TY - JOUR A1 - Hofmann, Julian A1 - Spatz, Philipp A1 - Walther, Rasmus A1 - Gutmann, Marcus A1 - Maurice, Tangui A1 - Decker, Michael T1 - Synthesis and Biological Evaluation of Flavonoid-Cinnamic Acid Amide Hybrids with Distinct Activity against Neurodegeneration in Vitro and in Vivo JF - Chemistry-A European Journal N2 - Flavonoids are polyphenolic natural products and have shown significant potential as disease-modifying agents against neurodegenerative disorders like Alzheimer's disease (AD), with activities even in vivo. Hybridization of the natural products taxifolin and silibinin with cinnamic acid led to an overadditive effect of these compounds in several phenotypic screening assays related to neurodegeneration and AD. Therefore, we have exchanged the flavonoid part of the hybrids with different flavonoids, which show higher efficacy than taxifolin or silibinin, to improve the activity of the respective hybrids. Chemical connection between the flavonoid and cinnamic acid was realized by an amide instead of a labile ester bond to improve stability towards hydrolysis. To investigate the influence of a double bond at the C-ring of the flavonoid, the dehydro analogues of the respective hybrids were also synthesized. All compounds obtained show neuroprotection against oxytosis, ferroptosis and ATP-depletion, respectively, in the murine hippocampal cell line HT22. Interestingly, the taxifolin and the quercetin derivatives are the most active compounds, whereby the quercetin derivate shows even more pronounced activity than the taxifolin one in all assays applied. As aimed for, no hydrolysis product was found in cellular uptake experiments after 4 h whereas different metabolites were detected. Furthermore, the quercetin-cinnamic acid amide showed pronounced activity in an in vivo AD mouse model at a remarkably low dose of 0.3 mg/kg. KW - AD mouse modele KW - oxytosis/ferroptosis KW - natural product hybrids KW - Alzheimer's diseas Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318878 VL - 28 IS - 39 ER - TY - JOUR A1 - Gentzsch, Christian A1 - Chen, Xinyu A1 - Spatz, Philipp A1 - Košak, Urban A1 - Knez, Damijan A1 - Nose, Naoko A1 - Gobec, Stanislav A1 - Higuchi, Takahiro A1 - Decker, Michael T1 - Synthesis and Initial Characterization of a Reversible, Selective \(^{18}\)F-Labeled Radiotracer for Human Butyrylcholinesterase JF - Molecular Imaging and Biology N2 - Purpose A neuropathological hallmark of Alzheimer's disease (AD) is the presence of amyloid-β (Aβ) plaques in the brain, which are observed in a significant number of cognitively normal, older adults as well. In AD, butyrylcholinesterase (BChE) becomes associated with A\(_{β}\) aggregates, making it a promising target for imaging probes to support diagnosis of AD. In this study, we present the synthesis, radiochemistry, in vitro and preliminary ex and in vivo investigations of a selective, reversible BChE inhibitor as PET-tracer for evaluation as an AD diagnostic. Procedures Radiolabeling of the inhibitor was achieved by fluorination of a respective tosylated precursor using K[\(^{18}\)F]. IC\(_{50}\) values of the fluorinated compound were obtained in a colorimetric assay using recombinant, human (h) BChE. Dissociation constants were determined by measuring hBChE activity in the presence of different concentrations of inhibitor. Results Radiofluorination of the tosylate precursor gave the desired radiotracer in an average radiochemical yield of 20 ± 3 %. Identity and > 95.5 % radiochemical purity were confirmed by HPLC and TLC autoradiography. The inhibitory potency determined in Ellman's assay gave an IC\(_{50}\) value of 118.3 ± 19.6 nM. Dissociation constants measured in kinetic experiments revealed lower affinity of the inhibitor for binding to the acylated enzyme (K2 = 68.0 nM) in comparison to the free enzyme (K\(_{1}\) = 32.9 nM). Conclusions The reversibly acting, selective radiotracer is synthetically easily accessible and retains promising activity and binding potential on hBChE. Radiosynthesis with \(^{18}\)F labeling of tosylates was feasible in a reasonable time frame and good radiochemical yield. KW - Alzheimer’s disease KW - amyloid-β (Aβ) KW - butyrylcholinesterase Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-269870 SN - 1860-2002 VL - 23 IS - 4 ER - TY - JOUR A1 - Scheiner, Matthias A1 - Sink, Alexandra A1 - Spatz, Philipp A1 - Endres, Erik A1 - Decker, Michael T1 - Photopharmacology on Acetylcholinesterase: Novel Photoswitchable Inhibitors with Improved Pharmacological Profiles JF - ChemPhotoChem N2 - Considerable effort has previously been invested in a light‐controlled inhibition of the enzyme acetylcholinesterase (AChE). We found that a novel azobenzene‐based bistacrine AChE inhibitor switched faster than the known dithienylethene based bistacrine and inverted the photo‐controlled interactions of the photoisomers compared to its dithienylethene congener. Furthermore, we have optimized a previously described light‐controlled tacrine‐based AChE inhibitor. Isomerization upon irradiation with UV light of the novel inhibitor was observed in aqueous medium and showed no fatigue over several cycles. The cis‐enriched form showed an 8.4‐fold higher inhibition of hAChE compared with its trans‐enriched form and was about 30‐fold more active than the reference compound tacrine with a single‐digit nanomolar inhibition. We went beyond proof‐of‐concept to discover photoswitchable AChE inhibitors with pharmacologically desirable nanomolar inhibition, “cis‐on” effect, and pronounces differences between the photoisomers. KW - azobenzenes KW - enzymes KW - kinetics KW - photopharmacology KW - tacrine Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218445 VL - 5 IS - 2 SP - 149 EP - 159 ER -