alternative zu konventionellen Therapieformen dar. Jedoch müssen die bisherigen Kulturbedingungen verbessert werden, um das Differenzierungsverhalten von Zellen optimal steuern zu können. Dabei spielt nicht nur die Wahl eines geeigneten Scaffolds und der zu verwendenden Zellen, sondern auch die des Kultursystems eine entscheidende Rolle. In einem dynamischen Kultursystem zirkuliert Medium und bietet gegenüber einem statischen Kultursystem veränderte Bedingungen bezüglich Nährstoffversorgung und Stimulation durch Flüssigkeitsscherstress. Um die Einflüsse der veränderten Bedingungen zu analysieren, wird in dieser Arbeit ein dynamisches Kultursystem etabliert. Dazu werden Calciumphosphat(CaP)-Scaffolds mit dem 3D Powder Printing System gedruckt und mit Zellen der Osteosarkomzelllinie MG63 oder der Fibroblastenzelllinie L-929 besiedelt. In 17 Versuchsreihen werden die zellbesiedelten Scaffolds bei unterschiedlichen Fließgeschwindigkeiten und über unterschiedliche Kultivierungszeiträume kontinuierlich perfundiert. Anhand der Wachstumsparameter Zellzahl und Zellviabiltät, sowie der Morphologie und räumlichen Verteilung der Zellen werden die Qualitäten der Kultursysteme untersucht und mit statischen Kultursystemen verglichen. Die mit dem 3D Powder Printing System gedruckten Scaffolds erweisen sich als geeignet: Nach 6-tägiger Kultur können unter dem Rasterelektronenmikroskop auf den CaP-Scaffolds eine reichliche Zellbesiedelung mit morphologisch gesunden Zellen, die in das Porensystem hineinwachsen, beobachtet werden. Bei beiden Zelllinien nehmen in beiden Kultursystemen die Wachstumsparameter über einen 6-tägigen Kultivierungszeitraum stetig zu und eine Langzeitkultur über 30 Tage kann in beiden Kultursystemen am Leben erhalten werden. Die kontinuierliche Perfusion in einem dynamischen Kultursystem wirkt sich auf das Zellwachstum günstig aus. Im Vergleich von dynamischen zu statischem Kultursystem über einen 6-tägigen Kultivierungszeitraum wachsen beide Zelllinien im dynamischen Kultursystem besser. Dabei spielt die Fließgeschwindigkeit im dynamischen Kultursystem auf die verbesserte Nährstoffversorgung und Stimulation durch Flüssigkeitsscherstress eine Rolle. Außerdem ist zu beachten, dass der Einfluss der Fließgeschwindigkeit des Mediums auf die einzelnen Scaffolds innerhalb des Kulturcontainers unterschiedlich ist. Dies hängt vom Strömungsprofil im Container ab und macht sich durch eine erhöhte Standardabweichung der Messwerte gegenüber der statischen Kultur bemerkbar. N2 - The replacement of bone tissue by the method of tissue engineering represents a promising alternative to conventional forms of therapy. However, current culture conditions have to be optimized in order to control the differentiation behavior of cells. In this context, the choice of the appropriate scaffolds and cells as well as of a suitable culture system play a crucial role. In contrast to static culture systems, medium circulates in a dynamic culture system which offers changed conditions regarding nutrition and stimulation by fluid induced shear stress. To analyze the effects of changed conditions, a dynamic culture system is established in this work. For this purpose, calcium phosphate (CaP) scaffolds printed by the 3D Powder Printing System were populated with cells of the MG63 osteosarcoma cell line or of the fibroblast cell line L-929. In 17 experiments, the cultured scaffolds were perfused continuously at different flow rates and for different cultivation periods. Based on the growth parameters cell number and cell viability, as well as on the morphology and the spatial distribution of the cells, the qualities of the dynamic culture systems were compared to static culture systems. The scaffolds printed by the 3D Powder Printing System proved to be suitable: After a 6-day culture period, the CaP scaffolds showed an abundant cell colonization with morphologically healthy cells growing into the pore system which was observed under a scanning electron microscope. Using both cell lines in both culture systems, the growth parameters increased continuosly during a 6-day cultivation period and it was possible to keep a long-term culture over 30 days in both culture systems alive. The continuous perfusion in a dynamic culture system has a favorable effect on cell growth. In comparison of dynamic to static culture systems over a 6-day culture period, both cell lines grew better in the dynamic culture system. Here the flow rate in the dynamic culture system plays a major role controlling the improved nutrition and stimulation by fluid induced shear stress. Furthermore, the influence of the flow rate of the medium on the individual scaffolds within the culture container varies for the different scaffold positions. This depends on the flow profile of the container and is indicated by an increased standard deviation of the measured values when compared to the static culture. KW - Zellkultur KW - Tissue Engineering KW - Cell culture KW - tissue engineering Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-48766 ER - TY - THES A1 - Heymer, Andrea T1 - Chondrogenic differentiation of human mesenchymal stem cells and articular cartilage reconstruction T1 - Chondrogene Differenzierung humaner mesenchymaler Stammzellen und Gelenkknorpelrekonstruktion N2 - Articular cartilage defects are still one of the major challenges in orthopedic and trauma surgery. Today, autologous chondrocyte transplantation (ACT), as a cell-based therapy, is an established procedure. However, one major limitation of this technique is the loss of the chondrogenic phenotype during expansion. Human mesenchymal stem cells (hMSCs) have an extensive proliferation potential and the capacity to differentiate into chondrocytes when maintained under specific conditions. They are therefore considered as candidate cells for tissue engineering approaches of functional cartilage tissue substitutes. First in this study, hMSCs were embedded in a collagen type I hydrogel to evaluate the cartilaginous construct in vitro. HMSC collagen hydrogels cultivated in different culture media showed always a marked contraction, most pronounced in chondrogenic differentiation medium supplemented with TGF-ß1. After stimulation with chondrogenic factors (dexamethasone and TGF-ß1) hMSCs were able to undergo chondrogenesis when embedded in the collagen type I hydrogel, as evaluated by the temporal induction of cartilage-specific gene expression. Furthermore, the cells showed a chondrocyte-like appearance and were homogeneously distributed within a proteoglycan- and collagen type II-rich extracellular matrix, except a small area in the center of the constructs. In this study, chondrogenic differentiation could not be realized with every hMSC preparation. With the improvement of the culture conditions, e.g. the use of a different FBS lot in the gel fabrication process, a higher amount of cartilage-specific matrix deposition could be achieved. Nevertheless, the large variations in the differentiation capacity display the high donor-to-donor variability influencing the development of a cartilaginous construct. Taken together, the results demonstrate that the collagen type I hydrogel is a suitable carrier matrix for hMSC-based cartilage regeneration therapies which present a promising future alternative to ACT. Second, to further improve the quality of tissue-engineered cartilaginous constructs, mechanical stimulation in specific bioreactor systems are often employed. In this study, the effects of mechanical loading on hMSC differentiation have been examined. HMSC collagen hydrogels were cultured in a defined chondrogenic differentiation medium without TGF-ß1 and subjected to a combined mechanical stimulation protocol, consisting of perfusion and cyclic uniaxial compression. Bioreactor cultivation neither affected overall cell viability nor the cell number in collagen hydrogels. Compared with non-loaded controls, mechanical loading promoted the gene expression of COMP and biglycan and induced an up-regulation of matrix metalloproteinase 3. These results circumstantiate that hMSCs are sensitive to mechanical forces, but their differentiation to chondrocytes could not be induced. Further studies are needed to identify the specific metabolic pathways which are altered by mechanical stimulation. Third, for the development of new cell-based therapies for articular cartilage repair, a reliable cell monitoring technique is required to track the cells in vivo non-invasively and repeatedly. This study aimed at analyzing systematically the performance and biological impact of a simple and efficient labeling protocol for hMSCs. Very small superparamagnetic iron oxide particles (VSOPs) were used as magnetic resonance (MR) contrast agent. Iron uptake was confirmed histologically with prussian blue staining and quantified by mass spectrometry. Compared with unlabeled cells, VSOP-labeling did neither influence significantly the viability nor the proliferation potential of hMSCs. Furthermore, iron incorporation did not affect the differentiation capacity of hMSCs. The efficiency of the labeling protocol was assessed with high resolution MR imaging at 11.7 Tesla. VSOP-labeled hMSCs were visualized in a collagen type I hydrogel indicated by distinct hypointense spots in the MR images, resulting from an iron specific loss of signal intensity. This was confirmed by prussian blue staining. In summary, this labeling technique has great potential to visualize hMSCs and track their migration after transplantation for articular cartilage repair with MR imaging. N2 - Gelenkknorpeldefekte stellen immer noch eine der großen Herausforderungen in der Orthopädie und Unfallchirurgie dar. Als zellbasiertes Verfahren ist die Autologe Chondrozytentransplantation (ACT) heute in der klinischen Routine etabliert. Ein großer Nachteil dieser Methode ist jedoch der Verlust des chondrozytären Phänotyps während der Expansion der Zellen. Humane mesenchymale Stammzellen (hMSZ) verfügen über ein ausgeprägtes Proliferationspotential und besitzen die Fähigkeit, unter spezifischen Bedingungen zu Knorpelzellen zu differenzieren. Sie werden daher als alternative Zellen für das Tissue Engineering von funktionellem Knorpelersatzgewebe in Betracht gezogen. In der vorliegenden Arbeit wurden erstens hMSZ in ein Kollagen Typ I Hydrogel eingebracht und zunächst der Grad der chondrogenen Zelldifferenzierung im Konstrukt evaluiert. HMSZ-Kollagenhydrogele zeigten in allen Kultivierungsmedien eine deutliche Kontraktion, welche am stärksten im chondrogenen Differenzierungsmedium unter Zugabe von TGF-ß1 ausgeprägt war. Nach Stimulation mit chondrogenen Faktoren (Dexamethason und TGF-ß1) differenzierten hMSZ zu Knorpelzellen, nachgewiesen durch die Induktion von knorpelspezifischer Genexpression. Die Zellen wiesen eine Chondrozyten-ähnliche Morphologie auf und waren bis auf einen kleinen Bereich in der Mitte des Konstrukts homogen in einer Proteoglykan- und Kollagen Typ II-haltigen extrazellulären Matrix verteilt. Eine chondrogene Differenzierung konnte in der vorliegenden Arbeit jedoch nicht mit jeder hMSZ-Präparation realisiert werden. Durch die Verbesserung der Kulturbedingungen, z.B. durch die Verwendung einer anderen Serumcharge im Gelherstellungsprozess, konnte eine Steigerung der knorpelspezifischen Matrixsynthese erzielt werden. Nichtsdestotrotz spiegeln die großen Schwankungen in der Differenzierungskapazität die hohe Variabilität zwischen verschiedenen Spendern wider, welche die Entwicklung eines knorpelartigen Gewebes beeinflussen. Zusammengefasst zeigen die Ergebnisse, dass das Kollagen Typ I Hydrogel eine geeignete Trägermatrix für hMSZ darstellt, um in Stammzell-basierten Knorpelregenerationstherapien zukünftig als vielversprechende Alternative zur ACT eingesetzt zu werden. Um die Qualität eines in vitro generierten knorpelartigen Gewebes weiter zu verbessern, wird häufig eine mechanische Stimulation in spezifischen Bioreaktorsystemen durchgeführt. In der vorliegenden Arbeit wurden daher zweitens die Effekte von mechanischer Belastung auf die Differenzierung von hMSZ untersucht. HMSZ-Kollagenhydrogele wurden im chondrogenen Differenzierungsmedium ohne TGF-ß1 kultiviert und einem kombinierten mechanischen Stimulationsprotokoll, bestehend aus Perfusion und zyklischer uniaxialer Kompression, ausgesetzt. Die Kultivierung im Bioreaktor hatte weder einen Einfluss auf die Zellvitalität noch auf die Anzahl der Zellen im Kollagen Typ I Hydrogel. Die mechanische Beeinflussung steigerte im Vergleich mit den unbelasteten Kontrollgelen die Genexpression von COMP und Biglykan und führte zu einer Hochregulation von Matrix Metalloproteinase 3. Diese Ergebnisse belegen, dass hMSZ mechanosensitiv sind, jedoch konnte keine Differenzierung zu Knorpelzellen induziert werden. Hierfür sind weitere Studien notwendig, um spezifische Stoffwechselwege zu identifizieren, welche durch die mechanische Stimulation beeinflusst werden. Drittens, für die Entwicklung von neuen zellbasierten Therapien für die Gelenkknorpelrekonstruktion ist eine zuverlässige Bildgebung auf zellulärer Ebene erforderlich, um die Zellen in vivo wiederholt nicht invasiv zu detektieren. Die vorliegende Arbeit hatte zum Ziel, systematisch die Effizienz und die biologischen Auswirkungen einer einfachen und dauerhaften Markierung für hMSZ zu untersuchen. Superparamagnetische Eisenoxidnanopartikel (VSOPs), ein Magnetresonanz (MR)-Kontrastmittel, wurden für die Markierung eingesetzt. Die Aufnahme der Eisenoxidnanopartikel wurde histologisch mittels eisenspezifischer Berliner-Blau-Färbung nachgewiesen und durch Massenspektroskopie quantifiziert. Im Vergleich zu unmarkierten Zellen beeinträchtigte die VSOP-Markierung weder die Vitalität noch das Proliferationspotential der hMSZ. Weiterhin war durch die Aufnahme der Eisenoxidnanopartikel keine Beeinflussung der Differenzierungskapazität der hMSZ zu verzeichnen. Die Effizienz der Zellmarkierung wurde mittels hochauflösender MR-Bildgebung bei 11,7 Tesla beurteilt. VSOP-markierte hMSZ im Kollagen Typ I Hydrogel erschienen als hypointense Punkte in den MR-Bildern, hervorgerufen durch die typische, VSOP-bedingte Signalauslöschung. Histologische Untersuchungen dieser Konstrukte bestätigten die MR-Ergebnisse. Zusammenfassend lässt sich festhalten, dass diese Zellmarkierungsmethode in Verbindung mit der MR-Bildgebung über das Potential verfügt, nach einer Gelenkknorpelrekonstruktion Aufschluss über die Lokalisation und Migration der transplantierten hMSZ zu liefern. KW - Gelenkknorpel KW - Tissue Engineering KW - Chondrogenese KW - Hydrogel KW - Biomechanik KW - NMR-Bildgebung KW - mesenchymale Stammzellen KW - Kollagen-Hydrogel KW - mechanische Stimulation KW - Zellmarkierung KW - superparamagnetische Eisenoxidnanopartikel KW - mesenchymal stem cells KW - collagen hydrogel KW - mechanical stimulation KW - cell labeling KW - superparamagnetic iron oxide particles Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29448 ER - TY - THES A1 - Rackwitz, Lars T1 - In-vitro-Untersuchungen zur chondrogenen Differenzierung von humanen mesenchymalen Stammzellen in einem Kollagen I Hydrogel für den Gelenkknorpelersatz T1 - Chondrogenic differentiation of human mesenchymal stem cells in collagen I hydrogels for articular cartilage repair N2 - No abstract available KW - mesenchymale Stammzellen KW - Chondrogenese KW - Hydrogel KW - Tissue Engineering KW - Gelenkknorpelrekonstruktion KW - mesenchymal stem cell KW - chondrogenesis KW - tissue engineering KW - hydrogel KW - articular cartilage repair Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-22547 ER - TY - THES A1 - Kerscher, Alexander Georg T1 - Entwicklung einer mikroskopierbaren Perfusions-Kulturkammer für die Kultivierung, die In-Vitro-Vitalitäts- und die Funktionsdiagnostik von endokrinen Zellen T1 - A perfusion-culture system to cultivate and test the vitality and functional dynamics of endocrine Cells and tissues N2 - Als Therapie des Diabetes mellitus Typ II stellt die Xenotransplantation von porzinen Langerhans-Inseln in mikroverkapselter Form eine attraktive Alternative zu den täglichen Insulininjektionen dar. Kultivierung und Funktionsdiagnostik der isolierten porzinen Langerhans-Inseln sind technisch anspruchsvoll und bieten noch immer Potential für Verbesserungen. Werden die Zellen in Zellkulturflaschen über mehrere Tage kultiviert, sinkt die Vitalität unter ein akzeptables Niveau. Bei der Beurteilung der Vitalität und Funktion der Inseln gehen wertvolle Zellen für eine spätere Transplantation verloren. Dies schränkt eine ausgiebige Diagnostik vor der Transplantation ein. Ziel der Arbeit ist es, eine Möglichkeit zur Verbesserung der Kulturbedingungen zu finden und exakte Ergebnisse bei der Funktions- und Vitalitätsdiagnostik ohne Verlust von Zellen zu erreichen. Vorversuche konnten beweisen, dass eine Verbesserung der Vitalität von Langerhans-Inseln in Kultur an der Methode der Kultivierung in Zellkulturflaschen scheitert. Stattdessen wurde das Prinzip der Perfusionskultur in spezialisierten Behältnissen für die systematische Verbesserung der Kulturbedingungen und zur genaueren Diagnostik mittels Mikroskopie und Funktionsdiagnostik gewählt. Mit einem solchen System ist sowohl Kultivierung als auch Funktions- und Vitalitätsdiagnostik in einem Behälter möglich. Beim Prinzip der Perfusionskultur befindet sich das Medium stets in Bewegung um die Zellen und Gewebe und sorgt so für einen kontinuierlichen Zustrom exakt definierten Mediums und permanenten Abtransport der Stoffwechselprodukte. Im Rahmen dieser Arbeit wurde für die Anforderungen im eigenen Labor ein maßgeschneidertes System mit mehreren Versionen von Behältnissen für Perfusionskulturen entwickelt, deren jeweils neuere Version auf den Erfahrungen mit den Vorversionen aufbaut. In die Entwicklung fließen ebenso umfangreiche theoretische Überlegungen ein, sowie systematische Tests zu den physikalischen Eigenschaften der Behältnisse. Die zuletzt entwickelte ist die Version V6SMTE, die in der Arbeit „Würzburger Kammer“ genannt wird. Dieser Behälter ist aus Edelstahl, mit einem Deckglas zur makro- und mikroskopischen Begutachtung, Zu- und Abläufen und einem Anschluss zum Entfernen von Gasblasen. Im Inneren befindet sich ein Einsatz, der eine stufenlose Regulierung des Volumens um die Zellen ermöglicht, so dass für Kultur und Funktionsprüfung bzw. Mikroskopie jeweils optimale Bedingungen erreicht werden. Weiterhin kann über einen Temperatursensor die Temperatur im Inneren des Behälters gemessen und über Heizelemente an der Außenwand computergesteuert reguliert werden. Die Zellen und Gewebe können auf unterschiedlichen Trägermaterialien eingesetzt werden. Während der Kultur kann ein Deckel geöffnet und die Zellen manipuliert werden. Das System ist unabhängig vom Brutschrank, ist sterilisierbar und wieder verwendbar. Kultiviert wurde endokrines Gewebe (isolierte Langerhans-Inseln, humanes Nebenschilddrüsengewebe). Dieses wurde zur Funktionsprüfung mit verschiedenen Mediatoren stimuliert, das Medium fraktioniert aufgefangen und sein Hormongehalt mit ELISA oder RIA bestimmt. Die Zellen wurden nativ und mit Fluoreszenzfarbstoffen (FDA, PI) gefärbt mit bis zu 400facher Vergrößerung unter dem Auflichtmikroskop beurteilt. Im Zuge der Auswertung der anfallenden Proben auf ihren Insulingehalt wurde für diese Arbeit ein Insulin-ELISA entwickelt, der bei vergleichbarer Genauigkeit deutlich günstiger ist, als der bisher verwendete kommerzielle ELISA. Mit der Würzburger Kammer kultivierte Langerhans-Inseln zeigten eine vergleichbare Vitalität im Vergleich zur Zellkulturflasche, die mit der Würzburger Kammer gewonnenen Perifusionskurven sind in hohem Maß reproduzierbar, Zusammenhänge von Höhe der Glukoseexposition und Kultivierungsdauer mit der Insulinausschüttungskurve konnten eindrucksvoll beschrieben werden. Erstmals wurde auch im eigenen Labor die aus der Literatur bekannte paradoxe Insulinausschüttung beschrieben. Beispielhaft für andere endokrine Gewebe wurde humanes Nebenschilddrüsengewebe erfolgreich in der Würzburger Kammer kultiviert und Vitalitäts- und Funktionsdiagnostik unterzogen. Das Kultursystem ermöglicht die Kultivierung und eine komplette Analyse von Funktion, Vitalität und Morphologie von endokrinen Zellen. Es kann somit in idealer Weise zur Verbesserung der Kulturbedingungen und zur Beurteilung von endokrinen Zellen vor der Transplantation herangezogen werden. N2 - Therapy of the diabetes mellitus typ II by xenotransplantation of microencapsuled porcine Islets of Langerhans is an attractive alternative to daily injections of insulin. However cultivation and functional diagnostics of these isolated porcine Islets of Langerhans are challenging and there is still potential for improvement. Islets cultivated in culture-flasks for more than only 3 days suffer from bad vitality and altered functionality. Cells used for performing vitality-staining and perifusion to test the functionality have to be dropped away and cannot be used for later transplantation. This delimitates quantity and quality of diagnostic procedures prior to transplantation. Goal of this study is to find a way of obtaining accurate information about vitality and viability of the Islets of Langerhans without losing cells on diagnostics and to use this information on the improvement of culture conditions. Preliminary results showed that an improvement of culture conditions cannot be achieved with cultivation of Islets of Langerhans in culture-flasks. Instead of that the perfusion-culture concept showed to be most promising for that problem because with this concept cultivation of cells as well as functional and vitality diagnostics can be performed within one single container. To meet the demands in our laboratory a special container named “Würzburger Kammer” has been developed for this study. It is made of high-grade steel with a cover slip for macro- and microscopic observation and a variable internal space to have optimum conditions for cultivation as well as perifusion and microscopy. Temperature inside the container can be controlled by a regulating system consisting of a microprocessor and a temperature sensor inside the container and a heating unit outside the container. Different carrier materials can be inserted. The top of the container can be opened while the perfusion container is in operation and cells can be manipulated. The system is a self-contained device, which has not to be operated in an incubator. Perifusion as a test for the function of the Islets of Langerhans can easily be performed by changing the media and collecing fractionated samples afterwards. Microscopy can be done with a magnification factor of up to 400. To analyse the samples collected during the perifusion for the concentration of insulin a low-priced enzyme-linked-immuno-assay was developed. In this study we proved that with the “Würzburger Kammer” it is possible to cultivate isolated porcine Islets of Langerhans as well as human Parathyroid cells and that precise vitality and functional diagnostics can be performed by microscopy and perifusion. The results of these tests were more accurate and reliable than former tests using microscopy slides and doing perifusion without the “Würzburger Kammer”. So this perfusion culture system helps to improve quality of cultivation and diagnostics of islets of Langerhans prior to transplantation and allows for better results in transplantation one day. KW - Zellkultur KW - Perfusionskultur KW - Tissue Engineering KW - endokrin KW - Langerhans KW - Inselzellen KW - Perifusion KW - Nebenschilddrüsen KW - Verkapselung KW - Cellculture KW - endocrine KW - perifusion KW - perfusion-culture KW - container KW - Insulin KW - vitality-staining KW - parathyroid cells KW - tissue engineering Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-20282 ER -