TY - THES A1 - Endt, Daniela T1 - Fanconi Anämie : Entwicklung von hämatopoetischen Mosaiken sowie funktionelle Studien von FANCO (RAD51C) und FANCN (PALB2) T1 - Fanconi Anämie : Development of hematopoetic mosaicism and functional studies of FANCO (RAD51C) and FANCN (PALB2) N2 - Zur Wahrung der Genomstabilität entwickelten sich verschiedene Reparaturmechanismen, deren Defekte zu diversen Erkrankungen führen. Der 1927 erstmals beschriebenen Fanconi Anämie (FA) (Fanconi 1927) liegt eine fehlerhafte Reparatur der DNA-Doppelstrang-Quervernetzung zugrunde. Als Ursache wurden Defekte innerhalb des FA/BRCA-Weges lokalisiert, welche zur Chromosomeninstabilität führen. Das Krankheitsbild der autosomal rezessiven oder X-chromosomalen Erkrankung wird meist von kongenitalen Fehlbildungen, progressivem Knochenmarkversagen sowie bereits im jugendlichen Alter erhöhten Tumor-raten und Anämien geprägt. Bisher wurden Defekte in 19 verschiedenen Genen als ursächlich für diese Erkrankung diskutiert. Anhand des betroffenen Gens können nur begrenzt Rückschlüsse auf die Ausprä-gung des Phänotyps geschlossen werden, vielmehr scheinen die Art der Mutation und deren Position im Gen mit der Schwere der Erkrankung zu korrelieren. Im Laufe der Zeit wurden immer mehr Patienten mit mild ausgeprägtem Erkrankungsbild beobachtet. Eine mögliche Erklärung hierfür liefern milde Mutationen, eine weitere das Vorhandensein von Mosaiken blutbildender Zellen. Zu letzterem führt die Reversion einer der beiden Mutationen. Diese Art der „natürlichen Gentherapie“ wurde bei 10-30% der FA-Patienten beobachtet. Um die Entwicklung von Reversionen besser zu verstehen, erfolgte im Rahmen dieser Arbeit die Untersuchung verschiedener Zelllinien von 5 Patienten im Alter von 11 (Pat. 5) bis 33 (Pat. 4) Jahren. Die FA-A-Patienten 1 und 2 wurden bereits von Gross et al. 2002 als Mosaikpatienten beschrieben. Für die weiteren Patienten führten unterschiedliche Aspekte, wie normale Blutwerte, MMC-tolerante lympho-blastoide Zelllinien und gDNA-Analysen des Blutes zum Mosaikverdacht. Nähere Analysen bestätigten für die FA-D2-Patienten (Pat. 4, 5) ebenfalls das Vorliegen einer Reversion in den Blutzellen. Allen Patienten gemein war die Reversion in Form einer Rückmutation (Pat. 1: c.971T>G, Pat. 2: c.856 C>T, Pat. 4: c.3467-2A>G, Pat. 5: c.3707G>A), welche meist in einem oder in der Nähe eines Mutationsmotives vorlag. Zur Einschätzung des Mosaikstatus in den Patientenblutzellen wurden, neben der meist mehrjährigen Be-obachtung der Blutwerte (Thrombo-, Mono-, Granulo-, Lymphozyten, Hämoglobin), gDNA-, Chromoso-menbruch- und Zellzyklusanalysen durchgeführt. Chromosomenbruchanalysen von Metaphasen der T-Lymphozyten der Patienten 4 und 5 zeigten nach MMC-Behandlung die mosaik-typische bimodale Vertei-lung der Chromosomenbruchraten. Die nur moderat erhöhten Bruchraten in Metaphasen des Patienten 1 sprachen für eine starke Reversion. Zur besseren Abschätzung des Mosaikstatus wurden Zellzyklusanaly-sen an Mischungsreihen aus FA- und nicht FA- Blut durchgeführt. Die Detektionsgrenze für FA-Mosaike lag bei einem Anteil von 30% Zellen mit spontanem/MMC-induziertem G2-Phasen-Arrest. In Anlehnung an Mischungskurven wurden für die vier Patienten Reversionen von 0% (Pat. 4) bis 90-95% (Pat. 2) ange-nommen. Die gDNA-Analyse MACS-sortierter T-/B-Lympho-, Mono- und Granulozyten sowie von Fib-roblasten und lymphoblastoiden Zelllinien ermöglichte einen detaillierten Einblick in die Mosaikstatus auf molekularer Ebene. Wir fanden bei allen Patienten einen unterschiedlich stark ausgeprägten Mosaikstatus ihrer Blutzellreihen. Tendenziell scheinen die Reversionsgrade mit der Zell-Lebensdauer korrelieren, hier-bei zeigen kurzlebige Zellen (Mono-, Granulo-, B-Lymphozyten) höhere Reversionsgrade als langlebige T-Lymphozyten. Das Auftreten von gleichen Reversionen in allen Zelllinien lässt eine Reversion in einer gemeinsamen Vorläuferzelle vermuten. Als Besonderheit fanden wir, unseren Erachtens erstmalig, eine komplette Reversion einer Knochenmark-Fibroblastenzelllinie (Pat. 1). Häufig in Kultur stattfindende Re-versionen in lymphoblastoiden Zelllinien beobachteten wir für alle vier Patienten. Die Mosaikentstehung im Patientenblut konnte mit allen Methoden bestätigt werden. Jede Methode wies Vor- und Nachteile auf. Zur Abschätzung der Mosaikstatus empfiehlt sich deshalb eine Kombination der Methoden. Ein weiteres Projekt beschäftigte sich mit Interaktionen des FANCO (RAD51C) innerhalb der RAD51 Paraloge (RAD51B, -C, -D, XRCC2, XRCC3) und mit RAD51. Die Analysen erfolgten im Mammalian Two- und Three-Hybrid (M2H/M3H) System. Die Untersuchungen bestätigten die meisten der bisher detektierten Interaktionen, welche zur Ausbildung des RAD51C-XRCC3 Komplexes und des, aus den Subkomplexen RAD51B-RAD51C (BC) und RAD51D-XRCC2 (DX2) bestehenden, BCDX2-Komplex führen. Die M3H-Analysen weisen auf eine wichtige Rolle des RAD51B-Proteins bei der Ausprägung dieses Komplexes hin. Es scheint die Ausbildung der RAD51C-RAD51D-Interaktion erst zu ermöglichen und zusätzlich, anders als bisher beobachtet, auch mit XRCC2 zu interagieren. Diese Interaktion wiederum wird durch die Anwesenheit von RAD51D stark gefördert. Unsere M2H-/M3H-Beobachtungen weisen darauf hin, dass die Ausbildung der Subkomplexe für die Entstehung des BDCX2-Komplexes wichtig ist und dieser vermutlich als Ringstruktur vorliegt. Zusätzlich fanden wir Hinweise auf mögliche Wechselwir-kungen zwischen den BCDX2- und den XRCC3-Komplexproteinen. Aufgrund der Beteiligung der Protei-ne an der Doppelstrangläsionsreparatur wurde die Auswirkung von MMC-induzierten DNA-Schäden un-tersucht. Diese führten innerhalb der Subkomplexe zu gegensätzlichen Änderungen der Interaktionsinten-sität. Während die Substanz im DX2-Komplex zum Sinken der Interaktionsstärke führte, erhöhte sich diese im BC-Komplex. Die in der Literatur beschriebene und charakterisierte RAD51C-FANCN-Interation war im M2H-Test nicht darstellbar. Möglicherweise würde diese jedoch durch die Anwesenheit eines drit-ten Proteins gefördert werden. Zusätzlich wurde ein RAD51C-Protein, welches die Patientenmutation R258H enthielt, überprüft. Es zeigte nur in der M3H-Analyse, mit pMRAD51D und nativem RAD51B, nach Behandlung mit MMC eine reduzierte Interaktionsstärke im Vergleich zum Wildtyp. Dies unter-streicht einmal mehr die als hypomorph beschriebene Mutation des Proteins. Das dritte Projekt, die angestrebte Strukturaufklärung des RAD51C-Proteins erwies sich als schwierig. Eine für eine Kristallisation ausreichende Proteinmenge konnte, weder im E. coli-System noch in Insektenzellen oder in Co-Expression mit seinem Interaktionspartner XRCC3, isoliert und aufgereinigt werden. Elektro-phoretische Mobility Shift Assays des CX3-Proteinkomplexes mit DNA-Strukturen (ssDNA, Open Fork, 3‘-/ 5‘-Überhang-Struktur), zeigten eine Bevorzugung des 3‘-Überhang-DNA-Substrates. Diese Art der Analyse könnte in weiterführenden Analysen zur Abschätzung der Auswirkung von Patientenmutationen herangezogen werden. bb N2 - For maintaining genomic stability several repair mechanisms have evolved. Defects in these mechanisms lead to diverse diseases. One of these Fanconi Anemia (FA), first described in 1927, evoked by deficient mechanism of interstrand crosslinks. As causative reason defects within the FA-BRCA pathway were iden-tified leading to chromosome instability. To date 19 different genes were found to cause Fanconi Anemia. Most commonly for the clinical picture of FA are congenital malformations, progressive bone marrow defects as like an increased tumor rates and anemia at a juvenile age. Knowing the affected gene only lim-ited conclusions could be considered of the phenotypical appearance. More likely the kind of mutation and the affected position within the gene seems to correlate with the severity of the disease. Over the time an elevated number of patients with mild phenotype were observed. One possible explanation may be mild mutations another a mosaic state developed within the blood forming cells. The latter was caused by rever-sion of one of both mutations. This kind of “natural gene therapy” was observed in the blood of 10 up to 30 % FA- patients. To get better insights in to the mosaic development we investigated different cell lines of five patients aged between 11 (pat. 5) and 33 (pat. 4) years. Both FA-A patients (pat. 1, 2) were described as mosaic patients before by Gross et al. 2002. The other patients arouse suspicion for developing mosai-cism by different aspects like normal blood counts, MMC tolerant lymphoblastiode cell lines and analyzing gDNA from blood. Detailed analyses confirmed the reversion of one mutation in blood of the FA-D2 patients (pat. 4, 5). In common for all four mosaic was the kind of reversion, a back mutation (pat. 1: c.971T>G, pat. 2: c.856 C>T, pat. 4: c.3467-2A>G, pat. 5: c.3707G>A) mostly in or near by a mutation motive. To get insights in to the mosaic state of the patients’ blood cells, gDNA, chromosomal breakage and cell cycle analyses were performed and blood cell counts of thrombo-, mono-, granulo-, lymphocytes and haemoglobin were observed for several years. Chromosomal breakage analyses of t-lymphocytes met-aphases (pat. 4, 5) treated with MMC showed a mosaicism typical bimodal distribution. The only moderate increased chromosomal breakage rate in metaphases of patient 1 points out a strong pronounced reversion. For better estimation of the Mosaic state in patient blood we performed cell cycle analysis with mixtures of FA- and non FA-blood. Thereby we observed the border for mosaic detection at a degree of 30 % cells with spontaneous /MMC induced G2-phase arrest. Compared to the mixing study reversion degrees of 0 % (pat. 4) up to 90-95 % (pat. 2) were assumed for four of the patients. At molecular base gDNA analyses of MACS sorted T-/ B- lympho, mono and granulocytes as well as from fibroblasts and lymphoblastoide cell lines allowed a more detailed insight in to the mosaic statuses. In all patients we observed different distinct of mosaic state in their blood cell lines. We observed a tendency of correlation between reversion degree and the longevity of blood cells – cells with short life spans (mono-, granulo-, B-lymphoytes) showed higher reversion degrees than log living T-lymphocytes. The fact that we detected the same rever-sion in the different cell lines of a patient suggests a reversion within a common precursor cell. Further we observed, as we know for the first time, a reversion within a bone marrow fibroblast line (pat. 1). Four of our patients showed commonly observed reversions in cultured lymphoblastoide cell lines. With each of the tested methods we could show mosaic development in blood of our patients. Every of them showed pros and cons. For this reason a combination of the different methods would be recommendable for cal-culation of the mosaic state in patient blood. The second project investigated the interactions of FANCO (RAD51C) within the group of the RAD51 paralogs (RAD51B, -C, -D, XRCC2, XRCC3) and with RAD51. Interactions were tested by Mammalian Two- and Three-Hybrid (M2H/M3H) System. Our investigations confirm most of the up to now detected interactions leading to RAD51C-XRCC3-complex (CX3) and RAD51B-RAD51C-RAD51D-XRCC2 com-plex (BCDX2) formation – latter consisting of the subcomplexes RAD51B-RAD51C (BC) and RAD51D-XRCC2 (DX2). M3H analyses give a hint for the importance of the RAD51B protein for the BCDX2 complex formation. The protein seems to be necessary for RAD51C-RAD51D interaction and also to interact, other than intended before, with XRCC2. In turn this interaction seems to be strongly promoted by RAD51D. In M2H and M3H analyses we found evidence of the importance of subcomplex formation for the formation of the whole BCDX2 complex and that the complex may be a circular structure. Addi-tionaly we observed evidence for interdependency between the BCDX2- and the XRCC3- complex pro-teins. Because of the proteins involvement into the double strand lesion repair the effect of MMC induced DNA lesions were tested. MMC treatment leads to different changes of interaction within the subcom-plexes. We observed a decrease of interaction strength between RAD51D and XRCC2 and an increased interaction within the BC-complex. The interaction between RAD51C and FANCN was not detectable in our M2H assay but may be promoted by another protein in M3H analysis. Additionally we tested a RAD51C protein inherited the patient mutation R258H. Only in M3H analysis with pMRAD51D and native RAD51B and with additional MMC treatment reduced interaction strength was detectable compared to the wildtype RAD51C. This underlines the hypomorphic nature of the mutation described before. The third project – the elucidation of the RAD51C protein structure proved to be difficult. We could not isolate and purify enough protein for crystallization, neither by expression within a E.coli or an insect cell system not even by co-expression of the complex partner XRCC3. Electrophoretic mobility shift assays of the CX3 complex with different DNA-structures (ssDNA, open fork, 3’- and 5’- overhang structures) showed preference for the 3’-overhang DNA substrate. This method may be used for further investiga-tions of mutations in patient DNA in future. KW - Fanconi Anämie KW - Hämatopoese KW - Mosaik KW - Remission KW - Molekulargenetik KW - Fanconi Anämie KW - hämatopoetisches Mosaik KW - Reversion KW - RAD51C KW - FANCO Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127836 ER - TY - THES A1 - Bertho, Sylvain T1 - Biochemical and molecular characterization of an original master sex determining gene in Salmonids T1 - Biochemische und molekulare Charakterisierung des Mastergens bei der Sex-bestimmung in Salmoniden N2 - Sexual development is a fundamental and versatile process that shapes animal morphology, physiology and behavior. The underlying developmental process is composed of the sex determination and the sex differentiation. Sex determination mechanisms are extremely labile among taxa. The initial triggers of the sex determination process are often genetics called sex determining genes. These genes are expressed in the bipotential gonad and tilt the balance to a developmental program allowing the differentiation of either a testis or an ovary. Fish represent a large and fascinating vertebrate group to study both sex determination and sex differentiation mechanisms. To date, among the known sex determining genes, three gene families namely sox, dmrt and TGF-β factors govern this developmental program. As exception to this rule, sdY “sexually dimorphic on the Y” does not belong to one of these families as it comes from the duplication / evolution of an ancestor gene related to immunity, i.e., the interferon related factor 9, irf9. sdY is the master sex determining gene in salmonids, a group of fishes that include species such as rainbow trout and Atlantic salmon. The present study was aimed to firstly characterize the features of SdY protein. Results indicate that SdY is predominantly localized in the cytoplasm tested in various fish and mammalian cell lines and confirmed by different methods. Predictive in silico analysis revealed that SdY is composed of a β-sandwich core surrounded by three α-helices as well specific characteristics conferring a putative protein-protein interaction site. Secondly, the study was aimed to understand how SdY could trigger testicular differentiation. SdY is a truncated divergent version of Irf9 that has a conserved protein-protein domain but lost the DNA interaction domain of its ancestor gene. It was then hypothesized that SdY could initiate testicular differentiation by protein-protein interactions. To evaluate this we first conducted a yeast-two-hybrid screen that revealed a high proportion of transcription factors including fox proteins. Using various biochemical and cellular methods we confirm an interaction between SdY and Foxl2, a major transcription factor involved in ovarian differentiation and identity maintenance. Interestingly, the interaction of SdY with Foxl2 leads to nuclear translocation of SdY from the cytoplasm. Furthermore, this SdY translocation mechanism was found to be specific to fish Foxl2 and to a lesser extend Foxl3 and not other Fox proteins or mammalian FoxL2. In addition, we found that this interaction allows the stabilization of SdY and prevents its degradation. Finally, to better decipher SdY action we used as a model a mutated version of SdY that was identified in XY females of Chinook salmon natural population. Results show that this mutation induces a local conformation defect obviously leading to a misfolded protein and a quick degradation. Moreover, the mutated version compromised the interaction with Foxl2 defining a minimal threshold to induce testicular differentiation. Altogether results from my thesis propose that SdY would trigger testicular differentiation in salmonids by preventing Foxl2 to promote ovarian differentiation. Further research should be now carried out on how this interaction of SdY and Foxl2 acts in-vivo. N2 - Le développement du sexe est un processus fondamental et versatile qui forme la morphologie, la physiologie et le comportement des animaux. Le processus de développement sous-jacent est composé de la détermination et de la différentiation du sexe. Les mécanismes de détermination du sexe sont extrêment labile parmi les taxons. Les signaux initiaux du processus de détermination du sexe sont souvent génétiques et nommés gènes de détermination du sexe. Ces gènes sont exprimés dans la gonade bipotente et font pencher l’équilibre vers un programme de développement permettant la formation soit d’un testicule soit d’un ovaire. Les poissons représentent un large et fascinant groupe de vertébrés pour étudier les processus de détermination et de différentiation du sexe. A l’heure actuelle, parmi les gènes de détermination connus, trois familles de gènes nommément sox, dmrt and les facteurs TGF-β gouvernent ce processus de développement. Comme exception à cette règle, sdY « sexually dimorphic on the Y » n’appartient à aucune de ces familles puisqu’il provient d’une duplication/évolution d’un gène ancestral de l’immunité, c’est-à-dire d’un facteur lié à l’interféron, irf9. sdY est le gène maître de la détermination du sexe chez les salmonidés, un groupe de poissons incluant des espèces tel que la truite arc-en-ciel et le saumon Altantique. L’étude présentée avait pour but de premièrement caractériser les propriétés de la protéine SdY. Les résultats indiquent que SdY est localisée de façon prédominante dans le cytoplasme testés dans diverses cellules de poissons et de mammifères et confirmé par des différentes méthodes. Une analyse in silico prédictive a révélé que SdY est composé d’un core β-sandwich entouré par trois hélices-α ainsi que des caractéristiques lui conférant un site d’interaction protéine-protéine. Deuxièment, l’étude avait pour but de comprendre comment SdY pouvait entraîner la différentiation testiculaire. SdY est une version tronquée divergente de Irf9 qui a conservé le domaine protéine-protéine mais a perdu le domaine d’interaction à l’ADN présent dans le gène ancestral. Il a été proposé que SdY entraîne la différentiation testiculaire par interaction(s) protéine-protéine. Afin d’évaluer cette hypothèse, un crible double-hybride en système levure a révélé une forte proportion de facteurs de transcription incluant les protéines fox. En utilisant de nombreuses méthodes au niveau cellulaire et biochimique, nous avons confirmé une interaction entre SdY et Foxl2, un facteur majeur impliqué dans la différentiation ovarienne et gardien de son identité. De façon intéressante, l’interaction de SdY avec Foxl2 conduit à une translocation nucléaire de SdY à partir du cytoplasme. De plus, le mécanisme de translocation de SdY est spécifique à la protéine Foxl2 et dans une moindre mesure à Foxl3 parmi les protéines Fox de poissons ou bien des protéines FoxL2 de mammifères. Puis, nous avons montré que cette interaction permet la stabilisation de SdY et empêche sa dégradation. Enfin, pour mieux décrypter l’action de SdY, nous avons utilisé comme modèle une version mutée qui a été identifiée dans une population naturelle de saumon Chinook avec des individus XY femelles. Les résultats montrent que la mutation induit un défaut de conformation local menant à une protéine mal-repliée et à sa dégradation. De plus, la version mutée compromet l’interaction avec Foxl2 définissant un seuil minimal d’induction de la différentiation testiculaire. Les résultats de ma thèse pris dans leur ensemble proposent que SdY pourrait entraîner la différentiation testiculaire chez les salmonidés en empêchant Foxl2 d’induire la différentiation ovarienne. Les recherches doivent se poursuivre dans le but de comprendre comment l’interaction SdY avec Foxl2 fonctionne in vivo. N2 - Sexuelle Entwicklung ist ein grundlegender und vielfältiger Prozess, der die Morphologie, Physiologie und das Verhalten von Tieren gestaltet. Der zugrundeliegende Entwicklungsprozess besteht aus der Geschlechtsbestimmung und der Geschlechtsdifferenzierung. Die Mechanismen der Geschlechtsbestimmung sind sehr instabil zwischen verschiedenen Arten. Die Auslöser des Prozesses der Geschlechtsbestimmung sind oft genetischen Ursprungs wie geschlechtsbestimmende Gene. Diese Gene werden in den bipotentialen Gonaden exprimiert und steuern die Balance eines entwicklungsgemäßen Programms, das die Differenzierung zum Testis oder Ovar erlaubt. Fische repräsentieren eine umfangreiche und faszinierende Gruppe von Vertebraten, um die Mechanismen der Geschlechtsbestimmung und –differenzierung zu untersuchen. Bislang ist bekannt, dass –unter den bekannten geschlechtsbestimmenden Genen- die drei Gen-Familien sox, dmrt und die TGFß-Faktoren dieses Entwicklungsprogramm steuern. Als Ausnahme von dieser Regel ist sdY „sexually dimorphic on the Y“ keiner dieser Familien zugehörig da es von der Duplikation / Evolution eines Vorgänger-Gens, das mit Immunität wie z.B. interferon related factor9, irf9, in Verbindung steht, herrührt. sdY ist das Mastergen der Geschlechtsbestimmung in Salmoniden, die als Gruppe von Fischen Arten wie die Regenbogenforelle und den Atlantischen Lachs umfassen. Das Ziel der vorliegenden Arbeit war es zunächst die Eigenschaften des SdY Proteins zu charakterisieren. Die Ergebnisse zeigen, dass SdY vor allem im Zytoplasma lokalisiert ist. Dies wurde in verschiedenen Fischen und Säugetier Zelllinien untersucht und mit Hilfe verschiedener Methoden bestätigt. Prädiktive in silico Analysen zeigten, dass SdY aus einem ß-sandwich Kern besteht, der von drei α-Helices umgeben ist sowie spezifischen Eigenschaften für eine putative Protein-Protein Interaktion Stelle. Das zweite Ziel der vorliegenden Arbeit war es, zu verstehen, wie SdY die testikuläre Differenzierung auslösen könnte. SdY ist eine verkürzte, divergente Version von Irf9, das eine konservierte Protein-Protein Domäne aufweist, jedoch seine DNA Interaktion Domäne a seines Vorläufer Gens verloren hat. Daher wurde angenommen, dass SdY die testikuläre Differenzierung durch Protein-Protein Interaktion initiieren könnte. Um diese Hypothese zu bestätigen führten wir zuerst einen Yeast Two-Hybrid Screen durch, der einen hohen Anteil an Transkriptionsfaktoren darunter fox Proteine zeigte. Unter Einsatz verschiedener biochemischer und zellulärer Methoden bestätigten wir eine Interaktion zwischen SdY und Foxl2, einem wesentlichen Transkriptionsfaktor, der in die Differenzierung und die Erhaltung der Identität der Ovarien involviert ist. Interessanterweise führt die Interaktion von SdY mit Foxl2 zu einer nukleären Translokation von SdY aus dem Zytoplasma. Außerdem wurde festgestellt, dass dieser SdY Translokations-Mechanismus für das Fisch Foxl2 und in einem geringerem Maße für Foxl3 spezifisch ist aber nicht für andere Fox Proteine oder Säuger FoxL2. Des Weiteren haben wir herausgefunden, dass diese Interaktion die Stabilisierung von SdY ermöglicht und sein Abbau verhindert. Zuletzt haben wir ein Modell einer mutierten Version von SdY benutzt, die in XY Weibchen der natürlichen Population der Königslachse identifiziert wurde, um die Wirkung von SdY besser zu entschlüsseln. Die Ergebnisse zeigen, dass diese Mutation einen lokalen Konformationsdefekt verursacht, der zu fehlgefalteten Proteinen und einem raschen Abbau führt. Darüber hinaus beeinträchtigt die mutierte Version die Interaktion mit FoxL2 und definiert einen minimalen Grenzwert, um die testikuläre Differenzierung zu induzieren. Insgesamt deuten die Ergebnisse meiner Dissertation darauf hin, dass SdY die testikuläre Differenzierung in Salmoniden auslöst, indem es verhindert, dass Foxl2 die Differenzierung der Ovarien fördert. In Zukunft soll erforscht werden, wie sich die Interaktion von SdY und Foxl2 in-vivo auswirkt. KW - Fish Sex determination KW - gonad development KW - SdY KW - salmonids KW - Lachsartige KW - Geschlechtsdifferenzierung KW - Molekulargenetik Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-139130 ER -