TY - JOUR A1 - Dirks, Johannes A1 - Fischer, Jonas A1 - Haase, Gabriele A1 - Holl-Wieden, Annette A1 - Hofmann, Christine A1 - Girschick, Hermann A1 - Morbach, Henner T1 - CD21\(^{lo/−}\)CD27\(^−\)IgM\(^−\) Double-Negative B Cells Accumulate in the Joints of Patients With Antinuclear Antibody-Positive Juvenile Idiopathic Arthritis JF - Frontiers in Pediatrics N2 - Juvenile idiopathic arthritis (JIA) encompasses a heterogeneous group of diseases. The appearance of antinuclear antibodies (ANAs) in almost half of the patients suggests B cell dysregulation as a distinct pathomechanism in these patients. Additionally, ANAs were considered potential biomarkers encompassing a clinically homogenous subgroup of JIA patients. However, in ANA+ JIA patients, the site of dysregulated B cell activation as well as the B cell subsets involved in this process is still unknown. Hence, in this cross-sectional study, we aimed in an explorative approach at characterizing potential divergences in B cell differentiation in ANA+ JIA patients by assessing the distribution of peripheral blood (PB) and synovial fluid (SF) B cell subpopulations using flow cytometry. The frequency of transitional as well as switched-memory B cells was higher in PB of JIA patients than in healthy controls. There were no differences in the distribution of B cell subsets between ANA- and ANA+ patients in PB. However, the composition of SF B cells was different between ANA- and ANA+ patients with increased frequencies of CD21\(^{lo/−}\)CD27\(^−\)IgM\(^−\) “double negative” (DN) B cells in the latter. DN B cells might be a characteristic subset expanding in the joints of ANA+ JIA patients and are potentially involved in the antinuclear immune response in these patients. The results of our explorative study might foster further research dissecting the pathogenesis of ANA+ JIA patients. KW - juvenile idiopathic arthritis KW - B cells KW - antinuclear antibodies KW - synovial fluid KW - double negative B cells Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236286 SN - 2296-2360 VL - 9 ER - TY - JOUR A1 - Fischer, Jonas A1 - Dirks, Johannes A1 - Klaussner, Julia A1 - Haase, Gabriele A1 - Holl-Wieden, Annette A1 - Hofmann, Christine A1 - Hackenberg, Stephan A1 - Girschick, Hermann A1 - Morbach, Henner T1 - Effect of clonally expanded PD-1\(^h\)\(^i\)\(^g\)\(^h\) CXCR5-CD4+ peripheral T Helper cells on B cell differentiation in the joints of patients with antinuclear antibody-positive juvenile idiopathic arthritis JF - Arthritis & Rheumatology N2 - Objective Antinuclear antibody (ANA)–positive juvenile idiopathic arthritis (JIA) is characterized by synovial B cell hyperactivity, but the precise role of CD4+ T cells in promoting local B cell activation is unknown. This study was undertaken to determine the phenotype and function of synovial CD4+ T cells that promote aberrant B cell activation in JIA. Methods Flow cytometry was performed to compare the phenotype and cytokine patterns of PD-1\(^h\)\(^i\)\(^g\)\(^h\)CD4+ T cells in the synovial fluid (SF) of patients with JIA and T follicular helper cells in the tonsils of control individuals. TCRVB next-generation sequencing was used to analyze T cell subsets for signs of clonal expansion. The functional impact of these T cell subsets on B cells was examined in cocultures in vitro. Results Multidimensional flow cytometry revealed the expansion of interleukin-21 (IL-21) and interferon-γ (IFNγ)–coexpressing PD-1\(^h\)\(^i\)\(^g\)\(^h\)CXCR5–HLA–DR+CD4+ T cells that accumulate in the joints of ANA-positive JIA patients. These T cells exhibited signs of clonal expansion with restricted T cell receptor clonotypes. The phenotype resembled peripheral T helper (Tph) cells with an extrafollicular chemokine receptor pattern and high T-bet and B lymphocyte–induced maturation protein 1 expression, but low B cell lymphoma 6 expression. SF Tph cells, by provision of IL-21 and IFNy, skewed B cell differentiation toward a CD21\(^l\)\(^o\)\(^w\)\(^/\)\(^-\)CD11c+ phenotype in vitro. Additionally, SF Tph cell frequencies correlated with the appearance of SF CD21\(^l\)\(^o\)\(^w\)\(^/\)\(^-\)CD11c+CD27–IgM– double-negative (DN) B cells in situ. KW - medicine Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256607 VL - 74 IS - 1 ER - TY - JOUR A1 - Dirks, Johannes A1 - Haase, Gabriele A1 - Cantaert, Tineke A1 - Frey, Lea A1 - Klaas, Moritz A1 - Rickert, Christian H. A1 - Girschick, Hermann A1 - Meffre, Eric A1 - Morbach, Henner T1 - A novel AICDA splice-site mutation in two siblings with HIGM2 permits somatic hypermutation but abrogates mutational targeting JF - Journal of Clinical Immunology N2 - Hyper-IgM syndrome type 2 (HIGM2) is a B cell intrinsic primary immunodeficiency caused by mutations in AICDA encoding activation-induced cytidine deaminase (AID) which impair immunoglobulin class switch recombination (CSR) and somatic hypermutation (SHM). Whereas autosomal-recessive AID-deficiency (AR-AID) affects both CSR and SHM, the autosomal-dominant form (AD-AID) due to C-terminal heterozygous variants completely abolishes CSR but only partially affects SHM. AR-AID patients display enhanced germinal center (GC) reactions and autoimmune manifestations, which are not present in AD-AID, suggesting that SHM but not CSR regulates GC reactions and peripheral B cell tolerance. Herein, we describe two siblings with HIGM2 due to a novel homozygous AICDA mutation (c.428-1G > T) which disrupts the splice acceptor site of exon 4 and results in the sole expression of a truncated AID variant that lacks 10 highly conserved amino acids encoded by exon 4 (AID-ΔE4a). AID-ΔE4a patients suffered from defective CSR and enhanced GC reactions and were therefore indistinguishable from other AR-AID patients. However, the AID-ΔE4a variant only partially affected SHM as observed in AD-AID patients. In addition, AID-ΔE4a but not AD-AID patients revealed impaired targeting of mutational hotspot motives and distorted mutational patterns. Hence, qualitative defects in AID function and altered SHM rather than global decreased SHM activity may account for the disease phenotype in these patients. KW - hyper-IgM syndrome type 2 (HIGM2) KW - AICDA KW - AID-ΔE4a KW - AD-AID KW - mutational targeting KW - somatic hypermutation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324253 VL - 42 IS - 4 ER -