TY - JOUR A1 - Schmidt, Paul A1 - Fantuzzi, Felipe A1 - Klopf, Jonas A1 - Schröder, Niklas B. A1 - Dewhurst, Rian D. A1 - Braunschweig, Holger A1 - Engel, Volker A1 - Engels, Bernd T1 - Twisting versus delocalization in CAAC- and NHC-stabilized boron-based biradicals: the roles of sterics and electronics JF - Chemistry - A European Journal N2 - Twisted boron-based biradicals featuring unsaturated C\(_2\)R\(_2\) (R=Et, Me) bridges and stabilization by cyclic (alkyl)(amino)carbenes (CAACs) were recently prepared. These species show remarkable geometrical and electronic differences with respect to their unbridged counterparts. Herein, a thorough computational investigation on the origin of their distinct electrostructural properties is performed. It is shown that steric effects are mostly responsible for the preference for twisted over planar structures. The ground-state multiplicity of the twisted structure is modulated by the σ framework of the bridge, and different R groups lead to distinct multiplicities. In line with the experimental data, a planar structure driven by delocalization effects is observed as global minimum for R=H. The synthetic elusiveness of C\(_2\)R\(_2\)-bridged systems featuring N-heterocyclic carbenes (NHCs) was also investigated. These results could contribute to the engineering of novel main group biradicals. KW - chemistry KW - radicals KW - ab initio calculations KW - boron KW - carbene ligands KW - density functional calculations Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256636 VL - 27 IS - 16 ER - TY - JOUR A1 - Saalfrank, Christian A1 - Fantuzzi, Felipe A1 - Kupfer, Thomas A1 - Ritschel, Benedikt A1 - Hammond, Kai A1 - Krummenacher, Ivo A1 - Bertermann, Rüdiger A1 - Wirthensohn, Raphael A1 - Finze, Maik A1 - Schmid, Paul A1 - Engel, Volker A1 - Engels, Bernd A1 - Braunschweig, Holger T1 - cAAC‐Stabilized 9,10‐diboraanthracenes—Acenes with Open‐Shell Singlet Biradical Ground States JF - Angewandte Chemie International Edition N2 - Narrow HOMO–LUMO gaps and high charge‐carrier mobilities make larger acenes potentially high‐efficient materials for organic electronic applications. The performance of such molecules was shown to significantly increase with increasing number of fused benzene rings. Bulk quantities, however, can only be obtained reliably for acenes up to heptacene. Theoretically, (oligo)acenes and (poly)acenes are predicted to have open‐shell singlet biradical and polyradical ground states, respectively, for which experimental evidence is still scarce. We have now been able to dramatically lower the HOMO–LUMO gap of acenes without the necessity of unfavorable elongation of their conjugated π system, by incorporating two boron atoms into the anthracene skeleton. Stabilizing the boron centers with cyclic (alkyl)(amino)carbenes gives neutral 9,10‐diboraanthracenes, which are shown to feature disjointed, open‐shell singlet biradical ground states. KW - acenes KW - biradicals KW - bond Activation KW - boron KW - heterocycles Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-217795 VL - 59 IS - 43 SP - 19338 EP - 19343 ER -