TY - THES A1 - Osterloh, Lisa T1 - Identifizierung und Charakterisierung LIN-9 regulierter Gene im humanen System - Die Rolle von LIN-9 in der Regulation des Zellzyklus T1 - Identification and characterization of LIN-9 regulated genes in the human system - The role of LIN-9 in the regulation of the cell cycle N2 - Das humane LIN-9 wurde zuerst als pRB-interagierendes Protein beschrieben und spielt eine Rolle als Tumorsuppressor im Kontext des pRB-Signalweges. Über die molekulare Funktion von LIN-9 ist jedoch wenig bekannt. Die Homologe von LIN-9 in D. melanogaster und in C. elegans, sind an der transkriptionellen Regulation verschiedener Genen beteiligt. Dies und die Tatsache, dass LIN-9 mit pRB in der Aktivierung differenzierungspezifischer Gene kooperiert, ließ vermuten, dass humanes LIN-9 einen bedeutenden Einfluss auf die transkriptionelle Regulation von Genen haben könnte. Primäres Ziel dieser Arbeit war daher die Identifizierung LIN-9 regulierter Gene. Dazu sollte mit Hilfe von cDNA-Microarray Analysen, das Genexpressionsprofil LIN-9 depletierter primärer humaner Fibroblasten (BJ ET Zellen) im Vergleich zu Kontrollzellen untersucht werden. Hierfür wurde zunächst ein RNAi-basierendes System etabliert, um die posttranskriptionelle Expression von LIN-9 in BJ-ET Zellen effizient zu reprimieren. Auf dem Ergebnis der cDNA-Microarray Analysen aufbauende Untersuchungen sollten Aufschluss über die molekularbiologische Funktion von LIN-9 geben. In dieser Arbeit konnte erstmals gezeigt werden, dass der Verlust von LIN-9 zu einer verminderten Expression einer Gruppe G2/M-spezifischer Gene führt, deren Produkte für den Eintritt in die Mitose benötigt werden. Bekannt war, dass ein Teil dieser Gene durch den Transkriptionsfaktor B-MYB koreguliert wird. Zudem konnten Untersuchungen in unserem Labor eine Interaktion von LIN-9 und B-MYB auf Proteinebene, sowie die Bindung beider Proteine an die Promotoren der LIN-9 regulierten G2/M-Gene nachweisen. Dies lässt vermuten, dass LIN-9 und B-MYB gemeinsam die Expression der G2/M-Gene kontrollieren. Die verminderte Expression von G2/M-Genen in LIN-9 bzw. B-MYB depletierten Zellen geht mit einer Reihe phänotypischer Veränderungen einher, wie einer deutlich verlangsamten Proliferation und einer Akkumulation der Zellen in der G2/M-Phase. Mit Hilfe eines Durchflusszytometers erstellte Zellzykluskinetiken ergaben, dass die Progression LIN-9 bzw. B-MYB depletierter Fibroblasten von der S-Phase durch die G2/M-Phase und in die nächste G1-Phase deutlich verzögert ist. Es konnte weder ein Arrest dieser Zellen in der Mitose noch eine veränderte Länge der S-Phase nach LIN-9 oder B-MYB Depletion festgestellt werden. Daher ist die verlangsamte Zellzyklusprogression nach LIN-9 bzw. B-MYB Verlust höchstwahrscheinlich auf einen Defekt in der späten G2-Phase zurückzuführen, welcher in einem verzögerten Eintritt in die Mitose resultiert. In D. melanogaster und in C. elegans sind die Homologe von LIN-9 und B-MYB zusammen, als Bestandteile hoch konservierter RB/E2F-Komplexe, an der Regulation von Genen entscheidend beteiligt. Daher liegt es nahe, dass im humanen System LIN-9 und B MYB ebenfalls Bestandteile eines ähnlichen Komplexes sind und dadurch die Aktivierung der LIN 9 abhängigen G2/M-Gene vermitteln. Die Tatsache, dass LIN-9 sowohl als Tumorsuppressor, als auch als positiver Regulator des Zellzyklus fungiert, lässt vermuten, dass LIN-9 zu einer stetig größer werdenden Gruppe von Proteinen gehört, welche in Abhängigkeit vom zellulären und genetischen Kontext sowohl tumorsuppressive als auch onkogene Funktionen besitzen. N2 - The human LIN-9 Protein was first identified as a novel pRB-interacting Protein which acts as a tumorsuppressor in context of the pRB-pathway. But the molecular function of LIN-9 is poorly unterstood. The homologs of LIN-9 in D. melanogaster and C. elegans are required for the transcriptional regulation of different genes. This and the fact, that LIN 9 cooperates with pRB in the activation of differentiation specific genes let to the hypothesis, that human LIN-9 could play an important role in the transcriptional regulation of genes. Thus, the primary goal of this thesis was to identify genes which are regulated by LIN-9. For that purpose, the genexpression profiles of LIN-9 depelted primary human fibroblasts (BJ ET cells) in comparison to control cells should be analyzed by a cDNA-microarray approach. Therefor an RNAi-based system was established, that efficiently represses the posttranscriptional expression of LIN-9 in BJ-ET cells. Based on the outcome of the cDNA microarray analysis, further studies should provide more informations about the molecular function of LIN-9. It was possible to show, that the loss of LIN-9 leads to a reduced expression of a cluster of G2/M-specific genes, whose products are required for timely entry into mitosis. It was known, that some of these genes are coregulated by the transcriptionfactor B-MYB. Moreover, studies in our lab account for the interaction of LIN-9 and B-MYB on protein level and the binding of both proteins to the promotors of LIN-9 regulated G2/M-genes. The reduced expression of these genes is accompanied by phenotypically changes, such as strongly impaired proliferation and an accumulation of these cells in the G2/M-Phase. Cell cycle kinetics generated by flowcytometry revealed that the progression of LIN-9 or B MYB depleted cells from S-phase to G2/M-phase and into the next G1-Phase is significantly delayed. Depletion of LIN-9 or B-MYB results neither in an arrest in mitosis nor in a significantly changed S-phase length of these cells. This indicates that the slowed progression is most likely due to a defect in the late G2-phase, which results in a delayed entry into mitosis. The homologs of LIN-9 and B-MYB in D. melanogaster and C. elegans act together as subunits of highly conserved RB/E2F-complexes in the regulation of genes. This let to the suggestion, that LIN-9 and B-MYB are also components of a similar complex in humans and thereby mediate the activation of LIN-9 regulated G2/M-genes. Because LIN-9 acts as a tumorsuppressor in the pRB-pathway as well as an positive regulator of the cell cycle, it seems that LIN-9 belongs to an increasing group of proteins, which function as context dependent tumorsuppressors and oncogenes. KW - Zellzyklus KW - Mitose KW - Genregulation KW - Microarray KW - G2/M-Übergang KW - LIN-9 KW - B-MYB KW - E2F KW - Transkription KW - G2/M-transition KW - LIN-9 KW - B-MYB KW - E2F KW - transcription Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-24360 ER - TY - THES A1 - Wurster, Sebastian T1 - Die Bedeutung von LIN9 für die Regulation der Genexpression, die genomische Stabilität und die Tumorsuppression T1 - The significance of LIN9 for gene regulation, genomic stability and tumor suppression N2 - Pocket proteins and E2F transcription factors regulate the expression of cell cycle associated genes and play a central role in the coordination of cell division, differentiation, and apoptosis. Disorders of these pathways contribute to the development of various human tumor entities. Despite intensive research in the field of cell cycle regulation many details are not yet understood. The LIN complex (LINC / DREAM) is a recently discovered human multiprotein complex, which dynamically interacts with pocket proteins and E2F transcription factors. An essential component of the LIN complex is the LIN9 protein. In order to obtain a better insight into the function of this protein in cell cycle regulation and tumorigenesis, a conditional Lin9 knockout mouse model was established in our laboratory. The primary objective of this study was the phenotypic characterization of embryonic fibroblasts (MEFs) from these mice. Shortly after inactivation of Lin9 cell proliferation was massively impaired. Multiple types of mitotic defects such as structural abnormalities of the spindle apparatus, aberrant nuclei, failed nuclear segregation and cytokinesis failure have been observed in Lin9-depleted cells leading to a dramatic increase in polyploid and aneuploid cells. Ultimately these serious aberrations result in premature cellular senescence. If the senescence of Lin9-deficient cells is overcome by the Large T antigen the cells can adhere to the loss of Lin9, but show severe genomic instability and grow anchorage-independently in soft-agar as a sign of oncogenic transformation. In the second part of the thesis the gene expression of Lin9-deficient cells was assessed by quantitative real time PCR analyses to determine, whether the mitotic abnormalities are caused by transcriptional defects. Here a significant reduction of mitotic gene expression was observed in Lin9-depleted cells. Additionally chromatin immunoprecipitation experiments were performed to clarify the underlying molecular mechanisms. Compared to control cells epigenetic alterations at the promoters of mitotic target genes with regard to activating histone modifications were found in Lin9-deficient MEFs. In the last section of this study, the effects of Lin9 heterozygosity were analyzed. Lin9 heterozygous MEFs showed normal proliferation, although expression of different mitotic genes was slightly reduced. It appeared, however, that the mitotic spindle checkpoint of Lin9 heterozygous MEFs is weakened and thus over several cell generations an increase in polyploid cells was observed. Soft-agar assays showed that Lin9 heterozygosity contributes to oncogenic transformation. Taken together, these results document a crucial role of LIN9 in the regulation of cell cycle-associated gene expression. LIN9 is an essential factor for cell proliferation on one hand, while at the same time it functions as a tumor suppressor. N2 - Pocket-Proteine und E2F-Transkriptionsfaktoren regulieren die Expression von Zellzyklus-assoziierten Genen und spielen eine zentrale Rolle bei der Koordination der Zellteilung, Differenzierung und Apoptose. Störungen dieser Signalwege tragen zur Entstehung zahlreicher Tumorentitäten beim Menschen bei. Trotz der intensiven Untersuchung der Zellzyklusregulation sind viele Details noch unverstanden. Der LIN-Komplex (LINC / DREAM) ist ein kürzlich entdeckter humaner Multiprotein-komplex, welcher dynamisch mit Pocket-Proteinen und E2F-Transkriptionsfaktoren interagiert. Eine essentielle Komponente des LIN-Komplexes ist das LIN9-Protein. Um die Funktion dieses Proteins bei der Zellzyklusregulation und Tumorentstehung genauer untersuchen zu können, wurde in unserer Arbeitsgruppe ein konditionelles Lin9-Knockout-Mausmodell etabliert. Primäres Ziel der Arbeit war es, den Phänotyp embryonaler Fibroblasten (MEFs) aus diesen Mäusen zu charakterisieren. Bereits kurz nach Inaktivierung von Lin9 konnte ein stark verlangsamtes Zellwachstums beobachtet werden. In Lin9-depletierten MEFs wurden multiple mitotische Defekte detektiert, die u. a. strukturelle Auffälligkeiten des Spindelapparates, aberrante Zellkerne, Störungen der Chromosomensegregation sowie zytokinetische Defekte umfassen und in einer dramatischen Zunahme polyploider und aneuploider Zellen resultieren. Im Langzeitverlauf führen diese erheblichen Aberrationen zu einer vorzeitigen zellulären Seneszenz. Wird diese durch das Large T-Protoonkogen durchbrochen, können sich MEFs an den Verlust von Lin9 adaptieren, zeigen dann jedoch eine hochgradige genomische Instabilität und Substrat-unabhängiges Wachstum im Weichagar als Zeichen onkogener Transformation. Im zweiten Abschnitt der vorliegenden Arbeit wurde die Genexpression in Lin9-defizienten MEFs mittels quantitativer Real Time-PCR untersucht um zu klären, ob die beschriebenen Defekte auf Veränderungen der transkriptionellen Aktivität zurück-zuführen sind. Dabei wurde eine erhebliche Reduktion der Expressionslevel mitotischer Gene nach Verlust von Lin9 beobachtet. Des Weiteren wurden zur Klärung der zu Grunde liegenden molekularen Mechanismen Chromatin-Immunpräzipitations-Experimente (ChIP) durchgeführt. Im Vergleich zu Kontrollzellen wurden dabei in Lin9-defizienten Zellen signifikante epigenetische Veränderungen bezüglich aktivierender Histon-Modifikationen an den Promotoren mitotischer Lin9-Zielgene festgestellt. Im letzten Abschnitt der Arbeit sollten die Auswirkungen des heterozygoten Verlustes von Lin9 analysiert werden. Dabei zeigte sich, dass Lin9-haploinsuffiziente Zellen normal proliferieren, obwohl die Expression verschiedener G2/M-Gene leicht vermindert war. Es wurde jedoch eine Schwächung des mitotischen Spindelkontrollpunktes und in der Folge über mehrere Zellgenerationen eine Zunahme polyploider Zellen beobachtet. Mit Weichagar-Assays konnte gezeigt werden, dass bereits der heterozygote Verlust des Lin9-Gens zur onkogenen Transformation beiträgt. Zusammengenommen dokumentieren diese Studien, dass LIN9 eine entscheidende Bedeutung bei der Regulation von Zellzyklus-assoziierten Genen spielt und sowohl einen essentiellen Faktor für die Zellproliferation darstellt als auch durch die Gewährleistung genomischer Stabilität tumorsuppressive Eigenschaften aufweist. KW - Zellzyklus KW - Genexpression KW - Mitose KW - Knock-Out KW - LIN9 KW - Mausmodell KW - konditioneller Knockout Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114967 ER -