TY - THES A1 - Boyanova, Desislava Veselinova T1 - Systems biological analysis of the platelet proteome and applications of functional module search in proteome networks T1 - Systembiologische Analyse des Blutplättchenproteoms und funktionelle Modulsuche in Proteinnetzwerken N2 - Recent development of proteomic approaches and generation of large-scale proteomic datasets calls for new methods for biological interpretation of the obtained results. Systems biological approaches such as integrated network analysis and functional module search have become an essential part of proteomic investigation. Proteomics is especially applied in anucleate cells such as platelets. The underlying molecular mechanisms of platelet activation and their pharmacological modulation are of immense importance for clinical research. Advances in platelet proteomics have provided a large amount of proteomic data, which has not yet been comprehensively investigated in a systems biological perspective. To this end, I assembled platelet specific data from proteomic and transcriptomic studies by detailed manual curation and worked on the generation of a comprehensive human platelet repository for systems biological analysis of platelets in the functional context of integrated networks (PlateletWeb) (http:/PlateletWeb.bioapps.biozentrum.uni-wuerzburg.de). I also added platelet-specific experimentally validated phosphorylation data and generated kinase predictions for 80% of the newly identified platelet phosphosites. The combination of drug, disease and pathway information with phosphorylation and interaction data makes this database the first integrative platelet platform available for platelet research. PlateletWeb contains more than 5000 platelet proteins, which can also be analyzed and visualized in a network context, allowing identification of all major signaling modules involved in platelet activation and inhibition. Using the wealth of integrated data I performed a series of platelet-specific analyses regarding the platelet proteome, pathways, drug targets and novel platelet phosphorylation events involved in crucial signaling events. I analyzed the statistical enrichment of known pathways for platelet proteins and identified endocytosis as a highly represented pathway in platelets. Further results revealed that highly connected platelet proteins are more often targeted by drugs. Using integrated network analysis offered by PlateletWeb, I analyzed the crucial activation signaling pathway of adenosine diphosphate (ADP), visualizing how the signal flow from receptors to effectors is maintained. My work on integrin inside-out signaling was also based on the integrated network approach and examined new platelet-specific phosphorylation sites and their regulation using kinase predictions. I generated hypothesis on integrin signaling, by investigating the regulation of Ser269 phosphorylation site on the docking protein 1 (DOK1). This phosphorylation site may influence the inhibiting effect of DOK1 on integrin a2bb3. Extending the integrated network approach to further cell lines, I used the assembled human interactome information for the analysis of functional modules in cellular networks. The investigation was performed with a previously developed module detection algorithm, which finds maximum-scoring subgraphs in transcriptomic datasets by using assigned values to the network nodes. We extended the algorithm to qualitative proteomic datasets and enhanced the module search by adding functional information to the network edges to concentrate the solution onto modules with high functional similarity. I performed a series of analyses to validate its performance in small-sized (virus-infected gastric cells) and medium-sized networks (human lymphocytes). In both cases the algorithm extracted characteristic modules of sample proteins with high functional similarity. The functional module search is especially useful in site-specific phosphoproteomic datasets, where kinase regulation of the detected sites is often sparse or lacking. Therefore, I used the module detection algorithm in quantitative phosphoproteomic datasets. In a platelet phosphorylation dataset, I presented a pipeline for network analysis of detected phosphorylation sites. In a second approach, the functional module detecting algorithm was used on a phosphoproteome network of human embryonic stem cells, in which nodes represented the maximally changing phosphorylation sites in the experiment. Additional kinases from the human phosphoproteome in PlateletWeb were included to the network to investigate the regulation of the signal flow. Results indicated important phosphorylation sites and their upstream kinases and explained changes observed in embryonic stem cells during differentiation. This work presents novel approaches for integrated network analysis in cells and introduces for the first time a systematic biological investigation of the human platelet proteome based on the platelet-specific knowledge base PlateletWeb. The extended methods for optimized functional module detection offer an invaluable tool for exploring proteomic datasets and covering gaps in complex large-scale data analysis. By combining exact module detection approaches with functional information data between interacting proteins, characteristic functional modules with high functional resemblance can be extracted from complex datasets, thereby focusing on important changes in the observed networks. N2 - Jüngste Entwicklungen der Proteomik und die damit einhergehende Erzeugung großer Datensätze erfordern neue Methoden zur biologischen Interpretation der gewonnenen Ergebnisse. Systembiologische Ansätze wie die integrierte Netzwerkanalyse sowie die funktionelle Modulsuche sind zu einem wesentlichen Bestandteil bei der Untersuchung von Proteinen geworden. Die Proteomik wird vor allem in kernlosen Zellen wie den Blutplättchen angewandt. Die zu Grunde liegenden molekularen Mechanismen bei der Aktivierung von Thrombozyten und deren pharmakologische Modulation sind von immenser Bedeutung für die klinische Forschung. Aktuelle Studien in der Proteomforschung haben insbesondere bei Thrombozyten große Mengen an Daten erzeugt, die bisher noch nicht umfassend systembiologisch untersucht wurden. Zu diesem Zweck stellte ich manuell thrombozyten-spezifische Daten aus Proteom- und Transkriptomstudien zusammen und arbeitete an der Entwicklung einer umfassenden menschlichen Thrombozytendatenbank für die systembiologische Analyse der Funktion von Blutplättchen mittels integrierter Netzwerkanalyse (PlateletWeb) (http:/PlateletWeb.bioapps.biozentrum.uni-wuerzburg.de). Zusätzlich habe ich plättchen-spezifische, experimentell validierte Phosphorylierungsinformationen hinzugefügt und generierte Kinasenvorhersagen für 80% der neu identifizierten Phosphorylierungsstellen. Die Kombination aus Medikamenten, assoziierten Krankheiten und Signalweginformation zusammen mit Phosphorylierungs- und Interaktionsdaten macht diese Datenbank zu einer ersten und umfassenden Anlaufstelle für Thrombozytenforschung. PlateletWeb enthält mehr als 5000 Plättchenproteine, die in einem Netzwerk analysiert und dargestellt werden können. Dabei ist die Identifizierung aller wichtigen Signalmodule zur Plättchenaktivierung und -inhibierung möglich. Mit der Fülle an verfügbaren Daten führte ich eine Reihe thrombozyten-spezifischer Analysen am Plättchenproteom, an Signalwegen, pharmakologischen Wirkstoffzielen und Phosphorylierungsreaktionen in grundlegenden Signalprozessen durch. Ich analysierte die statistische Anreicherung bekannter Signalwege für Plättchenproteine und identifizierte Endozytose als einen sehr repräsentativen Signalweg in Thrombozyten. Weitere Ergebnisse zeigten, dass stark vernetzte Plättchenproteine häufiger Ziel von Medikamenten sind. Mittels der Netzwerkanalyse von PlateletWeb untersuchte ich den grundlegenden Signalaktivierungspfad von Adenosindiphosphat (ADP), und veranschaulichte den Signalfluss von Rezeptor zu Effektor. Meine Arbeit an der Integrin-Inside-Out-Signalisierung beinhaltete zudem die Untersuchung neuer thrombozyten-spezifischer Phosphorylierungsstellen und ihre Regulation durch Kinasenvorhersagen mit Hilfe des integrierten Netzwerkanalyseansatzes. Durch die Untersuchung der Regulation bei der Phosphorylierungsstelle Ser269 im Docking-Protein (DOK1) stellte ich eine neue Hypothese zur Integrinsignalisierung auf. Diese Phosphorylierungsstelle könnte den inhibitorischen Effekt von DOK1 auf integrin a2bb3 beeinflussen. Ich erweiterte den integrierten Netzwerkanalyseansatz für andere Zelllinien, indem ich die gesammelten Informationen aus dem menschlichen Interaktom für die Analyse von funktionellen Modulen in zellulären Netzen nutzte. Die Untersuchung wurde mit einem zuvor entwickelten Algorithmus zur Modulerkennung durchgeführt, der maximal bewertete Teilgraphen in Transkriptomdatensätzen anhand zugewiesener Werte für Netzwerkknoten findet. Wir erweiterten den Algorithmus zur Anwendung auf qualitative Proteomdatensätze und optimierten die Modulsuche durch Integration funktioneller Informationen in die Netzwerkkanten. Dies fokussierte die Optimierung auf Proteinmodule mit hoher funktioneller Ähnlichkeit. Ich führte eine Reihe von Analysen durch, um die Effizienz des Algorithmus in kleinen (durch Viren infizierte Magenzellen) und mittelgroßen Netzwerken (menschliche Lymphozyten) zu überprüfen. In beiden Fällen extrahierte der Algorithmus charakteristische Module der untersuchten Proteine mit hohen funktionellen Ähnlichkeiten. Die funktionelle Modulsuche ist besonders bei positionsspezifischen Phosphoproteomikdatensätzen nützlich, in denen die Kinasenregulation der detektierten Phosphorylierungsstellen nur spärlich oder gar nicht vorhanden ist. Daher habe ich den Algorithmus der Moduldetektion auf quantitative Phosphoproteomikdatensätze angewandt. Anhand eines Datensatzes bestehend aus phosphorylierten Plättchenproteinen habe ich eine Vorgehensweise zur Netzwerkanalyse von Phosphorylierungsstellen entwickelt. In einer zweiten Studie wurde der Algorithmus der Moduldetektion auf ein phosphoproteomisches Netzwerk menschlich embryonaler Stammzellen angewandt, in dem Phosphorylierungsstellen mit maximaler Veränderung durch Netzwerkknoten repräsentiert wurden. Um die Regulation des Signalflusses zu untersuchen wurden weitere Kinasen aus dem menschlichen Phosphoproteom beziehungsweise PlateletWeb integriert. Ergebnisse wiesen auf wichtige Phosphorylierungsstellen und ihre Upstream-Kinasen hin und verdeutlichten Vorgänge, die während der Differenzierung in den embryonalen Stammzellen stattgefunden haben. Diese Arbeit bietet neue Vorgehensweisen der integrierten Netzwerkanalyse in Zellen und präsentiert zum ersten Mal eine systembiologische Untersuchung des menschlichen Proteoms mit Hilfe der Trombozytendatenbank PlateletWeb. Die erweiterten Methoden zur verbesserten Erkennung funktioneller Module bieten ein wertvolles Werkzeug für die Erforschung proteomischer Datensätze und vervollständigen die komplexe und umfangreiche Datenanalyse. Charakteristische Module, die große Ähnlichkeit auf funktioneller Ebene aufweisen, können durch die Kombination von exakten Modulerkennungsansätzen mit funktionellen Daten extrahiert werden. Dabei werden wichtige Änderungen besonders bei der Analyse komplexer Netzwerke hervorgehoben. KW - Netzwerkanalyse KW - Thrombozyt KW - Proteomanalyse KW - Systembiologie KW - Funktionelle Modulsuche KW - Plättchenphosphoproteom KW - Netzwerkalgorithmen KW - Systems Biology KW - Integrated network analysis KW - Plättchennetzwerk KW - Proteome KW - Phosphoproteomic analysis KW - Functional module search KW - Functional interaction Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72165 ER - TY - THES A1 - Nilla, Jaya Santosh Chakravarthy T1 - An Integrated Knowledgebase and Network Analysis Applied on Platelets and Other Cell Types T1 - Integrierte Datenbank und Netzwerkanalysen zur Untersuchung von Blutplättchen und anderen Zelltypen N2 - Systems biology looks for emergent system effects from large scale assemblies of molecules and data, for instance in the human platelets. However, the computational efforts in all steps before such insights are possible can hardly be under estimated. In practice this involves numerous programming tasks, the establishment of new database systems but as well their maintenance, curation and data validation. Furthermore, network insights are only possible if strong algorithms decipher the interactions, decoding the hidden system effects. This thesis and my work are all about these challenges. To answer this requirement, an integrated platelet network, PlateletWeb, was assembled from different sources and further analyzed for signaling in a systems biological manner including multilevel data integration and visualization. PlateletWeb is an integrated network database and was established by combining the data from recent platelet proteome and transcriptome (SAGE) studies. The information on protein-protein interactions and kinase-substrate relationships extracted from bioinformatical databases as well as published literature were added to this resource. Moreover, the mass spectrometry-based platelet phosphoproteome was combined with site-specific phosphorylation/ dephosphorylation information and then enhanced with data from Phosphosite and complemented by bioinformatical sequence analysis for site-specific kinase predictions. The number of catalogued platelet proteins was increased by over 80% as compared to the previous version. The integration of annotations on kinases, protein domains, transmembrane regions, Gene Ontology, disease associations and drug targets provides ample functional tools for platelet signaling analysis. The PlateletWeb resource provides a novel systems biological workbench for the analysis of platelet signaling in the functional context of protein networks. By comprehensive exploration, over 15000 phosphorylation sites were found, out of which 2500 have the corresponding kinase associations. The network motifs were also investigated in this anucleate cell and characterize signaling modules based on integrated information on phosphorylation and protein-protein interactions. Furthermore, many algorithmic approaches have been introduced, including an exact approach (heinz) based on integer linear programming. At the same time, the concept of semantic similarities between two genes using Gene Ontology (GO) annotations has become an important basis for many analytical approaches in bioinformatics. Assuming that a higher number of semantically similar gene functional annotations reflect biologically more relevant interactions, an edge score was devised for functional network analysis. Bringing these two approaches together, the edge score, based on the GO similarity, and the node score, based on the expression of the proteins in the analyzed cell type (e.g. data from proteomic studies), the functional module as a maximum-scoring sub network in large protein-protein interaction networks was identified. This method was applied to various proteome datasets (different types of blood cells, embryonic stem cells) to identify protein modules that functionally characterize the respective cell type. This scalable method allows a smooth integration of data from various sources and retrieves biologically relevant signaling modules. N2 - Systembiologie sucht nach Systemeffekten in großflächigen Anordnungen von Molekülen und Daten, beispielsweise in menschlichen Blutplättchen. Allerdings kann der Rechenaufwand in den Schritten, die für solche Einsichten nötig sind, kaum unterschätzt werden. In der Praxis umfasst dies zahlreiche Programmieraufgaben, die Einrichtung neuer Datenbanksysteme, sowie deren Wartung, aber auch die Pflege und Validierung der vorgehaltenen Daten. Zudem sind Netzwerkeinsichten nur möglich, wenn effiziente und gute Algorithmen für versteckte Systemeffekte oder auch codierende Wechselwirkungen entschlüsseln. Diese Dissertation und meine Arbeit sind auf diese Herausforderungen konzentriert. Um diese Anforderung zu erfüllen, wurde ein integriertes Thrombozytennetzwerk, PlateletWeb, aus verschiedenen Quellen zusammengestellt und weiterhin auf Signalverarbeitung und –weitergabe einschließlich mehrstufiger Datenintegration und Visualisierung systembiologisch analysiert. PlateletWeb ist eine integrierte Netzwerkdatenbank, die durch die Kombination von Daten aus den neuesten Thrombozyten Proteom und Transkriptom (SAGE) Studien etabliert wurde. Information über Protein-Protein-Wechselwirkungen und Kinase-Substrat-Paaren wurde aus bioinformatischen Datenbanken hinzugefügt, extrahierte Daten aus der veröffentlichten Literatur ergänzten dies weiter. Darüber hinaus wurde das Blutplättchen-Phosphoproteom aufgrund von Daten aus der Massenspektroskopie mit ortsspezifischen Phosphorylierungs-/ Dephosphorylierungsdaten kombiniert. Ergänzt wurde dies um Daten aus der Datenbank Phosphosite und durch bioinformatische Sequenzanalyse unter Nutzung ortsspezifischer Kinasevorhersagen. Die Zahl der katalogisierten Thrombozytenproteine wurde im Vergleich mit der Vorversion von 2008 um mehr als 80% erhöht (beinahe Verdoppelung der Daten, insbesondere aber neue, zusätzliche Datenkategorien, z.B. über Pharmaka, Phosphorylierung, Gen-Ontologie, daneben auch weitere Validierung und Pflege der vorhandenen Daten). Die neue Integration von Annotationen für Kinasen, Proteindomänen, Transmembranregionen, Gene Ontology, Krankheitsbezüge und Azneimittelziele bietet neue, mächtige Werkzeuge für die funktionelle und systembiologische Analyse von Thrombozytensignalwegen. Die PlateletWeb Datenbank liefert eine neuartige systembiologische Werkbank zur Analyse von medizinisch relevanten Blutplättchensignalen (z.B. Plättchenaktivierung bei Thrombose, Hämostase etc.) im funktionellen Zusammenhang von Proteinnetzwerken. Durch umfassende Untersuchungen wurden über 15000 Phosphorylierungsstellen identifiziert, von denen 2500 einer Kinase zugeordnet werden konnten. Netzwerkmotive wurden auch in diesen Zellen ohne Zellkern untersucht und neue und interessante Signalmodule charakterisiert. Dies war nur durch die integrierte Information über Phosphorylierung und Protein-Protein-Wechselwirkungen möglich. Darüber hinaus wurden zahlreiche algorithmische Ansätze verwand, darunter ein exakter Ansatz zur Bayesschen Analyse von Interaktionsnetzwerken (Heinz) basierend auf linearer Integer-Programmierung. Gleichzeitig hat sich unser Konzept der semantischen Ähnlichkeiten zwischen zwei Genen basiert auf Gene Ontology (GO) Annotationen etabliert und ist eine wichtige Grundlage für viele analytische Ansätze in der Bioinformatik geworden. Unter der Annahme, dass eine höhere Anzahl von semantisch ähnlichen funktionellen Genannotationen biologisch relevantere Interaktionen reflektieren, wurde eine Bewertung der Kanten für funktionelle Netzwerkanalyse entwickelt. Die Kombination beider Ansäte, die Kantenbewertung, basierend auf der GO-Ähnlichkeit und die Netzknotenbewertung bezogen auf die Expression der Proteine ermöglichte in den analysierten Zelltypen (unter Nutzung von Daten z.B. aus Proteomstudien) die Identifizierung funktioneller Module als maximal bewertete Subnetzwerke in großen Proteinnetzwerken. Dieses Verfahren wurde an verschiedenen Proteomdatensätzen getestet (verschiedene Arten von Blutzellen, embryonale Stammzellen), um Proteinmodule zu identifizieren, die funktionell den jeweiligen Zelltyp charakterisieren. Weitere Ansätze der Methode erfassen die Analyse von quantitativen Phosphoproteom-Daten zur Identifizierung des Signalflusses in einem Kinase-Substrat Netzwerk. Diese skalierbaren Ansätze ermöglichen eine reibungslose Integration von Daten aus verschiedenen Quellen und liefern biologisch relevante Signalmodule. KW - Systembiologie KW - Netzwerkanalyse KW - Thrombozyt KW - Integrated Knowledgebase KW - Network Analysis KW - Platelets KW - Integrierte Datenbank KW - Blutplättchen Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85730 ER - TY - THES A1 - Cecil, Alexander [geb. Schmid] T1 - Metabolische Netzwerkanalysen für den Weg von xenobiotischen zu verträglichen antibiotischen Substanzen T1 - Metabolic network analysis for the path from xenobiotic to compliant antibiotic substances N2 - Durch das Auftreten neuer Stämme resistenter Krankheitserreger ist die Suche nach neuartigen Wirkstoffen gegen diese, sich ständig weiter ausbreitende Bedrohung, dringend notwendig. Der interdisziplinäre Sonderforschungsbereich 630 der Universität Würzburg stellt sich dieser Aufgabe, indem hier neuartige Xenobiotika synthetisiert und auf ihre Wirksamkeit getestet werden. Die hier vorgelegte Dissertation fügt sich hierbei nahtlos in die verschiedenen Fachbereiche des SFB630 ein: Sie stellt eine Schnittstelle zwischen Synthese und Analyse der Effekte der im Rahmen des SFB630 synthetisierten Isochinolinalkaloid-Derivaten. Mit den hier angewandten bioinformatischen Methoden wurden zunächst die wichtigsten Stoffwechselwege von S. epidermidis R62A, S. aureus USA300 und menschlicher Zellen in sogenannten metabolischen Netzwerkmodellen nachgestellt. Basierend auf diesen Modellen konnten Enzymaktivitäten für verschiedene Szenarien an zugesetzten Xenobiotika berechnet werden. Die hierfür benötigten Daten wurden direkt aus Genexpressionsanalysen gewonnen. Die Validierung dieser Methode erfolgte durch Metabolommessungen. Hierfür wurde S. aureus USA300 mit verschiedenen Konzentrationen von IQ-143 behandelt und gemäß dem in dieser Dissertation vorgelegten Ernteprotokoll aufgearbeitet. Die Ergebnisse hieraus lassen darauf schließen, dass IQ-143 starke Effekte auf den Komplex 1 der Atmungskette ausübt – diese Resultate decken sich mit denen der metabolischen Netzwerkanalyse. Für den Wirkstoff IQ-238 ergaben sich trotz der strukturellen Ähnlichkeiten zu IQ-143 deutlich verschiedene Wirkeffekte: Dieser Stoff verursacht einen direkten Abfall der Enzymaktivitäten in der Glykolyse. Dadurch konnte eine unspezifische Toxizität dieser Stoffe basierend auf ihrer chemischen Struktur ausgeschlossen werden. Weiterhin konnten die bereits für IQ-143 und IQ-238 auf Bakterien angewandten Methoden erfolgreich zur Modellierung der Effekte von Methylenblau auf verschiedene resistente Stämme von P. falciparum 3D7 angewandt werden. Dadurch konnte gezeigt werden, dass Methylenblau in einer Kombination mit anderen Präparaten gegen diesen Parasiten zum einen die Wirkung des Primärpräparates verstärkt, zum anderen aber auch in gewissem Maße vorhandene Resistenzen gegen das Primärpräparat zu verringern vermag. Somit konnte durch die vorgelegte Arbeit eine Pipeline zur Identifizierung der metabolischen Effekte verschiedener Wirkstoffe auf unterschiedliche Krankheitserreger erstellt werden. Diese Pipeline kann jederzeit auf andere Organismen ausgeweitet werden und stellt somit einen wichtigen Ansatz um Netzwerkeffekte verschiedener, potentieller Medikamente aufzuklären. N2 - With the emergence of new strains of resistant pathogens, the search for new compounds against this spreading threat is of utmost importance. The interdisciplinary special research field SFB630 of the University of Würzburg is ready to tackle this task by synthesizing and analysing the effects of xenobiotics. The presented dissertation is seamlessly integrated into the diverse range of special fields of the SFB630: it provides a gateway between synthesis and analysis of the effects of the newly synthesized isoquinoline alkaloid derivatives. The presented bioinformatic methods were used to build a so called metabolic network model of the most important pathways of S. epidermidis RP62A, S. aureus USA300 and human cells. Based on these models it was possible to calculate the enzyme activities for different scenarios of added xenobiotics. The data needed for these calculations were derived directly from gene expression analysis. Validation of this method was done by metabolomic measurements. In order to accomplish this, a strain of S. aureus USA300 was subjected to different concentrations of IQ-143 and processed according to the workflow also published in this dissertation. The results suggest that IQ-143 has very strong effects on the complex 1 of the oxidative phosphorylation – these results are consistent with the results obtained by the metabolic network analysis. Although IQ-238 is structurally a close relative to IQ-143, the effects of this compound are very different: it leads to a drop of the enzyme activities in the glycolysis. Therefore an unspecific toxicity of those compounds based on their chemical structure dould be ruled out. The methods used to model the effects of IQ-143 and IQ-238 on bacteria were furthermore successfully transferred to model the effects of methylene blue on several resistant strains of P. falciparum 3D7. It was shown that a combination of methylene blue and other malaria medications either enhances the effects of the primary medication, or – in the case of a resistant strain – methylene blue was able to mitigate the resistances against the primary medication. The presented dissertation was thus successfully able to build a pipeline to identify the metabolic effects of different compounds on various germs. This pipeline can be expanded to other organisms at any time and therefore yields an important approach to identify network effects of various potential drugs. KW - Stoffwechsel KW - Bioinformatik KW - Mathematisches Modell KW - Enzymaktivität KW - Xenobiotikum KW - Netzwerkanalyse KW - Bioinformatik KW - Metabolische Stoffwechselmodellierung KW - Metabolomik KW - Metabonomik KW - Network analysis KW - Bioinformatics KW - metabolic pathway modeling KW - metabolomics KW - metabonomics Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71866 ER - TY - THES A1 - Beisser, Daniela T1 - Integrated functional analysis of biological networks T1 - Integrierte funktionelle Analyse biologischer Netzwerke N2 - In recent years high-throughput experiments provided a vast amount of data from all areas of molecular biology, including genomics, transcriptomics, proteomics and metabolomics. Its analysis using bioinformatics methods has developed accordingly, towards a systematic approach to understand how genes and their resulting proteins give rise to biological form and function. They interact with each other and with other molecules in highly complex structures, which are explored in network biology. The in-depth knowledge of genes and proteins obtained from high-throughput experiments can be complemented by the architecture of molecular networks to gain a deeper understanding of biological processes. This thesis provides methods and statistical analyses for the integration of molecular data into biological networks and the identification of functional modules, as well as its application to distinct biological data. The integrated network approach is implemented as a software package, termed BioNet, for the statistical language R. The package includes the statistics for the integration of transcriptomic and functional data with biological networks, the scoring of nodes and edges of these networks as well as methods for subnetwork search and visualisation. The exact algorithm is extensively tested in a simulation study and outperforms existing heuristic methods for the calculation of this NP-hard problem in accuracy and robustness. The variability of the resulting solutions is assessed on perturbed data, mimicking random or biased factors that obscure the biological signal, generated for the integrated data and the network. An optimal, robust module can be calculated using a consensus approach, based on a resampling method. It summarizes optimally an ensemble of solutions in a robust consensus module with the estimated variability indicated by confidence values for the nodes and edges. The approach is subsequently applied to two gene expression data sets. The first application analyses gene expression data for acute lymphoblastic leukaemia (ALL) and differences between the subgroups with and without an oncogenic BCR/ABL gene fusion. In a second application gene expression and survival data from diffuse large B-cell lymphomas are examined. The identified modules include and extend already existing gene lists and signatures by further significant genes and their interactions. The most important novelty is that these genes are determined and visualised in the context of their interactions as a functional module and not as a list of independent and unrelated transcripts. In a third application the integrative network approach is used to trace changes in tardigrade metabolism to identify pathways responsible for their extreme resistance to environmental changes and endurance in an inactive tun state. For the first time a metabolic network approach is proposed to detect shifts in metabolic pathways, integrating transcriptome and metabolite data. Concluding, the presented integrated network approach is an adequate technique to unite high-throughput experimental data for single molecules and their intermolecular dependencies. It is flexible to apply on diverse data, ranging from gene expression changes over metabolite abundances to protein modifications in a combination with a suitable molecular network. The exact algorithm is accurate and robust in comparison to heuristic approaches and delivers an optimal, robust solution in form of a consensus module with confidence values. By the integration of diverse sources of information and a simultaneous inspection of a molecular event from different points of view, new and exhaustive insights into biological processes can be acquired. N2 - In den letzten Jahren haben Hochdurchsatz-Experimente gewaltige Mengen an molekularbiologischen Daten geliefert, angefangen mit dem ersten sequenzierten Genom von Haemophilus influenzae im Jahr 1995 und dem menschlichen Genom im Jahr 2001. Mittlerweile umfassen die resultierenden Daten neben der Genomik die Bereiche der Transkriptomik, Proteomik und Metabolomik. Die Analyse der Daten mithilfe von bioinformatischen Methoden hat sich entsprechend mit verändert und weiterentwickelt. Durch neuartige, systembiologische Ansätze versucht man zu verstehen, wie Gene und die aus ihnen resultierenden Proteine, biologische Formen und Funktionen entstehen lassen. Dabei interagieren sie miteinander und mit anderen Molekülen in hoch komplexen Strukturen, welche durch neue Ansätze der Netzwerkbiologie untersucht werden. Das tiefgreifende Wissen über einzelne Moleküle, verfügbar durch Hochdurchsatz-Technologien, kann komplementiert werden durch die Architektur und dynamischen Interaktionen molekularer Netzwerke und somit ein umfassenderes Verständnis biologischer Prozesse ermöglichen. Die vorliegende Dissertation stellt Methoden und statistische Analysen zur Integration molekularer Daten in biologische Netzwerke, Identifikation robuster, funktionaler Subnetzwerke sowie die Anwendung auf verschiedenste biologische Daten vor. Der integrative Netzwerkansatz wurde als ein Softwarepaket, BioNet, in der statistischen Programmiersprache R implementiert. Das Paket beinhaltet statistische Verfahren zur Integration transkriptomischer und funktionaler Daten, die Gewichtung von Knoten und Kanten in biologischen Netzwerken sowie Methoden zur Suche signifikanter Bereiche, Module, und deren Visualisierung. Der exakte Algorithmus wird ausführlich in einer Simulationsstudie getestet und übertrifft heuristische Methoden zur Lösung dieses NP-vollständigen Problems in Genauigkeit und Robustheit. Die Variabilität der resultierenden Lösungen wird bestimmt anhand von gestörten integrierten Daten und gestörten Netzwerken, welche zufällige und verzerrende Einflüsse darstellen, die die Daten verrauschen. Ein optimales, robustes Modul kann durch einen Konsensusansatz bestimmt werden. Basierend auf einer wiederholten Stichprobennahme der integrierten Daten, wird ein Ensemble von Lösungen erstellt, aus welchem sich das robuste und optimale Konsensusmodul berechnen lässt. Zusätzlich erlaubt dieser Ansatz eine Schätzung der Variabilität des Konsensusmoduls und die Berechnung von Konfidenzwerte für Knoten und Kanten. Der Ansatz wird anschließend auf zwei Genexpressionsdatensätze angewandt. Die erste Anwendung untersucht Genexpressionsdaten für akute lymphoblastische Leukämie (ALL) und analysiert Unterschiede in Subgruppen mit und ohne BRC/ABL Genfusion. Die zweite Anwendung wertet Genexpressions- und Lebenszeitdaten für diffuse großzellige B-Zell Lymphome (DLBCL) aus, beruhend auf molekularen Unterschieden zwischen zwei DLBCL Subtypen mit unterschiedlicher Malignität. In einer dritten Anwendung wird der integrierte Netzwerkansatz benutzt, um Veränderungen im Metabolismus von Tardigraden aufzuspüren und Signalwege zu identifizieren, welche für die extreme Anpassungsfähigkeit an wechselnde Umweltbedingungen und Überdauerung in einem inaktiven Tönnchenstadium verantwortlich sind. Zum ersten Mal wird dafür ein metabolischer Netzwerkansatz vorgeschlagen, der metabolische Veränderungen durch die Integration von metabolischen und transkriptomischen Daten bestimmt. Abschließend ist zu bemerken, dass die präsentierte integrierte Netzwerkanalyse eine adäquate Technik ist, um experimentelle Daten aus Hochdurchsatz-Methoden, die spezialisiert auf eine Molekülart sind, mit ihren intermolekularen Wechselwirkungen und Abhängigkeiten in Verbindung zu bringen. Sie ist flexibel in der Anwendung auf verschiedenste Daten, von der Analyse von Genexpressionsveränderungen, über Metabolitvorkommen bis zu Proteinmodifikationen, in Kombination mit einem geeigneten molekularen Netzwerk. Der exakte Algorithmus ist akkurat und robust in Vergleich zu heuristischen Methoden und liefert eine optimale, robuste Lösung in Form eines Konsensusmoduls mit zugewiesenen Konfidenzwerten. Durch die Integration verschiedenster Informationsquellen und gleichzeitige Betrachtung eines biologischen Ereignisses von diversen Blickwinkeln aus, können neue und vollständigere Erkenntnisse physiologischer Prozesse gewonnen werden. KW - Bioinformatik KW - differenzielle Genexpression KW - Bioinformatik KW - Netzwerkanalyse KW - differenzielle Genexpression KW - funktionelle Module KW - bioinformatics KW - networkanalysis KW - differential geneexpression KW - functional modules Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-70150 ER -