TY - JOUR A1 - Schramm, Sabine A1 - Fraune, Johanna A1 - Naumann, Ronald A1 - Hernandez-Hernandez, Abrahan A1 - Höög, Christer A1 - Cooke, Howard J. A1 - Alsheimer, Manfred A1 - Benavente, Ricardo T1 - A Novel Mouse Synaptonemal Complex Protein Is Essential for Loading of Central Element Proteins, Recombination, and Fertility N2 - The synaptonemal complex (SC) is a proteinaceous, meiosis-specific structure that is highly conserved in evolution. During meiosis, the SC mediates synapsis of homologous chromosomes. It is essential for proper recombination and segregation of homologous chromosomes, and therefore for genome haploidization. Mutations in human SC genes can cause infertility. In order to gain a better understanding of the process of SC assembly in a model system that would be relevant for humans, we are investigating meiosis in mice. Here, we report on a newly identified component of the murine SC, which we named SYCE3. SYCE3 is strongly conserved among mammals and localizes to the central element (CE) of the SC. By generating a Syce3 knockout mouse, we found that SYCE3 is required for fertility in both sexes. Loss of SYCE3 blocks synapsis initiation and results in meiotic arrest. In the absence of SYCE3, initiation of meiotic recombination appears to be normal, but its progression is severely impaired resulting in complete absence of MLH1 foci, which are presumed markers of crossovers in wild-type meiocytes. In the process of SC assembly, SYCE3 is required downstream of transverse filament protein SYCP1, but upstream of the other previously described CE–specific proteins. We conclude that SYCE3 enables chromosome loading of the other CE–specific proteins, which in turn would promote synapsis between homologous chromosomes. KW - Maus KW - Genetik KW - Cytologie Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68895 ER - TY - JOUR A1 - Benavente, Ricardo A1 - Scheer, Ulrich A1 - Chaly, Nathalie T1 - Nucleocytoplasmic sorting of macromolecules following mitosis: fate of nuclear constituents after inhibition of pore complex function N2 - PtK2 cells in which pore complex-mediated transport is blocked by microinjection early in mitosis of a monoclonal antibody (specific for an Mr 68000 pore complex glycoprotein) or of wheat germ agglutinin (WGA) complete cytokinesis. However, their nuclei remain stably arrested in a telophase-like organization characterized by highly condensed chromatin and the absence of nucleoli, indicating a requirement for pore-mediated transport for the reassembly of interphase nuclei. We have now examined this requirement more closely by monitoring the behavior of individual nuclear macromolecules in microinjected cells using immunofluorescence microscopy and have investigated the effect of microinjecting the antibody or WGA on cellular ultrastructure. The absence of nuclear transport did not affect the sequestration into daughter nuclei of components such as DNA, DNA topoisomerase I and the nucleolar protein fibrillarin that are carried through mitosis on chromosomes. On the other hand, lamins, snRNAs and the p68 pore complex glycoprotein, all cytoplasmic during mitosis, remained largely cytoplasmic in the telophase-arrested cells. Electron microscopy showed the nuclei to be surrounded by a doublelayered membrane with some inserted pore complexes. In addition, however, a variety of membranous structures with associated pore complexes was regularly noted in the cytoplasm, suggesting that chromatin may not be essential for the postmitotic formation of pore complexes. We propose that cellular compartmentalization at telophase is a two-step process. First, a nuclear envelope tightly encloses the condensed chromosomes, excluding non-selectively all macromolecules not associated with the chromosomes. Interphase nuclear organization is then progressively restored by selective pore complex-mediated uptake of nuclear proteins from the cytoplasm. KW - Cytologie KW - Nucleocytoplasmic transport KW - nuclear organization KW - nuclear envelope KW - nucleologenesis KW - mitosis Y1 - 1989 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-40777 ER - TY - JOUR A1 - Weisenberger, Dieter A1 - Scheer, Ulrich A1 - Benavente, Ricardo T1 - The DNA topoisomerase I inhibitor camptothecin blocks postmitotic reformation of nucleoli in mammmalian cells N2 - No abstract available KW - Cytologie KW - Nucleolus-DNA KW - opoisomerase I KW - camptothecin KW - mitosis Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-41434 ER -