TY - THES A1 - Blatt, Jasmina T1 - Haemolymph sugar homeostasis and the control of the proventriculus in the honeybee (Apis mellifera carnica L.) T1 - Hämolymphzuckerhomeostase und die Kontrolle des Proventrikels in der Honigbiene (Apis mellifera carnica L.) N2 - The proventriculus regulates the food passage from crop to midgut. As the haemolymph provides a constantly updated indication of an insect’s nutritional state, it is assumed that the factor controlling the proventri-culus activity is to be found in the haemolymph. The purpose of this doctoral thesis was to investigate how output (metabolic rate), input (food quality and food quantity) and internal state variables (haemolymph osmolarity and haemolymph sugar titer) affect each other and which of these factors controls the activity of the proventriculus in the honeybee. Therefore free-flying foragers were trained to collect con-trolled amounts of different sugar solutions. Immediately after feeding, metabolic rates were measured over different periods of time, then crop-emptying rates and haemolymph sugar titers were measured for the same individual bees. Under all investigated conditions, both the sugar transport rates through the proventriculus and the haemolyph sugar titers depended mainly on the metabolism. For bees collecting controlled amounts of 15 per cent, 30 per cent or 50 per cent sucrose solution haemolymph trehalose, glucose and fructose titers were constant for metabolic rates from 0 to 4.5 mlCO2/h. At higher metabolic rates, trehalose concentration decreased while that of glucose and fructose increased with the exception of bees fed 15 per cent sucrose solution. As the supply of sugar from the crop via the proventriculus was sufficient to support even the highest metabolic rates, the observed pattern must result from an upper limit in the capacity of the fat body to synthesise trehalose. The maximal rate of conversion of glucose to trehalose in the fat body was therefore calculated to average 92.4 µg glucose/min. However, for bees fed 15 per cent sucrose solution both the rate of conversion of glucose to trehalose and the rate of sugar transport from the crop to the midgut were limited, causing an overall decrease in total haemolymph sugar titers for metabolic rates higher than 5 mlCO2/h. Haemolymph sucrose titers were generally low but increased with increasing metabolic rates, even though sucrose was not always detected in bees with high metabolic rates. Though foragers were able to adjust their sugar transport rates precisely to their metabolic rates, a fixed surplus of sugars was transported through the proventriculus under specific feed-ing conditions. This fixed amount of sugars increased with increasing concentration and in-creasing quantity of fed sugar solution, but decreased with progressing time after feeding. This fixed amount of sugars was independent of the metabolic rates of the bees and of the molarity and viscosity of the fed sugar solution. As long as the bees did not exhaust their crop content, the haemolymph sugar titers were unaffected by the sugar surplus, by the time after feeding, by the concentration and by the viscosity of fed sugar solution. When bees were fed pure glucose (or fructose) solutions, un-usually little fructose (or glucose) was found in the haemolymph, leading to lower total haemolymph sugar titers, while the trehalose titer remained unaffected. In order to investigate the mechanisms underlying the regulation of the honeybee proven-triculus, foraging bees were injected either with metabolisable (glucose, fructose, trehalose), or non-metabolisable sugars (sorbose). Bees reacted to injections of metabolisable sugars with reduced crop-emptying rates, but injection of non-metabolisable sugars had no influence on crop emptying. Therefore it is concluded that the proventriculus regulation is controlled by the concentration of metabolisable compounds in the haemolymph, and not by the haemo-lymph osmolarity. A period of 10min was enough to observe reduced crop emptying rates after injections. It is suggested that glucose and fructose have an effect on the proventriculus activity only via their transformation to trehalose. However, when the bees were already in-jected 5min after feeding, no response was detectable. In addition it was investigated whether the overregulation is the result of feed-forward regulation for the imminent take-off and flight. In a first experiment, we investigated whether the bees release an extra amount of sugar solution very shortly before leaving for the hive. In a second experiment, it was tested whether the distance covered by the bees might have an influence on the surplus amount released prior to the take-off. In a third experiment, it was investigated if walking bees fail to release this extra amount of sugars, as they do not have to fly. Though we were not able to demonstrate that the overregulation is the result of feed-forward regulation for the imminent take-off and flight, it is conceivable that this phenome-non is a fixed reaction in foragers that can not be modulated. To investigate whether regulated haemolymph sugar titers are also observed in honeybee foragers returning from natural food sources, their crop contents and haemolymph sugar titers were investigated. While the quantity of the collected nectar was without influence on the haemolymph sugar titers, foragers showed increasing haemolymph sugar titers of glucose, fructose and sucrose with increasing sugar concentration of the carried nectar. In contrast no relationship between crop nectar concentrations and haemolymph trehalose titers was observed. We are sure that the regulation of food passage from crop to midgut is controlled by the trehalose titer. However, under some conditions the balance between consumption and income is not numerically exact. This imprecision depends on the factors which have an impact on the foraging energetics of the bees but are independent of those without influence on the foraging energetics. Therefore we would assume that the proventriculus activity is modulated by the motivational state of the bees. N2 - Der Proventrikel reguliert den Nahrungstransport vom Kropf zum Mitteldarm. Da die Hämolymphe einen stets aktuellen Einblick in den Ernährungszustand eines Insekts gewährt, kann man annehmen, dass der die Proventrikelaktivität regulierende Faktor in der Hämolymphe zu finden ist. Das Ziel der vorliegenden Doktorarbeit war es, die gegenseitige Beeinflussung von Aufnahme (Futterqualität und –quantität), Verbrauch (Stoffwechselrate) und „internal state“ Variablen (Hämolymphosmolarität und –zuckerspiegel) zu untersuchen und herauszufinden, welcher dieser Faktoren die Aktivität des Proventrikels bei der Honigbiene kontrolliert. Zu diesem Zweck wurden frei fliegende Sammlerinnen trainiert, kontrollierte Mengen verschiedener Zuckerlösungen zu sammeln. Direkt nach dem Füttern wurden die Stoffwechsel-raten über bestimmte Zeiten gemessen, danach wurden Kropfentleerungsraten und Hämo-lymphzuckerspiegel der jeweiligen Bienen gemessen. Unter allen untersuchten Bedingungen waren sowohl die Zuckertransportraten durch den Proventrikel als auch die Hämolymphzuckerspiegel hauptsächlich von der Stoffwechselrate abhängig. Bei Bienen, die kontrollierte Mengen von 15-, 30- oder 50-prozentigen Saccharoselösungen gesammelt hatten, waren die Hämolymph-trehalose, -glucose und –fructosespiegel für Stoffwechselraten von 0 – 4,5 mlCO2/h konstant. Bei höheren Stoffwechselraten sank die Trehalosekonzentra-tion, während die von Glucose und Fructose stieg; eine Ausnahme stellten Bienen dar, denen 15-prozentige Saccharoselösung gefüttert worden war. Da die Zuckerversorgung aus dem Kropf über den Proventrikel ausreichte, um auch die höchsten Stoffwechselraten zu ermöglichen, müssen die beobachteten Verläufe von einer Limitierung des Fettkörpers hinsichtlich der Trehalosesynthese herrühren. Die maximale Umwandlungs-rate von Glucose zu Trehalose im Fettkörper wurde daher auf 92,4 µg Glucose/ Minute berechnet. Allerdings war sowohl die Umwandlungsrate von Glucose zu Trehalose als auch die Zuckertransportrate vom Kropf in den Mitteldarm bei Bienen limitiert, die 15-prozentige Saccharoselösungen gefüttert bekamen. Insgesamt führte das zu einem Absinken des Gesamt-Hämolymphzuckerspiegels bei Stoffwechselraten, die über 5 mlCO2/h lagen. Auch wenn die Sammlerinnen in der Lage waren ihre Zuckertransportrate genau an ihre Stoffwechselrate anzupassen, wurde unter bestimmten Bedingungen ein festgelegter Überschuss an Zuckern durch den Proventrikel transportiert. Dieser Überschuss an Zuckern vergrößerte sich mit zunehmender Konzentration und zunehmender Menge der gefütterten Zuck-erlösung, verkleinerte sich aber mit fortschreitender Zeit nach dem Füttern. Er war unab-hängig vom Stoffwechsel der Bienen und der Molarität und Viskosität der gefütterten Zuckerlösung. So lange die Bienen ihren Kropfinhalt nicht aufgebraucht hatten, waren die Hämolymphzuckerspiegel von dem Überschuss an transportiertem Zucker, von der Zeitspanne zwischen Füttern und Hämolymphentnahme sowie der Konzentration der gefütterten Lösung und deren Viskosität unbeeinflusst. Wenn die Bienen allerdings reine Glucose- (oder Fruc-tose-)lösungen gefüttert bekamen, wurde wesentlich weniger Fructose (oder Glucose) in der Hämolymphe gemessen, was zu niedrigeren Gesamt-Hämolymphzuckerspiegeln führte, während der Trehalosespiegel unbeeinflusst blieb. Um den Mechanismus zu untersuchen, der der Proventrikelregulierung unterliegt, wurden Sammlerinnen mit entweder verdaubaren (Glucose, Fructose oder Trehalose) oder unver-daubaren Zuckern (Sorbose) injiziert. Die Bienen reagierten auf die Injektionen der ver-daubaren Zucker mit einer Reduzierung der Kropfentleerungsrate, wohingegen die Injizierung nicht verdaubarer Zucker keinen Einfluss auf die Kropfentleerung hatte. Daraus wird geschlossen, dass die Proventrikelregulation von der Konzentration der verdaubaren Kompo-nenten in der Hämolymphe kontrolliert wird und nicht von der Hämolymph-osmolarität. Eine Zeitspanne von 10min reichte aus, um nach der Injektion reduzierte Kropfentleerungsraten zu beobachten. Es wird angenommen, dass Glucose und Fructose nur über die Umwandlung zu Trehalose einen Einfluss auf die Proventrikelaktivität haben. Wenn allerdings die Injektionen bereits 5min nach der Futteraufnahme stattfanden, wirkte sich das nicht auf die Kropfentleerungsrate aus. Weiterhin wurde untersucht, ob die Überregulation das Ergebnis einer „Vorschussregula-tion“ für den anstehenden Abflug und Flug ist. In einem ersten Experiment wurde untersucht, ob die Bienen diesen Überschuss erst direkt vor dem Abflug durch den Proventrikel lassen. In einem zweiten Experiment wurde untersucht, ob die Entfernung zwischen Stock und Futter-quelle einen Einfluss auf die Menge des transportierten Zuckerüberschusses hat. In einem dritten Experiment wurde untersucht ob laufende Bienen auch einen Überschuss an Zuckern durch den Proventrikel leiten, obwohl sie nicht fliegen müssen. Auch wenn wir nicht nach-weisen konnten, dass die Überregulation das Ergebnis einer Vorschussregulation für den anstehenden Abflug und Flug ist, ist es dennoch denkbar, dass dieses Phänomen eine festge-legte Reaktion der Sammlerinnen ist, die nicht moduliert werden kann. Um zu untersuchen, ob man auch bei Sammlerinnen, die von natürlichen Futterquellen kommen, regulierte Hämolymphzuckerspiegel findet, wurden deren Kropfinhalte und Hämolymphzuckerspiegel bestimmt. Während die Menge des gesammelten Nektars keinen Einfluss auf die Hämolymphzuckerspiegel hatte, hatten Sammlerinnen höhere Glucose-, Fructose- und Saccharosehämolymphzucker-spiegel, wenn der Nektar im Kropf höher konzentriert war. Im Gegensatz dazu wurde keine Beziehung zwischen Nektarkonzentration und Trehalosespiegel gefunden. Wir sind sicher, dass die Regulation des Futtertransports vom Kropf zum Mitteldarm über den Trehalosespiegel kontrolliert wird. Trotzdem ist die Bilanz zwischen Zuckertransportrate und Stoffwechsel nicht unter allen Bedingungen exakt ausgeglichen. Diese „Ungenauigkeit“ ist von denjenigen Faktoren abhängig, die einen Einfluss auf die Sammelenergetik der Sammlerinnen haben, aber unabhängig von den Faktoren, die keinen Einfluss auf die Sam-melenergetik haben. Daher nehmen wir an, dass die Proventrikelaktivität über die Motivation der Bienen moduliert werden kann. KW - Biene KW - Hämolymphe KW - Zucker KW - Trehalose KW - Proventriculus KW - Honigbiene KW - Apis mellifera carnica KW - Trehalose KW - Hämolymphzucker Homeostase KW - Proventrikel KW - honey bee KW - Apis mellifera carnica KW - trehalose KW - haemolymph sugar homeostasis KW - proventriculus Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-880 ER - TY - THES A1 - Thom, Corinna T1 - Dynamics and Communication Structures of Nectar Foraging in Honey Bees (Apis mellifera) T1 - Dynamik und Kommunikation beim Nektarsammeln der Honigbiene N2 - In this thesis, I examined honey bee nectar foraging with emphasis on the communication system. To document how a honey bee colony adjusts its daily nectar foraging effort, I observed a random sample of individually marked workers during the entire day, and then estimated the number and activity of all nectar foragers in the colony. The total number of active nectar foragers in a colony changed frequently between days. Foraging activity did not usually change between days. A honey bee colony adjusts its daily foraging effort by changing the number of its nectar foragers rather than their activity. I tested whether volatiles produced by a foraging colony activated nectar foragers of a non-foraging colony by connecting with a glass tube two colonies. Each colony had access to a different green house. In 50% of all experiments, volatile substances from the foraging colony stimulated nectar foragers of the non-foraging colony to fly to an empty feeder. The results of this study show that honey bees can produce a chemical signal or cue that activates nectar foragers. However, more experiments are needed to establish the significance of the activating volatiles for the foraging communication system. The brief piping signal of nectar foragers inhibits forager recruitment by stopping waggle dances (Nieh 1993, Kirchner 1993). However, I observed that many piping signals (approximately 43%) were produced off the dance floor, a restricted area in the hive where most waggle dances are performed. If the inhibition of waggle dances would be the only function of the brief piping signal, tremble dancers should produce piping signals mainly on the dance floor, where the probability to encounter waggle dancers is highest. To therefore investigate the piping signal in more detail, I experimentally established the foraging context of the brief piping signal, characterized its acoustic properties, and documented for the first time the unique behavior of piping nectar foragers by observing foragers throughout their entire stay in the hive. Piping nectar foragers usually began to tremble dance immediately upon their return into the hive, spent more time in the hive, more time dancing, had longer unloading latencies, and were the only foragers that sometimes unloaded their nectar directly into cells instead of giving it to a nectar receiver bee. Most of the brief piping signals (approximately 99%) were produced by tremble dancers, yet not all tremble dancers (approximately 48%) piped. This suggests that piping and tremble dancing have related, but not identical functions in the foraging system. Thus, the brief piping signals may not only inhibit forager recruitment, but have an additional function both on and off the dance floor. In particular, the piping signal might function 1. to stop the recruitment of additional nectar foragers, and 2. as a modulatory signal to alter the response threshold of signal receivers to the tremble dance. The observation that piping tremble dancers often did not experience long unloading delays before they started to dance gave rise to a question. A forager’s unloading delay provides reliable information about the relative work capacities of nectar foragers and nectar receivers, because each returning forager unloads her nectar to a nectar receiver before she takes off for the next foraging trip. Queuing delays for either foragers or receivers lower foraging efficiency and can be eliminated by recruiting workers to the group in shortage. Short unloading delays indicate to the nectar forager a shortage of foragers and stimulate waggle dancing which recruits nectar foragers. Long unloading delays indicate a shortage of nectar receivers and stimulate tremble dancing which recruits nectar receivers (Seeley 1992, Seeley et al. 1996). Because the short unloading delays of piping tremble dancers indicated that tremble dancing can be elicited by other factors than long unloading delays, I tested whether a hive-external stimulus, the density of foragers at the food source, stimulated tremble dancing directly. The experiments show that tremble dancing can be caused directly by a high density of foragers at the food source and suggest that tremble dancing can be elicited by a decrease of foraging efficiency either inside (e.g. shortage of receiver bees) or outside (e.g. difficulty of loading nectar) the hive. Tremble dancing as a reaction to hive-external stimuli seems to occur under natural conditions and can thus be expected to have some adaptive significance. The results imply that if the hive-external factors that elicit tremble dancing do not indicate a shortage of nectar receiver bees in the hive, the function of the tremble dance may not be restricted to the recruitment of additional nectar receivers, but might be the inhibition or re-organization of nectar foraging. N2 - In meiner Doktorarbeit habe ich die Charakteristika des Nektarsammelns bei Honigbienen mit spezieller Betonung des zugehörigen Kommunikationssytems untersucht. Im Einzelnen habe ich die täglichen Änderungen in der Aktivität und Anzahl der Nektarsammlerinnen einer nicht- manipulierten Kolonie verfolgt, habe getestet, ob Nektarsammlerinnen durch ein chemisches Signal aktiviert werden können, und habe die Auslöser und Charakteristika zweier Signale des Nektarsammelkommunikationssytems, dem kurzen Pipingsignal und dem Zittertanz der Nektarsammlerinnen untersucht. Um die täglichen Änderungen des Sammelaufwandes einer Kolonie zu dokumentieren, habe ich an verschiedenen Tagen die Anzahl und Aktivität (Anzahl Fouragierflüge pro Tag und Biene) der Nektarsammlerinnen einer Kolonie gemessen. Dafür beobachtete ich jeweils den ganzen Tag eine zufällig ausgewählte Gruppe von individuell markierten Arbeiterinnen. Aufgrund der so gewonnen Daten konnte ich die Anzahl und Aktivität aller Nektarsammlerinnen in der Kolonie schätzen. Die Ergebnisse zeigen, dass sich die absolute Anzahl von Nektarsammelerinnen regelmässig von Tag zu Tag änderte wahrscheinlich zurückzuführen auf die täglichen Änderungen im Nektarangebot, während sich die Aktivität der Sammlerinnen gewöhnlich nicht änderte. Die Ergebnisse zeigen, dass eine Arbeiterin eher die Entscheidung trifft zu sammeln oder nicht zu sammeln, statt eine abgestufte Entscheidung über die Anzahl ihrer Sammelflüge. Für eine Honigbienenkolonie bedeutet dies, das ihre Sammeleffizienz stärker durch die Anzahl der Sammlerinnen als durch deren Aktivität reguliert wird. Möglicherweise kann eine vergängliche Nektarquelle besser von vielen Sammlerinnen, die zeitgleich arbeiten, ausgebeutet werden als von weniger Sammlerinnen die zwar ihre Aktivität steigern, aber sequentielle Sammelflüge machen müssen und damit die Quelle vor ihrem Verschwinden nicht vollständig ausbeuten können. Es ist seit langem bekannt, das der Schwänzeltanz der Honigbienen Sammlerinnen aktivieren kann. Ich habe untersucht, ob die flüchtigen Substanzen einer fouragierenden Kolonie die Sammlerinnen einer nicht-fouragierenden Kolonie aktivieren können. Um dies zu testen, verband ich die Eingangsbereiche zweier Kolonien mit einer Glasröhre, so das flüchtige Substanzen von einer zur anderen Kolonie geleitet werden konnten. Jede Kolonie hatte Zugang zu einem separaten Gewächshaus. Während eine der Kolonien gefüttert wurde, wurde die Aktivität der nicht- gefütterten Kolonie gemessen. In 50% der Experimente wurden die Sammlerinnen der Kolonie, die kein Futter zur Verfügung hatte, durch die flüchtige Substanzen aus der fouragierenden Kolonie zu dem Besuch Ihrer leeren Futterstation aktiviert. Die Ergebnisse zeigen damit, dass Honigbienen eine flüchtige Substanz produzieren können, die Sammlerinnen aktiviert. Die Fragen, ob es sich bei dieser Substanz um ein ‘signal’ (speziell für die Situation entwickelt) oder einen ‘cue’ (nicht speziell für die Situtation entwickelt, wirft aber brauchbare Information als Nebenprodukt ab) handelt, sowie die Bedeutung der Substanz für die Sammeleffizienz einer Honigbienekolonie, müssen jedoch noch etabliert werden. Das Pipingsignal der Nektarsammlerinnen stoppt Schwänzeltänze (Nieh 1993, Kirchner 1993). Ich beobachtete, dass viele der kurzen Pipingsignale (ca. 43%) unerwartet nicht auf dem Tanzboden produziert wurden. Die Beobachtungen deuten darauf hin, dass das kurze Pipingsignal nicht nur Schwänzeltänze stopt, sondern auch die Reaktionsschwelle für den Zittertanz senkt. Pipende Zittertänzerinnen fingen sehr frueh nach ihrer Rückehr in den Stock an zu tanzen. Daher untersuchte ich, ob die Zustände an der Futterstelle Zittertänze auslösen kann. Die Experimente zeigen, dass Zittertänze eine direkte Reaktion auf eine hohe Dichte von Sammlerinnen an der Futterstelle sein können. Dies lässt vermuten, dass Zittertänze eine generelle Reaktion sind auf Faktoren, die entweder innerhalb (z.B. durch lange Wartezeit) oder ausserhalb (z.B. durch Schwierigkeiten beim Trinken) des Stockes die Sammeleffizienz senken. Unter natürlichen Umständen scheinen Zittertänze regelmässig eine direkte Reaktion auf Stock-externe Faktoren zu sein, und werden daher einige Bedeutung im Sammelkommunikationssytem haben. Sofern die Stock-externen Faktoren nicht einen Mangel an Nektarabnehmerinnen im Stock anzeigen, könnte es sein, dass der Zittertanz nicht nur Nektarabnehmerinnen rekruitiert, sondern, ähnlich wie die kurzen Pipingsignale der Zittertänzerinnen, der Hemmung oder Re-organisation der Sammelaktivität einer Honigbienen Kolonie dient. KW - Bienen KW - Kommunikation KW - Nahrungserwerb KW - Bienensprache KW - Biene KW - Nektar KW - Sammeln KW - Honigbiene KW - Kommunikation KW - Piping Signal KW - Flexibilität KW - Zittertanz KW - Honeybee KW - Nectar Foraging KW - tremble dance KW - worker piping KW - dynamics Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-3601 ER - TY - THES A1 - Groh, Claudia T1 - Environmental influences on the development of the female honeybee brain Apis mellifera T1 - Der Einfluss von Umweltfaktoren auf die Entwicklung des Gehirns der weiblichen Honigbiene Apis mellifera N2 - Für die Honigbiene spielt der Geruchssinn eine entscheidende Rolle bei der Kommunikation innerhalb des Sozialstaates. Kastenspezifische, auf uweltbedingten Einflüssen basierende sowie altersbedingte Unterschiede im olfaktorisch gesteuerten Verhalten liefern ein hervorragendes Modellsystem für diese Studie, um die Entwicklung und Funktion neuronaler Plastizität im olfaktorischen System zu untersuchen. Diese Studie konzentriert sich auf Unterschiede zwischen Königinnen und Arbeiterinnen, den beiden weiblichen Kasten innerhalb des Bienestaates, sowie auf umweltbedingte Plastizität. Diploide Eier, aus denen sich Königinnen und Arbeiterinnen entwickeln, sind genetisch identisch. Dennoch entwickeln sich Königinnen wesentlich schneller zum Adulttier als Arbeiterinnen, sind als Imago größer, leben wesentlich länger und zeigen andere Verhaltensweisen. Diese Unterschiede werden durch eine differentielle larvale Fütterung initiiert. Im Anschluss an das Larvenstadium und somit nach erfolgter Kastendetermination, entwickeln sich die Bienen über eine Puppenphase (verdeckelte Phase) zum Imago. Adulte Bienen klimatisieren das zentrale Brutareal auf einer mittleren Temperatur von 35°C konstant. Bienen, die bei niedrigeren Temperaturen innerhalb des physiologisch relevanten Bereichs aufwachsen, weisen Defizite im olfaktorischen Lernverhalten und in der Tanzkommunikation auf. Mögliche neuronale Korrelate für altersbedingte, temperatur- und kastenspezifische Unterschiede im olfaktorisch gesteuerten Verhalten sollten in dieser Arbeit betrachtet werden. Die strukturellen Analysen konzentrierten sich dabei auf primäre (Antennalloben) und sekundäre (Pilzkörper-Calyces)olfaktorische Verarbeitungszentren im Gehirn von sich entwickelnden und adulten Tieren beider Kasten. Synchron verdeckelte Brutzellen beider Kasten wurden unter kontrollierten Bedingungen im Inkubator herangezogen. Neuroanatomische Untersuchungen wurden an fixierten Gewebeschnitten mittels einer Doppelfluoreszenzfärbung mit Fluor-Phalloidin und anti-Synapsin Immuncytochemie durchgeführt. Diese Doppelmarkierung ermöglichte die Visualisierung und Quantifizierung individueller Synapsenkomplexe (Microglomeruli) im Pilzkörper-Calyx. Phalloidin bindet an verschiedene F-Aktin Isoformen und kann zum Nachweis von F-Aktin im Insektennervensystem verwendet werden. F-Aktin wird während der Entwicklung in Wachstumskegeln und in adulten Gehirnen in präsynaptischen Endigungen und dendritischen Dornen exprimiert. Präsynaptische Elemente wurden durch den Einsatz eines spezifischen Antikörpers gegen das Drosophila-Vesikeltransportprotein Synapsin I charakterisiert. Mit Hilfe der konfokalen Laser-Scanning Mikroskopie wurde die exakte räumliche Zuordnung der Fluoreszenzsignale anhand optischer Schnitte durch die Präparate realisiert. Anhand dieser Methodik konnten erstmals über reine Volumenanalysen hinausgehende Messungen zur synaptischen Strukturplastizität im Pilzkörper-Calyx durchgeführt werden. Die Untersuchungen an Gehirnen in den verschiedenen Puppenstadien zeigten Unterschiede im Entwicklungsverlauf der Gehirne mit dem Fokus auf die Bildung antennaler Glomeruli und calycaler Microglomeruli. Unterschiede in der Gehirnentwicklung verdeutlichten die ontogenetische Plastizität des Gehirns der Honigbiene. Entsprechend der kürzeren Puppenphase der Königinnen bildeten sich sowohl antennale Glomeruli als auch alle Untereinheiten (Lippe, Collar, Basalring) des Calyx etwa drei Tage früher aus. Direkt nach dem Schlupf zeigten quantitative Analysen innerhalb der Pilzkörper-Calyces eine signifikant geringere Anzahl an Microglomeruli bei Königinnen. Diese neuronale Strukturplastizität auf verschiedenen Ebenen der olfaktorischen Informationsverarbeitung korreliert mit der kastenspezifischen Arbeitsteilung. Die Arbeit liefert Erkenntnisse über den Einfluss eines wichtigen kontrollierten Umweltparameters, der Bruttemperatur, während der Puppenphase auf die synaptische Organisation der adulten Pilzkörper-Calyces. Bereits geringe Unterschiede in der Aufzuchtstemperatur (1°C) beeinflussten signifikant die Anzahl von Microglomeruli in der Lippenregion des Calyx beider weiblicher Kasten. Die maximale Anzahl an MG entwickelte sich bei Arbeiterinnen bei 34.5°C, bei Königinnen aber bei 33.5°C. Neben dieser entwicklungsbedingten neuronalen Plastizität zeigt diese Studie eine starke altersbedingte Strukturplastizität der MG während der relativ langen Lebensdauer von Bienenköniginnen. Hervorzuheben ist, dass die Anzahl an MG in der olfaktorischen Lippenregion mit dem Alter anstieg (~55%), in der angrenzenden visuellen Collarregion jedoch abnahm (~33%). Die in der vorliegenden Arbeite erstmals gezeigte umweltbedingte Entwicklungsplastizität sowie altersbedingte synaptische Strukturplastizität in den sensorischen Eingangsregionen der Pilzkörper-Calyces könnte kasten- und altersspezifischen Anpassungen im Verhalten zugrunde liegen. N2 - Olfaction plays an important role in a variety of behaviors throughout the life of the European honeybee. Caste specific, environmentally induced and aging/experiencedependent differences in olfactory behavior represent a promising model to investigate mechanisms and consequences of phenotypic neuronal plasticity within the olfactory pathway of bees. This study focuses on the two different female phenotypes within the honeybee society, queens and workers. In this study, for the first time, structural plasticity in the honeybee brain was investigated at the synaptic level. Queens develop from fertilized eggs that are genetically not different from those that develop into workers. Adult queens are larger than workers, live much longer, and display different behaviors. Developmental trajectory is mainly determined by nutritional factors during the larval period. Within the subsequent post-capping period, brood incubation is precisely controlled, and pupae are incubated close to 35°C via thermoregulatory activity of adult workers. Behavioral studies suggest that lower rearing temperatures cause deficits in olfactory learning in adult bees. To unravel possible neuronal correlates for thermoregulatory and caste dependent influences on olfactory behavior, I examined structural plasticity of developing as well as mature olfactory synaptic neuropils. Brood cells were reared in incubators and pupal as well as adult brains were dissected for immunofluorescent staining. To label synaptic neuropils, I used an antibody to synapsin and fluophore-conjugated phalloidin which binds to filamentous (F-) actin. During development, neuronal F-actin is expressed in growing neurons, and in the mature nervous system, F-actin is most abundant in presynaptic terminals and dendritic spines. In the adult brains, this double labeling technique enables the quantification of distinct synaptic complexes microglomeruli [MG]) within olfactory and visual input regions of the mushroom bodies (MBs) prominent higher sensory integration centers. Analyses during larval-adult metamorphosis revealed that the ontogenetic plasticity in the female castes is reflected in the development of the brain. Distinct differences among the timing of the formation of primary and secondary olfactory neuropils were also revealed. These differences at different levels of the olfactory pathway in queens and workers correlate with differences in tasks performed by both female castes. In addition to caste specific differences, thermoregulation of sealed brood cells has important consequences on the synaptic organization within the MB calyces of adult workers and queens. Even small differences in rearing temperatures affected the number of MG in the olfactory calyx lip regions. In queens, the highest number of MG in the olfactory lip developed at 1°C below the temperature where the maximum of MG is found in workers (33.5 vs. 34.5°C). Apart from this developmental neuronal plasticity, this study exhibits a striking age-related plasticity of MG throughout the extended life span of queens. Interestingly, MG numbers in the olfactory lip increased with age, but decreased within the adjacent visual collar of the MB calyx. To conclude, developmental and adult plasticity of the synaptic circuitry in the sensory input regions of the MB calyx may underlie caste- and age-specific adaptations and long-term plasticity in behavior. KW - Biene KW - Neuroethologie KW - Geruchswahrnehmung KW - Gehirn KW - Ontogenie KW - Neuroethologie KW - Pilzkörper KW - Strukturplastizität KW - Mikroglomerulus KW - Honigbiene KW - soziale Insekten KW - neuroethology KW - mushroom body KW - structural plasticity KW - microglomerulus KW - honeybee KW - social insects Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-17388 ER - TY - THES A1 - Pahl, Mario T1 - Honeybee Cognition: Aspects of Learning, Memory and Navigation in a Social Insect T1 - Kognition bei Honigbienen: Aspekte zu Lernverhalten, Gedächtnis und Navigation bei einem sozialen Insekt N2 - Honeybees (Apis mellifera) forage on a great variety of plant species, navigate over large distances to crucial resources, and return to communicate the locations of food sources and potential new nest sites to nest mates using a symbolic dance language. In order to achieve this, honeybees have evolved a rich repertoire of adaptive behaviours, some of which were earlier believed to be restricted to vertebrates. In this thesis, I explore the mechanisms involved in honeybee learning, memory, numerical competence and navigation. The findings acquired in this thesis show that honeybees are not the simple reflex automats they were once believed to be. The level of sophistication I found in the bees’ memory, their learning ability, their time sense, their numerical competence and their navigational abilities are surprisingly similar to the results obtained in comparable experiments with vertebrates. Thus, we should reconsider the notion that a bigger brain automatically indicates higher intelligence. N2 - Honigbienen (Apis mellifera) furagieren an vielen verschiedenen Pflanzenarten, und navigieren über große Distanzen zu wichtigen Ressourcen. Die räumliche Lage von Futterquellen und potentiellen neuen Nistplätzen teilen sie ihren Nestgenossinnen mithilfe einer symbolischen Tanzsprache mit. Um all dies leisten zu können, haben sie ein reiches Repertoire von adaptiven Verhaltensweisen evolviert. Mehr und mehr Verhaltensweisen, die man nur bei Vertebraten vermutet hätte, werden auch bei der Honigbiene entdeckt. In meiner Dissertation habe ich einige der Mechanismen erforscht, die beim Lernverhalten, der Gedächtnisbildung, der numerischen Kompetenz und der Navigation eine wichtige Rolle spielen. Die Ergebnisse, die in meiner Dissertation erzielt wurden, zeigen dass Honigbienen keineswegs die einfachen, reflexgesteuerten Organismen sind, als die sie lange Zeit angesehen wurden. Die Komplexität die ich im Gedächtnis, der Lernfähigkeit, dem Zeitsinn, der numerischen Kompetenz und der Navigationsfähigkeit der Bienen gefunden habe, ist erstaunlich ähnlich zu den Ergebnissen, die in vergleichbaren Experimenten mit Vertebraten erzielt wurden. Deshalb sollten wir die allgemeine Annahme, dass ein größeres Gehirn automatisch höhere Intelligenz bedeutet, überdenken. KW - Biene KW - Visuelles Gedächtnis KW - Räumliches Gedächtnis KW - Assoziatives Gedächtnis KW - Navigation KW - Zählen KW - Kognitives Lernen KW - Kognition KW - Honigbiene KW - Gedächtnis KW - Zählen KW - Honeybee KW - Memory KW - Counting KW - Subitizing KW - Cognition Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-66165 ER - TY - THES A1 - Münz, Thomas Sebastian T1 - Aspects of neuronal plasticity in the mushroom body calyx during adult maturation in the honeybee Apis mellifera T1 - Aspekte neuronaler Plastizität im Pilzkörper kalyx während der Adultreifung der Honigbiene Apis mellifera N2 - Division of labor represents a major advantage of social insect communities that accounts for their enormous ecological success. In colonies of the honeybee, Apis mellifera, division of labor comprises different tasks of fertile queens and drones (males) and, in general, sterile female workers. Division of labor also occurs among workers in form of an age-related polyethism. This helps them to deal with the great variety of tasks within the colony. After adult eclosion, workers spend around three weeks with various duties inside the hive such as tending the brood or cleaning and building cells. After this period workers switch to outdoor tasks and become foragers collecting nectar, pollen and water. With this behavioral transition, workers face tremendous changes in their sensory environment. In particular, visual sensory stimuli become important, but also the olfactory world changes. Foragers have to perform a completely new behavioral repertoire ranging from long distance navigation based on landmark orientation and polarized-skylight information to learning and memory tasks associated with finding profitable food sources. However, behavioral maturation is not a purely age-related internal program associated with a change, for example, in juvenile hormone titers. External factors such as primer pheromones like the brood pheromone or queen mandibular pheromone can modulate the timing of this transition. In this way colonies are able to flexibly adjust their work force distribution between indoor and outdoor tasks depending on the actual needs of the colony. Besides certain physiological changes, mainly affecting glandular tissue, the transition from indoor to outdoor tasks requires significant adaptations in sensory and higher-order integration centers of the brain. The mushroom bodies integrate olfactory, visual, gustatory and mechanosensory information. Furthermore, they play important roles in learning and memory processes. It is therefore not surprising that the mushroom bodies, in particular their main input region, the calyx, undergo volumetric neuronal plasticity. Similar to behavioral maturation, plastic changes of the mushroom bodies are associated with age, but are also to be affected by modulating factors such as task and experience. In my thesis, I analyzed in detail the neuronal processes underlying volumetric plasticity in the mushroom body. Immunohistochemical labeling of synaptic proteins combined with quantitative 3D confocal imaging revealed that the volume increase of the mushroom body calyx is largely caused by the growth of the Kenyon cell dendritic network. This outgrowth is accompanied by changes in the synaptic architecture of the mushroom body calyx, which is organized in a distinct pattern of synaptic complexes, so called microglomeruli. During the first week of natural adult maturation microglomeruli remain constant in total number. With subsequent behavioral transition from indoor duties to foraging, microglomeruli are pruned while the Kenyon cell dendritic network is still growing. As a result of these processes, the mushroom body calyx neuropil volume enlarges while the total number of microgloumeruli becomes reduced in foragers compared to indoor workers. In the visual subcompartments (calyx collar) this process is induced by visual sensory stimuli as the beginning of pruning correlates with the time window when workers start their first orientation flights. The high level of analysis of cellular and subcellular process underlying structural plasticity of the mushroom body calyx during natural maturation will serve as a framework for future investigations of behavioral plasticity in the honeybee. The transition to foraging is not purely age-dependent, but gets modulated, for example, by the presence of foragers. Ethyl oleate, a primer pheromone that is present only in foragers, was shown to delay the onset of foraging in nurse bees. Using artificial application of additional ethyl oleate in triple cohort colonies, I tested whether it directly affects adult neuronal plasticity in the visual input region of the mushroom body calyx. As the pheromonal treatment failed to induce a clear behavioral phenotype (delayed onset of foraging) it was not possible to show a direct link between the exposure to additional ethyl oleate and neuronal plasticity in mushroom body calyx. However, the general results on synaptic maturation confirmed my data of natural maturation processes in the mushroom body calyx. Given the result that dendritic plasticity is a major contributor to neuronal plasticity in the mushroom body calyx associated with division of labor, the question arose which proteins could be involved in mediating these effects. Calcium/calmodulin-dependent protein kinase II (CaMKII) especially in mammals, but also in insects (Drosophila, Cockroach), was shown to be involved in facilitating learning and memory processes like long-term synaptic potentiation. In addition to presynaptic effects, the protein was also revealed to directly interact with cytoskeleton elements in the postsynapse. It therefore is a likely candidate to mediate structural synaptic plasticity. As part of my thesis, the presence and distribution of CaMKII was analyzed, and the results showed that the protein is highly concentrated in a distinct subpopulation of the mushroom body intrinsic neurons, the noncompact Kenyon cells. The dendritic network of this population arborizes in two calyx subregions: one receiving mainly olfactory input – the lip – and the collar receiving visual input. This distribution pattern did not change with age or task. The high concentration of CaMKII in dendritic spines and its overlap with f-actin indicates that CaMKII could be a key player inducing structural neuronal plasticity associated with learning and memory formation and/or behavioral transitions related to division of labor. Interestingly CaMKII immunoreactivity was absent in the basal ring, another subregion of the mushroom body calyx formed almost exclusively by the inner compact Kenyon cells and known to receive combined visual and olfactory input. This indicates differences of this mushroom body subregion regarding the molecular mechanisms controlling plastic changes in corresponding Kenyon cells. How is timing of behavioral and neuronal plasticity regulated? The primer pheromone ethyl oleate was found in high concentrations on foragers and was shown to influence behavioral maturation by delaying the onset of foraging when artificially applied in elevated concentrations. But how is ethyl oleate transferred and how does it shift the work force distribution between indoor and outdoor tasks? Previous work showed that ethyl oleate concentrations are highest in the honeycrop of foragers and suggested that it is transferred and communicated inside the colony via trophallaxis. The results of this thesis however clearly show, that ethyl oleate was not present inside the honey crop or the regurgitate, but rather in the surrounding tissue of the honey crop. As additionally the second highest concentration of ethyl oleate was measured on the surface of the cuticle of forgers, trophallaxis was ruled out as a mode of transmission. Neurophysiological measurements at the level of the antennae (electroantennogram recordings) and the first olfactory neuropil (calcium imaging of activity in the antennal lobe) revealed that the primer pheromone ethyl oleate is received and processed as an olfactory stimulus. Appetitive olfactory conditioning using the proboscis extension response as a behavioral paradigm showed that ethyl oleate can be associated with a sugar reward. This indicates that workers are able to perceive, learn and memorize the presence of this pheromone. As ethyl oleate had to be presented by a heated stimulation device at close range, it can be concluded that this primer pheromone acts via close range/contact chemoreception through the olfactory system. This is also supported by previous behavioral observations. Taken together, the findings presented in this thesis revealed structural changes in the synaptic architecture of the mushroom body calyx associated with division of labor. For the primer pheromone ethyl oleate, which modulates the transition from nursing to foraging, the results clearly showed that it is received via the olfactory system and presumably acts via this pathway. However, manipulation experiments did not indicate a direct effect of ethyl oleate on synaptic plasticity. At the molecular level, CaMKII is a prime candidate to mediate structural synaptic plasticity in the mushroom body calyx. Future combined structural and functional experiments are needed to finally link the activity of primer pheromones like ethyl oleate to the molecular pathways mediating behavioral and synaptic plasticity associated with division of labor in Apis mellifera. The here identified underlying processes will serve as excellent models for a general understanding of fundamental mechanisms promoting behavioral plasticity. N2 - Arbeitsteilung stellt einen der wesentlichen Faktoren dar, der für den ökologischen Erfolg von sozialen Insektengemeinschaften verantwortlich ist. In Staaten der Honigbiene, Apis mellifera, umfasst die Arbeitsteilung verschiedene Aufgaben für die fertilen Königinnen und Drohnen (Männchen) beziehungsweise die gewöhnlicherweise sterilen Arbeiterinnen. Arbeitsteilung findet aber auch in Form eines altersabhängigen Polyethismus zwischen den Arbeiterinnen selber statt. Dies hilft ihnen die Vielzahl verschiedener Aufgaben im Stock zu bewältigen. Nach dem Schlupf verbringen die Arbeiterinnen etwa drei Wochen mit verschiedenen Aufgaben im Stock, wie beispielsweise Brutpflege oder Reinigen und Bauen neuer Wabenzellen. Nach dieser Zeit wechseln die Arbeiterinnen zu Aufgaben außerhalb des Stocks und werden Nektar-, Pollen- oder Wassersammlerinnen. Durch diesen Verhaltensübergang sind die Arbeiterinnen mit einem massiven Wandel ihrer sensorischen Umwelt konfrontiert. Im speziellen werden nun visuelle Reize wichtig, aber auch die olfaktorische Welt der Arbeiterinnen ändert sich. Sammlerinnen zeigen ein komplett neues Verhaltensrepertoire das von Langstreckennavigation, basierend Landmarken und dem Polarisationsmuster des Himmels, bishin zu Lern- und Gedächtnisaufgaben im Zusammenhang mit dem Auffinden profitabler Futterquellen reicht. Allerdings ist Verhaltensreifung kein rein altersbedingtes internes Programm beispielsweise basierend auf einer Veränderung des Juvenilhormon-Titers. Externe Faktoren wie beispielsweise die Primer Pheromone Brutpheromone oder Königinnenpheromon können den Zeitpunkt des Übergangs modulieren. Hierdurch sind Staaten in der Lage ihre Arbeiterkräfte flexibel zwischen Innen- und Außendienst Aufgaben zu verschieben. Neben bestimmten physiologischen Veränderungen, die vor allem Drüsengewebe betreffen, benötigt der Übergang vom Innendienst zum Außendienst deutliche Anpassungen sensorischer und höherer Integrationszentren im Gehirn. Die Pilzkörper integrieren olfaktorische, visuelle und mechanosensorische Informationen. Sie spielen weiterhin eine wichtige Rolle für Lern- und Gedächtnisvorgänge. Es ist daher nicht überraschend, dass die Pilzkörper, im Speziellen deren Haupteingangsregion, der Kalyx, eine neuronale Volumensplastizität durchlaufen. Ähnlich wie die Verhaltensreifung, sind plastische Veränderungen im Pilzkörper mit dem Alter verbunden, werden aber auch durch modulierende Faktoren wie Aufgabe und Erfahrungen beeinflusst. In meiner Dissertation habe ich detailliert die neuronalen Prozesse analysiert, die der Volumensplastizität des Pilzkörpers zugrunde liegen. Immunhistologische Färbungen synaptischer Proteine kombiniert mit quantitativer 3D Konfokalmikroskopie zeigten, dass die Volumenszunahme des Pilzkörpers hauptsächlich durch dendritisches Wachstum des Kenyon-Zellen-Netzwerks bedingt ist. Dieses Auswachsen wurde begleitet durch Veränderungen der synaptischen Architektur des Kalyx des Pilzkörpers, welcher in Form synaptischer Komplexe, sogenannter Mikroglomeruli organisiert ist. Während der ersten Woche der Adultreifung blieb die Gesamtzahl der Mikroglomeruli konstant. Im folgenden Verhaltensübergang von Innendienstaufgaben zum Sammeln, wurden die Mikroglomeruli zurückgetrimmt, während das dendritische Kenyon-Zell-Netzwerk weiterhin wuchs. Als Ergebnis dieser Prozesse vergrößerte sich das Volumen des Kalyx des Pilzkörpers während die Gesamtzahl der Mikroglomeruli bei Sammlerinnen im Vergleich zu Inndienst Arbeiterinnen reduziert war. In der visuellen Unterregion (Kragen des Kalyx) wurde dieser Prozess induziert durch sensorische Stimuli, da der Beginn des Zurücktrimmens mit dem Zeitfenster zusammenfiel, in dem die Arbeiterinnen ihre ersten Orientierungsflüge starteten. Der hohe Analysegrad der zellulären und subzellulären Prozesse, die der strukturellen Plastizität des Kalyx des Pilzkörpers während der natürlichen Reifung zugrunde liegen, wird zukünftigen Untersuchungen der Verhaltensplastizität bei Honigbienen als Referenz dienen. Der Übergang zur Sammlerin ist nicht rein altersabhängig, sondern wird beispielsweise durch die Gegenwart von anderen Sammlerinnen moduliert. Ethyloleat, ein Primer Pheromone das nur auf Sammlerinnen auftritt, verzögert das Einsetzen des Sammelns von Ammenbienen. Durch das Einbringen zusätzlichen Ethyloleats in Dreifach Kohorten, testete ich, ob es einen direkten Einfluss auf die neuronale Plastizität der visuellen Eingangsregion des Pilzkörper Kalyx hat. Da durch die Pheromon Behandlung kein eindeutiger Verhaltensphänotyp (verzögerter Sammelbeginn) induziert werden konnte, war es nicht möglich einen direkten Zusammenhang zwischen der verstärkten Ethyloleat-Exposition und der neuronalen Plastizität des Kalyx des Pilzkörpers herzustellen. Dennoch bestätigten die Beobachtungen der synaptischen Reifung meine generellen Daten zu den natürlichen Reifungsprozessen im Kalyx des Pilzkörper. Basierend auf dem Ergebnis, dass dendritische Plastizität einen wesentlichen Anteil an der arbeitsteilungsbezogenen neuronalen Plastizität des Kalyx des Pilzkörper hat, stellte sich die Frage, welche Proteine daran beteiligt sein könnten diese Effekte zu vermitteln. Von der Calcium/Calmodulin abhängigen Kinase II (CaMKII) ist bekannt, dass sie speziell bei Säugetieren - aber bei Insekten (Drosophila, Schabe) - daran beteiligt ist, Lern- und Gedächtnisvorgänge, wie die Langzeitpotenzierung, zu ermöglichen. Neben präsynaptischen Effekten, wurde gezeigt, dass dieses Protein direkt mit Elementen des postsynaptischen Cytoskeletts interagieren kann. Als Teil meiner Dissertation habe ich das Vorkommen und die Verteilung der CaMKII analysiert. Ich konnte es hochkonzentriert in einer definierten Subpopulation der intrinsischen Pilzkörper-Neurone, den „nicht kompakten“ Kenyon Zellen, nachweisen. Das dendritische Netzwerk dieser Population verzweigt sich in zwei Kalyx Subregionen: eine olfaktorisch innervierte – die Lippe – und den Kragen, welcher optischen Eingang erfährt. Dieses Verteilungsmuster ändert sich nicht mit dem Alter oder der Aufgabe der Biene. Die hohe Konzentration von CaMKII in den dendritsichen Dornenfortsätzen und die gleichzeitige räumliche Überlappung mit f-Aktin, weisen darauf hin, dass CaMKII eine Schüsselrolle bei der Induzierung struktureller neuronaler Plastizität im Zusammenhang mit Lernen und Gedächtnisbildung und/oder Arbeitsteilung bezogener Verhaltensübergänge, zukommen könnte. Interessanterweise wies der Basalring, eine weitere Subregion des Kalyx des Pilzkörpers die dafür bekannt ist kombinierten visuellen und olfaktorischen Eingang zu erhalten und fast ausschließlich durch die „inneren kompakten“ Kenyon Zellen gebildet wird, keine Immunreaktivität auf. Dies deutet auf Unterschiede in den molekularen Mechanismen die plastische Veränderungen in den entsprechenden Kenyon zellen kontrollieren. Wie wird die zeitliche Abstimmung der Verhaltensplastizität und neuronalen Plastizität reguliert? Für das in hohen Konzentration auf Sammlerinnen vorkommende Primer Pheromon Ethyloelat konnte durch dessen Anwendung in erhöhten Konzentrationen gezeigt werden, dass es die Verhaltensreifung durch Verzögerung des Sammelbeginns beeinflussen kann. Wie aber wird Ethyloleat transferiert und wie verschiebt es die Arbeitskräfteverteilung zwischen Innen- und Außendienst Aufgaben? Frühere Arbeiten zeigten die höchste Konzentration von Ethyloleat im Sozialmagen der Sammlerinnen und schlugen vor, dass es innerhalb der Kolonie über Trophollaxis transferiert und kommuniziert wird. Die Ergebnisse meiner Arbeit zeigten aber eindeutig, dass Ethyloleat nicht im Inhalt des Sozialmagen und auch nicht im Regurgitat, sondern nur im Gewebe des Sozialmagens vorhanden ist. Da zusätzlich die zweithöchste Konzentration von Ethyloleat auf der Oberfläche der Kutikula von Sammlerinnen gemessen wurde, wurde Trophollaxis als Übertragungsmodus ausgeschlossen. Neurophysiologische Messungen an der Antenne (Elektroantennografie), dem ersten olfaktorischen Neuropil (Calcium Imaging der Aktivität des Antennallobus), zeigten, dass Ethyloleat als olfaktorischer Reiz wahrgenommen und prozessiert wird. Appetitive olfaktorische Konditionierung mit Hilfe des Rüsselstreckreflexes wurde als Verhaltensparadigma verwendet um zu zeigen, dass Ethyloleat mit einer Zuckerbelohnung assoziiert werden kann. Dies deutet darauf hin, dass Arbeiterinnen in der Lage sind, die Anwesenheit dieses Pheromons zu perzipieren, zu erlernen und sich auch daran zu erinnern. Da Ethyloleat nur durch Erwärmung als Stimulus präsentiert werden konnte, lässt sich schlussfolgern, dass es über Nahbereichs/Kontakt-Chemorezeption durch das olfaktorische System wahrgenommen wird. Dies wird auch durch frühere Verhaltensbeobachtungen unterstützt. Zusammengenommen, zeigen die in dieser Dissertation präsentierten Ergebnisse strukturelle Veränderungen in der synaptischen Architektur des Kalyx des Pilzkörpers in Zusammenhang mit Arbeitsteilung. Für das Primer Pheromone Ethyloleat, welches den Übergang von Ammendiensten zum Sammeln moduliert, zeigten die Ergebnisse eindeutig, dass es über das olfaktorische System wahrgenommen wird und vermutlich auch über diesen Weg seine Wirkung vermittelt. Dennoch konnten Manipulationsexperimente keine direkte Verbindung zwischen Ethyloleat und der synaptischen Reifung herstellen. Auf molekularer Ebene stellt CaMKII einen Topkandidaten dar, der strukturelle synaptische Plastizität im Kalyx des Pilzkörpers vermitteln kann. Eine Kombination struktureller und funktioneller Experimente ist der nächste logische Schritt um schlussendlich die Verbindung zwischen der Aktivität von Primer Pheromonen (wie Ethyloleat) und molekularen Signalwegen, die Verhaltensplastizität und synaptische Plastizität im Zusammenhang mit der Arbeitsteilung von Apis mellifera vermitteln, herzustellen. Die hierbei identifizierten zugrundeliegenden Prozesse werden als exzellente Modelle für ein generelles Verständnis der fundamentalen Mechanismen welche Verhaltensplastizität vermitteln, dienen. KW - Biene KW - Neuronale Plastizität KW - Pheromon KW - Neuronal plasticity KW - Honeybee KW - Pheromon communication KW - CaMKII KW - Division of labor KW - Neuronale Plastizität KW - Honigbiene KW - Pheromon Kommunikation KW - Arbeitsteilung Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-111611 ER -