TY - JOUR A1 - Othman, Eman M. A1 - Fathy, Moustafa A1 - Bekhit, Amany Abdlrehim A1 - Abdel-Razik, Abdel-Razik H. A1 - Jamal, Arshad A1 - Nazzal, Yousef A1 - Shams, Shabana A1 - Dandekar, Thomas A1 - Naseem, Muhammad T1 - Modulatory and toxicological perspectives on the effects of the small molecule kinetin JF - Molecules N2 - Plant hormones are small regulatory molecules that exert pharmacological actions in mammalian cells such as anti-oxidative and pro-metabolic effects. Kinetin belongs to the group of plant hormones cytokinin and has been associated with modulatory functions in mammalian cells. The mammalian adenosine receptor (A2a-R) is known to modulate multiple physiological responses in animal cells. Here, we describe that kinetin binds to the adenosine receptor (A2a-R) through the Asn253 residue in an adenosine dependent manner. To harness the beneficial effects of kinetin for future human use, we assess its acute toxicity by analyzing different biochemical and histological markers in rats. Kinetin at a dose below 1 mg/kg had no adverse effects on the serum level of glucose or on the activity of serum alanine transaminase (ALT) or aspartate aminotransferase (AST) enzymes in the kinetin treated rats. Whereas, creatinine levels increased after a kinetin treatment at a dose of 0.5 mg/kg. Furthermore, 5 mg/kg treated kinetin rats showed normal renal corpuscles, but a mild degeneration was observed in the renal glomeruli and renal tubules, as well as few degenerated hepatocytes were also observed in the liver. Kinetin doses below 5 mg/kg did not show any localized toxicity in the liver and kidney tissues. In addition to unraveling the binding interaction between kinetin and A2a-R, our findings suggest safe dose limits for the future use of kinetin as a therapeutic and modulatory agent against various pathophysiological conditions. KW - cytokinin kinetin KW - modulatory effects KW - in vivo toxicity KW - A2a-R receptor Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-223064 SN - 1420-3049 VL - 26 IS - 3 ER - TY - JOUR A1 - Maloukh, Lina A1 - Nazzal, Yousef A1 - Kumarappan, Alagappan A1 - Howari, Fares A1 - Ambika, Lakshmi Kesari A1 - Yahmadi, Rihab A1 - Sharma, Manish A1 - Iqbal, Jibran A1 - Al-Taani, Ahmed A. A1 - Salem, Imen Ben A1 - Xavier, Cijo M. A1 - Naseem, Muhamad T1 - Metagenomic analysis of the outdoor dust microbiomes: a case study from Abu Dhabi, UAE JF - Atmosphere N2 - Outdoor dust covers a shattered range of microbial agents from land over transportation, human microbial flora, which includes pathogen and commensals, and airborne from the environment. Dust aerosols are rich in bacterial communities that have a major impact on human health and living environments. In this study, outdoor samples from roadside barricades, safety walls, and fences (18 samples) were collected from Abu Dhabi, UAE and bacterial diversity was assessed through a 16S rRNA amplicon next generation sequencing approach. Clean data from HiSeq produced 1,099,892 total reads pairs for 18 samples. For all samples, taxonomic classifications were assigned to the OTUs (operational taxonomic units) representative sequence using the Ribosomal Database Project database. Analysis such as alpha diversity, beta diversity, differential species analysis, and species relative abundance were performed in the clustering of samples and a functional profile heat map was obtained from the OTUs by using bioinformatics tools. A total of 2814 OTUs were identified from those samples with a coverage of more than 99%. In the phylum, all 18 samples had most of the bacterial groups such as Actinobacteria, Proteobacteria, Firmicutes, and Bacteroidetes. Twelve samples had Propionibacteria acnes and were mainly found in RD16 and RD3. Major bacteria species such as Propionibacteria acnes, Bacillus persicus, and Staphylococcus captis were found in all samples. Most of the samples had Streptococcus mitis, Staphylococcus capitis. and Nafulsella turpanensis and Enhydrobacter aerosaccus was part of the normal microbes of the skin. Salinimicrobium sp., Bacillus alkalisediminis, and Bacillus persicus are halophilic bacteria found in sediments. The heat map clustered the samples and species in vertical and horizontal classification, which represents the relationship between the samples and bacterial diversity. The heat map for the functional profile had high properties of amino acids, carbohydrate, and cofactor and vitamin metabolisms of all bacterial species from all samples. Taken together, our analyses are very relevant from the perspective of out-door air quality, airborne diseases, and epidemics, with broader implications for health safety and monitoring. KW - dust microbiomes KW - metagenomics KW - microbial diversity KW - pollution KW - GIS Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304391 SN - 2073-4433 VL - 14 IS - 2 ER - TY - JOUR A1 - Nazzal, Yousef A1 - Howari, Fares M. A1 - Yaslam, Aya A1 - Iqbal, Jibran A1 - Maloukh, Lina A1 - Ambika, Lakshmi Kesari A1 - Al-Taani, Ahmed A. A1 - Ali, Ijaz A1 - Othman, Eman M. A1 - Jamal, Arshad A1 - Naseem, Muhammad T1 - A methodological review of tools that assess dust microbiomes, metatranscriptomes and the particulate chemistry of indoor dust JF - Atmosphere N2 - Indoor house dust is a blend of organic and inorganic materials, upon which diverse microbial communities such as viruses, bacteria and fungi reside. Adequate moisture in the indoor environment helps microbial communities multiply fast. The outdoor air and materials that are brought into the buildings by airflow, sandstorms, animals pets and house occupants endow the indoor dust particles with extra features that impact human health. Assessment of the health effects of indoor dust particles, the type of indoor microbial inoculants and the secreted enzymes by indoor insects as allergens merit detailed investigation. Here, we discuss the applications of next generation sequencing (NGS) technology which is used to assess microbial diversity and abundance of the indoor dust environments. Likewise, the applications of NGS are discussed to monitor the gene expression profiles of indoor human occupants or their surrogate cellular models when exposed to aqueous solution of collected indoor dust samples. We also highlight the detection methods of dust allergens and analytical procedures that quantify the chemical nature of indoor particulate matter with a potential impact on human health. Our review is thus unique in advocating the applications of interdisciplinary approaches that comprehensively assess the health effects due to bad air quality in built environments. KW - indoor dust KW - allergens KW - metagenomics KW - particulate matter KW - microbiomes KW - transcriptomes KW - health effects Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285957 SN - 2073-4433 VL - 13 IS - 8 ER -