TY - JOUR A1 - Kaya-Zeeb, Sinan A1 - Delac, Saskia A1 - Wolf, Lena A1 - Marante, Ana Luiza A1 - Scherf-Clavel, Oliver A1 - Thamm, Markus T1 - Robustness of the honeybee neuro-muscular octopaminergic system in the face of cold stress JF - Frontiers in Physiology N2 - In recent decades, our planet has undergone dramatic environmental changes resulting in the loss of numerous species. This contrasts with species that can adapt quickly to rapidly changing ambient conditions, which require physiological plasticity and must occur rapidly. The Western honeybee (Apis mellifera) apparently meets this challenge with remarkable success, as this species is adapted to numerous climates, resulting in an almost worldwide distribution. Here, coordinated individual thermoregulatory activities ensure survival at the colony level and thus the transmission of genetic material. Recently, we showed that shivering thermogenesis, which is critical for honeybee thermoregulation, depends on octopamine signaling. In this study, we tested the hypothesis that the thoracic neuro-muscular octopaminergic system strives for a steady-state equilibrium under cold stress to maintain endogenous thermogenesis. We can show that this applies for both, octopamine provision by flight muscle innervating neurons and octopamine receptor expression in the flight muscles. Additionally, we discovered alternative splicing for AmOARβ2. At least the expression of one isoform is needed to survive cold stress conditions. We assume that the thoracic neuro-muscular octopaminergic system is finely tuned in order to contribute decisively to survival in a changing environment. KW - honeybees KW - thermogenesis KW - cold stress KW - octopamine KW - octopamine receptors KW - gene expression Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-288753 SN - 1664-042X VL - 13 ER - TY - JOUR A1 - Requier, Fabrice A1 - Paillet, Yoan A1 - Laroche, Fabienne A1 - Rutschmann, Benjamin A1 - Zhang, Jie A1 - Lombardi, Fabio A1 - Svoboda, Miroslav A1 - Steffan-Dewenter, Ingolf T1 - Contribution of European forests to safeguard wild honeybee populations JF - Conservation Letters N2 - Abstract Recent studies reveal the use of tree cavities by wild honeybee colonies in European forests. This highlights the conservation potential of forests for a highly threatened component of the native entomofauna in Europe, but currently no estimate of potential wild honeybee population sizes exists. Here, we analyzed the tree cavity densities of 106 forest areas across Europe and inferred an expected population size of wild honeybees. Both forest and management types affected the density of tree cavities. Accordingly, we estimated that more than 80,000 wild honeybee colonies could be sustained in European forests. As expected, potential conservation hotspots were identified in unmanaged forests, and, surprisingly, also in other large forest areas across Europe. Our results contribute to the EU policy strategy to halt pollinator declines and reveal the potential of forest areas for the conservation of so far neglected wild honeybee populations in Europe. KW - Apis mellifera KW - Conservation KW - forest management KW - honeybees KW - native populations KW - protected forests KW - tree cavities KW - unmanaged broadleaved forests Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204407 VL - 13 IS - 2 ER - TY - JOUR A1 - Rössler, Wolfgang A1 - Spaethe, Johannes A1 - Groh, Claudia T1 - Pitfalls of using confocal-microscopy based automated quantification of synaptic complexes in honeybee mushroom bodies (response to Peng and Yang 2016) JF - Scientific Reports N2 - A recent study by Peng and Yang in Scientific Reports using confocal-microscopy based automated quantification of anti-synapsin labeled microglomeruli in the mushroom bodies of honeybee brains reports potentially incorrect numbers of microglomerular densities. Whereas several previous studies using visually supervised or automated counts from confocal images and analyses of serial 3D electron-microscopy data reported consistent numbers of synaptic complexes per volume, Peng and Yang revealed extremely low numbers differing by a factor of 18 or more from those obtained in visually supervised counts, and by a factor 22–180 from numbers in two other studies using automated counts. This extreme discrepancy is especially disturbing as close comparison of raw confocal images of anti-synapsin labeled whole-mount brain preparations are highly similar across these studies. We conclude that these discrepancies may reside in potential misapplication of confocal imaging followed by erroneous use of automated image analysis software. Consequently, the reported microglomerular densities during maturation and after manipulation by insecticides require validation by application of appropriate confocal imaging methods and analyses tools that rely on skilled observers. We suggest several improvements towards more reliable or standardized automated or semi-automated synapse counts in whole mount preparations of insect brains. KW - confocal-microscopy based automated quantification KW - mushroom bodies KW - honeybees KW - brain Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170451 VL - 7 IS - 9786 ER - TY - JOUR A1 - El-Keredy, Amira A1 - Schleyer, Michael A1 - König, Christian A1 - Ekim, Aslihan A1 - Gerber, Bertram T1 - Behavioural Analyses of Quinine Processing in Choice, Feeding and Learning of Larval Drosophila JF - PLoS One N2 - Gustatory stimuli can support both immediate reflexive behaviour, such as choice and feeding, and can drive internal reinforcement in associative learning. For larval Drosophila, we here provide a first systematic behavioural analysis of these functions with respect to quinine as a study case of a substance which humans report as "tasting bitter". We describe the dose-effect functions for these different kinds of behaviour and find that a half-maximal effect of quinine to suppress feeding needs substantially higher quinine concentrations (2.0 mM) than is the case for internal reinforcement (0.6 mM). Interestingly, in previous studies (Niewalda et al. 2008, Schipanski et al 2008) we had found the reverse for sodium chloride and fructose/sucrose, such that dose-effect functions for those tastants were shifted towards lower concentrations for feeding as compared to reinforcement, arguing that the differences in dose-effect function between these behaviours do not reflect artefacts of the types of assay used. The current results regarding quinine thus provide a starting point to investigate how the gustatory system is organized on the cellular and/or molecular level to result in different behavioural tuning curves towards a bitter tastant. KW - honeybees KW - chemosensory system KW - bitter taste KW - melanogaster KW - receptor KW - reward KW - brain KW - organization KW - architecture KW - perception Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130811 VL - 7 IS - 7 ER -