TY - JOUR A1 - Doll, Julia A1 - Kolb, Susanne A1 - Schnapp, Linda A1 - Rad, Aboulfazl A1 - Rüschendorf, Franz A1 - Khan, Imran A1 - Adli, Abolfazl A1 - Hasanzadeh, Atefeh A1 - Liedtke, Daniel A1 - Knaup, Sabine A1 - Hofrichter, Michaela AH A1 - Müller, Tobias A1 - Dittrich, Marcus A1 - Kong, Il-Keun A1 - Kim, Hyung-Goo A1 - Haaf, Thomas A1 - Vona, Barbara T1 - Novel loss-of-function variants in CDC14A are associated with recessive sensorineural hearing loss in Iranian and Pakistani patients JF - International Journal of Molecular Sciences N2 - CDC14A encodes the Cell Division Cycle 14A protein and has been associated with autosomal recessive non-syndromic hearing loss (DFNB32), as well as hearing impairment and infertile male syndrome (HIIMS) since 2016. To date, only nine variants have been associated in patients whose initial symptoms included moderate-to-profound hearing impairment. Exome analysis of Iranian and Pakistani probands who both showed bilateral, sensorineural hearing loss revealed a novel splice site variant (c.1421+2T>C, p.?) that disrupts the splice donor site and a novel frameshift variant (c.1041dup, p.Ser348Glnfs*2) in the gene CDC14A, respectively. To evaluate the pathogenicity of both loss-of-function variants, we analyzed the effects of both variants on the RNA-level. The splice variant was characterized using a minigene assay. Altered expression levels due to the c.1041dup variant were assessed using RT-qPCR. In summary, cDNA analysis confirmed that the c.1421+2T>C variant activates a cryptic splice site, resulting in a truncated transcript (c.1414_1421del, p.Val472Leufs*20) and the c.1041dup variant results in a defective transcript that is likely degraded by nonsense-mediated mRNA decay. The present study functionally characterizes two variants and provides further confirmatory evidence that CDC14A is associated with a rare form of hereditary hearing loss. KW - CDC14A KW - DFNB32 KW - autosomal recessive hearing loss KW - exome sequencing KW - splicing KW - frameshift KW - non-sense mediated mRNA decay Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285142 SN - 1422-0067 VL - 21 IS - 1 ER - TY - JOUR A1 - Liedtke, Daniel A1 - Orth, Melanie A1 - Meissler, Michelle A1 - Geuer, Sinje A1 - Knaup, Sabine A1 - Köblitz, Isabell A1 - Klopocki, Eva T1 - ECM alterations in fndc3a (fibronectin domain containing protein 3A) deficient zebrafish cause temporal fin development and regeneration defects JF - Scientific Reports N2 - Fin development and regeneration are complex biological processes that are highly relevant in teleost fish. They share genetic factors, signaling pathways and cellular properties to coordinate formation of regularly shaped extremities. Especially correct tissue structure defined by extracellular matrix (ECM) formation is essential. Gene expression and protein localization studies demonstrated expression of fndc3a (fibronectin domain containing protein 3a) in both developing and regenerating caudal fins of zebrafish (Danio rerio). We established a hypomorphic fndc3a mutant line (fndc3a\(^{wue1/wue1}\)) via CRISPR/Cas9, exhibiting phenotypic malformations and changed gene expression patterns during early stages of median fin fold development. These developmental effects are mostly temporary, but result in a fraction of adults with permanent tail fin deformations. In addition, caudal fin regeneration in adult fndc3a\(^{wue1/wue1}\) mutants is hampered by interference with actinotrichia formation and epidermal cell organization. Investigation of the ECM implies that loss of epidermal tissue structure is a common cause for both of the observed defects. Our results thereby provide a molecular link between these developmental processes and foreshadow Fndc3a as a novel temporal regulator of epidermal cell properties during extremity development and regeneration in zebrafish. KW - Extracellular matrix KW - Limb development KW - Self-renewal Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-202141 VL - 9 ER - TY - JOUR A1 - Menescal, Luciana A1 - Schmidt, Cornelia A1 - Liedtke, Daniel A1 - Schartl, Manfred T1 - Liver hyperplasia after tamoxifen induction of Myc in a transgenic medaka model N2 - Myc is a global transcriptional regulator and one of the most frequently overexpressed oncoproteins in human tumors. It is well established that activation of Myc leads to enhanced cell proliferation but can also lead to increased apoptosis. The use of animal models expressing deregulated levels of Myc has helped to both elucidate its function in normal cells and give insight into how Myc initiates and maintains tumorigenesis. Analyses of the medaka (Oryzias latipes) genome uncovered the unexpected presence of two Myc gene copies in this teleost species. Comparison of these Myc versions to other vertebrate species revealed that one gene, myc17, differs by the loss of some conserved regulatory protein motifs present in all other known Myc genes. To investigate how such differences might affect the basic biological functions of Myc, we generated a tamoxifeninducible in vivo model utilizing a natural, fish-specific Myc gene. Using this model we show that, when activated, Myc17 leads to increased proliferation and to apoptosis in a dose-dependent manner, similar to human Myc. We have also shown that long-term Myc17 activation triggers liver hyperplasia in adult fish, allowing this newly established transgenic medaka model to be used to study the transition from hyperplasia to liver cancer and to identify Myc-induced tumorigenesis modifiers. KW - Biologie Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75316 ER - TY - THES A1 - Liedtke, Daniel T1 - Functional divergence of Midkine growth factors : Non-redundant roles during neural crest induction, brain patterning and somitogenesis T1 - Funktionelle Divergenz von Midkine Wachstumsfaktoren: Nicht-redundante Funktionen während der Neuralleisteninduktion, der Gehirnenmusterbildung und der Somitogenese N2 - Neural crest cells and sensory neurons are two prominent cell populations which are induced at the border between neural and non-neural ectoderm during early vertebrate development. The neural crest cells are multipotent and highly migratory precursors that give rise to face cartilage, peripheral neurons, glia cells, pigment cells and many other cell types unique to vertebrates. Sensory neurons are located dorsally in the neural tube and are essential for sensing and converting environmental stimuli into electrical motor reflexes. In my PhD thesis, I obtained novel insights into the complex processes of cell induction at the neural plate border by investigating the regulation and function of mdkb in zebrafish. First, it was possible to demonstrate that mdkb expression is spatiotemporally correlated with the induction of neural crest cells and primary sensory neurons at the neural plate border. Second, it became evident that the expression of mdkb is activated by known neural crest cell inducing signals, like Wnts, FGFs and RA, but that it is independent of Delta-Notch signals essential for lateral inhibition. Knockdown experiments showed that mdkb function is necessary for induction of neural crest cells and sensory neurons at the neural plate border, probably through determination of a common pool of progenitor cells during gastrulation. The present study also used the advantages of the zebrafish model system to investigate the in vivo function of all midkine gene family members during early brain development. In contrast to the situation in mouse, all three zebrafish genes show distinct expression patterns throughout CNS development. mdka, mdkb and ptn expression is detected in mostly non-overlapping patterns during embryonic brain development in the telencephalon, the mid-hindbrain boundary and the rhombencephalon. The possibility of simultaneously knocking down two or even three mRNAs by injection of morpholino mixtures allowed the investigation of functional redundancy of midkine factors during brain formation. Knockdown of Midkine proteins revealed characteristic defects in brain patterning indicating their association with the establishment of prominent signaling centers such as the mid-hindbrain boundary and rhombomere 4. Interestingly, combined knockdown of mdka, mdkb and ptn or single knockdown of ptn alone prevented correct formation of somites, either by interfering with the shifting of the somite maturation front or interferance with cell adhesion in the PSM. Thus, Ptn was identified as a novel secreted regulator of segmentation in zebrafish. N2 - Neuralleistenzellen und sensorische Neuronen werden während der frühen Wirbeltierentwicklung an der Grenze zwischen dem neuralen und epidermalen Ektoderm gebildet. Neuralleistenzellen sind multipotente Vorläufer von verschiedenen Geweben, wie der Knorpelanteile des Kopfskeletts, peripherer Neurone, Gliazellen, Pigmentzellen und vieler weiterer Derivate. Sensorische Neurone befinden sich im dorsalen Rückenmark und sind wichtig für die Wahrnehmung von Hautreizen. Durch Untersuchung der Regulation und Funktion von mdkb im Zebrafisch konnte ich in meiner Doktorarbeit neue Einsichten in den komplexen Prozess der Zellinduzierung an der Grenze der Neuralplatte erlangen. Es zeigte sich, dass die Expression von mdkb zeitlich und räumlich mit der Induktion von Neuralleistenzellen und primären Neuronen an der Neuralplattengrenze korreliert. Weiterhin konnte ich nachweisen, dass die mdkb Expression durch Signalwege reguliert wird, die für die Induktion von Neuralleistenzellen wichtig sind, wie Wnt, FGF und Retinolsäure. Signale der Delta-Notch Familie, welche essentiell für laterale Inhibition sind, werden dagegen nicht für die mdkb Expression benötigt. Weitere knockdown Experimente zur Reduktion der mdkb-Funktion bewiesen, dass mdkb notwendig für die Induktion von Neuralleistenzellen und der sensorischen Neuronen an der Neuralplattengrenze ist. Des Weiteren konnten im Verlauf dieser Doktorarbeit die in vivo Funktionen aller Mitglieder der midkine Genfamilie während der frühen Gehirnentwicklung untersucht werden. Im Unterschied zu höheren Vertebraten, wie z. B. der Maus, wiesen alle drei midkine Gene des Zebrafisches unterschiedliche Expressionsmuster während der Entwicklung auf. mdka, mdkb und ptn zeigten in Regionen hoher Zellproliferation, wie dem Telencephalon, der Mittel-Nachhirngrenze und dem Nachhirn in der Regel keine Überlappung während der embryonalen Gehirnentwicklung. Die Möglichkeit der simultanen Reduktion zweier oder dreier Proteine durch Injektion von Morpholinogemischen erlaubte die Untersuchung einer eventuellen funktionellen Redundanz während der Gehirnentwicklung. Die Reduktion der Midkine Proteine resultierte in charakteristischen Defekten während der Regionalisierung des Gehirns, was auf eine Rolle während der Bildung essentieller Signalzentren im Gehirn hindeutet. Auffallend waren auch Defekte in der Somitenbildung, die nach gleichzeitiger Reduktion von mdka, mdkb und ptn auftraten. Diese Defekte beruhen entweder auf einer Positionsveränderung der Somiten-Reifungszone oder auf einer Störung der Zelladhäsion im präsomitischen Mesoderm durch Ptn. Somit zeigen die Daten eine neue Funktion von Ptn als sekretiertem Regulator der Somitogenese im Zebrafisch. KW - Zebrabärbling KW - Neuralleiste KW - Hirnforschung KW - Entwicklungsbiologie KW - Mikroevolution KW - Midkine KW - Wachstumsfaktoren KW - Somitogenese KW - Neuralrohr KW - Midkine KW - growth factor KW - neural tube KW - somitogenesis Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-25707 ER -