TY - JOUR A1 - Düking, Peter A1 - Zinner, Christoph A1 - Reed, Jennifer L. A1 - Holmberg, Hans‐Christer A1 - Sperlich, Billy T1 - Predefined vs data‐guided training prescription based on autonomic nervous system variation: A systematic review JF - Scandinavian Journal of Medicine & Science in Sports N2 - Monitoring variations in the functioning of the autonomic nervous system may help personalize training of runners and provide more pronounced physiological adaptations and performance improvements. We systematically reviewed the scientific literature comparing physiological adaptations and/or improvements in performance following training based on responses of the autonomic nervous system (ie, changes in heart rate variability) and predefined training. PubMed, SPORTDiscus, and Web of Science were searched systematically in July 2019. Keywords related to endurance, running, autonomic nervous system, and training. Studies were included if they (a) involved interventions consisting predominantly of running training; (b) lasted at least 3 weeks; (c) reported pre‐ and post‐intervention assessment of running performance and/or physiological parameters; (d) included an experimental group performing training adjusted continuously on the basis of alterations in HRV and a control group; and (e) involved healthy runners. Five studies involving six interventions and 166 participants fulfilled our inclusion criteria. Four HRV‐based interventions reduced the amount of moderate‐ and/or high‐intensity training significantly. In five interventions, improvements in performance parameters (3000 m, 5000 m, Loadmax, Tlim) were more pronounced following HRV‐based training. Peak oxygen uptake (VO\(_{2peak}\)) and submaximal running parameters (eg, LT1, LT2) improved following both HRV‐based and predefined training, with no clear difference in the extent of improvement in VO\(_{2peak}\). Submaximal running parameters tended to improve more following HRV‐based training. Research findings to date have been limited and inconsistent. Both HRV‐based and predefined training improve running performance and certain submaximal physiological adaptations, with effects of the former training tending to be greater. KW - cardiorespiratory fitness KW - eHealth KW - endurance KW - innovation KW - technology KW - training KW - wearable Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-217893 VL - 30 IS - 12 SP - 2291 EP - 2304 ER - TY - JOUR A1 - Sperlich, Paula F. A1 - Holmberg, Hans-Christer A1 - Reed, Jennifer L. A1 - Zinner, Christoph A1 - Mester, Joachim A1 - Sperlich, Billy T1 - Individual versus standardized running protocols in the determination of VO\(_{2max}\) JF - Journal of Sports Science and Medicine N2 - The purpose of this study was to determine whether an individually designed incremental exercise protocol results in greater rates of oxygen uptake VO\(_{2max}\) than standardized testing. Fourteen well-trained, male runners performed five incremental protocols in randomized order to measure their VO\(_{2max}\): i) an incremental test (INC\(_{S+I}\)) with pre-defined increases in speed (2 min at 8.64 km.h\(^{-1}\), then a rise of 1.44 km.h\(^{-1}\) every 30 s up to 14.4 km.h\(^{-1}\)) and thereafter inclination (0.5.every 30 s); ii) an incremental test (INC\(_{I}\)) at constant speed (14.4 km.h\(^{-1}\)) and increasing inclination (2 degrees every 2 min from the initial 0 degrees); iii) an incremental test (INC\(_{S}\)) at constant inclination (0 degrees) and increasing speed (0.5 km.h\(^{-1}\) every 30 s from the initial 12.0 km.h\(^{-1}\)); iv) a graded exercise protocol (GXP) at a 1 degrees incline with increasing speed (initially 8.64 km.h\(^{-1}\) + 1.44 km.h\(^{-1}\) every 5 min); v) an individual exercise protocol (INDXP) in which the runner chose the inclination and speed. VO\(_{2max}\) was lowest (-4.2%) during the GXP (p = 0.01; d = 0.06 - 0.61) compared to all other tests. The highest rating of perceived exertion, heart rate, ventilation and end-exercise blood lactate concentration were similar between the different protocols (p < 0.05). The time to exhaustion ranged from 7 min 18 sec (INC\(_{S}\)) to 25 min 30 sec (GXP) (p = 0.01). The VO\(_{2max}\) attained by employing an individual treadmill protocol does not differ from the values derived from various standardized incremental protocols. KW - maximum oxygen uptake KW - aerobic power KW - treadmill running KW - ramp test KW - treadmill protocol Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151890 VL - 14 ER -