TY - JOUR A1 - Trinks, Nora A1 - Reinhard, Sebastian A1 - Drobny, Matthias A1 - Heilig, Linda A1 - Löffler, Jürgen A1 - Sauer, Markus A1 - Terpitz, Ulrich T1 - Subdiffraction-resolution fluorescence imaging of immunological synapse formation between NK cells and A. fumigatus by expansion microscopy JF - Communications Biology N2 - Expansion microscopy (ExM) enables super-resolution fluorescence imaging on standard microscopes by physical expansion of the sample. However, the investigation of interactions between different organisms such as mammalian and fungal cells by ExM remains challenging because different cell types require different expansion protocols to ensure identical, ideally isotropic expansion of both partners. Here, we introduce an ExM method that enables super-resolved visualization of the interaction between NK cells and Aspergillus fumigatus hyphae. 4-fold expansion in combination with confocal fluorescence imaging allows us to resolve details of cytoskeleton rearrangement as well as NK cells' lytic granules triggered by contact with an RFP-expressing A. fumigatus strain. In particular, subdiffraction-resolution images show polarized degranulation upon contact formation and the presence of LAMP1 surrounding perforin at the NK cell-surface post degranulation. Our data demonstrate that optimized ExM protocols enable the investigation of immunological synapse formation between two different species with so far unmatched spatial resolution. KW - biological fluorescence KW - fluorescence imaging KW - imaging the immune system KW - infectious diseases KW - super-resolution microscopy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-264996 VL - 4 IS - 1 ER - TY - JOUR A1 - Grob, Robin A1 - Tritscher, Clara A1 - Grübel, Kornelia A1 - Stigloher, Christian A1 - Groh, Claudia A1 - Fleischmann, Pauline N. A1 - Rössler, Wolfgang T1 - Johnston's organ and its central projections in Cataglyphis desert ants JF - Journal of Comparative Neurology N2 - The Johnston's organ (JO) in the insect antenna is a multisensory organ involved in several navigational tasks including wind‐compass orientation, flight control, graviception, and, possibly, magnetoreception. Here we investigate the three dimensional anatomy of the JO and its neuronal projections into the brain of the desert ant Cataglyphis, a marvelous long‐distance navigator. The JO of C. nodus workers consists of 40 scolopidia comprising three sensory neurons each. The numbers of scolopidia slightly vary between different sexes (female/male) and castes (worker/queen). Individual scolopidia attach to the intersegmental membrane between pedicel and flagellum of the antenna and line up in a ring‐like organization. Three JO nerves project along the two antennal nerve branches into the brain. Anterograde double staining of the antennal afferents revealed that JO receptor neurons project to several distinct neuropils in the central brain. The T5 tract projects into the antennal mechanosensory and motor center (AMMC), while the T6 tract bypasses the AMMC via the saddle and forms collaterals terminating in the posterior slope (PS) (T6I), the ventral complex (T6II), and the ventrolateral protocerebrum (T6III). Double labeling of JO and ocellar afferents revealed that input from the JO and visual information from the ocelli converge in tight apposition in the PS. The general JO anatomy and its central projection patterns resemble situations in honeybees and Drosophila. The multisensory nature of the JO together with its projections to multisensory neuropils in the ant brain likely serves synchronization and calibration of different sensory modalities during the ontogeny of navigation in Cataglyphis. KW - ant brain KW - chordotonal organ KW - graviception KW - magnetic compass KW - multisensory integration KW - navigation KW - wind compass Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225679 VL - 529 IS - 8 SP - 2138 EP - 2155 ER - TY - JOUR A1 - Schmitz, Werner A1 - Ries, Elena A1 - Koderer, Corinna A1 - Völter, Maximilian Friedrich A1 - Wünsch, Anna Chiara A1 - El-Mesery, Mohamed A1 - Frackmann, Kyra A1 - Kübler, Alexander Christian A1 - Linz, Christian A1 - Seher, Axel T1 - Cysteine restriction in murine L929 fibroblasts as an alternative strategy to methionine restriction in cancer therapy JF - International Journal of Molecular Sciences N2 - Methionine restriction (MetR) is an efficient method of amino acid restriction (AR) in cells and organisms that induces low energy metabolism (LEM) similar to caloric restriction (CR). The implementation of MetR as a therapy for cancer or other diseases is not simple since the elimination of a single amino acid in the diet is difficult. However, the in vivo turnover rate of cysteine is usually higher than the rate of intake through food. For this reason, every cell can enzymatically synthesize cysteine from methionine, which enables the use of specific enzymatic inhibitors. In this work, we analysed the potential of cysteine restriction (CysR) in the murine cell line L929. This study determined metabolic fingerprints using mass spectrometry (LC/MS). The profiles were compared with profiles created in an earlier work under MetR. The study was supplemented by proliferation studies using D-amino acid analogues and inhibitors of intracellular cysteine synthesis. CysR showed a proliferation inhibition potential comparable to that of MetR. However, the metabolic footprints differed significantly and showed that CysR does not induce classic LEM at the metabolic level. Nevertheless, CysR offers great potential as an alternative for decisive interventions in general and tumour metabolism at the metabolic level. KW - methionine restriction KW - cysteine restriction KW - mass spectrometry KW - LC/MS KW - cancer therapy KW - caloric restriction KW - homocysteine KW - amino acid analogues KW - cysteine synthase inhibitor Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265486 SN - 1422-0067 VL - 22 IS - 21 ER - TY - JOUR A1 - Sprenger, Philipp P. A1 - Müsse, Christian A1 - Hartke, Juliane A1 - Feldmeyer, Barbara A1 - Schmitt, Thomas A1 - Gebauer, Gerhard A1 - Menzel, Florian T1 - Dinner with the roommates: trophic niche differentiation and competition in a mutualistic ant‐ant association JF - Ecological Entomology N2 - 1. The potential for competition is highest among species in close association. Despite net benefits for both parties, mutualisms can involve costs, including food competition. This might be true for the two neotropical ants Camponotus femoratus and Crematogaster levior, which share the same nest in a presumably mutualistic association (parabiosis). 2. While each nest involves one Crematogaster and one Camponotus partner, both taxa were recently found to comprise two cryptic species that show no partner preferences and seem ecologically similar. Since these cryptic species often occur in close sympatry, they might need to partition their niches to avoid competitive exclusion. 3. Here, we investigated first, is there interference competition between parabiotic Camponotus and Crematogaster, and do they prefer different food sources under competition? And second, is there trophic niche partitioning between the cryptic species of either genus? 4. Using cafeteria experiments, neutral lipid fatty acid and stable isotope analyses, we found evidence for interference competition, but also trophic niche partitioning between Camponotus and Crematogaster. Both preferred protein‐ and carbohydrate‐rich baits, but at protein‐rich baits Ca. femoratus displaced Cr. levior over time, suggesting a potential discovery‐dominance trade‐off between parabiotic partners. Only limited evidence was found for trophic differentiation between the cryptic species of each genus. 5. Although we cannot exclude differentiation in other niche dimensions, we argue that neutral dynamics might mediate the coexistence of cryptic species. This model system is highly suitable for further studies of the maintenance of species diversity and the role of mutualisms in promoting species coexistence. KW - Cryptic species KW - Formicidae KW - neutral theory KW - niche partitioning KW - nutrition KW - parabiosis KW - species coexistence mechanism KW - trade‐offs Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228215 VL - 46 IS - 3 SP - 562 EP - 572 ER - TY - JOUR A1 - Boff, Samuel A1 - Friedel, Anna T1 - Dynamics of nest occupation and homing of solitary bees in painted trap nests JF - Ecological Entomology N2 - 1. The oil‐collecting bee Centris analis (Fabricius, 1804) is an important pollinator for the Neotropical region. The species can be attracted to nest in human‐made cavities. Such trap nests or insect hotels offer the opportunity to study the behaviour of populations in semifield conditions. 2. We studied a newly established trap nest aggregation of C. analis in Mato Grosso do Sul, Brazil and tested the effect that differentially painted nesting options have on the rate of nest foundation, and on the ability of relocating the nest when returning from a foraging trip (homing behaviour). Moreover, we tested if the duration of foraging trips decreased with time. 3. We found that females preferred to nest in painted nests compared to unpainted nests, with blue nests being the most occupied ones, followed by purple, yellow, white, and green. Furthermore, bees improved their homing behaviour with time, however, nest colour did not seem to have an effect on this process. Moreover, we found that bees reduce the duration of their foraging trips with time. This could be an indicator of improved foraging efficiency through learning. 4. These findings could inform a new and fruitful line of research on the behaviour and ecology of trap nesting solitary bees. KW - foraging activities KW - nesting ecology KW - oil bees KW - painted nest preference Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224605 VL - 46 IS - 2 SP - 496 EP - 499 ER - TY - JOUR A1 - Sivarajan, Rinu A1 - Kessie, David Komla A1 - Oberwinkler, Heike A1 - Pallmann, Niklas A1 - Walles, Thorsten A1 - Scherzad, Agmal A1 - Hackenberg, Stephan A1 - Steinke, Maria T1 - Susceptibility of Human Airway Tissue Models Derived From Different Anatomical Sites to Bordetella pertussis and Its Virulence Factor Adenylate Cyclase Toxin JF - Frontiers in Cellular and Infection Microbiology N2 - To study the interaction of human pathogens with their host target structures, human tissue models based on primary cells are considered suitable. Complex tissue models of the human airways have been used as infection models for various viral and bacterial pathogens. The Gram-negative bacterium Bordetella pertussis is of relevant clinical interest since whooping cough has developed into a resurgent infectious disease. In the present study, we created three-dimensional tissue models of the human ciliated nasal and tracheo-bronchial mucosa. We compared the innate immune response of these models towards the B. pertussis virulence factor adenylate cyclase toxin (CyaA) and its enzymatically inactive but fully pore-forming toxoid CyaA-AC\(^-\). Applying molecular biological, histological, and microbiological assays, we found that 1 µg/ml CyaA elevated the intracellular cAMP level but did not disturb the epithelial barrier integrity of nasal and tracheo-bronchial airway mucosa tissue models. Interestingly, CyaA significantly increased interleukin 6, interleukin 8, and human beta defensin 2 secretion in nasal tissue models, whereas tracheo-bronchial tissue models were not significantly affected compared to the controls. Subsequently, we investigated the interaction of B. pertussis with both differentiated primary nasal and tracheo-bronchial tissue models and demonstrated bacterial adherence and invasion without observing host cell type-specific significant differences. Even though the nasal and the tracheo-bronchial mucosa appear similar from a histological perspective, they are differentially susceptible to B. pertussis CyaA in vitro. Our finding that nasal tissue models showed an increased innate immune response towards the B. pertussis virulence factor CyaA compared to tracheo-bronchial tissue models may reflect the key role of the nasal airway mucosa as the first line of defense against airborne pathogens. KW - human nasal epithelial cells KW - human tracheo-bronchial epithelial cells KW - human airway mucosa tissue models KW - adenylate cyclase toxin KW - Bordetella pertussis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-253302 SN - 2235-2988 VL - 11 ER - TY - JOUR A1 - Adolfi, Mateus C. A1 - Du, Kang A1 - Kneitz, Susanne A1 - Cabau, Cédric A1 - Zahm, Margot A1 - Klopp, Christophe A1 - Feron, Romain A1 - Paixão, Rômulo V. A1 - Varela, Eduardo S. A1 - de Almeida, Fernanda L. A1 - de Oliveira, Marcos A. A1 - Nóbrega, Rafael H. A1 - Lopez-Roques, Céline A1 - Iampietro, Carole A1 - Lluch, Jérôme A1 - Kloas, Werner A1 - Wuertz, Sven A1 - Schaefer, Fabian A1 - Stöck, Matthias A1 - Guiguen, Yann A1 - Schartl, Manfred T1 - A duplicated copy of id2b is an unusual sex-determining candidate gene on the Y chromosome of arapaima (Arapaima gigas) JF - Scientific Reports N2 - Arapaima gigas is one of the largest freshwater fish species of high ecological and economic importance. Overfishing and habitat destruction are severe threats to the remaining wild populations. By incorporating a chromosomal Hi-C contact map, we improved the arapaima genome assembly to chromosome-level, revealing an unexpected high degree of chromosome rearrangements during evolution of the bonytongues (Osteoglossiformes). Combining this new assembly with pool-sequencing of male and female genomes, we identified id2bbY, a duplicated copy of the inhibitor of DNA binding 2b (id2b) gene on the Y chromosome as candidate male sex-determining gene. A PCR-test for id2bbY was developed, demonstrating that this gene is a reliable male-specific marker for genotyping. Expression analyses showed that this gene is expressed in juvenile male gonads. Its paralog, id2ba, exhibits a male-biased expression in immature gonads. Transcriptome analyses and protein structure predictions confirm id2bbY as a prime candidate for the master sex-determiner. Acting through the TGF beta signaling pathway, id2bbY from arapaima would provide the first evidence for a link of this family of transcriptional regulators to sex determination. Our study broadens our current understanding about the evolution of sex determination genetic networks and provide a tool for improving arapaima aquaculture for commercial and conservation purposes. KW - evolutionary genetics KW - genetic markers KW - genome Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265672 VL - 11 IS - 1 ER - TY - JOUR A1 - Roth, Nicolas A1 - Hacker, Herrmann Heinrich A1 - Heidrich, Lea A1 - Friess, Nicolas A1 - García-Barroas, Enrique A1 - Habel, Jan Christian A1 - Thorn, Simon A1 - Müler, Jörg T1 - Host specificity and species colouration mediate the regional decline of nocturnal moths in central European forests JF - Ecography N2 - The high diversity of insects has limited the volume of long-term community data with a high taxonomic resolution and considerable geographic replications, especially in forests. Therefore, trends and causes of changes are poorly understood. Here we analyse trends in species richness, abundance and biomass of nocturnal macro moths in three quantitative data sets collected over four decades in forests in southern Germany. Two local data sets, one from coppiced oak forests and one from high oak forests included 125K and 48K specimens from 559 and 532 species, respectively. A third regional data set, representing all forest types in the temperate zone of central Europe comprised 735K specimens from 848 species. Generalized additive mixed models revealed temporal declines in species richness (−38%), abundance (−53%) and biomass (−57%) at the regional scale. These were more pronounced in plant host specialists and in dark coloured species. In contrast, the local coppiced oak forests showed an increase, in species richness (+62%), while the high oak forests showed no clear trends. Left and right censoring as well as cross validation confirmed the robustness of the analyses, which led to four conclusions. First, the decline in insects appears in hyper diverse insect groups in forests and affects species richness, abundance and biomass. Second, the pronounced decline in host specialists suggests habitat loss as an important driver of the observed decline. Third, the more severe decline in dark species might be an indication of global warming as a potential driver. Fourth, the trends in coppiced oak forests indicate that maintaining complex and diverse forest ecosystems through active management may be a promising conservation strategy in order to counteract negative trends in biodiversity, alongside rewilding approaches. KW - climate change KW - colour patterns KW - global change KW - Lepidoptera KW - macro moths KW - specialists KW - time series Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258731 VL - 44 IS - 6 ER - TY - JOUR A1 - Hepbasli, Denis A1 - Gredy, Sina A1 - Ullrich, Melanie A1 - Reigl, Amelie A1 - Abeßer, Marco A1 - Raabe, Thomas A1 - Schuh, Kai T1 - Genotype- and Age-Dependent Differences in Ultrasound Vocalizations of SPRED2 Mutant Mice Revealed by Machine Deep Learning JF - Brain Sciences N2 - Vocalization is an important part of social communication, not only for humans but also for mice. Here, we show in a mouse model that functional deficiency of Sprouty-related EVH1 domain-containing 2 (SPRED2), a protein ubiquitously expressed in the brain, causes differences in social ultrasound vocalizations (USVs), using an uncomplicated and reliable experimental setting of a short meeting of two individuals. SPRED2 mutant mice show an OCD-like behaviour, accompanied by an increased release of stress hormones from the hypothalamic–pituitary–adrenal axis, both factors probably influencing USV usage. To determine genotype-related differences in USV usage, we analyzed call rate, subtype profile, and acoustic parameters (i.e., duration, bandwidth, and mean peak frequency) in young and old SPRED2-KO mice. We recorded USVs of interacting male and female mice, and analyzed the calls with the deep-learning DeepSqueak software, which was trained to recognize and categorize the emitted USVs. Our findings provide the first classification of SPRED2-KO vs. wild-type mouse USVs using neural networks and reveal significant differences in their development and use of calls. Our results show, first, that simple experimental settings in combination with deep learning are successful at identifying genotype-dependent USV usage and, second, that SPRED2 deficiency negatively affects the vocalization usage and social communication of mice. KW - SPRED KW - SPRED2 KW - mice KW - neural networks KW - ultrasound vocalizations KW - DeepSqueak Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-248525 SN - 2076-3425 VL - 11 IS - 10 ER - TY - JOUR A1 - Habenstein, Jens A1 - Schmitt, Franziska A1 - Liessem, Sander A1 - Ly, Alice A1 - Trede, Dennis A1 - Wegener, Christian A1 - Predel, Reinhard A1 - Rössler, Wolfgang A1 - Neupert, Susanne T1 - Transcriptomic, peptidomic, and mass spectrometry imaging analysis of the brain in the ant Cataglyphis nodus JF - Journal of Neurochemistry N2 - Behavioral flexibility is an important cornerstone for the ecological success of animals. Social Cataglyphis nodus ants with their age‐related polyethism characterized by age‐related behavioral phenotypes represent a prime example for behavioral flexibility. We propose neuropeptides as powerful candidates for the flexible modulation of age‐related behavioral transitions in individual ants. As the neuropeptidome of C. nodus was unknown, we collected a comprehensive peptidomic data set obtained by transcriptome analysis of the ants’ central nervous system combined with brain extract analysis by Q‐Exactive Orbitrap mass spectrometry (MS) and direct tissue profiling of different regions of the brain by matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) MS. In total, we identified 71 peptides with likely bioactive function, encoded on 49 neuropeptide‐, neuropeptide‐like, and protein hormone prepropeptide genes, including a novel neuropeptide‐like gene (fliktin). We next characterized the spatial distribution of a subset of peptides encoded on 16 precursor proteins with high resolution by MALDI MS imaging (MALDI MSI) on 14 µm brain sections. The accuracy of our MSI data were confirmed by matching the immunostaining patterns for tachykinins with MSI ion images from consecutive brain sections. Our data provide a solid framework for future research into spatially resolved qualitative and quantitative peptidomic changes associated with stage‐specific behavioral transitions and the functional role of neuropeptides in Cataglyphis ants. KW - brain KW - MALDI imaging KW - neuropeptides KW - neuropeptidomics KW - social insect KW - transcriptomics Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239917 VL - 158 IS - 2 SP - 391 EP - 412 ER - TY - JOUR A1 - Müller, Sophie A1 - Köhler, Franziska A1 - Hendricks, Anne A1 - Kastner, Carolin A1 - Börner, Kevin A1 - Diers, Johannes A1 - Lock, Johan F. A1 - Petritsch, Bernhard A1 - Germer, Christoph-Thomas A1 - Wiegering, Armin T1 - Brain metastases from colorectal cancer: a systematic review of the literature and meta-analysis to establish a guideline for daily treatment JF - Cancers N2 - Colorectal cancer (CRC) is the third most common malignancy worldwide. Most patients with metastatic CRC develop liver or lung metastases, while a minority suffer from brain metastases. There is little information available regarding the presentation, treatment, and overall survival of brain metastases (BM) from CRC. This systematic review and meta-analysis includes data collected from three major databases (PubMed, Cochrane, and Embase) based on the key words “brain”, “metastas*”, “tumor”, “colorectal”, “cancer”, and “malignancy”. In total, 1318 articles were identified in the search and 86 studies matched the inclusion criteria. The incidence of BM varied between 0.1% and 11.5%. Most patients developed metastases at other sites prior to developing BM. Lung metastases and KRAS mutations were described as risk factors for additional BM. Patients with BM suffered from various symptoms, but up to 96.8% of BM patients were asymptomatic at the time of BM diagnosis. Median survival time ranged from 2 to 9.6 months, and overall survival (OS) increased up to 41.1 months in patients on a multimodal therapy regimen. Several factors including age, blood levels of carcinoembryonic antigen (CEA), multiple metastases sites, number of brain lesions, and presence of the KRAS mutation were predictors of OS. For BM diagnosis, MRI was considered to be state of the art. Treatment consisted of a combination of surgery, radiation, or systemic treatment. KW - brain metastases KW - cerebral metastases KW - BM KW - colorectal cancer KW - CRC KW - systematic review KW - meta-analysis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228883 SN - 2072-6694 VL - 13 IS - 4 ER - TY - JOUR A1 - Djuzenova, Cholpon S. A1 - Fischer, Thomas A1 - Katzer, Astrid A1 - Sisario, Dmitri A1 - Korsa, Tessa A1 - Streussloff, Gudrun A1 - Sukhorukov, Vladimir L. A1 - Flentje, Michael T1 - Opposite effects of the triple target (DNA-PK/PI3K/mTOR) inhibitor PI-103 on the radiation sensitivity of glioblastoma cell lines proficient and deficient in DNA-PKcs JF - BMC Cancer N2 - Background: Radiotherapy is routinely used to combat glioblastoma (GBM). However, the treatment efficacy is often limited by the radioresistance of GBM cells. Methods: Two GBM lines MO59K and MO59J, differing in intrinsic radiosensitivity and mutational status of DNA-PK and ATM, were analyzed regarding their response to DNA-PK/PI3K/mTOR inhibition by PI-103 in combination with radiation. To this end we assessed colony-forming ability, induction and repair of DNA damage by gamma H2AX and 53BP1, expression of marker proteins, including those belonging to NHEJ and HR repair pathways, degree of apoptosis, autophagy, and cell cycle alterations. Results: We found that PI-103 radiosensitized MO59K cells but, surprisingly, it induced radiation resistance in MO59J cells. Treatment of MO59K cells with PI-103 lead to protraction of the DNA damage repair as compared to drug-free irradiated cells. In PI-103-treated and irradiated MO59J cells the foci numbers of both proteins was higher than in the drug-free samples, but a large portion of DNA damage was quickly repaired. Another cell line-specific difference includes diminished expression of p53 in MO59J cells, which was further reduced by PI-103. Additionally, PI-103-treated MO59K cells exhibited an increased expression of the apoptosis marker cleaved PARP and increased subG1 fraction. Moreover, irradiation induced a strong G2 arrest in MO59J cells (similar to 80% vs. similar to 50% in MO59K), which was, however, partially reduced in the presence of PI-103. In contrast, treatment with PI-103 increased the G2 fraction in irradiated MO59K cells. Conclusions: The triple-target inhibitor PI-103 exerted radiosensitization on MO59K cells, but, unexpectedly, caused radioresistance in the MO59J line, lacking DNA-PK. The difference is most likely due to low expression of the DNA-PK substrate p53 in MO59J cells, which was further reduced by PI-103. This led to less apoptosis as compared to drug-free MO59J cells and enhanced survival via partially abolished cell-cycle arrest. The findings suggest that the lack of DNA-PK-dependent NHEJ in MO59J line might be compensated by DNA-PK independent DSB repair via a yet unknown mechanism. KW - DNA damage KW - DNA-PK KW - Histone gamma H2AX KW - p53 KW - Radiation sensitivity Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265826 VL - 21 ER - TY - JOUR A1 - Köhler, Franziska A1 - Hendricks, Anne A1 - Kastner, Carolin A1 - Müller, Sophie A1 - Boerner, Kevin A1 - Wagner, Johanna C. A1 - Lock, Johan F. A1 - Wiegering, Armin T1 - Laparoscopic appendectomy versus antibiotic treatment for acute appendicitis-a systematic review JF - International Journal of Colorectal Disease N2 - Background Over the last years, laparoscopic appendectomy has progressively replaced open appendectomy and become the current gold standard treatment for suspected, uncomplicated appendicitis. At the same time, though, it is an ongoing discussion that antibiotic therapy can be an equivalent treatment for patients with uncomplicated appendicitis. The aim of this systematic review was to determine the safety and efficacy of antibiotic therapy and compare it to the laparoscopic appendectomy for acute, uncomplicated appendicitis. Methods The PubMed database, Embase database, and Cochrane library were scanned for studies comparing laparoscopic appendectomy with antibiotic treatment. Two independent reviewers performed the study selection and data extraction. The primary endpoint was defined as successful treatment of appendicitis. Secondary endpoints were pain intensity, duration of hospitalization, absence from work, and incidence of complications. Results No studies were found that exclusively compared laparoscopic appendectomy with antibiotic treatment for acute, uncomplicated appendicitis. Conclusions To date, there are no studies comparing antibiotic treatment to laparoscopic appendectomy for patients with acute uncomplicated appendicitis, thus emphasizing the lack of evidence and need for further investigation. KW - acute appendicitis KW - open appendectomy KW - laparoscopic appendectomy KW - antibiotics Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-266616 SN - 1432-1262 VL - 36 IS - 10 ER - TY - JOUR A1 - Othman, Eman M. A1 - Bekhit, Amany A. A1 - Anany, Mohamed A. A1 - Dandekar, Thomas A1 - Ragab, Hanan M. A1 - Wahid, Ahmed T1 - Design, Synthesis, and Anticancer Screening for Repurposed Pyrazolo[3,4-d]pyrimidine Derivatives on Four Mammalian Cancer Cell Lines JF - Molecules N2 - The present study reports the synthesis of new purine bioisosteres comprising a pyrazolo[3,4-d]pyrimidine scaffold linked to mono-, di-, and trimethoxy benzylidene moieties through hydrazine linkages. First, in silico docking experiments of the synthesized compounds against Bax, Bcl-2, Caspase-3, Ki67, p21, and p53 were performed in a trial to rationalize the observed cytotoxic activity for the tested compounds. The anticancer activity of these compounds was evaluated in vitro against Caco-2, A549, HT1080, and Hela cell lines. Results revealed that two (5 and 7) of the three synthesized compounds (5, 6, and 7) showed high cytotoxic activity against all tested cell lines with IC50 values in the micro molar concentration. Our in vitro results show that there is no significant apoptotic effect for the treatment with the experimental compounds on the viability of cells against A549 cells. Ki67 expression was found to decrease significantly following the treatment of cells with the most promising candidate: drug 7. The overall results indicate that these pyrazolopyrimidine derivatives possess anticancer activity at varying doses. The suggested mechanism of action involves the inhibition of the proliferation of cancer cells. KW - pyrazolo[3,4-d]pyrimidine KW - anticancer activity KW - apoptosis KW - Ki67 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239734 SN - 1420-3049 VL - 26 IS - 10 ER - TY - JOUR A1 - Bohnert, Simone A1 - Reinert, Christoph A1 - Trella, Stefanie A1 - Schmitz, Werner A1 - Ondruschka, Benjamin A1 - Bohnert, Michael T1 - Metabolomics in postmortem cerebrospinal fluid diagnostics: a state-of-the-art method to interpret central nervous system–related pathological processes JF - International Journal of Legal Medicine N2 - In the last few years, quantitative analysis of metabolites in body fluids using LC/MS has become an established method in laboratory medicine and toxicology. By preparing metabolite profiles in biological specimens, we are able to understand pathophysiological mechanisms at the biochemical and thus the functional level. An innovative investigative method, which has not yet been used widely in the forensic context, is to use the clinical application of metabolomics. In a metabolomic analysis of 41 samples of postmortem cerebrospinal fluid (CSF) samples divided into cohorts of four different causes of death, namely, cardiovascular fatalities, isoIated torso trauma, traumatic brain injury, and multi-organ failure, we were able to identify relevant differences in the metabolite profile between these individual groups. According to this preliminary assessment, we assume that information on biochemical processes is not gained by differences in the concentration of individual metabolites in CSF, but by a combination of differently distributed metabolites forming the perspective of a new generation of biomarkers for diagnosing (fatal) TBI and associated neuropathological changes in the CNS using CSF samples. KW - CSF KW - cerebrospinal fluid KW - forensic neuropathology KW - forensic neurotraumatology KW - biomarker KW - metabolomics Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-235724 SN - 0937-9827 VL - 135 ER - TY - JOUR A1 - Kessie, David K. A1 - Lodes, Nina A1 - Oberwinkler, Heike A1 - Goldman, William E. A1 - Walles, Thorsten A1 - Steinke, Maria A1 - Gross, Roy T1 - Activity of Tracheal Cytotoxin of Bordetella pertussis in a Human Tracheobronchial 3D Tissue Model JF - Frontiers in Cellular and Infection Microbiology N2 - Bordetella pertussis is a highly contagious pathogen which causes whooping cough in humans. A major pathophysiology of infection is the extrusion of ciliated cells and subsequent disruption of the respiratory mucosa. Tracheal cytotoxin (TCT) is the only virulence factor produced by B. pertussis that has been able to recapitulate this pathology in animal models. This pathophysiology is well characterized in a hamster tracheal model, but human data are lacking due to scarcity of donor material. We assessed the impact of TCT and lipopolysaccharide (LPS) on the functional integrity of the human airway mucosa by using in vitro airway mucosa models developed by co-culturing human tracheobronchial epithelial cells and human tracheobronchial fibroblasts on porcine small intestinal submucosa scaffold under airlift conditions. TCT and LPS either alone and in combination induced blebbing and necrosis of the ciliated epithelia. TCT and LPS induced loss of ciliated epithelial cells and hyper-mucus production which interfered with mucociliary clearance. In addition, the toxins had a disruptive effect on the tight junction organization, significantly reduced transepithelial electrical resistance and increased FITC-Dextran permeability after toxin incubation. In summary, the results indicate that TCT collaborates with LPS to induce the disruption of the human airway mucosa as reported for the hamster tracheal model. KW - tracheal cytotoxin KW - airway epithelia KW - tissue model KW - ciliostasis KW - tight junction KW - Bordetella pertussis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-222736 SN - 2235-2988 VL - 10 ER - TY - JOUR A1 - Li, Kunkun A1 - Prada, Juan A1 - Damineli, Daniel S. C. A1 - Liese, Anja A1 - Romeis, Tina A1 - Dandekar, Thomas A1 - Feijó, José A. A1 - Hedrich, Rainer A1 - Konrad, Kai Robert T1 - An optimized genetically encoded dual reporter for simultaneous ratio imaging of Ca\(^{2+}\) and H\(^{+}\) reveals new insights into ion signaling in plants JF - New Phytologist N2 - Whereas the role of calcium ions (Ca\(^{2+}\)) in plant signaling is well studied, the physiological significance of pH‐changes remains largely undefined. Here we developed CapHensor, an optimized dual‐reporter for simultaneous Ca\(^{2+}\) and pH ratio‐imaging and studied signaling events in pollen tubes (PTs), guard cells (GCs), and mesophyll cells (MCs). Monitoring spatio‐temporal relationships between membrane voltage, Ca\(^{2+}\)‐ and pH‐dynamics revealed interconnections previously not described. In tobacco PTs, we demonstrated Ca\(^{2+}\)‐dynamics lag behind pH‐dynamics during oscillatory growth, and pH correlates more with growth than Ca\(^{2+}\). In GCs, we demonstrated abscisic acid (ABA) to initiate stomatal closure via rapid cytosolic alkalization followed by Ca2+ elevation. Preventing the alkalization blocked GC ABA‐responses and even opened stomata in the presence of ABA, disclosing an important pH‐dependent GC signaling node. In MCs, a flg22‐induced membrane depolarization preceded Ca2+‐increases and cytosolic acidification by c. 2 min, suggesting a Ca\(^{2+}\)/pH‐independent early pathogen signaling step. Imaging Ca2+ and pH resolved similar cytosol and nuclear signals and demonstrated flg22, but not ABA and hydrogen peroxide to initiate rapid membrane voltage‐, Ca\(^{2+}\)‐ and pH‐responses. We propose close interrelation in Ca\(^{2+}\)‐ and pH‐signaling that is cell type‐ and stimulus‐specific and the pH having crucial roles in regulating PT growth and stomata movement. KW - abscisic acid (ABA) KW - calcium KW - flg22 KW - guard cells KW - imaging KW - ion signaling KW - pH KW - pollen tube Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239847 VL - 230 IS - 6 SP - 2292 EP - 2310 ER - TY - JOUR A1 - Dapergola, Eleni A1 - Menegazzi, Pamela A1 - Raabe, Thomas A1 - Hovhanyan, Anna T1 - Light Stimuli and Circadian Clock Affect Neural Development in Drosophila melanogaster JF - Frontiers in Cell and Developmental Biology N2 - Endogenous clocks enable organisms to adapt cellular processes, physiology, and behavior to daily variation in environmental conditions. Metabolic processes in cyanobacteria to humans are under the influence of the circadian clock, and dysregulation of the circadian clock causes metabolic disorders. In mouse and Drosophila, the circadian clock influences translation of factors involved in ribosome biogenesis and synchronizes protein synthesis. Notably, nutrition signals are mediated by the insulin receptor/target of rapamycin (InR/TOR) pathways to regulate cellular metabolism and growth. However, the role of the circadian clock in Drosophila brain development and the potential impact of clock impairment on neural circuit formation and function is less understood. Here we demonstrate that changes in light stimuli or disruption of the molecular circadian clock cause a defect in neural stem cell growth and proliferation. Moreover, we show that disturbed cell growth and proliferation are accompanied by reduced nucleolar size indicative of impaired ribosomal biogenesis. Further, we define that light and clock independently affect the InR/TOR growth regulatory pathway due to the effect on regulators of protein biosynthesis. Altogether, these data suggest that alterations in InR/TOR signaling induced by changes in light conditions or disruption of the molecular clock have an impact on growth and proliferation properties of neural stem cells in the developing Drosophila brain. KW - neuroblast growth KW - proliferation KW - circadian clock KW - light stimuli Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-231049 SN - 2296-634X VL - 9 ER - TY - JOUR A1 - Höhne, Christin A1 - Prokopov, Dmitry A1 - Kuhl, Heiner A1 - Du, Kang A1 - Klopp, Christophe A1 - Wuertz, Sven A1 - Trifonov, Vladimir A1 - Stöck, Matthias T1 - The immune system of sturgeons and paddlefish (Acipenseriformes): a review with new data from a chromosome‐scale sturgeon genome JF - Reviews in Aquaculture N2 - Sturgeon immunity is relevant for basic evolutionary and applied research, including caviar‐ and meat‐producing aquaculture, protection of wild sturgeons and their re‐introduction through conservation aquaculture. Starting from a comprehensive overview of immune organs, we discuss pathways of innate and adaptive immune systems in a vertebrate phylogenetic and genomic context. The thymus as a key organ of adaptive immunity in sturgeons requires future molecular studies. Likewise, data on immune functions of sturgeon‐specific pericardial and meningeal tissues are largely missing. Integrating immunological and endocrine functions, the sturgeon head kidney resembles that of teleosts. Recently identified pattern recognition receptors in sturgeon require research on downstream regulation. We review first acipenseriform data on Toll‐like receptors (TLRs), type I transmembrane glycoproteins expressed in membranes and endosomes, initiating inflammation and host defence by molecular pattern‐induced activation. Retinoic acid‐inducible gene‐I‐like (RIG‐like) receptors of sturgeons present RNA and key sensors of virus infections in most cell types. Sturgeons and teleosts share major components of the adaptive immune system, including B cells, immunoglobulins, major histocompatibility complex and the adaptive cellular response by T cells. The ontogeny of the sturgeon innate and onset of adaptive immune genes in different organs remain understudied. In a genomics perspective, our new data on 100 key immune genes exemplify a multitude of evolutionary trajectories after the sturgeon‐specific genome duplication, where some single‐copy genes contrast with many duplications, allowing tissue specialization, sub‐functionalization or both. Our preliminary conclusion should be tested by future evolutionary bioinformatics, involving all >1000 immunity genes. This knowledge update about the acipenseriform immune system identifies several important research gaps and presents a basis for future applications. KW - evolution KW - genomics KW - immune genes KW - immune organs KW - immune system KW - sturgeon Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239865 VL - 13 IS - 3 SP - 1709 EP - 1729 ER - TY - JOUR A1 - Schubert, Jonathan A1 - Schulze, Andrea A1 - Prodromou, Chrisostomos A1 - Neuweiler, Hannes T1 - Two-colour single-molecule photoinduced electron transfer fluorescence imaging microscopy of chaperone dynamics JF - Nature Communications N2 - Many proteins are molecular machines, whose function is dependent on multiple conformational changes that are initiated and tightly controlled through biochemical stimuli. Their mechanistic understanding calls for spectroscopy that can probe simultaneously such structural coordinates. Here we present two-colour fluorescence microscopy in combination with photoinduced electron transfer (PET) probes as a method that simultaneously detects two structural coordinates in single protein molecules, one colour per coordinate. This contrasts with the commonly applied resonance energy transfer (FRET) technique that requires two colours per coordinate. We demonstrate the technique by directly and simultaneously observing three critical structural changes within the Hsp90 molecular chaperone machinery. Our results reveal synchronicity of conformational motions at remote sites during ATPase-driven closure of the Hsp90 molecular clamp, providing evidence for a cooperativity mechanism in the chaperone’s catalytic cycle. Single-molecule PET fluorescence microscopy opens up avenues in the multi-dimensional exploration of protein dynamics and allosteric mechanisms. KW - chaperones KW - fluorescence spectroscopy KW - molecular conformation KW - single-molecule biophysics KW - total internal reflection microscopy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265754 VL - 12 ER - TY - JOUR A1 - Breitenbach, Tim A1 - Helfrich-Förster, Charlotte A1 - Dandekar, Thomas T1 - An effective model of endogenous clocks and external stimuli determining circadian rhythms JF - Scientific Reports N2 - Circadian endogenous clocks of eukaryotic organisms are an established and rapidly developing research field. To investigate and simulate in an effective model the effect of external stimuli on such clocks and their components we developed a software framework for download and simulation. The application is useful to understand the different involved effects in a mathematical simple and effective model. This concerns the effects of Zeitgebers, feedback loops and further modifying components. We start from a known mathematical oscillator model, which is based on experimental molecular findings. This is extended with an effective framework that includes the impact of external stimuli on the circadian oscillations including high dose pharmacological treatment. In particular, the external stimuli framework defines a systematic procedure by input-output-interfaces to couple different oscillators. The framework is validated by providing phase response curves and ranges of entrainment. Furthermore, Aschoffs rule is computationally investigated. It is shown how the external stimuli framework can be used to study biological effects like points of singularity or oscillators integrating different signals at once. The mathematical framework and formalism is generic and allows to study in general the effect of external stimuli on oscillators and other biological processes. For an easy replication of each numerical experiment presented in this work and an easy implementation of the framework the corresponding Mathematica files are fully made available. They can be downloaded at the following link: https://www.biozentrum.uni-wuerzburg.de/bioinfo/computing/circadian/. KW - computational biology and bioinformatics KW - systems biology Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261655 VL - 11 IS - 1 ER - TY - JOUR A1 - Shityakov, Sergey A1 - Skorb, Ekaterina V. A1 - Förster, Carola Y. A1 - Dandekar, Thomas T1 - Scaffold Searching of FDA and EMA-Approved Drugs Identifies Lead Candidates for Drug Repurposing in Alzheimer’s Disease JF - Frontiers in Chemistry N2 - Clinical trials of novel therapeutics for Alzheimer’s Disease (AD) have consumed a significant amount of time and resources with largely negative results. Repurposing drugs already approved by the Food and Drug Administration (FDA), European Medicines Agency (EMA), or Worldwide for another indication is a more rapid and less expensive option. Therefore, we apply the scaffold searching approach based on known amyloid-beta (Aβ) inhibitor tramiprosate to screen the DrugCentral database (n = 4,642) of clinically tested drugs. As a result, menadione bisulfite and camphotamide substances with protrombogenic and neurostimulation/cardioprotection effects were identified as promising Aβ inhibitors with an improved binding affinity (ΔGbind) and blood-brain barrier permeation (logBB). Finally, the data was also confirmed by molecular dynamics simulations using implicit solvation, in particular as Molecular Mechanics Generalized Born Surface Area (MM-GBSA) model. Overall, the proposed in silico pipeline can be implemented through the early stage rational drug design to nominate some lead candidates for AD, which will be further validated in vitro and in vivo, and, finally, in a clinical trial. KW - scaffold search KW - approved drugs KW - drug repurposing KW - alzheimer's disease KW - chemical similarity KW - molecular modeling Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-248703 SN - 2296-2646 VL - 9 ER - TY - JOUR A1 - Bakari-Soale, Majeed A1 - Ikenga, Nonso Josephat A1 - Scheibe, Marion A1 - Butter, Falk A1 - Jones, Nicola G. A1 - Kramer, Susanne A1 - Engstler, Markus T1 - The nucleolar DExD/H protein Hel66 is involved in ribosome biogenesis in Trypanosoma brucei JF - Scientific Reports N2 - The biosynthesis of ribosomes is a complex cellular process involving ribosomal RNA, ribosomal proteins and several further trans-acting factors. DExD/H box proteins constitute the largest family of trans-acting protein factors involved in this process. Several members of this protein family have been directly implicated in ribosome biogenesis in yeast. In trypanosomes, ribosome biogenesis differs in several features from the process described in yeast. Here, we have identified the DExD/H box helicase Hel66 as being involved in ribosome biogenesis. The protein is unique to Kinetoplastida, localises to the nucleolus and its depletion via RNAi caused a severe growth defect. Loss of the protein resulted in a decrease of global translation and accumulation of rRNA processing intermediates for both the small and large ribosomal subunits. Only a few factors involved in trypanosome rRNA biogenesis have been described so far and our findings contribute to gaining a more comprehensive picture of this essential process. KW - infection KW - parasite evolution KW - parasite genetics KW - RNA Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-263872 VL - 11 IS - 1 ER - TY - JOUR A1 - Lasway, Julius V. A1 - Kinabo, Neema R. A1 - Mremi, Rudolf F. A1 - Martin, Emanuel H. A1 - Nyakunga, Oliver C. A1 - Sanya, John J. A1 - Rwegasira, Gration M. A1 - Lesio, Nicephor A1 - Gideon, Hulda A1 - Pauly, Alain A1 - Eardley, Connal A1 - Peters, Marcell K. A1 - Peterson, Andrew T. A1 - Steffan-Dewenter, Ingolf A1 - Njovu, Henry K. T1 - A synopsis of the Bee occurrence data of northern Tanzania JF - Biodiversity Data Journal N2 - Background Bees (Hymenoptera: Apoidea: Anthophila) are the most important group of pollinators with about 20,507 known species worldwide. Despite the critical role of bees in providing pollination services, studies aiming at understanding which species are present across disturbance gradients are scarce. Limited taxononomic information for the existing and unidentified bee species in Tanzania make their conservation haphazard. Here, we present a dataset of bee species records obtained from a survey in nothern Tanzania i.e. Kilimanjaro, Arusha and Manyara regions. Our findings serve as baseline data necessary for understanding the diversity and distribution of bees in the northern parts of the country, which is a critical step in devising robust conservation and monitoring strategies for their populations. New information In this paper, we present information on 45 bee species belonging to 20 genera and four families sampled using a combination of sweep-netting and pan trap methods. Most species (27, ~ 60%) belong to the family Halictidae followed by 16 species (35.5%) from the family Apidae. Megachilidae and Andrenidae were the least represented, each with only one species (2.2%). Additional species of Apidae and Megachilidae sampled during this survey are not yet published on Global Biodiversity Information Facility (GBIF), once they will be available on GBIF, they will be published in a subsequent paper. From a total of 953 occurrences, highest numbers were recorded in Kilimanjaro Region (n = 511), followed by Arusha (n = 410) and Manyara (n = 32), but this pattern reflects the sampling efforts of the research project rather than real bias in the distributions of bee species in northern Tanzania. KW - agriculture KW - bee pollinator KW - distribution KW - disturbance gradient KW - grazing KW - species diversity KW - Tanzania Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265018 VL - 9 ER - TY - JOUR A1 - Mayr, Antonia V. A1 - Keller, Alexander A1 - Peters, Marcell K. A1 - Grimmer, Gudrun A1 - Krischke, Beate A1 - Geyer, Mareen A1 - Schmitt, Thomas A1 - Steffan‐Dewenter, Ingolf T1 - Cryptic species and hidden ecological interactions of halictine bees along an elevational gradient JF - Ecology and Evolution N2 - Changes of abiotic and biotic conditions along elevational gradients represent serious challenges to organisms which may promote the turnover of species, traits and biotic interaction partners. Here, we used molecular methods to study cuticular hydrocarbon (CHC) profiles, biotic interactions and phylogenetic relationships of halictid bees of the genus Lasioglossum along a 2,900 m elevational gradient at Mt. Kilimanjaro, Tanzania. We detected a strong species turnover of morphologically indistinguishable taxa with phylogenetically clustered cryptic species at high elevations, changes in CHC profiles, pollen resource diversity, and a turnover in the gut and body surface microbiome of bees. At high elevations, increased proportions of saturated compounds in CHC profiles indicate physiological adaptations to prevent desiccation. More specialized diets with higher proportions of low‐quality Asteraceae pollen imply constraints in the availability of food resources. Interactive effects of climatic conditions on gut and surface microbiomes, CHC profiles, and pollen diet suggest complex feedbacks among abiotic conditions, ecological interactions, physiological adaptations, and phylogenetic constraints as drivers of halictid bee communities at Mt. Kilimanjaro. KW - COI KW - cuticular chemistry KW - elevational gradient KW - Halictidae KW - microbiome metabarcoding KW - pollen metabarcoding Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-238853 VL - 11 IS - 12 SP - 7700 EP - 7712 ER - TY - JOUR A1 - Duque, Laura A1 - Poelman, Erik H. A1 - Steffan-Dewenter, Ingolf T1 - Plant age at the time of ozone exposure affects flowering patterns, biotic interactions and reproduction of wild mustard JF - Scientific Reports N2 - Exposure of plants to environmental stressors can modify their metabolism, interactions with other organisms and reproductive success. Tropospheric ozone is a source of plant stress. We investigated how an acute exposure to ozone at different times of plant development affects reproductive performance, as well as the flowering patterns and the interactions with pollinators and herbivores, of wild mustard plants. The number of open flowers was higher on plants exposed to ozone at earlier ages than on the respective controls, while plants exposed at later ages showed a tendency for decreased number of open flowers. The changes in the number of flowers provided a good explanation for the ozone-induced effects on reproductive performance and on pollinator visitation. Ozone exposure at earlier ages also led to either earlier or extended flowering periods. Moreover, ozone tended to increase herbivore abundance, with responses depending on herbivore taxa and the plant age at the time of ozone exposure. These results suggest that the effects of ozone exposure depend on the developmental stage of the plant, affecting the flowering patterns in different directions, with consequences for pollination and reproduction of annual crops and wild species. KW - abiotic KW - environmental impact KW - plant ecology Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265742 VL - 11 IS - 1 ER - TY - JOUR A1 - Uhler, Johannes A1 - Redlich, Sarah A1 - Zhang, Jie A1 - Hothorn, Torsten A1 - Tobisch, Cynthia A1 - Ewald, Jörg A1 - Thorn, Simon A1 - Seibold, Sebastian A1 - Mitesser, Oliver A1 - Morinère, Jérôme A1 - Bozicevic, Vedran A1 - Benjamin, Caryl S. A1 - Englmeier, Jana A1 - Fricke, Ute A1 - Ganuza, Cristina A1 - Haensel, Maria A1 - Riebl, Rebekka A1 - Rojas-Botero, Sandra A1 - Rummler, Thomas A1 - Uphus, Lars A1 - Schmidt, Stefan A1 - Steffan-Dewenter, Ingolf A1 - Müller, Jörg T1 - Relationships of insect biomass and richness with land use along a climate gradient JF - Nature Communications N2 - Recently reported insect declines have raised both political and social concern. Although the declines have been attributed to land use and climate change, supporting evidence suffers from low taxonomic resolution, short time series, a focus on local scales, and the collinearity of the identified drivers. In this study, we conducted a systematic assessment of insect populations in southern Germany, which showed that differences in insect biomass and richness are highly context dependent. We found the largest difference in biomass between semi-natural and urban environments (-42%), whereas differences in total richness (-29%) and the richness of threatened species (-56%) were largest from semi-natural to agricultural environments. These results point to urbanization and agriculture as major drivers of decline. We also found that richness and biomass increase monotonously with increasing temperature, independent of habitat. The contrasting patterns of insect biomass and richness question the use of these indicators as mutual surrogates. Our study provides support for the implementation of more comprehensive measures aimed at habitat restoration in order to halt insect declines. KW - biodiversity KW - ecology Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265058 VL - 12 IS - 1 ER - TY - JOUR A1 - Hartke, Juliane A1 - Waldvogel, Ann‐Marie A1 - Sprenger, Philipp P. A1 - Schmitt, Thomas A1 - Menzel, Florian A1 - Pfenninger, Markus A1 - Feldmeyer, Barbara T1 - Little parallelism in genomic signatures of local adaptation in two sympatric, cryptic sister species JF - Journal of Evolutionary Biology N2 - Species living in sympatry and sharing a similar niche often express parallel phenotypes as a response to similar selection pressures. The degree of parallelism within underlying genomic levels is often unexplored, but can give insight into the mechanisms of natural selection and adaptation. Here, we use multi‐dimensional genomic associations to assess the basis of local and climate adaptation in two sympatric, cryptic Crematogaster levior ant species along a climate gradient. Additionally, we investigate the genomic basis of chemical communication in both species. Communication in insects is mainly mediated by cuticular hydrocarbons (CHCs), which also protect against water loss and, hence, are subject to changes via environmental acclimation or adaptation. The combination of environmental and chemical association analyses based on genome‐wide Pool‐Seq data allowed us to identify single nucleotide polymorphisms (SNPs) associated with climate and with chemical differences. Within species, CHC changes as a response to climate seem to be driven by phenotypic plasticity, since there is no overlap between climate‐ and CHC‐associated SNPs. The only exception is the odorant receptor OR22c, which may be a candidate for population‐specific CHC recognition in one of the species. Within both species, climate is significantly correlated with CHC differences, as well as to allele frequency differences. However, associated candidate SNPs, genes and functions are largely species‐specific and we find evidence for minimal parallel evolution only on the level of genomic regions (J = 0.04). This highlights that even closely related species may follow divergent evolutionary trajectories when expressing similar adaptive phenotypes. KW - BayPass KW - environmental association analysis KW - Formicidae KW - mutualism KW - parallel evolution KW - population divergence Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228355 VL - 34 IS - 6 SP - 937 EP - 952 ER - TY - JOUR A1 - Ye, Mingyu A1 - Keicher, Markus A1 - Gentschev, Ivaylo A1 - Szalay, Aladar A. T1 - Efficient selection of recombinant fluorescent vaccinia virus strains and rapid virus titer determination by using a multi-well plate imaging system JF - Biomedicines N2 - Engineered vaccinia virus (VACV) strains are used extensively as vectors for the development of novel cancer vaccines and cancer therapeutics. In this study, we describe for the first time a high-throughput approach for both fluorescent rVACV generation and rapid viral titer measurement with the multi-well plate imaging system, IncuCyte\(^®\)S3. The isolation of a single, well-defined plaque is critical for the generation of novel recombinant vaccinia virus (rVACV) strains. Unfortunately, current methods of rVACV engineering via plaque isolation are time-consuming and laborious. Here, we present a modified fluorescent viral plaque screening and selection strategy that allows one to generally obtain novel fluorescent rVACV strains in six days, with a minimum of just four days. The standard plaque assay requires chemicals for fixing and staining cells. Manual plaque counting based on visual inspection of the cell culture plates is time-consuming. Here, we developed a fluorescence-based plaque assay for quantifying the vaccinia virus that does not require a cell staining step. This approach is less toxic to researchers and is reproducible; it is thus an improvement over the traditional assay. Lastly, plaque counting by virtue of a fluorescence-based image is very convenient, as it can be performed directly on the computer. KW - fluorescent recombinant vaccinia virus KW - plaque isolation KW - IncuCyte\(^®\)S3 KW - plaque assay Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-245104 SN - 2227-9059 VL - 9 IS - 8 ER - TY - JOUR A1 - Welter, Nils A1 - Wagner, Angelo A1 - Furtwängler, Rhoikos A1 - Melchior, Patrick A1 - Kager, Leo A1 - Vokuhl, Christian A1 - Schenk, Jens-Peter A1 - Meier, Clemens Magnus A1 - Siemer, Stefan A1 - Gessler, Manfred A1 - Graf, Norbert T1 - Correction: Welter et al. Characteristics of nephroblastoma/nephroblastomatosis in children with a clinically reported underlying malformation or cancer predisposition syndrome. Cancers 2021, 13, 5016 JF - Cancers N2 - In the original article [1] there was a mistake in Table 2 as published. Table 2 contains wrong percentages in lines Bilateral disease and Patients with CPS or GU. For this reason the table should be replaced with the correct one as shown below. KW - nephroblastomatosis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-250135 SN - 2072-6694 VL - 13 IS - 22 ER - TY - JOUR A1 - Gupta, Shishir K. A1 - Srivastava, Mugdha A1 - Osmanoglu, Özge A1 - Xu, Zhuofei A1 - Brakhage, Axel A. A1 - Dandekar, Thomas T1 - Aspergillus fumigatus versus genus Aspergillus: conservation, adaptive evolution and specific virulence genes JF - Microorganisms N2 - Aspergillus is an important fungal genus containing economically important species, as well as pathogenic species of animals and plants. Using eighteen fungal species of the genus Aspergillus, we conducted a comprehensive investigation of conserved genes and their evolution. This also allows us to investigate the selection pressure driving the adaptive evolution in the pathogenic species A. fumigatus. Among single-copy orthologs (SCOs) for A. fumigatus and the closely related species A. fischeri, we identified 122 versus 50 positively selected genes (PSGs), respectively. Moreover, twenty conserved genes of unknown function were established to be positively selected and thus important for adaption. A. fumigatus PSGs interacting with human host proteins show over-representation of adaptive, symbiosis-related, immunomodulatory and virulence-related pathways, such as the TGF-β pathway, insulin receptor signaling, IL1 pathway and interfering with phagosomal GTPase signaling. Additionally, among the virulence factor coding genes, secretory and membrane protein-coding genes in multi-copy gene families, 212 genes underwent positive selection and also suggest increased adaptation, such as fungal immune evasion mechanisms (aspf2), siderophore biosynthesis (sidD), fumarylalanine production (sidE), stress tolerance (atfA) and thermotolerance (sodA). These genes presumably contribute to host adaptation strategies. Genes for the biosynthesis of gliotoxin are shared among all the close relatives of A. fumigatus as an ancient defense mechanism. Positive selection plays a crucial role in the adaptive evolution of A. fumigatus. The genome-wide profile of PSGs provides valuable targets for further research on the mechanisms of immune evasion, antimycotic targeting and understanding fundamental virulence processes. KW - molecular evolution KW - phylogenetic analysis KW - adaptation KW - recombination KW - positive selection KW - human pathogenic fungi KW - genus Aspergillus KW - Aspergillus fumigatus Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246318 SN - 2076-2607 VL - 9 IS - 10 ER - TY - JOUR A1 - Wagner, Martin A1 - Slaghuis, Jörg A1 - Göbel, Werner A1 - Vázquez-Boland, José Antonio A1 - Rychli, Kathrin A1 - Schmitz-Esser, Stephan T1 - Virulence pattern analysis of three Listeria monocytogenes lineage I epidemic strains with distinct outbreak histories JF - Microorganisms N2 - Strains of the food-borne pathogen Listeria (L.) monocytogenes have diverse virulence potential. This study focused on the virulence of three outbreak strains: the CC1 strain PF49 (serovar 4b) from a cheese-associated outbreak in Switzerland, the clinical CC2 strain F80594 (serovar 4b), and strain G6006 (CC3, serovar 1/2a), responsible for a large gastroenteritis outbreak in the USA due to chocolate milk. We analysed the genomes and characterized the virulence in vitro and in vivo. Whole-genome sequencing revealed a high conservation of the major virulence genes. Minor deviations of the gene contents were found in the autolysins Ami, Auto, and IspC. Moreover, different ActA variants were present. Strain PF49 and F80594 showed prolonged survival in the liver of infected mice. Invasion and intracellular proliferation were similar for all strains, but the CC1 and CC2 strains showed increased spreading in intestinal epithelial Caco2 cells compared to strain G6006. Overall, this study revealed long-term survival of serovar 4b strains F80594 and PF49 in the liver of mice. Future work will be needed to determine the genes and molecular mechanism behind the long-term survival of L. monocytogenes strains in organs. KW - pathogenicity KW - whole-genome analysis KW - prolonged survival Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-245093 SN - 2076-2607 VL - 9 IS - 8 ER - TY - JOUR A1 - Welter, Nils A1 - Wagner, Angelo A1 - Furtwängler, Rhoikos A1 - Melchior, Patrick A1 - Kager, Leo A1 - Vokuhl, Christian A1 - Schenk, Jens-Peter A1 - Meier, Clemens Magnus A1 - Siemer, Stefan A1 - Gessler, Manfred A1 - Graf, Norbert T1 - Characteristics of nephroblastoma/nephroblastomatosis in children with a clinically reported underlying malformation or cancer predisposition syndrome JF - Cancers N2 - (1) Background: about 10% of Wilms Tumor (WT) patients have a malformation or cancer predisposition syndrome (CPS) with causative germline genetic or epigenetic variants. Knowledge on CPS is essential for genetic counselling. (2) Methods: this retrospective analysis focused on 2927 consecutive patients with WTs registered between 1989 and 2017 in the SIOP/GPOH studies. (3) Results: Genitourinary malformations (GU, N = 66, 2.3%), Beckwith-Wiedemann spectrum (BWS, N = 32, 1.1%), isolated hemihypertrophy (IHH, N = 29, 1.0%), Denys-Drash syndrome (DDS, N = 24, 0.8%) and WAGR syndrome (N = 20, 0.7%) were reported most frequently. Compared to others, these patients were younger at WT diagnosis (median age 24.5 months vs. 39.0 months), had smaller tumors (349.4 mL vs. 487.5 mL), less often metastasis (8.2% vs. 18%), but more often nephroblastomatosis (12.9% vs. 1.9%). WT with IHH was associated with blastemal WT and DDS with stromal subtype. Bilateral WTs were common in WAGR (30%), DDS (29%) and BWS (31%). Chemotherapy induced reduction in tumor volume was poor in DDS (0.4% increase) and favorable in BWS (86.9% reduction). The event-free survival (EFS) of patients with BWS was significantly (p = 0.002) worse than in others. (4) Conclusions: CPS should be considered in WTs with specific clinical features resulting in referral to a geneticist. Their outcome was not always favorable. KW - nephroblastoma KW - clinical malformations KW - cancer predisposition syndromes KW - tumor surveillance KW - outcome Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-248434 SN - 2072-6694 VL - 13 IS - 19 ER - TY - JOUR A1 - Hempelmann, Alexander A1 - Hartleb, Laura A1 - van Straaten, Monique A1 - Hashemi, Hamidreza A1 - Zeelen, Johan P. A1 - Bongers, Kevin A1 - Papavasiliou, F. Nina A1 - Engstler, Markus A1 - Stebbins, C. Erec A1 - Jones, Nicola G. T1 - Nanobody-mediated macromolecular crowding induces membrane fission and remodeling in the African trypanosome JF - Cell Reports N2 - The dense variant surface glycoprotein (VSG) coat of African trypanosomes represents the primary host-pathogen interface. Antigenic variation prevents clearing of the pathogen by employing a large repertoire of antigenically distinct VSG genes, thus neutralizing the host’s antibody response. To explore the epitope space of VSGs, we generate anti-VSG nanobodies and combine high-resolution structural analysis of VSG-nanobody complexes with binding assays on living cells, revealing that these camelid antibodies bind deeply inside the coat. One nanobody causes rapid loss of cellular motility, possibly due to blockage of VSG mobility on the coat, whose rapid endocytosis and exocytosis are mechanistically linked to Trypanosoma brucei propulsion and whose density is required for survival. Electron microscopy studies demonstrate that this loss of motility is accompanied by rapid formation and shedding of nanovesicles and nanotubes, suggesting that increased protein crowding on the dense membrane can be a driving force for membrane fission in living cells. KW - African trypanosome KW - host-pathogen interaction KW - variant surface glycoproteins KW - immune epitope mapping KW - structural biology KW - nanovesicle formation KW - nanotube formation KW - protein crowding KW - membrane fission Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-270285 VL - 37 IS - 5 ER - TY - JOUR A1 - Kriegel, Peter A1 - Matevski, Dragan A1 - Schuldt, Andreas T1 - Monoculture and mixture-planting of non-native Douglas fir alters species composition, but promotes the diversity of ground beetles in a temperate forest system JF - Biodiversity and Conservation N2 - Planting non-native tree species, like Douglas fir in temperate European forest systems, is encouraged to mitigate effects of climate change. However, Douglas fir monocultures often revealed negative effects on forest biota, while effects of mixtures with native tree species on forest ecosystems are less well understood. We investigated effects of three tree species (Douglas fir, Norway spruce, native European beech), on ground beetles in temperate forests of Germany. Beetles were sampled in monocultures of each tree species and broadleaf-conifer mixtures with pitfall traps, and environmental variables were assessed around each trap. We used linear mixed models in a two-step procedure to disentangle effects of environment and tree species identity on ground beetle abundance, species richness, functional diversity and species assemblage structure. Contradictory to our expectations, ground beetle abundance and functional diversity was highest in pure Douglas fir stands, while tree mixtures showed intermediate values between pure coniferous and pure beech stands. The main drivers of these patterns were only partially dependent on tree species identity, which highlights the importance of structural features in forest stands. However, our study revealed distinct shifts in assemblage structure between pure beech and pure Douglas fir stands, which were only partially eased through mixture planting. Our findings suggest that effects of planting non-native trees on associated biodiversity can be actively modified by promoting beneficial forest structures. Nevertheless, integrating non-native tree species, even in mixtures with native trees, will invariably alter assemblage structures of associated biota, which can compromise conservation efforts targeted at typical species composition. KW - mixed-species forestry KW - exotic species KW - Pseudotsuga menziesii KW - functional diversity KW - insects KW - microhabitats Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-269017 SN - 1572-9710 VL - 30 IS - 5 ER - TY - JOUR A1 - Peixoto, Joana A1 - Janaki-Raman, Sudha A1 - Schlicker, Lisa A1 - Schmitz, Werner A1 - Walz, Susanne A1 - Winkelkotte, Alina M. A1 - Herold-Mende, Christel A1 - Soares, Paula A1 - Schulze, Almut A1 - Lima, Jorge T1 - Integrated metabolomics and transcriptomics analysis of monolayer and neurospheres from established glioblastoma cell lines JF - Cancers N2 - Altered metabolic processes contribute to carcinogenesis by modulating proliferation, survival and differentiation. Tumours are composed of different cell populations, with cancer stem-like cells being one of the most prominent examples. This specific pool of cells is thought to be responsible for cancer growth and recurrence and plays a particularly relevant role in glioblastoma (GBM), the most lethal form of primary brain tumours. Here, we have analysed the transcriptome and metabolome of an established GBM cell line (U87) and a patient-derived GBM stem-like cell line (NCH644) exposed to neurosphere or monolayer culture conditions. By integrating transcriptome and metabolome data, we identified key metabolic pathways and gene signatures that are associated with stem-like and differentiated states in GBM cells, and demonstrated that neurospheres and monolayer cells differ substantially in their metabolism and gene regulation. Furthermore, arginine biosynthesis was identified as the most significantly regulated pathway in neurospheres, although individual nodes of this pathway were distinctly regulated in the two cellular systems. Neurosphere conditions, as opposed to monolayer conditions, cause a transcriptomic and metabolic rewiring that may be crucial for the regulation of stem-like features, where arginine biosynthesis may be a key metabolic pathway. Additionally, TCGA data from GBM patients showed significant regulation of specific components of the arginine biosynthesis pathway, providing further evidence for the importance of this metabolic pathway in GBM. KW - glioblastoma KW - neurospheres KW - monolayer KW - metabolome KW - transcriptome KW - arginine metabolism Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-234110 SN - 2072-6694 VL - 13 IS - 6 ER - TY - JOUR A1 - Rother, Lisa A1 - Kraft, Nadine A1 - Smith, Dylan B. A1 - El Jundi, Basil A1 - Gill, Richard J. A1 - Pfeiffer, Keram T1 - A micro-CT-based standard brain atlas of the bumblebee JF - Cell and Tissue Research N2 - In recent years, bumblebees have become a prominent insect model organism for a variety of biological disciplines, particularly to investigate learning behaviors as well as visual performance. Understanding these behaviors and their underlying neurobiological principles requires a clear understanding of brain anatomy. Furthermore, to be able to compare neuronal branching patterns across individuals, a common framework is required, which has led to the development of 3D standard brain atlases in most of the neurobiological insect model species. Yet, no bumblebee 3D standard brain atlas has been generated. Here we present a brain atlas for the buff-tailed bumblebee Bombus terrestris using micro-computed tomography (micro-CT) scans as a source for the raw data sets, rather than traditional confocal microscopy, to produce the first ever micro-CT-based insect brain atlas. We illustrate the advantages of the micro-CT technique, namely, identical native resolution in the three cardinal planes and 3D structure being better preserved. Our Bombus terrestris brain atlas consists of 30 neuropils reconstructed from ten individual worker bees, with micro-CT allowing us to segment neuropils completely intact, including the lamina, which is a tissue structure often damaged when dissecting for immunolabeling. Our brain atlas can serve as a platform to facilitate future neuroscience studies in bumblebees and illustrates the advantages of micro-CT for specific applications in insect neuroanatomy. KW - neuropils KW - Bombus terrestris KW - insect standard brain atlas KW - iterative shape averaging KW - reconstruction Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-267783 SN - 1432-0878 VL - 386 IS - 1 ER - TY - JOUR A1 - Leidinger, Ludwig A1 - Vedder, Daniel A1 - Cabral, Juliano Sarmento T1 - Temporal environmental variation may impose differential selection on both genomic and ecological traits JF - Oikos N2 - The response of populations and species to changing conditions determines how community composition will change functionally, including via trait shifts. Selection from standing variation has been suggested to be more efficient than acquiring new mutations. Yet, studies on community trait composition and trait selection largely focus on phenotypic variation in ecological traits, whereas the underlying genomic traits remain understudied. Using a genome‐explicit, niche‐ and individual‐based model, we address the potential interactions between genomic and ecological traits shaping communities under an environmental selective forcing, namely temporal positively autocorrelated environmental fluctuation. In this model, all ecological traits are explicitly coded by the genome. For our experiments, we initialized 90 replicate communities, each with ca 350 initial species, characterized by random genomic and ecological trait combinations, on a 2D spatially explicit landscape with two orthogonal gradients (temperature and resource use). We exposed each community to two contrasting scenarios: without (i.e. static environments) and with temporal variation. We then analyzed emerging compositions of both genomic and ecological traits at the community, population and genomic levels. Communities in variable environments were species poorer than in static environments, and populations more abundant, whereas genomes had lower genetic linkage, mean genetic variation and a non‐significant tendency towards higher numbers of genes. The surviving genomes (i.e. those selected by variable environments) coded for enhanced environmental tolerance and smaller biomass, which resulted in faster life cycles and thus also in increased potential for evolutionary rescue. Under temporal environmental variation, larger, less linked genomes retained more variation in mean dispersal ability at the population level than at genomic level, whereas the opposite trend emerged for biomass. Our results provide clues to how sexually‐reproducing diploid plant communities might react to variable environments and highlights the importance of genomic traits and their interaction with ecological traits for eco‐evolutionary responses to changing climates. KW - environmental variability KW - genomic traits KW - mechanistic model KW - rapid evolution KW - standing variation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-238945 VL - 130 IS - 7 SP - 1100 EP - 1115 ER - TY - JOUR A1 - Sponsler, Douglas B. A1 - Bratman, Eve Z. T1 - Beekeeping in, of or for the city? A socioecological perspective on urban apiculture JF - People and Nature N2 - The term ‘urban beekeeping’ connotes a host of meanings—sociopolitical, commercial, ecological and personal—beyond the mere description of where bees and beekeepers happen to coincide. Yet, these meanings are seldom articulated explicitly or brought into critical engagement with the relevant fields of urban ecology and political ecology. Beginning with a brief account of the history of urban beekeeping in the United States, we draw upon urban ecological theory to construct a conceptual model of urban beekeeping that distinguishes beekeeping in, of and for the city. In our model, beekeeping in the city describes the mere importation of the traditionally rural practice of beekeeping into urban spaces for the private reasons of the individual beekeeper, whereas beekeeping of the city describes beekeeping that is consciously tailored to the urban context, often accompanied by (semi)professionalization of beekeepers and the formation of local expert communities (i.e. beekeeping associations). Beekeeping for the city describes a shift in mindset in which beekeeping is directed to civic ends beyond the boundaries of the beekeeping community per se. Using this framework, we identify and discuss specific socioecological assets and liabilities of urban beekeeping, and how these relate to beekeeping in, of and for the city. We then formulate actionable guidelines for maturing the practice of urban beekeeping into a beneficent and self‐critical form of urban ecological citizenship; these include fostering self‐regulation within the beekeeping community, harnessing beekeeping as a ‘gateway’ experience for a broader rapprochement between urban residents and nature, and recognizing the political‐ecological context of beekeeping with respect to matters of socioecological justice. KW - environmental justice KW - honey bee KW - multispecies studies KW - policy KW - pollinator KW - urban greening Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239949 VL - 3 IS - 3 SP - 550 EP - 559 ER - TY - JOUR A1 - Kriegel, Peter A1 - Fritze, Michael‐Andreas A1 - Thorn, Simon T1 - Surface temperature and shrub cover drive ground beetle (Coleoptera: Carabidae) assemblages in short‐rotation coppices JF - Agricultural and Forest Entomology N2 - Increasing demand for biomass has led to an on‐going intensification of fuel wood plantations with possible negative effects on open land biodiversity. Hence, ecologists increasingly call for measures that reduce those negative effects on associated biodiversity. However, our knowledge about the efficiency of such measures remains scarce. We investigated the effects of gap implementation in short rotation coppices (SRCs) on carabid diversity and assemblage composition over 3 years, with pitfall traps in gaps, edges and interiors. In parallel, we quantified soil surface temperature, shrub‐ and herb cover. Edges had the highest number of species and abundances per trap, whereas rarefied species richness was significantly lower in short rotation coppice interiors than in other habitat types. Carabid community composition differed significantly between habitat types. The main environmental drivers were temperature for number of species and abundance and shrub cover for rarefied species richness. We found significantly higher rarefied species richness in gaps compared with interiors. Hence, we argue that gap implementation benefits overall diversity in short rotation coppices. Furthermore, the differences in species community composition between habitat types through increased species turnover support carabid diversity in short rotation coppices. These positive effects were largely attributed to microclimate conditions. However, to maintain positive effects, continuous management of herb layer might be necessary. KW - Carabidae KW - fuel wood KW - short‐rotation coppice KW - shrub‐cover KW - temperature Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239873 VL - 23 IS - 4 SP - 400 EP - 410 ER - TY - JOUR A1 - Wolf, Matthias T1 - How to teach about what is a species JF - Biology N2 - To ask students what a species is always has something rhetorical about it. Too quickly comes the rote answer, often learned by heart without ever thinking about it: “A species is a reproductive community of populations (reproductively isolated from others), which occupies a specific niche in nature” (Mayr 1982). However, do two people look alike because they are twins or are they twins because they look alike? “Two organisms do not belong to the same species because they mate and reproduce, but they only are able to do so because they belong to the same species” (Mahner and Bunge 1997). Unfortunately, most biology (pre-university) teachers have no opinion on whether species are real or conceptual, simply because they have never been taught the question themselves, but rather one answer they still pass on to their students today, learned by heart without ever thinking about it. Species are either real or conceptual and, in my opinion, it is this “or” that we should teach about. Only then can we discuss those fundamental questions such as who or what is selected, who or what evolves and, finally, what is biodiversity and phylogenetics all about? Individuals related to each other by the tree of life. KW - biospecies KW - species as individuals KW - species as natural kinds KW - species concept KW - species problem Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241052 SN - 2079-7737 VL - 10 IS - 6 ER - TY - JOUR A1 - Kouhestani, Dina A1 - Geis, Maria A1 - Alsouri, Saed A1 - Bumm, Thomas G. P. A1 - Einsele, Hermann A1 - Sauer, Markus A1 - Stuhler, Gernot T1 - Variant signaling topology at the cancer cell–T-cell interface induced by a two-component T-cell engager JF - Cellular & Molecular Immunology N2 - No abstract available. KW - immunotherapy KW - tumour immunology Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241189 VL - 18 ER - TY - JOUR A1 - Loos, Jacqueline A1 - Krauss, Jochen A1 - Lyons, Ashley A1 - Föst, Stephanie A1 - Ohlendorf, Constanze A1 - Racky, Severin A1 - Röder, Marina A1 - Hudel, Lennart A1 - Herfert, Volker A1 - Tscharntke, Teja T1 - Local and landscape responses of biodiversity in calcareous grasslands JF - Biodiversity and Conservation N2 - Across Europe, calcareous grasslands become increasingly fragmented and their quality deteriorates through abandonment and land use intensification, both affecting biodiversity. Here, we investigated local and landscape effects on diversity patterns of several taxonomic groups in a landscape of highly fragmented calcareous grassland remnants. We surveyed 31 grassland fragments near Göttingen, Germany, in spring and summer 2017 for vascular plants, butterflies and birds, with sampling effort adapted to fragment area. Through regression modelling, we tested relationships between species richness and fragment size (from 314 to 51,395 m\(^2\)), successional stage, habitat connectivity and the per cent cover of arable land in the landscape at several radii. We detected 283 plant species, 53 butterfly species and 70 bird species. Of these, 59 plant species, 19 butterfly species and 9 bird species were grassland specialists. Larger fragments supported twice the species richness of plants than small ones, and hosted more species of butterflies, but not of birds. Larger grassland fragments contained more grassland specialist plants, but not butterfly or bird specialists. Increasing amounts of arable land in the landscape from 20 to 90% was related to the loss of a third of species of plants, and less so, of butterflies, but not of birds. Per cent cover of arable land negatively correlated to richness of grassland specialist plants and butterflies, but positively to grassland specialist birds. We found no effect by successional stages and habitat connectivity. Our multi-taxa approach highlights the need for conservation management at the local scale, complemented by measures at the landscape scale. KW - abandonment KW - birds KW - butterflies KW - land use intensification KW - nature conservation KW - vascular plants Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-308595 SN - 0960-3115 SN - 1572-9710 VL - 30 IS - 8-9 ER - TY - JOUR A1 - Riedmeier, Maria A1 - Decarolis, Boris A1 - Haubitz, Imme A1 - Müller, Sophie A1 - Uttinger, Konstantin A1 - Börner, Kevin A1 - Reibetanz, Joachim A1 - Wiegering, Armin A1 - Härtel, Christoph A1 - Schlegel, Paul-Gerhardt A1 - Fassnacht, Martin A1 - Wiegering, Verena T1 - Adrenocortical carcinoma in childhood: a systematic review JF - Cancers N2 - Adrenocortical tumors are rare in children. This systematic review summarizes the published evidence on pediatric adrenocortical carcinoma (ACC) to provide a basis for a better understanding of the disease, investigate new molecular biomarkers and therapeutic targets, and define which patients may benefit from a more aggressive therapeutic approach. We included 137 studies with 3680 ACC patients (~65% female) in our analysis. We found no randomized controlled trials, so this review mainly reflects retrospective data. Due to a specific mutation in the TP53 gene in ~80% of Brazilian patients, that cohort was analyzed separately from series from other countries. Hormone analysis was described in 2569 of the 2874 patients (89%). Most patients were diagnosed with localized disease, whereas 23% had metastasis at primary diagnosis. Only 72% of the patients achieved complete resection. In 334 children (23%), recurrent disease was reported: 81% — local recurrence, 19% (n = 65) — distant metastases at relapse. Patients < 4 years old had a different distribution of tumor stages and hormone activity and better overall survival (p < 0.001). Although therapeutic approaches are typically multimodal, no consensus is available on effective standard treatments for advanced ACC. Thus, knowledge regarding pediatric ACC is still scarce and international prospective studies are needed to implement standardized clinical stratifications and risk-adapted therapeutic strategies. KW - pediatric adrenocortical cancer KW - pediatric adrenocortical adenoma KW - pediatric adrenocortical tumor KW - prognostic factors KW - therapy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-248507 SN - 2072-6694 VL - 13 IS - 21 ER - TY - JOUR A1 - Ferreira, Eliana Aparecida A1 - Boff, Samuel A1 - Verza, Sandra S. A1 - Mussury, Rosilda Mara T1 - Bioecological and behavioral interaction between pollinating bees and the pioneer shrub Ludwigia nervosa in degraded area suggests an exotic bee as its major pollinator JF - Biology N2 - The flowers of plants of the genus Ludwigia are an important source of food for several species of bees. In the current study, we conducted an experiment with the aim to describe the reproductive biology and phenology of L. nervosa; to identify the species of visiting bees; analyze the foraging behavior of bees; and to investigate whether the reproductive success of the species is related to the foraging activity of bees. We found that the flowers received visits from several native bee species (n = 7), in addition of the exotic honey bees which came to be the dominant species. During visits the majority of the bees foraged in both resources, pollen and nectar. The significantly higher production of fruits in open pollinated pollination experiment compared to artificial cross pollination, suggests honey bees as effective pollinator of this plant species in the study site. Pollen deposition occurs efficiently, given the absence of pollen limitation. Despite massive visitation of honey bees, Ludwigianervosa is attractive to native bees, and therefore it may help to sustain population of both native and exotic pollinators in fragmented humid areas. KW - cross pollination KW - disturbed humid area KW - germination speed KW - honey bees and native bees KW - pollen limitation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228757 SN - 2079-7737 VL - 10 IS - 2 ER - TY - JOUR A1 - Broster Reix, Christine E. A1 - Florimond, Célia A1 - Cayrel, Anne A1 - Mailhé, Amélie A1 - Agnero-Rigot, Corentin A1 - Landrein, Nicolas A1 - Dacheux, Denis A1 - Havlicek, Katharina A1 - Bonhivers, Mélanie A1 - Morriswood, Brooke A1 - Robinson, Derrick R. T1 - Bhalin, an essential cytoskeleton-associated protein of Trypanosoma brucei linking TbBILBO1 of the flagellar pocket collar with the hook complex JF - Microorganisms N2 - Background: In most trypanosomes, endo and exocytosis only occur at a unique organelle called the flagellar pocket (FP) and the flagellum exits the cell via the FP. Investigations of essential cytoskeleton-associated structures located at this site have revealed a number of essential proteins. The protein TbBILBO1 is located at the neck of the FP in a structure called the flagellar pocket collar (FPC) and is essential for biogenesis of the FPC and parasite survival. TbMORN1 is a protein that is present on a closely linked structure called the hook complex (HC) and is located anterior to and overlapping the collar. TbMORN1 is essential in the bloodstream form of T. brucei. We now describe the location and function of BHALIN, an essential, new FPC-HC protein. Methodology/Principal Findings: Here, we show that a newly characterised protein, BHALIN (BILBO1 Hook Associated LINker protein), is localised to both the FPC and HC and has a TbBILBO1 binding domain, which was confirmed in vitro. Knockdown of BHALIN by RNAi in the bloodstream form parasites led to cell death, indicating an essential role in cell viability. Conclusions/Significance: Our results demonstrate the essential role of a newly characterised hook complex protein, BHALIN, that influences flagellar pocket organisation and function in bloodstream form T. brucei parasites. KW - trypanosoma KW - flagellar pocket KW - hook complex KW - endocytosis KW - cytoskeleton KW - protozoan KW - flagellar pocket collar Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-250301 SN - 2076-2607 VL - 9 IS - 11 ER - TY - JOUR A1 - Uphus, Lars A1 - Lüpke, Marvin A1 - Yuan, Ye A1 - Benjamin, Caryl A1 - Englmeier, Jana A1 - Fricke, Ute A1 - Ganuza, Cristina A1 - Schwindl, Michael A1 - Uhler, Johannes A1 - Menzel, Annette T1 - Climate effects on vertical forest phenology of Fagus sylvatica L., sensed by Sentinel-2, time lapse camera, and visual ground observations JF - Remote Sensing N2 - Contemporary climate change leads to earlier spring phenological events in Europe. In forests, in which overstory strongly regulates the microclimate beneath, it is not clear if further change equally shifts the timing of leaf unfolding for the over- and understory of main deciduous forest species, such as Fagus sylvatica L. (European beech). Furthermore, it is not known yet how this vertical phenological (mis)match — the phenological difference between overstory and understory — affects the remotely sensed satellite signal. To investigate this, we disentangled the start of season (SOS) of overstory F.sylvatica foliage from understory F. sylvatica foliage in forests, within nine quadrants of 5.8 × 5.8 km, stratified over a temperature gradient of 2.5 °C in Bavaria, southeast Germany, in the spring seasons of 2019 and 2020 using time lapse cameras and visual ground observations. We explained SOS dates and vertical phenological (mis)match by canopy temperature and compared these to Sentinel-2 derived SOS in response to canopy temperature. We found that overstory SOS advanced with higher mean April canopy temperature (visual ground observations: −2.86 days per °C; cameras: −2.57 days per °C). However, understory SOS was not significantly affected by canopy temperature. This led to an increase of vertical phenological mismatch with increased canopy temperature (visual ground observations: +3.90 days per °C; cameras: +2.52 days per °C). These results matched Sentinel-2-derived SOS responses, as pixels of higher canopy height advanced more by increased canopy temperature than pixels of lower canopy height. The results may indicate that, with further climate change, spring phenology of F. sylvatica overstory will advance more than F. sylvatica understory, leading to increased vertical phenological mismatch in temperate deciduous forests. This may have major ecological effects, but also methodological consequences for the field of remote sensing, as what the signal senses highly depends on the pixel mean canopy height and the vertical (mis)match. KW - overstory KW - understory KW - Sentinel-2 KW - time lapse cameras KW - vertical mismatch KW - phenological escape KW - climate change KW - European beech Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-248419 SN - 2072-4292 VL - 13 IS - 19 ER - TY - JOUR A1 - Berberich, Andreas A1 - Kurz, Andreas A1 - Reinhard, Sebastian A1 - Paul, Torsten Johann A1 - Burd, Paul Ray A1 - Sauer, Markus A1 - Kollmannsberger, Philip T1 - Fourier Ring Correlation and anisotropic kernel density estimation improve deep learning based SMLM reconstruction of microtubules JF - Frontiers in Bioinformatics N2 - Single-molecule super-resolution microscopy (SMLM) techniques like dSTORM can reveal biological structures down to the nanometer scale. The achievable resolution is not only defined by the localization precision of individual fluorescent molecules, but also by their density, which becomes a limiting factor e.g., in expansion microscopy. Artificial deep neural networks can learn to reconstruct dense super-resolved structures such as microtubules from a sparse, noisy set of data points. This approach requires a robust method to assess the quality of a predicted density image and to quantitatively compare it to a ground truth image. Such a quality measure needs to be differentiable to be applied as loss function in deep learning. We developed a new trainable quality measure based on Fourier Ring Correlation (FRC) and used it to train deep neural networks to map a small number of sampling points to an underlying density. Smooth ground truth images of microtubules were generated from localization coordinates using an anisotropic Gaussian kernel density estimator. We show that the FRC criterion ideally complements the existing state-of-the-art multiscale structural similarity index, since both are interpretable and there is no trade-off between them during optimization. The TensorFlow implementation of our FRC metric can easily be integrated into existing deep learning workflows. KW - dSTORM KW - deep learning–artificial neural network (DL-ANN) KW - single molecule localization microscopy KW - microtubule cytoskeleton KW - super-resolution Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261686 VL - 1 ER - TY - JOUR A1 - Alnusaire, Taghreed S. A1 - Sayed, Ahmed M. A1 - Elmaidomy, Abeer H. A1 - Al-Sanea, Mohammad M. A1 - Albogami, Sarah A1 - Albqmi, Mha A1 - Alowaiesh, Bassam F. A1 - Mostafa, Ehab M. A1 - Musa, Arafa A1 - Youssif, Khayrya A. A1 - Refaat, Hesham A1 - Othman, Eman M. A1 - Dandekar, Thomas A1 - Alaaeldin, Eman A1 - Ghoneim, Mohammed M. A1 - Abdelmohsen, Usama Ramadan T1 - An in vitro and in silico study of the enhanced antiproliferative and pro-oxidant potential of Olea europaea L. cv. Arbosana leaf extract via elastic nanovesicles (spanlastics) JF - Antioxidants N2 - The olive tree is a venerable Mediterranean plant and often used in traditional medicine. The main aim of the present study was to evaluate the effect of Olea europaea L. cv. Arbosana leaf extract (OLE) and its encapsulation within a spanlastic dosage form on the improvement of its pro-oxidant and antiproliferative activity against HepG-2, MCF-7, and Caco-2 human cancer cell lines. The LC-HRESIMS-assisted metabolomic profile of OLE putatively annotated 20 major metabolites and showed considerable in vitro antiproliferative activity against HepG-2, MCF-7, and Caco-2 cell lines with IC\(_{50}\) values of 9.2 ± 0.8, 7.1 ± 0.9, and 6.5 ± 0.7 µg/mL, respectively. The encapsulation of OLE within a (spanlastic) nanocarrier system, using a spraying method and Span 40 and Tween 80 (4:1 molar ratio), was successfully carried out (size 41 ± 2.4 nm, zeta potential 13.6 ± 2.5, and EE 61.43 ± 2.03%). OLE showed enhanced thermal stability, and an improved in vitro antiproliferative effect against HepG-2, MCF-7, and Caco-2 (IC\(_{50}\) 3.6 ± 0.2, 2.3 ± 0.1, and 1.8 ± 0.1 µg/mL, respectively) in comparison to the unprocessed extract. Both preparations were found to exhibit pro-oxidant potential inside the cancer cells, through the potential inhibitory activity of OLE against glutathione reductase and superoxide dismutase (IC\(_{50}\) 1.18 ± 0.12 and 2.33 ± 0.19 µg/mL, respectively). These inhibitory activities were proposed via a comprehensive in silico study to be linked to the presence of certain compounds in OLE. Consequently, we assume that formulating such a herbal extract within a suitable nanocarrier would be a promising improvement of its therapeutic potential. KW - olive KW - metabolomic profiling KW - antiproliferative KW - pro-oxidant KW - encapsulation KW - spanlastic KW - nanocarrier KW - docking KW - molecular dynamics simulation KW - Olea Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-250064 SN - 2076-3921 VL - 10 IS - 12 ER - TY - JOUR A1 - Link, Fabian A1 - Borges, Alyssa R. A1 - Jones, Nicola G. A1 - Engstler, Markus T1 - To the Surface and Back: Exo- and Endocytic Pathways in Trypanosoma brucei JF - Frontiers in Cell and Developmental Biology N2 - Trypanosoma brucei is one of only a few unicellular pathogens that thrives extracellularly in the vertebrate host. Consequently, the cell surface plays a critical role in both immune recognition and immune evasion. The variant surface glycoprotein (VSG) coats the entire surface of the parasite and acts as a flexible shield to protect invariant proteins against immune recognition. Antigenic variation of the VSG coat is the major virulence mechanism of trypanosomes. In addition, incessant motility of the parasite contributes to its immune evasion, as the resulting fluid flow on the cell surface drags immunocomplexes toward the flagellar pocket, where they are internalized. The flagellar pocket is the sole site of endo- and exocytosis in this organism. After internalization, VSG is rapidly recycled back to the surface, whereas host antibodies are thought to be transported to the lysosome for degradation. For this essential step to work, effective machineries for both sorting and recycling of VSGs must have evolved in trypanosomes. Our understanding of the mechanisms behind VSG recycling and VSG secretion, is by far not complete. This review provides an overview of the trypanosome secretory and endosomal pathways. Longstanding questions are pinpointed that, with the advent of novel technologies, might be answered in the near future. KW - cell surface KW - African trypanosomes KW - endocytosis KW - exocytosis KW - membrane recycling KW - Rab KW - clathrin Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-244682 SN - 2296-634X VL - 9 ER - TY - JOUR A1 - Panzer, Sabine A1 - Zhang, Chong A1 - Konte, Tilen A1 - Bräuer, Celine A1 - Diemar, Anne A1 - Yogendran, Parathy A1 - Yu-Strzelczyk, Jing A1 - Nagel, Georg A1 - Gao, Shiqiang A1 - Terpitz, Ulrich T1 - Modified Rhodopsins From Aureobasidium pullulans Excel With Very High Proton-Transport Rates JF - Frontiers in Molecular Biosciences N2 - Aureobasidium pullulans is a black fungus that can adapt to various stressful conditions like hypersaline, acidic, and alkaline environments. The genome of A. pullulans exhibits three genes coding for putative opsins ApOps1, ApOps2, and ApOps3. We heterologously expressed these genes in mammalian cells and Xenopus oocytes. Localization in the plasma membrane was greatly improved by introducing additional membrane trafficking signals at the N-terminus and the C-terminus. In patch-clamp and two-electrode-voltage clamp experiments, all three proteins showed proton pump activity with maximal activity in green light. Among them, ApOps2 exhibited the most pronounced proton pump activity with current amplitudes occasionally extending 10 pA/pF at 0 mV. Proton pump activity was further supported in the presence of extracellular weak organic acids. Furthermore, we used site-directed mutagenesis to reshape protein functions and thereby implemented light-gated proton channels. We discuss the difference to other well-known proton pumps and the potential of these rhodopsins for optogenetic applications. KW - black yeast KW - photoreceptor KW - microbial rhodopsins KW - optogenetics KW - proton channel KW - membrane trafficking KW - fungal rhodopsins KW - Aureobasidium Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-249248 SN - 2296-889X VL - 8 ER - TY - JOUR A1 - Vogel, Sebastian A1 - Prinzing, Andreas A1 - Bußler, Heinz A1 - Müller, Jörg A1 - Schmidt, Stefan A1 - Thorn, Simon T1 - Abundance, not diversity, of host beetle communities determines abundance and diversity of parasitoids in deadwood JF - Ecology and Evolution N2 - Most parasites and parasitoids are adapted to overcome defense mechanisms of their specific hosts and hence colonize a narrow range of host species. Accordingly, an increase in host functional or phylogenetic dissimilarity is expected to increase the species diversity of parasitoids. However, the local diversity of parasitoids may be driven by the accessibility and detectability of hosts, both increasing with increasing host abundance. Yet, the relative importance of these two mechanisms remains unclear. We parallelly reared communities of saproxylic beetle as potential hosts and associated parasitoid Hymenoptera from experimentally felled trees. The dissimilarity of beetle communities was inferred from distances in seven functional traits and from their evolutionary ancestry. We tested the effect of host abundance, species richness, functional, and phylogenetic dissimilarities on the abundance, species richness, and Shannon diversity of parasitoids. Our results showed an increase of abundance, species richness, and Shannon diversity of parasitoids with increasing beetle abundance. Additionally, abundance of parasitoids increased with increasing species richness of beetles. However, functional and phylogenetic dissimilarity showed no effect on the diversity of parasitoids. Our results suggest that the local diversity of parasitoids, of ephemeral and hidden resources like saproxylic beetles, is highest when resources are abundant and thereby detectable and accessible. Hence, in some cases, resources do not need to be diverse to promote parasitoid diversity. KW - barcoding KW - deadwood KW - experiment KW - host–parasitoid interaction KW - natural enemy KW - specialization Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-238892 VL - 11 IS - 11 SP - 6881 EP - 6888 ER - TY - JOUR A1 - Makbul, Cihan A1 - Kraft, Christian A1 - Grießmann, Matthias A1 - Rasmussen, Tim A1 - Katzenberger, Kilian A1 - Lappe, Melina A1 - Pfarr, Paul A1 - Stoffer, Cato A1 - Stöhr, Mara A1 - Wandinger, Anna-Maria A1 - Böttcher, Bettina T1 - Binding of a pocket factor to Hepatitis B virus capsids changes the rotamer conformation of Phenylalanine 97 JF - Viruses N2 - (1) Background: During maturation of the Hepatitis B virus, a viral polymerase inside the capsid transcribes a pre-genomic RNA into a partly double stranded DNA-genome. This is followed by envelopment with surface proteins inserted into a membrane. Envelopment is hypothetically regulated by a structural signal that reports the maturation state of the genome. NMR data suggest that such a signal can be mimicked by the binding of the detergent Triton X 100 to hydrophobic pockets in the capsid spikes. (2) Methods: We have used electron cryo-microscopy and image processing to elucidate the structural changes that are concomitant with the binding of Triton X 100. (3) Results: Our maps show that Triton X 100 binds with its hydrophobic head group inside the pocket. The hydrophilic tail delineates the outside of the spike and is coordinated via Lys-96. The binding of Triton X 100 changes the rotamer conformation of Phe-97 in helix 4, which enables a π-stacking interaction with Trp-62 in helix 3. Similar changes occur in mutants with low secretion phenotypes (P5T and L60V) and in a mutant with a pre-mature secretion phenotype (F97L). (4) Conclusion: Binding of Triton X 100 is unlikely to mimic structural maturation because mutants with different secretion phenotypes show similar structural responses. KW - Hepatitis B Virus KW - pocket factor KW - Triton X 100 KW - envelopment KW - maturation signal KW - single strand blocking KW - electron cryo-microscopy KW - isothermal titration calorimetry Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-248565 SN - 1999-4915 VL - 13 IS - 11 ER - TY - JOUR A1 - Jansch, Charline A1 - Ziegler, Georg C. A1 - Forero, Andrea A1 - Gredy, Sina A1 - Wäldchen, Sina A1 - Vitale, Maria Rosaria A1 - Svirin, Evgeniy A1 - Zöller, Johanna E. M. A1 - Waider, Jonas A1 - Günther, Katharina A1 - Edenhofer, Frank A1 - Sauer, Markus A1 - Wischmeyer, Erhard A1 - Lesch, Klaus-Peter T1 - Serotonin-specific neurons differentiated from human iPSCs form distinct subtypes with synaptic protein assembly JF - Journal of Neural Transmission N2 - Human induced pluripotent stem cells (hiPSCs) have revolutionized the generation of experimental disease models, but the development of protocols for the differentiation of functionally active neuronal subtypes with defined specification is still in its infancy. While dysfunction of the brain serotonin (5-HT) system has been implicated in the etiology of various neuropsychiatric disorders, investigation of functional human 5-HT specific neurons in vitro has been restricted by technical limitations. We describe an efficient generation of functionally active neurons from hiPSCs displaying 5-HT specification by modification of a previously reported protocol. Furthermore, 5-HT specific neurons were characterized using high-end fluorescence imaging including super-resolution microscopy in combination with electrophysiological techniques. Differentiated hiPSCs synthesize 5-HT, express specific markers, such as tryptophan hydroxylase 2 and 5-HT transporter, and exhibit an electrophysiological signature characteristic of serotonergic neurons, with spontaneous rhythmic activities, broad action potentials and large afterhyperpolarization potentials. 5-HT specific neurons form synapses reflected by the expression of pre- and postsynaptic proteins, such as Bassoon and Homer. The distribution pattern of Bassoon, a marker of the active zone along the soma and extensions of neurons, indicates functionality via volume transmission. Among the high percentage of 5-HT specific neurons (~ 42%), a subpopulation of CDH13 + cells presumably designates dorsal raphe neurons. hiPSC-derived 5-HT specific neuronal cell cultures reflect the heterogeneous nature of dorsal and median raphe nuclei and may facilitate examining the association of serotonergic neuron subpopulations with neuropsychiatric disorders. KW - neuropsychiatric disorders KW - human induced pluripotent stem cell (hiPSC) KW - serotonin-specific neurons KW - median and dorsal raphe KW - synapse formation KW - Cadherin-13 (CDH13) Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-268519 SN - 1435-1463 VL - 128 IS - 2 ER - TY - JOUR A1 - Krones, David A1 - Rühling, Marcel A1 - Becker, Katrin Anne A1 - Kunz, Tobias C. A1 - Sehl, Carolin A1 - Paprotka, Kerstin A1 - Gulbins, Erich A1 - Fraunholz, Martin T1 - Staphylococcus aureus α-Toxin Induces Acid Sphingomyelinase Release From a Human Endothelial Cell Line JF - Frontiers in Microbiology N2 - Staphylococcus aureus (S. aureus) is well known to express a plethora of toxins of which the pore-forming hemolysin A (α-toxin) is the best-studied cytolysin. Pore-forming toxins (PFT) permeabilize host membranes during infection thereby causing concentration-dependent effects in host cell membranes ranging from disordered ion fluxes to cytolysis. Host cells possess defense mechanisms against PFT attack, resulting in endocytosis of the breached membrane area and delivery of repair vesicles to the insulted plasma membrane as well as a concurrent release of membrane repair enzymes. Since PFTs from several pathogens have been shown to recruit membrane repair components, we here investigated whether staphylococcal α-toxin is able to induce these mechanisms in endothelial cells. We show that S. aureus α-toxin induced increase in cytosolic Ca2+ in endothelial cells, which was accompanied by p38 MAPK phosphorylation. Toxin challenge led to increased endocytosis of an extracellular fluid phase marker as well as increased externalization of LAMP1-positive membranes suggesting that peripheral lysosomes are recruited to the insulted plasma membrane. We further observed that thereby the lysosomal protein acid sphingomyelinase (ASM) was released into the cell culture medium. Thus, our results show that staphylococcal α-toxin triggers mechanisms in endothelial cells, which have been implicated in membrane repair after damage of other cell types by different toxins. KW - acid sphingomyelinase KW - staphylococcal alpha-toxin KW - sphingomyelinase release KW - lysosomal recruitment KW - Staphylococcus aureus Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-244843 SN - 1664-302X VL - 12 ER - TY - JOUR A1 - Pütz, Stephanie M. A1 - Kram, Jette A1 - Rauh, Elisa A1 - Kaiser, Sophie A1 - Toews, Romy A1 - Lueningschroer-Wang, Yi A1 - Rieger, Dirk A1 - Raabe, Thomas T1 - Loss of p21-activated kinase Mbt/PAK4 causes Parkinson-like symptoms in Drosophila JF - Disease Models & Mechanisms N2 - Parkinson's disease (PD) provokes bradykinesia, resting tremor, rigidity and postural instability, and also non-motor symptoms such as depression, anxiety, sleep and cognitive impairments. Similar phenotypes can be induced in Drosophila melanogaster through modification of PD-relevant genes or the administration of PD inducing toxins. Recent studies correlated deregulation of human p21-activated kinase 4 (PAK4) with PD, leaving open the question of a causative relationship of mutations in this gene for manifestation of PD symptoms. To determine whether flies lacking the PAK4 homolog Mushroom bodies tiny (Mbt) show PD-like phenotypes, we tested for a variety of PD criteria. Here, we demonstrate that mbt mutant flies show PD-like phenotypes including age-dependent movement deficits, reduced life expectancy and fragmented sleep. They also react to a stressful situation with higher immobility, indicating an influence of Mbt on emotional behavior. Loss of Mbt function has a negative effect on the number of dopaminergic protocerebral anterior medial (PAM) neurons, most likely caused by a proliferation defect of neural progenitors. The age-dependent movement deficits are not accompanied by a corresponding further loss of PAM neurons. Previous studies highlighted the importance of a small PAM subgroup for age-dependent PD motor impairments. We show that impaired motor skills are caused by a lack of Mbt in this PAM subgroup. In addition, a broader re-expression of Mbt in PAM neurons improves life expectancy. Conversely, selective Mbt knockout in the same cells shortens lifespan. We conclude that mutations in Mbt/PAK4 can play a causative role in the development of PD phenotypes. KW - Sleep fragmentation KW - Life expectancy KW - Emotional behavior KW - Dopaminergic PAM cluster neurons KW - Drosophila KW - Parkinson's disease KW - Mbt KW - PAK4 KW - Negative geotaxis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259222 VL - 14 IS - 6 ER - TY - JOUR A1 - Heidrich, Lea A1 - Pinkert, Stefan A1 - Brandl, Roland A1 - Bässler, Claus A1 - Hacker, Hermann A1 - Roth, Nicolas A1 - Busse, Annika A1 - Müller, Jörg A1 - Friess, Nicolas T1 - Noctuid and geometrid moth assemblages show divergent elevational gradients in body size and color lightness JF - Ecography N2 - Previous macroecological studies have suggested that larger and darker insects are favored in cold environments and that the importance of body size and color for the absorption of solar radiation is not limited to diurnal insects. However, whether these effects hold true for local communities and are consistent across taxonomic groups and sampling years remains unexplored. This study examined the variations in body size and color lightness of the two major families of nocturnal moths, Geometridae and Noctuidae, along an elevational gradient of 700 m in Southern Germany. An assemblage-based analysis was performed using community-weighted means and a fourth-corner analysis to test for variations in color and body size among communities as a function of elevation. This was followed by a species-level analysis to test whether species occurrence and abundance along an elevation gradient were related to these traits, after controlling for host plant availability. In both 2007 and 2016, noctuid moth assemblages became larger and darker with increasing elevation, whereas geometrids showed an opposite trend in terms of color lightness and no clear trend in body size. In single species models, the abundance of geometrids, but not of noctuids, was driven by habitat availability. In turn, the abundance of dark-colored noctuids, but not geometrids increased with elevation. While body size and color lightness affect insect physiology and the ability to cope with harsh conditions, divergent trait–environment relationships between both families underline that findings of coarse-scale studies are not necessarily transferable to finer scales. Local abundance and occurrence of noctuids are shaped by morphological traits, whereas that of geometrids are rather shaped by local habitat availability, which can modify their trait–environment-relationship. We discuss potential explanations such as taxon-specific flight characteristics and the effect of microclimatic conditions. KW - insects KW - color lightness KW - body size KW - elevation KW - habitat availability KW - flight characteristics Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256694 VL - 44 IS - 8 ER - TY - JOUR A1 - Garitano-Trojaola, Andoni A1 - Sancho, Ana A1 - Götz, Ralph A1 - Eiring, Patrick A1 - Walz, Susanne A1 - Jetani, Hardikkumar A1 - Gil-Pulido, Jesus A1 - Da Via, Matteo Claudio A1 - Teufel, Eva A1 - Rhodes, Nadine A1 - Haertle, Larissa A1 - Arellano-Viera, Estibaliz A1 - Tibes, Raoul A1 - Rosenwald, Andreas A1 - Rasche, Leo A1 - Hudecek, Michael A1 - Sauer, Markus A1 - Groll, Jürgen A1 - Einsele, Hermann A1 - Kraus, Sabrina A1 - Kortüm, Martin K. T1 - Actin cytoskeleton deregulation confers midostaurin resistance in FLT3-mutant acute myeloid leukemia JF - Communications Biology N2 - The presence of FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) is one of the most frequent mutations in acute myeloid leukemia (AML) and is associated with an unfavorable prognosis. FLT3 inhibitors, such as midostaurin, are used clinically but fail to entirely eradicate FLT3-ITD+AML. This study introduces a new perspective and highlights the impact of RAC1-dependent actin cytoskeleton remodeling on resistance to midostaurin in AML. RAC1 hyperactivation leads resistance via hyperphosphorylation of the positive regulator of actin polymerization N-WASP and antiapoptotic BCL-2. RAC1/N-WASP, through ARP2/3 complex activation, increases the number of actin filaments, cell stiffness and adhesion forces to mesenchymal stromal cells (MSCs) being identified as a biomarker of resistance. Midostaurin resistance can be overcome by a combination of midostaruin, the BCL-2 inhibitor venetoclax and the RAC1 inhibitor Eht1864 in midostaurin-resistant AML cell lines and primary samples, providing the first evidence of a potential new treatment approach to eradicate FLT3-ITD+AML. Garitano-Trojaola et al. used a combination of human acute myeloid leukemia (AML) cell lines and primary samples to show that RAC1-dependent actin cytoskeleton remodeling through BCL2 family plays a key role in resistance to the FLT3 inhibitor, Midostaurin in AML. They showed that by targeting RAC1 and BCL2, Midostaurin resistance was diminished, which potentially paves the way for an innovate treatment approach for FLT3 mutant AML. KW - actin KW - acute myeloid leukaemia Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260709 VL - 4 IS - 1 ER - TY - JOUR A1 - Castañeda Londono, Paula Andrea A1 - Banholzer, Nicole A1 - Bannermann, Bridget A1 - Kramer, Susanne T1 - Is mRNA decapping activity of ApaH like phosphatases (ALPH’s) the reason for the loss of cytoplasmic ALPH’s in all eukaryotes but Kinetoplastida? JF - BMC Ecology and Evolution N2 - Background: ApaH like phosphatases (ALPHs) originate from the bacterial ApaH protein and are present in eukaryotes of all eukaryotic super-groups; still, only two proteins have been functionally characterised. One is ALPH1 from the Kinetoplastid Trypanosoma brucei that we recently found to be the mRNA decapping enzyme of the parasite. mRNA decapping by ALPHs is unprecedented in eukaryotes, which usually use nudix hydrolases, but the bacterial ancestor protein ApaH was recently found to decap non-conventional caps of bacterial mRNAs. These findings prompted us to explore whether mRNA decapping by ALPHs is restricted to Kinetoplastida or more widespread among eukaryotes. Results: We screened 824 eukaryotic proteomes with a newly developed Python-based algorithm for the presence of ALPHs and used the data to refine phylogenetic distribution, conserved features, additional domains and predicted intracellular localisation of ALPHs. We found that most eukaryotes have either no ALPH (500/824) or very short ALPHs, consisting almost exclusively of the catalytic domain. These ALPHs had mostly predicted non-cytoplasmic localisations, often supported by the presence of transmembrane helices and signal peptides and in two cases (one in this study) by experimental data. The only exceptions were ALPH1 homologues from Kinetoplastida, that all have unique C-terminal and mostly unique N-terminal extension, and at least the T. brucei enzyme localises to the cytoplasm. Surprisingly, despite of these non-cytoplasmic localisations, ALPHs from all eukaryotic super-groups had in vitro mRNA decapping activity. Conclusions: ALPH was present in the last common ancestor of eukaryotes, but most eukaryotes have either lost the enzyme since, or use it exclusively outside the cytoplasm in organelles in a version consisting of the catalytic domain only. While our data provide no evidence for the presence of further mRNA decapping enzymes among eukaryotic ALPHs, the broad substrate range of ALPHs that includes mRNA caps provides an explanation for the selection against the presence of a cytoplasmic ALPH protein as a mean to protect mRNAs from unregulated degradation. Kinetoplastida succeeded to exploit ALPH as their mRNA decapping enzyme, likely using the Kinetoplastida-unique N- and C-terminal extensions for regulation. KW - ApaH like phosphatase KW - ApaH KW - ALPH KW - Trypanosoma brucei KW - mRNA decapping KW - m7G cap KW - mRNA cap KW - ALPH1 KW - Kinetoplastida Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261180 VL - 21 ER - TY - JOUR A1 - Mrestani, Achmed A1 - Pauli, Martin A1 - Kollmannsberger, Philip A1 - Repp, Felix A1 - Kittel, Robert J. A1 - Eilers, Jens A1 - Doose, Sören A1 - Sauer, Markus A1 - Sirén, Anna-Leena A1 - Heckmann, Manfred A1 - Paul, Mila M. T1 - Active zone compaction correlates with presynaptic homeostatic potentiation JF - Cell Reports N2 - Neurotransmitter release is stabilized by homeostatic plasticity. Presynaptic homeostatic potentiation (PHP) operates on timescales ranging from minute- to life-long adaptations and likely involves reorganization of presynaptic active zones (AZs). At Drosophila melanogaster neuromuscular junctions, earlier work ascribed AZ enlargement by incorporating more Bruchpilot (Brp) scaffold protein a role in PHP. We use localization microscopy (direct stochastic optical reconstruction microscopy [dSTORM]) and hierarchical density-based spatial clustering of applications with noise (HDBSCAN) to study AZ plasticity during PHP at the synaptic mesoscale. We find compaction of individual AZs in acute philanthotoxin-induced and chronic genetically induced PHP but unchanged copy numbers of AZ proteins. Compaction even occurs at the level of Brp subclusters, which move toward AZ centers, and in Rab3 interacting molecule (RIM)-binding protein (RBP) subclusters. Furthermore, correlative confocal and dSTORM imaging reveals how AZ compaction in PHP translates into apparent increases in AZ area and Brp protein content, as implied earlier. KW - active zone KW - Bruchpilot KW - RIM-binding protein KW - compaction KW - homeostasis KW - presynaptic plasticity KW - super-resolution microscopy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265497 VL - 37 IS - 1 ER - TY - JOUR A1 - Lehenberger, Maximilian A1 - Benkert, Markus A1 - Biedermann, Peter H. W. T1 - Ethanol-Enriched Substrate Facilitates Ambrosia Beetle Fungi, but Inhibits Their Pathogens and Fungal Symbionts of Bark Beetles JF - Frontiers in Microbiology N2 - Bark beetles (sensu lato) colonize woody tissues like phloem or xylem and are associated with a broad range of micro-organisms. Specific fungi in the ascomycete orders Hypocreales, Microascales and Ophistomatales as well as the basidiomycete Russulales have been found to be of high importance for successful tree colonization and reproduction in many species. While fungal mutualisms are facultative for most phloem-colonizing bark beetles (sensu stricto), xylem-colonizing ambrosia beetles are long known to obligatorily depend on mutualistic fungi for nutrition of adults and larvae. Recently, a defensive role of fungal mutualists for their ambrosia beetle hosts was revealed: Few tested mutualists outcompeted other beetle-antagonistic fungi by their ability to produce, detoxify and metabolize ethanol, which is naturally occurring in stressed and/or dying trees that many ambrosia beetle species preferentially colonize. Here, we aim to test (i) how widespread beneficial effects of ethanol are among the independently evolved lineages of ambrosia beetle fungal mutualists and (ii) whether it is also present in common fungal symbionts of two bark beetle species (Ips typographus, Dendroctonus ponderosae) and some general fungal antagonists of bark and ambrosia beetle species. The majority of mutualistic ambrosia beetle fungi tested benefited (or at least were not harmed) by the presence of ethanol in terms of growth parameters (e.g., biomass), whereas fungal antagonists were inhibited. This confirms the competitive advantage of nutritional mutualists in the beetle’s preferred, ethanol-containing host material. Even though most bark beetle fungi are found in the same phylogenetic lineages and ancestral to the ambrosia beetle (sensu stricto) fungi, most of them were highly negatively affected by ethanol and only a nutritional mutualist of Dendroctonus ponderosae benefited, however. This suggests that ethanol tolerance is a derived trait in nutritional fungal mutualists, particularly in ambrosia beetles that show cooperative farming of their fungi. KW - ambrosia fungi KW - bark and ambrosia beetles KW - symbiont selection KW - ethanol KW - detoxification KW - Ips typographus Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-222222 SN - 1664-302X VL - 11 ER - TY - JOUR A1 - Schuster, Sarah A1 - Lisack, Jaime A1 - Subota, Ines A1 - Zimmermann, Henriette A1 - Reuter, Christian A1 - Mueller, Tobias A1 - Morriswood, Brooke A1 - Engstler, Markus T1 - Unexpected plasiticty in the life cycle of Trypanosoma brucei JF - eLife N2 - African trypanosomes cause sleeping sickness in humans and nagana in cattle. These unicellular parasites are transmitted by the bloodsucking tsetse fly. In the mammalian host’s circulation, proliferating slender stage cells differentiate into cell cycle-arrested stumpy stage cells when they reach high population densities. This stage transition is thought to fulfil two main functions: first, it auto-regulates the parasite load in the host; second, the stumpy stage is regarded as the only stage capable of successful vector transmission. Here, we show that proliferating slender stage trypanosomes express the mRNA and protein of a known stumpy stage marker, complete the complex life cycle in the fly as successfully as the stumpy stage, and require only a single parasite for productive infection. These findings suggest a reassessment of the traditional view of the trypanosome life cycle. They may also provide a solution to a long-lasting paradox, namely the successful transmission of parasites in chronic infections, despite low parasitemia. KW - trypanosoma KW - sleeping sickness KW - tsetse fly KW - transmission KW - life cycle KW - development Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261744 VL - 10 ER - TY - JOUR A1 - Kühnemundt, Johanna A1 - Leifeld, Heidi A1 - Scherg, Florian A1 - Schmitt, Matthias A1 - Nelke, Lena C. A1 - Schmitt, Tina A1 - Bauer, Florentin A1 - Göttlich, Claudia A1 - Fuchs, Maximilian A1 - Kunz, Meik A1 - Peindl, Matthias A1 - Brähler, Caroline A1 - Kronenthaler, Corinna A1 - Wischhusen, Jörg A1 - Prelog, Martina A1 - Walles, Heike A1 - Dandekar, Thomas A1 - Dandekar, Gudrun A1 - Nietzer, Sarah L. T1 - Modular micro-physiological human tumor/tissue models based on decellularized tissue for improved preclinical testing JF - ALTEX N2 - High attrition-rates entailed by drug testing in 2D cell culture and animal models stress the need for improved modeling of human tumor tissues. In previous studies our 3D models on a decellularized tissue matrix have shown better predictivity and higher chemoresistance. A single porcine intestine yields material for 150 3D models of breast, lung, colorectal cancer (CRC) or leukemia. The uniquely preserved structure of the basement membrane enables physiological anchorage of endothelial cells and epithelial-derived carcinoma cells. The matrix provides different niches for cell growth: on top as monolayer, in crypts as aggregates and within deeper layers. Dynamic culture in bioreactors enhances cell growth. Comparing gene expression between 2D and 3D cultures, we observed changes related to proliferation, apoptosis and stemness. For drug target predictions, we utilize tumor-specific sequencing data in our in silico model finding an additive effect of metformin and gefitinib treatment for lung cancer in silico, validated in vitro. To analyze mode-of-action, immune therapies such as trispecific T-cell engagers in leukemia, as well as toxicity on non-cancer cells, the model can be modularly enriched with human endothelial cells (hECs), immune cells and fibroblasts. Upon addition of hECs, transmigration of immune cells through the endothelial barrier can be investigated. In an allogenic CRC model we observe a lower basic apoptosis rate after applying PBMCs in 3D compared to 2D, which offers new options to mirror antigen-specific immunotherapies in vitro. In conclusion, we present modular human 3D tumor models with tissue-like features for preclinical testing to reduce animal experiments. KW - modular tumor tissue models KW - invasiveness KW - bioreactor culture KW - combinatorial drug predictions KW - immunotherapies Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-231465 VL - 38 ER - TY - JOUR A1 - Helfrich-Förster, C. A1 - Monecke, S. A1 - Spiousas, I. A1 - Hovestadt, T. A1 - Mitesser, O. A1 - Wehr, T. A. T1 - Women temporarily synchronize their menstrual cycles with the luminance and gravimetric cycles of the Moon JF - Science Advances N2 - Many species synchronize reproductive behavior with a particular phase of the lunar cycle to increase reproductive success. In humans, a lunar influence on reproductive behavior remains controversial, although the human menstrual cycle has a period close to that of the lunar cycle. Here, we analyzed long-term menstrual recordings of individual women with distinct methods for biological rhythm analysis. We show that women’s menstrual cycles with a period longer than 27 days were intermittently synchronous with the Moon’s luminance and/or gravimetric cycles. With age and upon exposure to artificial nocturnal light, menstrual cycles shortened and lost this synchrony. We hypothesize that in ancient times, human reproductive behavior was synchronous with the Moon but that our modern lifestyles have changed reproductive physiology and behavior. KW - moon KW - menstrual cycles Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-231479 VL - 7 IS - 5 ER - TY - JOUR A1 - Kuhlemann, Alexander A1 - Beliu, Gerti A1 - Janzen, Dieter A1 - Petrini, Enrica Maria A1 - Taban, Danush A1 - Helmerich, Dominic A. A1 - Doose, Sören A1 - Bruno, Martina A1 - Barberis, Andrea A1 - Villmann, Carmen A1 - Sauer, Markus A1 - Werner, Christian T1 - Genetic Code Expansion and Click-Chemistry Labeling to Visualize GABA-A Receptors by Super-Resolution Microscopy JF - Frontiers in Synaptic Neuroscience N2 - Fluorescence labeling of difficult to access protein sites, e.g., in confined compartments, requires small fluorescent labels that can be covalently tethered at well-defined positions with high efficiency. Here, we report site-specific labeling of the extracellular domain of γ-aminobutyric acid type A (GABA-A) receptor subunits by genetic code expansion (GCE) with unnatural amino acids (ncAA) combined with bioorthogonal click-chemistry labeling with tetrazine dyes in HEK-293-T cells and primary cultured neurons. After optimization of GABA-A receptor expression and labeling efficiency, most effective variants were selected for super-resolution microscopy and functionality testing by whole-cell patch clamp. Our results show that GCE with ncAA and bioorthogonal click labeling with small tetrazine dyes represents a versatile method for highly efficient site-specific fluorescence labeling of proteins in a crowded environment, e.g., extracellular protein domains in confined compartments such as the synaptic cleft. KW - super-resolution microscopy (SRM) KW - click-chemistry KW - dSTORM KW - GABA-A receptor KW - genetic code expansion Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-251035 SN - 1663-3563 VL - 13 ER - TY - JOUR A1 - Peters, Simon A1 - Kaiser, Lena A1 - Fink, Julian A1 - Schumacher, Fabian A1 - Perschin, Veronika A1 - Schlegel, Jan A1 - Sauer, Markus A1 - Stigloher, Christian A1 - Kleuser, Burkhard A1 - Seibel, Juergen A1 - Schubert-Unkmeir, Alexandra T1 - Click-correlative light and electron microscopy (click-AT-CLEM) for imaging and tracking azido-functionalized sphingolipids in bacteria JF - Scientific Reports N2 - Sphingolipids, including ceramides, are a diverse group of structurally related lipids composed of a sphingoid base backbone coupled to a fatty acid side chain and modified terminal hydroxyl group. Recently, it has been shown that sphingolipids show antimicrobial activity against a broad range of pathogenic microorganisms. The antimicrobial mechanism, however, remains so far elusive. Here, we introduce 'click-AT-CLEM', a labeling technique for correlated light and electron microscopy (CLEM) based on the super-resolution array tomography (srAT) approach and bio-orthogonal click chemistry for imaging of azido-tagged sphingolipids to directly visualize their interaction with the model Gram-negative bacterium Neisseria meningitidis at subcellular level. We observed ultrastructural damage of bacteria and disruption of the bacterial outer membrane induced by two azido-modified sphingolipids by scanning electron microscopy and transmission electron microscopy. Click-AT-CLEM imaging and mass spectrometry clearly revealed efficient incorporation of azido-tagged sphingolipids into the outer membrane of Gram-negative bacteria as underlying cause of their antimicrobial activity. KW - antimicrobials KW - biological techniques KW - imaging KW - microbiology KW - microbiology techniques KW - microscopy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259147 VL - 11 IS - 1 ER - TY - JOUR A1 - Haack, Stephanie A1 - Baiker, Sarah A1 - Schlegel, Jan A1 - Sauer, Markus A1 - Sparwasser, Tim A1 - Langenhorst, Daniela A1 - Beyersdorf, Niklas T1 - Superagonistic CD28 stimulation induces IFN‐γ release from mouse T helper 1 cells in vitro and in vivo JF - European Journal of Immunology N2 - Like human Th1 cells, mouse Th1 cells also secrete IFN‐γ upon stimulation with a superagonistic anti‐CD28 monoclonal antibody (CD28‐SA). Crosslinking of the CD28‐SA via FcR and CD40‐CD40L interactions greatly increased IFN‐γ release. Our data stress the utility of the mouse as a model organism for immune responses in humans. KW - CD28 KW - Th1 cells KW - cytokine release KW - interferon γ KW - Superagonistic antibody Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239028 VL - 51 IS - 3 SP - 738 EP - 741 ER - TY - JOUR A1 - Scherer, Marc A1 - Fleishman, Sarel J. A1 - Jones, Patrik R. A1 - Dandekar, Thomas A1 - Bencurova, Elena T1 - Computational Enzyme Engineering Pipelines for Optimized Production of Renewable Chemicals JF - Frontiers in Bioengineering and Biotechnology N2 - To enable a sustainable supply of chemicals, novel biotechnological solutions are required that replace the reliance on fossil resources. One potential solution is to utilize tailored biosynthetic modules for the metabolic conversion of CO2 or organic waste to chemicals and fuel by microorganisms. Currently, it is challenging to commercialize biotechnological processes for renewable chemical biomanufacturing because of a lack of highly active and specific biocatalysts. As experimental methods to engineer biocatalysts are time- and cost-intensive, it is important to establish efficient and reliable computational tools that can speed up the identification or optimization of selective, highly active, and stable enzyme variants for utilization in the biotechnological industry. Here, we review and suggest combinations of effective state-of-the-art software and online tools available for computational enzyme engineering pipelines to optimize metabolic pathways for the biosynthesis of renewable chemicals. Using examples relevant for biotechnology, we explain the underlying principles of enzyme engineering and design and illuminate future directions for automated optimization of biocatalysts for the assembly of synthetic metabolic pathways. KW - computational KW - enzyme KW - engineering KW - design KW - biomanufacturing KW - biofuel KW - microbes KW - metabolism Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-240598 SN - 2296-4185 VL - 9 ER - TY - JOUR A1 - Makbul, Cihan A1 - Khayenko, Vladimir A1 - Maric, Hans Michael A1 - Böttcher, Bettina T1 - Conformational Plasticity of Hepatitis B Core Protein Spikes Promotes Peptide Binding Independent of the Secretion Phenotype JF - Microorganisms N2 - Hepatitis B virus is a major human pathogen, which forms enveloped virus particles. During viral maturation, membrane-bound hepatitis B surface proteins package hepatitis B core protein capsids. This process is intercepted by certain peptides with an “LLGRMKG” motif that binds to the capsids at the tips of dimeric spikes. With microcalorimetry, electron cryo microscopy and peptide microarray-based screens, we have characterized the structural and thermodynamic properties of peptide binding to hepatitis B core protein capsids with different secretion phenotypes. The peptide “GSLLGRMKGA” binds weakly to hepatitis B core protein capsids and mutant capsids with a premature (F97L) or low-secretion phenotype (L60V and P5T). With electron cryo microscopy, we provide novel structures for L60V and P5T and demonstrate that binding occurs at the tips of the spikes at the dimer interface, splaying the helices apart independent of the secretion phenotype. Peptide array screening identifies “SLLGRM” as the core binding motif. This shortened motif binds only to one of the two spikes in the asymmetric unit of the capsid and induces a much smaller conformational change. Altogether, these comprehensive studies suggest that the tips of the spikes act as an autonomous binding platform that is unaffected by mutations that affect secretion phenotypes. KW - hepatitis B core protein KW - hepatitis B virus KW - peptide inhibitor of envelopment KW - isothermal titration calorimetry KW - electron cryo microscopy KW - low-secretion phenotype mutants KW - peptide microarray Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236720 SN - 2076-2607 VL - 9 IS - 5 ER - TY - JOUR A1 - Osmanoglu, Özge A1 - Khaled AlSeiari, Mariam A1 - AlKhoori, Hasa Abduljaleel A1 - Shams, Shabana A1 - Bencurova, Elena A1 - Dandekar, Thomas A1 - Naseem, Muhammad T1 - Topological Analysis of the Carbon-Concentrating CETCH Cycle and a Photorespiratory Bypass Reveals Boosted CO\(_2\)-Sequestration by Plants JF - Frontiers in Bioengineering and Biotechnology N2 - Synthetically designed alternative photorespiratory pathways increase the biomass of tobacco and rice plants. Likewise, some in planta–tested synthetic carbon-concentrating cycles (CCCs) hold promise to increase plant biomass while diminishing atmospheric carbon dioxide burden. Taking these individual contributions into account, we hypothesize that the integration of bypasses and CCCs will further increase plant productivity. To test this in silico, we reconstructed a metabolic model by integrating photorespiration and photosynthesis with the synthetically designed alternative pathway 3 (AP3) enzymes and transporters. We calculated fluxes of the native plant system and those of AP3 combined with the inhibition of the glycolate/glycerate transporter by using the YANAsquare package. The activity values corresponding to each enzyme in photosynthesis, photorespiration, and for synthetically designed alternative pathways were estimated. Next, we modeled the effect of the crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (CETCH), which is a set of natural and synthetically designed enzymes that fix CO₂ manifold more than the native Calvin–Benson–Bassham (CBB) cycle. We compared estimated fluxes across various pathways in the native model and under an introduced CETCH cycle. Moreover, we combined CETCH and AP3-w/plgg1RNAi, and calculated the fluxes. We anticipate higher carbon dioxide–harvesting potential in plants with an AP3 bypass and CETCH–AP3 combination. We discuss the in vivo implementation of these strategies for the improvement of C3 plants and in natural high carbon harvesters. KW - CO2-sequestration KW - photorespiration KW - elementary modes KW - synthetic pathways KW - carboxylation KW - metabolic modeling KW - CETCH cycle Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-249260 SN - 2296-4185 VL - 9 ER - TY - JOUR A1 - Helmprobst, Frederik A1 - Kneitz, Susanne A1 - Klotz, Barbara A1 - Naville, Magali A1 - Dechaud, Corentin A1 - Volff, Jean-Nicolas A1 - Schartl, Manfred T1 - Differential expression of transposable elements in the medaka melanoma model JF - PLoS One N2 - Malignant melanoma incidence is rising worldwide. Its treatment in an advanced state is difficult, and the prognosis of this severe disease is still very poor. One major source of these difficulties is the high rate of metastasis and increased genomic instability leading to a high mutation rate and the development of resistance against therapeutic approaches. Here we investigate as one source of genomic instability the contribution of activation of transposable elements (TEs) within the tumor. We used the well-established medaka melanoma model and RNA-sequencing to investigate the differential expression of TEs in wildtype and transgenic fish carrying melanoma. We constructed a medaka-specific TE sequence library and identified TE sequences that were specifically upregulated in tumors. Validation by qRT- PCR confirmed a specific upregulation of a LINE and an LTR element in malignant melanomas of transgenic fish. KW - melanoma KW - genomics KW - transposable elements KW - cancer genomics KW - malignant tumors KW - gene prediction KW - human genomics KW - retrotransposons Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260615 VL - 16 IS - 10 ER - TY - JOUR A1 - Meir, Michael A1 - Kannapin, Felix A1 - Diefenbacher, Markus A1 - Ghoreishi, Yalda A1 - Kollmann, Catherine A1 - Flemming, Sven A1 - Germer, Christoph-Thomas A1 - Waschke, Jens A1 - Leven, Patrick A1 - Schneider, Reiner A1 - Wehner, Sven A1 - Burkard, Natalie A1 - Schlegel, Nicolas T1 - Intestinal epithelial barrier maturation by enteric glial cells is GDNF-dependent JF - International Journal of Molecular Sciences N2 - Enteric glial cells (EGCs) of the enteric nervous system are critically involved in the maintenance of intestinal epithelial barrier function (IEB). The underlying mechanisms remain undefined. Glial cell line-derived neurotrophic factor (GDNF) contributes to IEB maturation and may therefore be the predominant mediator of this process by EGCs. Using GFAP\(^{cre}\) x Ai14\(^{floxed}\) mice to isolate EGCs by Fluorescence-activated cell sorting (FACS), we confirmed that they synthesize GDNF in vivo as well as in primary cultures demonstrating that EGCs are a rich source of GDNF in vivo and in vitro. Co-culture of EGCs with Caco2 cells resulted in IEB maturation which was abrogated when GDNF was either depleted from EGC supernatants, or knocked down in EGCs or when the GDNF receptor RET was blocked. Further, TNFα-induced loss of IEB function in Caco2 cells and in organoids was attenuated by EGC supernatants or by recombinant GDNF. These barrier-protective effects were blunted when using supernatants from GDNF-deficient EGCs or by RET receptor blockade. Together, our data show that EGCs produce GDNF to maintain IEB function in vitro through the RET receptor. KW - enteric glial cells KW - neurotrophic factors KW - intestinal epithelial barrier KW - GDNF5 KW - RET6 KW - inflammatory bowel disease KW - enteric nervous system KW - gut barrier KW - intercellular junctions Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258913 SN - 1422-0067 VL - 22 IS - 4 ER - TY - JOUR A1 - Schneider-Schaulies, Sibylle A1 - Schumacher, Fabian A1 - Wigger, Dominik A1 - Schöl, Marie A1 - Waghmare, Trushnal A1 - Schlegel, Jan A1 - Seibel, Jürgen A1 - Kleuser, Burkhard T1 - Sphingolipids: effectors and Achilles heals in viral infections? JF - Cells N2 - As viruses are obligatory intracellular parasites, any step during their life cycle strictly depends on successful interaction with their particular host cells. In particular, their interaction with cellular membranes is of crucial importance for most steps in the viral replication cycle. Such interactions are initiated by uptake of viral particles and subsequent trafficking to intracellular compartments to access their replication compartments which provide a spatially confined environment concentrating viral and cellular components, and subsequently, employ cellular membranes for assembly and exit of viral progeny. The ability of viruses to actively modulate lipid composition such as sphingolipids (SLs) is essential for successful completion of the viral life cycle. In addition to their structural and biophysical properties of cellular membranes, some sphingolipid (SL) species are bioactive and as such, take part in cellular signaling processes involved in regulating viral replication. It is especially due to the progress made in tools to study accumulation and dynamics of SLs, which visualize their compartmentalization and identify interaction partners at a cellular level, as well as the availability of genetic knockout systems, that the role of particular SL species in the viral replication process can be analyzed and, most importantly, be explored as targets for therapeutic intervention. KW - glycosphingolipids KW - ceramides KW - sphingosine 1-phosphate KW - sphingomyelinase KW - HIV KW - SARS-CoV-2 KW - measles Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-245151 SN - 2073-4409 VL - 10 IS - 9 ER - TY - JOUR A1 - Leverkus, Alexandro B. A1 - Thorn, Simon A1 - Gustafsson, Lena A1 - Noss, Reed A1 - Müller, Jörg A1 - Pausas, Juli G. A1 - Lindenmayer, David B. T1 - Environmental policies to cope with novel disturbance regimes–steps to address a world scientists’ warning to humanity JF - Environmental Research Letters N2 - No abstract available. KW - global change KW - novel disturbance KW - regime shift KW - forest management KW - risk management Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-254180 SN - 1748-9326 VL - 16 IS - 2 ER - TY - JOUR A1 - Colizzi, Francesca Sara A1 - Beer, Katharina A1 - Cuti, Paolo A1 - Deppisch, Peter A1 - Martínez Torres, David A1 - Yoshii, Taishi A1 - Helfrich-Förster, Charlotte T1 - Antibodies Against the Clock Proteins Period and Cryptochrome Reveal the Neuronal Organization of the Circadian Clock in the Pea Aphid JF - Frontiers in Physiology N2 - Circadian clocks prepare the organism to cyclic environmental changes in light, temperature, or food availability. Here, we characterized the master clock in the brain of a strongly photoperiodic insect, the aphid Acyrthosiphon pisum, immunohistochemically with antibodies against A. pisum Period (PER), Drosophila melanogaster Cryptochrome (CRY1), and crab Pigment-Dispersing Hormone (PDH). The latter antibody detects all so far known PDHs and PDFs (Pigment-Dispersing Factors), which play a dominant role in the circadian system of many arthropods. We found that, under long days, PER and CRY are expressed in a rhythmic manner in three regions of the brain: the dorsal and lateral protocerebrum and the lamina. No staining was detected with anti-PDH, suggesting that aphids lack PDF. All the CRY1-positive cells co-expressed PER and showed daily PER/CRY1 oscillations of high amplitude, while the PER oscillations of the CRY1-negative PER neurons were of considerable lower amplitude. The CRY1 oscillations were highly synchronous in all neurons, suggesting that aphid CRY1, similarly to Drosophila CRY1, is light sensitive and its oscillations are synchronized by light-dark cycles. Nevertheless, in contrast to Drosophila CRY1, aphid CRY1 was not degraded by light, but steadily increased during the day and decreased during the night. PER was always located in the nuclei of the clock neurons, while CRY was predominantly cytoplasmic and revealed the projections of the PER/CRY1-positive neurons. We traced the PER/CRY1-positive neurons through the aphid protocerebrum discovering striking similarities with the circadian clock of D. melanogaster: The CRY1 fibers innervate the dorsal and lateral protocerebrum and putatively connect the different PER-positive neurons with each other. They also run toward the pars intercerebralis, which controls hormone release via the neurohemal organ, the corpora cardiaca. In contrast to Drosophila, the CRY1-positive fibers additionally travel directly toward the corpora cardiaca and the close-by endocrine gland, corpora allata. This suggests a direct link between the circadian clock and the photoperiodic control of hormone release that can be studied in the future. KW - aphids KW - circadian clock KW - cryptochrome KW - period KW - hemiptera KW - insects KW - photoperiodism Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-242909 SN - 1664-042X VL - 12 ER - TY - JOUR A1 - Geisinger, Adriana A1 - Rodríguez-Casuriaga, Rosana A1 - Benavente, Ricardo T1 - Transcriptomics of Meiosis in the Male Mouse JF - Frontiers in Cell and Developmental Biology N2 - Molecular studies of meiosis in mammals have been long relegated due to some intrinsic obstacles, namely the impossibility to reproduce the process in vitro, and the difficulty to obtain highly pure isolated cells of the different meiotic stages. In the recent years, some technical advances, from the improvement of flow cytometry sorting protocols to single-cell RNAseq, are enabling to profile the transcriptome and its fluctuations along the meiotic process. In this mini-review we will outline the diverse methodological approaches that have been employed, and some of the main findings that have started to arise from these studies. As for practical reasons most studies have been carried out in males, and mostly using mouse as a model, our focus will be on murine male meiosis, although also including specific comments about humans. Particularly, we will center on the controversy about gene expression during early meiotic prophase; the widespread existing gap between transcription and translation in meiotic cells; the expression patterns and potential roles of meiotic long non-coding RNAs; and the visualization of meiotic sex chromosome inactivation from the RNAseq perspective. KW - meiosis KW - transcriptomics KW - RNAseq KW - meiotic prophase KW - spermatogenesis KW - lncRNAs KW - MSCI KW - spermatogenic cell sorting Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-231032 SN - 2296-634X VL - 9 ER - TY - JOUR A1 - Hartmann, Oliver A1 - Reissland, Michaela A1 - Maier, Carina R. A1 - Fischer, Thomas A1 - Prieto-Garcia, Cristian A1 - Baluapuri, Apoorva A1 - Schwarz, Jessica A1 - Schmitz, Werner A1 - Garrido-Rodriguez, Martin A1 - Pahor, Nikolett A1 - Davies, Clare C. A1 - Bassermann, Florian A1 - Orian, Amir A1 - Wolf, Elmar A1 - Schulze, Almut A1 - Calzado, Marco A. A1 - Rosenfeldt, Mathias T. A1 - Diefenbacher, Markus E. T1 - Implementation of CRISPR/Cas9 Genome Editing to Generate Murine Lung Cancer Models That Depict the Mutational Landscape of Human Disease JF - Frontiers in Cell and Developmental Biology N2 - Lung cancer is the most common cancer worldwide and the leading cause of cancer-related deaths in both men and women. Despite the development of novel therapeutic interventions, the 5-year survival rate for non-small cell lung cancer (NSCLC) patients remains low, demonstrating the necessity for novel treatments. One strategy to improve translational research is the development of surrogate models reflecting somatic mutations identified in lung cancer patients as these impact treatment responses. With the advent of CRISPR-mediated genome editing, gene deletion as well as site-directed integration of point mutations enabled us to model human malignancies in more detail than ever before. Here, we report that by using CRISPR/Cas9-mediated targeting of Trp53 and KRas, we recapitulated the classic murine NSCLC model Trp53fl/fl:lsl-KRasG12D/wt. Developing tumors were indistinguishable from Trp53fl/fl:lsl-KRasG12D/wt-derived tumors with regard to morphology, marker expression, and transcriptional profiles. We demonstrate the applicability of CRISPR for tumor modeling in vivo and ameliorating the need to use conventional genetically engineered mouse models. Furthermore, tumor onset was not only achieved in constitutive Cas9 expression but also in wild-type animals via infection of lung epithelial cells with two discrete AAVs encoding different parts of the CRISPR machinery. While conventional mouse models require extensive husbandry to integrate new genetic features allowing for gene targeting, basic molecular methods suffice to inflict the desired genetic alterations in vivo. Utilizing the CRISPR toolbox, in vivo cancer research and modeling is rapidly evolving and enables researchers to swiftly develop new, clinically relevant surrogate models for translational research. KW - non-small cell lung cancer KW - CRISPR-Cas9 KW - mouse model KW - lung cancer KW - MYC KW - JUN Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230949 SN - 2296-634X VL - 9 ER - TY - JOUR A1 - Yu, Yidong A1 - Wolf, Ann-Katrin A1 - Thusek, Sina A1 - Heinekamp, Thorsten A1 - Bromley, Michael A1 - Krappmann, Sven A1 - Terpitz, Ulrich A1 - Voigt, Kerstin A1 - Brakhage, Axel A. A1 - Beilhack, Andreas T1 - Direct Visualization of Fungal Burden in Filamentous Fungus-Infected Silkworms JF - Journal of Fungi N2 - Invasive fungal infections (IFIs) are difficult to diagnose and to treat and, despite several available antifungal drugs, cause high mortality rates. In the past decades, the incidence of IFIs has continuously increased. More recently, SARS-CoV-2-associated lethal IFIs have been reported worldwide in critically ill patients. Combating IFIs requires a more profound understanding of fungal pathogenicity to facilitate the development of novel antifungal strategies. Animal models are indispensable for studying fungal infections and to develop new antifungals. However, using mammalian animal models faces various hurdles including ethical issues and high costs, which makes large-scale infection experiments extremely challenging. To overcome these limitations, we optimized an invertebrate model and introduced a simple calcofluor white (CW) staining protocol to macroscopically and microscopically monitor disease progression in silkworms (Bombyx mori) infected with the human pathogenic filamentous fungi Aspergillus fumigatus and Lichtheimia corymbifera. This advanced silkworm A. fumigatus infection model could validate knockout mutants with either attenuated, strongly attenuated or unchanged virulence. Finally, CW staining allowed us to efficiently visualize antifungal treatment outcomes in infected silkworms. Conclusively, we here present a powerful animal model combined with a straightforward staining protocol to expedite large-scale in vivo research of fungal pathogenicity and to investigate novel antifungal candidates. KW - fungal infection model KW - calcofluor white staining KW - Aspergillus KW - Lichtheimia KW - silkworm Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228855 SN - 2309-608X VL - 7 IS - 2 ER - TY - JOUR A1 - Hensgen, Ronja A1 - England, Laura A1 - Homberg, Uwe A1 - Pfeiffer, Keram T1 - Neuroarchitecture of the central complex in the brain of the honeybee: Neuronal cell types JF - Journal of Comparative Neurology N2 - The central complex (CX) in the insect brain is a higher order integration center that controls a number of behaviors, most prominently goal directed locomotion. The CX comprises the protocerebral bridge (PB), the upper division of the central body (CBU), the lower division of the central body (CBL), and the paired noduli (NO). Although spatial orientation has been extensively studied in honeybees at the behavioral level, most electrophysiological and anatomical analyses have been carried out in other insect species, leaving the morphology and physiology of neurons that constitute the CX in the honeybee mostly enigmatic. The goal of this study was to morphologically identify neuronal cell types of the CX in the honeybee Apis mellifera. By performing iontophoretic dye injections into the CX, we traced 16 subtypes of neuron that connect a subdivision of the CX with other regions in the bee's central brain, and eight subtypes that mainly interconnect different subdivisions of the CX. They establish extensive connections between the CX and the lateral complex, the superior protocerebrum and the posterior protocerebrum. Characterized neuron classes and subtypes are morphologically similar to those described in other insects, suggesting considerable conservation in the neural network relevant for orientation. KW - RRID: AB_2337244 KW - RRID: AB_2315425 KW - central complex KW - insect brain KW - neuroanatomy KW - sky compass KW - Apis mellifera Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-215566 VL - 529 ER - TY - JOUR A1 - Kunz, Tobias C. A1 - Rühling, Marcel A1 - Moldovan, Adriana A1 - Paprotka, Kerstin A1 - Kozjak-Pavlovic, Vera A1 - Rudel, Thomas A1 - Fraunholz, Martin T1 - The Expandables: Cracking the Staphylococcal Cell Wall for Expansion Microscopy JF - Frontiers in Cellular and Infection Microbiology N2 - Expansion Microscopy (ExM) is a novel tool improving the resolution of fluorescence microscopy by linking the sample into a hydrogel that gets physically expanded in water. Previously, we have used ExM to visualize the intracellular Gram-negative pathogens Chlamydia trachomatis, Simkania negevensis, and Neisseria gonorrhoeae. Gram-positive bacteria have a rigid and thick cell wall that impedes classic expansion strategies. Here we developed an approach, which included a series of enzymatic treatments resulting in isotropic 4× expansion of the Gram-positive pathogen Staphylococcus aureus. We further demonstrate the suitability of the technique for imaging of planktonic bacteria as well as endocytosed, intracellular bacteria at a spatial resolution of approximately 60 nm with conventional confocal laser scanning microscopy. KW - high-resolution imaging KW - endosomes KW - autophagosomes KW - host-pathogen interaction KW - expansion microscopy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-232292 SN - 2235-2988 VL - 11 ER - TY - JOUR A1 - Du, Baoguo A1 - Ma, Yuhua A1 - Yáñez‐Serrano, Ana Maria A1 - Arab, Leila A1 - Fasbender, Lukas A1 - Alfarraj, Saleh A1 - Albasher, Gadah A1 - Hedrich, Rainer A1 - White, Philip J. A1 - Werner, Christiane A1 - Rennenberg, Heinz T1 - Physiological responses of date palm (Phoenix dactylifera) seedlings to seawater and flooding JF - New Phytologist N2 - In their natural environment along coast lines, date palms are exposed to seawater inundation and, hence, combined stress by salinity and flooding. To elucidate the consequences of this combined stress on foliar gas exchange and metabolite abundances in leaves and roots, date palm seedlings were exposed to flooding with seawater and its major constituents under controlled conditions. Seawater flooding significantly reduced CO\(_{2}\) assimilation, transpiration and stomatal conductance, but did not affect isoprene emission. A similar effect was observed upon NaCl exposure. By contrast, flooding with distilled water or MgSO\(_{4}\) did not affect CO\(_{2}\)/H\(_{2}\)O gas exchange or stomatal conductance significantly, indicating that neither flooding itself, nor seawater sulfate, contributed greatly to stomatal closure. Seawater exposure increased Na and Cl contents in leaves and roots, but did not affect sulfate contents significantly. Metabolite analyses revealed reduced abundances of foliar compatible solutes, such as sugars and sugar alcohols, whereas nitrogen compounds accumulated in roots. Reduced transpiration upon seawater exposure may contribute to controlling the movement of toxic ions to leaves and, therefore, can be seen as a mechanism to cope with salinity. The present results indicate that date palm seedlings are tolerant towards seawater exposure to some extent, and highly tolerant to flooding. KW - compatible solutes and other metabolites KW - date palm KW - flooding KW - salinity KW - shoot–root interaction KW - stomatal conductance KW - sulfate Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228226 VL - 229 IS - 6 SP - 3318 EP - 3329 ER - TY - JOUR A1 - Seibold, Sebastian A1 - Hothorn, Torsten A1 - Gossner, Martin M. A1 - Simons, Nadja K. A1 - Blüthgen, Nico A1 - Müller, Jörg A1 - Ambarlı, Didem A1 - Ammer, Christian A1 - Bauhus, Jürgen A1 - Fischer, Markus A1 - Habel, Jan C. A1 - Penone, Caterina A1 - Schall, Peter A1 - Schulze, Ernst‐Detlef A1 - Weisser, Wolfgang W. T1 - Insights from regional and short‐term biodiversity monitoring datasets are valuable: a reply to Daskalova et al. 2021 JF - Insect Conservation and Diversity N2 - Reports of major losses in insect biodiversity have stimulated an increasing interest in temporal population changes. Existing datasets are often limited to a small number of study sites, few points in time, a narrow range of land‐use intensities and only some taxonomic groups, or they lack standardised sampling. While new monitoring programs have been initiated, they still cover rather short time periods. Daskalova et al. 2021 (Insect Conservation and Diversity, 14, 1‐18) argue that temporal trends of insect populations derived from short time series are biased towards extreme trends, while their own analysis of an assembly of shorter‐ and longer‐term time series does not support an overall insect decline. With respect to the results of Seibold et al. 2019 (Nature, 574, 671–674) based on a 10‐year multi‐site time series, they claim that the analysis suffers from not accounting for temporal pseudoreplication. Here, we explain why the criticism of missing statistical rigour in the analysis of Seibold et al. (2019) is not warranted. Models that include ‘year’ as random effect, as suggested by Daskalova et al. (2021), fail to detect non‐linear trends and assume that consecutive years are independent samples which is questionable for insect time‐series data. We agree with Daskalova et al. (2021) that the assembly and analysis of larger datasets is urgently needed, but it will take time until such datasets are available. Thus, short‐term datasets are highly valuable, should be extended and analysed continually to provide a more detailed understanding of insect population changes under the influence of global change, and to trigger immediate conservation actions. KW - Arthropod KW - biodiversity KW - insect decline KW - land use KW - time series Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228309 VL - 14 IS - 1 SP - 144 EP - 148 ER - TY - JOUR A1 - Britz, Sebastian A1 - Markert, Sebastian Matthias A1 - Witvliet, Daniel A1 - Steyer, Anna Maria A1 - Tröger, Sarah A1 - Mulcahy, Ben A1 - Kollmannsberger, Philip A1 - Schwab, Yannick A1 - Zhen, Mei A1 - Stigloher, Christian T1 - Structural Analysis of the Caenorhabditis elegans Dauer Larval Anterior Sensilla by Focused Ion Beam-Scanning Electron Microscopy JF - Frontiers in Neuroanatomy N2 - At the end of the first larval stage, the nematode Caenorhabditis elegans developing in harsh environmental conditions is able to choose an alternative developmental path called the dauer diapause. Dauer larvae exhibit different physiology and behaviors from non-dauer larvae. Using focused ion beam-scanning electron microscopy (FIB-SEM), we volumetrically reconstructed the anterior sensory apparatus of C. elegans dauer larvae with unprecedented precision. We provide a detailed description of some neurons, focusing on structural details that were unknown or unresolved by previously published studies. They include the following: (1) dauer-specific branches of the IL2 sensory neurons project into the periphery of anterior sensilla and motor or putative sensory neurons at the sub-lateral cords; (2) ciliated endings of URX sensory neurons are supported by both ILso and AMso socket cells near the amphid openings; (3) variability in amphid sensory dendrites among dauers; and (4) somatic RIP interneurons maintain their projection into the pharyngeal nervous system. Our results support the notion that dauer larvae structurally expand their sensory system to facilitate searching for more favorable environments. KW - FIB-SEM KW - 3D reconstruction KW - neuroanatomy KW - IL2 branching KW - amphids KW - Caenorhabditis elegans (C. elegans) KW - dauer Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-249622 SN - 1662-5129 VL - 15 ER - TY - JOUR A1 - Pauli, Martin A1 - Paul, Mila M. A1 - Proppert, Sven A1 - Mrestani, Achmed A1 - Sharifi, Marzieh A1 - Repp, Felix A1 - Kürzinger, Lydia A1 - Kollmannsberger, Philip A1 - Sauer, Markus A1 - Heckmann, Manfred A1 - Sirén, Anna-Leena T1 - Targeted volumetric single-molecule localization microscopy of defined presynaptic structures in brain sections JF - Communications Biology N2 - Revealing the molecular organization of anatomically precisely defined brain regions is necessary for refined understanding of synaptic plasticity. Although three-dimensional (3D) single-molecule localization microscopy can provide the required resolution, imaging more than a few micrometers deep into tissue remains challenging. To quantify presynaptic active zones (AZ) of entire, large, conditional detonator hippocampal mossy fiber (MF) boutons with diameters as large as 10 mu m, we developed a method for targeted volumetric direct stochastic optical reconstruction microscopy (dSTORM). An optimized protocol for fast repeated axial scanning and efficient sequential labeling of the AZ scaffold Bassoon and membrane bound GFP with Alexa Fluor 647 enabled 3D-dSTORM imaging of 25 mu m thick mouse brain sections and assignment of AZs to specific neuronal substructures. Quantitative data analysis revealed large differences in Bassoon cluster size and density for distinct hippocampal regions with largest clusters in MF boutons. Pauli et al. develop targeted volumetric dSTORM in order to image large hippocampal mossy fiber boutons (MFBs) in brain slices. They can identify synaptic targets of individual MFBs and measured size and density of Bassoon clusters within individual untruncated MFBs at nanoscopic resolution. KW - mossy fiber synapses KW - CA3 pyrimidal cells KW - CA2+ channels KW - active zone KW - hippocampal KW - release KW - plasticity KW - proteins KW - platform KW - reveals Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259830 VL - 4 ER - TY - JOUR A1 - Hurd, Paul J. A1 - Grübel, Kornelia A1 - Wojciechowski, Marek A1 - Maleszka, Ryszard A1 - Rössler, Wolfgang T1 - Novel structure in the nuclei of honey bee brain neurons revealed by immunostaining JF - Scientific Reports N2 - In the course of a screen designed to produce antibodies (ABs) with affinity to proteins in the honey bee brain we found an interesting AB that detects a highly specific epitope predominantly in the nuclei of Kenyon cells (KCs). The observed staining pattern is unique, and its unfamiliarity indicates a novel previously unseen nuclear structure that does not colocalize with the cytoskeletal protein f-actin. A single rod-like assembly, 3.7-4.1 mu m long, is present in each nucleus of KCs in adult brains of worker bees and drones with the strongest immuno-labelling found in foraging bees. In brains of young queens, the labelling is more sporadic, and the rod-like structure appears to be shorter (similar to 2.1 mu m). No immunostaining is detectable in worker larvae. In pupal stage 5 during a peak of brain development only some occasional staining was identified. Although the cellular function of this unexpected structure has not been determined, the unusual distinctiveness of the revealed pattern suggests an unknown and potentially important protein assembly. One possibility is that this nuclear assembly is part of the KCs plasticity underlying the brain maturation in adult honey bees. Because no labelling with this AB is detectable in brains of the fly Drosophila melanogaster and the ant Camponotus floridanus, we tentatively named this antibody AmBNSab (Apis mellifera Brain Neurons Specific antibody). Here we report our results to make them accessible to a broader community and invite further research to unravel the biological role of this curious nuclear structure in the honey bee central brain. KW - mushroom body calyx KW - synaptic complexes KW - bodies KW - insect KW - plasticity KW - insights KW - genome KW - model KW - proteins KW - methylation KW - biological techniques KW - cell biology KW - developmental biology KW - molecular biology KW - neuroscience Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260059 VL - 11 ER - TY - JOUR A1 - Krüger, Timothy A1 - Maus, Katharina A1 - Kreß, Verena A1 - Meyer-Natus, Elisabeth A1 - Engstler, Markus T1 - Single-cell motile behaviour of Trypanosoma brucei in thin-layered fluid collectives JF - The European Physical Journal E N2 - We describe a system for the analysis of an important unicellular eukaryotic flagellate in a confining and crowded environment. The parasite Trypanosoma brucei is arguably one of the most versatile microswimmers known. It has unique properties as a single microswimmer and shows remarkable adaptations (not only in motility, but prominently so), to its environment during a complex developmental cycle involving two different hosts. Specific life cycle stages show fascinating collective behaviour, as millions of cells can be forced to move together in extreme confinement. Our goal is to examine such motile behaviour directly in the context of the relevant environments. Therefore, for the first time, we analyse the motility behaviour of trypanosomes directly in a widely used assay, which aims to evaluate the parasites behaviour in collectives, in response to as yet unknown parameters. In a step towards understanding whether, or what type of, swarming behaviour of trypanosomes exists, we customised the assay for quantitative tracking analysis of motile behaviour on the single-cell level. We show that the migration speed of cell groups does not directly depend on single-cell velocity and that the system remains to be simplified further, before hypotheses about collective motility can be advanced. KW - Trypanosoma brucei KW - motile behaviour KW - fluid collectives Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-273022 SN - 1292-895X VL - 44 IS - 3 ER - TY - JOUR A1 - Stelzner, Kathrin A1 - Boyny, Aziza A1 - Hertlein, Tobias A1 - Sroka, Aneta A1 - Moldovan, Adriana A1 - Paprotka, Kerstin A1 - Kessie, David A1 - Mehling, Helene A1 - Potempa, Jan A1 - Ohlsen, Knut A1 - Fraunholz, Martin J. A1 - Rudel, Thomas T1 - Intracellular Staphylococcus aureus employs the cysteine protease staphopain A to induce host cell death in epithelial cells JF - PLoS Pathogens N2 - Staphylococcus aureus is a major human pathogen, which can invade and survive in non-professional and professional phagocytes. Uptake by host cells is thought to contribute to pathogenicity and persistence of the bacterium. Upon internalization by epithelial cells, cytotoxic S. aureus strains can escape from the phagosome, replicate in the cytosol and induce host cell death. Here, we identified a staphylococcal cysteine protease to induce cell death after translocation of intracellular S. aureus into the host cell cytoplasm. We demonstrated that loss of staphopain A function leads to delayed onset of host cell death and prolonged intracellular replication of S. aureus in epithelial cells. Overexpression of staphopain A in a non-cytotoxic strain facilitated intracellular killing of the host cell even in the absence of detectable intracellular replication. Moreover, staphopain A contributed to efficient colonization of the lung in a mouse pneumonia model. In phagocytic cells, where intracellular S. aureus is exclusively localized in the phagosome, staphopain A did not contribute to cytotoxicity. Our study suggests that staphopain A is utilized by S. aureus to exit the epithelial host cell and thus contributes to tissue destruction and dissemination of infection. Author summary Staphylococcus aureus is an antibiotic-resistant pathogen that emerges in hospital and community settings and can cause a variety of diseases ranging from skin abscesses to lung inflammation and blood poisoning. The bacterium can asymptomatically colonize the upper respiratory tract and skin of humans and take advantage of opportune conditions, like immunodeficiency or breached barriers, to cause infection. Although S. aureus was not regarded as intracellular bacterium, it can be internalized by human cells and subsequently exit the host cells by induction of cell death, which is considered to cause tissue destruction and spread of infection. The bacterial virulence factors and underlying molecular mechanisms involved in the intracellular lifestyle of S. aureus remain largely unknown. We identified a bacterial cysteine protease to contribute to host cell death of epithelial cells mediated by intracellular S. aureus. Staphopain A induced killing of the host cell after translocation of the pathogen into the cell cytosol, while bacterial proliferation was not required. Further, the protease enhanced survival of the pathogen during lung infection. These findings reveal a novel, intracellular role for the bacterial protease staphopain A. KW - Staphylococcus aureus KW - Staphylococcal infection KW - host cells KW - HeLa cells KW - cytotoxicity KW - intracellular pathogens KW - apoptosis KW - epithelial cells Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-263908 VL - 17 IS - 9 ER - TY - JOUR A1 - Letunic, Ivica A1 - Khedkar, Supriya A1 - Bork, Peer T1 - SMART: recent updates, new developments and status in 2020 JF - Nucleic Acids Research N2 - SMART (Simple Modular Architecture Research Tool) is a web resource (https://smart.embl.de) for the identification and annotation of protein domains and the analysis of protein domain architectures. SMART version 9 contains manually curatedmodels formore than 1300 protein domains, with a topical set of 68 new models added since our last update article (1). All the new models are for diverse recombinase families and subfamilies and as a set they provide a comprehensive overview of mobile element recombinases namely transposase, integrase, relaxase, resolvase, cas1 casposase and Xer like cellular recombinase. Further updates include the synchronization of the underlying protein databases with UniProt (2), Ensembl (3) and STRING (4), greatly increasing the total number of annotated domains and other protein features available in architecture analysis mode. Furthermore, SMART's vector-based protein display engine has been extended and updated to use the latest web technologies and the domain architecture analysis components have been optimized to handle the increased number of protein features available. KW - SMART KW - SMART version 9 KW - protein domains KW - protein domain architectures Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-363816 VL - 49 IS - D1 ER - TY - JOUR A1 - Bahena, Paulina A1 - Daftarian, Narsis A1 - Maroofian, Reza A1 - Linares, Paola A1 - Villalobos, Daniel A1 - Mirrahimi, Mehraban A1 - Rad, Aboulfazl A1 - Doll, Julia A1 - Hofrichter, Michaela A. H. A1 - Koparir, Asuman A1 - Röder, Tabea A1 - Han, Seungbin A1 - Sabbaghi, Hamideh A1 - Ahmadieh, Hamid A1 - Behboudi, Hassan A1 - Villanueva-Mendoza, Cristina A1 - Cortés-Gonzalez, Vianney A1 - Zamora-Ortiz, Rocio A1 - Kohl, Susanne A1 - Kuehlewein, Laura A1 - Darvish, Hossein A1 - Alehabib, Elham A1 - La Arenas-Sordo, Maria de Luz A1 - Suri, Fatemeh A1 - Vona, Barbara A1 - Haaf, Thomas T1 - Unraveling the genetic complexities of combined retinal dystrophy and hearing impairment JF - Human Genetics N2 - Usher syndrome, the most prevalent cause of combined hereditary vision and hearing impairment, is clinically and genetically heterogeneous. Moreover, several conditions with phenotypes overlapping Usher syndrome have been described. This makes the molecular diagnosis of hereditary deaf-blindness challenging. Here, we performed exome sequencing and analysis on 7 Mexican and 52 Iranian probands with combined retinal degeneration and hearing impairment (without intellectual disability). Clinical assessment involved ophthalmological examination and hearing loss questionnaire. Usher syndrome, most frequently due to biallelic variants in MYO7A (USH1B in 16 probands), USH2A (17 probands), and ADGRV1 (USH2C in 7 probands), was diagnosed in 44 of 59 (75%) unrelated probands. Almost half of the identified variants were novel. Nine of 59 (15%) probands displayed other genetic entities with dual sensory impairment, including Alström syndrome (3 patients), cone-rod dystrophy and hearing loss 1 (2 probands), and Heimler syndrome (1 patient). Unexpected findings included one proband each with Scheie syndrome, coenzyme Q10 deficiency, and pseudoxanthoma elasticum. In four probands, including three Usher cases, dual sensory impairment was either modified/aggravated or caused by variants in distinct genes associated with retinal degeneration and/or hearing loss. The overall diagnostic yield of whole exome analysis in our deaf-blind cohort was 92%. Two (3%) probands were partially solved and only 3 (5%) remained without any molecular diagnosis. In many cases, the molecular diagnosis is important to guide genetic counseling, to support prognostic outcomes and decisions with currently available and evolving treatment modalities. KW - Usher syndrome KW - hearing impairment KW - combined retinal dystrophy Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-267750 SN - 1432-1203 VL - 141 IS - 3-4 ER - TY - JOUR A1 - Lichter, Katharina A1 - Paul, Mila Marie A1 - Pauli, Martin A1 - Schoch, Susanne A1 - Kollmannsberger, Philip A1 - Stigloher, Christian A1 - Heckmann, Manfred A1 - Sirén, Anna-Leena T1 - Ultrastructural analysis of wild-type and RIM1α knockout active zones in a large cortical synapse JF - Cell Reports N2 - Rab3A-interacting molecule (RIM) is crucial for fast Ca\(^{2+}\)-triggered synaptic vesicle (SV) release in presynaptic active zones (AZs). We investigated hippocampal giant mossy fiber bouton (MFB) AZ architecture in 3D using electron tomography of rapid cryo-immobilized acute brain slices in RIM1α\(^{−/−}\) and wild-type mice. In RIM1α\(^{−/−}\), AZs are larger with increased synaptic cleft widths and a 3-fold reduced number of tightly docked SVs (0–2 nm). The distance of tightly docked SVs to the AZ center is increased from 110 to 195 nm, and the width of their electron-dense material between outer SV membrane and AZ membrane is reduced. Furthermore, the SV pool in RIM1α\(^{−/−}\) is more heterogeneous. Thus, RIM1α, besides its role in tight SV docking, is crucial for synaptic architecture and vesicle pool organization in MFBs. KW - active zone KW - acute brain slices KW - CA3 KW - electron tomography KW - high-pressure freezing KW - hippocampal mossy fiber bouton KW - RIM1α KW - SV pool KW - synaptic ultrastructure KW - presynaptic Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300913 VL - 40 IS - 12 ER - TY - JOUR A1 - Jeanclos, Elisabeth A1 - Schlötzer, Jan A1 - Hadamek, Kerstin A1 - Yuan-Chen, Natalia A1 - Alwahsh, Mohammad A1 - Hollmann, Robert A1 - Fratz, Stefanie A1 - Yesilyurt-Gerhards, Dilan A1 - Frankenbach, Tina A1 - Engelmann, Daria A1 - Keller, Angelika A1 - Kaestner, Alexandra A1 - Schmitz, Werner A1 - Neuenschwander, Martin A1 - Hergenröder, Roland A1 - Sotriffer, Christoph A1 - von Kries, Jens Peter A1 - Schindelin, Hermann A1 - Gohla, Antje T1 - Glycolytic flux control by drugging phosphoglycolate phosphatase JF - Nature Communications N2 - Targeting the intrinsic metabolism of immune or tumor cells is a therapeutic strategy in autoimmunity, chronic inflammation or cancer. Metabolite repair enzymes may represent an alternative target class for selective metabolic inhibition, but pharmacological tools to test this concept are needed. Here, we demonstrate that phosphoglycolate phosphatase (PGP), a prototypical metabolite repair enzyme in glycolysis, is a pharmacologically actionable target. Using a combination of small molecule screening, protein crystallography, molecular dynamics simulations and NMR metabolomics, we discover and analyze a compound (CP1) that inhibits PGP with high selectivity and submicromolar potency. CP1 locks the phosphatase in a catalytically inactive conformation, dampens glycolytic flux, and phenocopies effects of cellular PGP-deficiency. This study provides key insights into effective and precise PGP targeting, at the same time validating an allosteric approach to control glycolysis that could advance discoveries of innovative therapeutic candidates. KW - phosphoglycolate phosphatase KW - glycolytic flux control KW - intrinsic metabolism Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300928 VL - 13 IS - 1 ER - TY - JOUR A1 - Kaya-Zeeb, Sinan A1 - Engelmayer, Lorenz A1 - Straßburger, Mara A1 - Bayer, Jasmin A1 - Bähre, Heike A1 - Seifert, Roland A1 - Scherf-Clavel, Oliver A1 - Thamm, Markus T1 - Octopamine drives honeybee thermogenesis JF - eLife N2 - In times of environmental change species have two options to survive: they either relocate to a new habitat or they adapt to the altered environment. Adaptation requires physiological plasticity and provides a selection benefit. In this regard, the Western honeybee (Apis mellifera) protrudes with its thermoregulatory capabilities, which enables a nearly worldwide distribution. Especially in the cold, shivering thermogenesis enables foraging as well as proper brood development and thus survival. In this study, we present octopamine signaling as a neurochemical prerequisite for honeybee thermogenesis: we were able to induce hypothermia by depleting octopamine in the flight muscles. Additionally, we could restore the ability to increase body temperature by administering octopamine. Thus, we conclude that octopamine signaling in the flight muscles is necessary for thermogenesis. Moreover, we show that these effects are mediated by β octopamine receptors. The significance of our results is highlighted by the fact the respective receptor genes underlie enormous selective pressure due to adaptation to cold climates. Finally, octopamine signaling in the service of thermogenesis might be a key strategy to survive in a changing environment. KW - honeybee KW - octopamine KW - thermogenesis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301327 VL - 11 ER - TY - JOUR A1 - Reinhard, Nils A1 - Bertolini, Enrico A1 - Saito, Aika A1 - Sekiguchi, Manabu A1 - Yoshii, Taishi A1 - Rieger, Dirk A1 - Helfrich‐Förster, Charlotte T1 - The lateral posterior clock neurons of Drosophila melanogaster express three neuropeptides and have multiple connections within the circadian clock network and beyond JF - Journal of Comparative Neurology N2 - Drosophila’s lateral posterior neurons (LPNs) belong to a small group of circadian clock neurons that is so far not characterized in detail. Thanks to a new highly specific split‐Gal4 line, here we describe LPNs’ morphology in fine detail, their synaptic connections, daily bimodal expression of neuropeptides, and propose a putative role of this cluster in controlling daily activity and sleep patterns. We found that the three LPNs are heterogeneous. Two of the neurons with similar morphology arborize in the superior medial and lateral protocerebrum and most likely promote sleep. One unique, possibly wakefulness‐promoting, neuron with wider arborizations extends from the superior lateral protocerebrum toward the anterior optic tubercle. Both LPN types exhibit manifold connections with the other circadian clock neurons, especially with those that control the flies’ morning and evening activity (M‐ and E‐neurons, respectively). In addition, they form synaptic connections with neurons of the mushroom bodies, the fan‐shaped body, and with many additional still unidentified neurons. We found that both LPN types rhythmically express three neuropeptides, Allostatin A, Allostatin C, and Diuretic Hormone 31 with maxima in the morning and the evening. The three LPN neuropeptides may, furthermore, signal to the insect hormonal center in the pars intercerebralis and contribute to rhythmic modulation of metabolism, feeding, and reproduction. We discuss our findings in the light of anatomical details gained by the recently published hemibrain of a single female fly on the electron microscopic level and of previous functional studies concerning the LPN. KW - activity KW - circadian clock neurons KW - insect brain KW - neuropeptides KW - sleep KW - trans‐Tango Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-276456 VL - 530 IS - 9 SP - 1507 EP - 1529 ER - TY - JOUR A1 - Lasway, Julius V. A1 - Peters, Marcell K. A1 - Njovu, Henry K. A1 - Eardley, Connal A1 - Pauly, Alain A1 - Steffan‐Dewenter, Ingolf T1 - Agricultural intensification with seasonal fallow land promotes high bee diversity in Afrotropical drylands JF - Journal of Applied Ecology N2 - The exponential increase in the human population in tandem with increased food demand has caused agriculture to be the global‐dominant form of land use. Afrotropical drylands are currently facing the loss of natural savannah habitats and agricultural intensification with largely unknown consequences for bees. Here we investigate the effects of agricultural intensification on bee assemblages in the Afrotropical drylands of northern Tanzania. We disentangled the direct effects of agricultural intensification and temperature on bee richness from indirect effects mediated by changes in floral resources. We collected data from 24 study sites representing three levels of management intensity (natural savannah, moderate intensive and highly intensive agriculture) spanning an extensive gradient of mean annual temperature (MAT) in northern Tanzania. We used ordinary linear models and path analysis to test the effects of agricultural intensity and MAT on bee species richness, bee species composition and body‐size variation of bee communities. We found that bee species richness increased with agricultural intensity and with increasing temperature. The effects of agricultural intensity and temperature on bee species richness were mediated by the positive effects of agriculture and temperature on the richness of floral resources used by bees. During the off‐growing season, agricultural land was characterized by an extensive period of fallow land holding a very high density of flowering plants with unique bee species composition. The increase in bee diversity in agricultural habitats paralleled an increasing variation of bee body sizes with agricultural intensification that, however, diminished in environments with higher temperatures. Synthesis and applications. Our study reveals that bee assemblages in Afrotropical drylands benefit from agricultural intensification in the way it is currently practiced. However, further land‐use intensification, including year‐round irrigated crop monocultures and excessive use of agrochemicals, is likely to exert a negative impact on bee diversity and pollination services, as reported in temperate regions. Moreover, several bee species were restricted to natural savannah habitats. To conserve bee communities and guarantee pollination services in the region, a mixture of savannah and agriculture, with long periods of fallow land should be maintained. KW - bee abundance KW - bee body size KW - bee species richness KW - forage resources KW - inter‐tegular distance KW - mean annual temperature KW - northern Tanzania KW - species community composition Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-311877 VL - 59 IS - 12 SP - 3014 EP - 3026 ER - TY - JOUR A1 - Sponsler, Douglas B. A1 - Requier, Fabrice A1 - Kallnik, Katharina A1 - Classen, Alice A1 - Maihoff, Fabienne A1 - Sieger, Johanna A1 - Steffan‐Dewenter, Ingolf T1 - Contrasting patterns of richness, abundance, and turnover in mountain bumble bees and their floral hosts JF - Ecology N2 - Environmental gradients generate and maintain biodiversity on Earth. Mountain slopes are among the most pronounced terrestrial environmental gradients, and the elevational structure of species and their interactions can provide unique insight into the processes that govern community assembly and function in mountain ecosystems. We recorded bumble bee–flower interactions over 3 years along a 1400‐m elevational gradient in the German Alps. Using nonlinear modeling techniques, we analyzed elevational patterns at the levels of abundance, species richness, species β‐diversity, and interaction β‐diversity. Though floral richness exhibited a midelevation peak, bumble bee richness increased with elevation before leveling off at the highest sites, demonstrating the exceptional adaptation of these bees to cold temperatures and short growing seasons. In terms of abundance, though, bumble bees exhibited divergent species‐level responses to elevation, with a clear separation between species preferring low versus high elevations. Overall interaction β‐diversity was mainly caused by strong turnover in the floral community, which exhibited a well‐defined threshold of β‐diversity rate at the tree line ecotone. Interaction β‐diversity increased sharply at the upper extreme of the elevation gradient (1800–2000 m), an interval over which we also saw steep decline in floral richness and abundance. Turnover of bumble bees along the elevation gradient was modest, with the highest rate of β‐diversity occurring over the interval from low‐ to mid‐elevation sites. The contrast between the relative robustness bumble bee communities and sensitivity of plant communities to the elevational gradient in our study suggests that the strongest effects of climate change on mountain bumble bees may be indirect effects mediated by the responses of their floral hosts, though bumble bee species that specialize in high‐elevation habitats may also experience significant direct effects of warming. KW - alpine plants KW - climate KW - elevation gradient KW - mountain ecology KW - pollination network Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-287199 VL - 103 IS - 7 ER - TY - JOUR A1 - Gebert, Friederike A1 - Steffan‐Dewenter, Ingolf A1 - Kronbach, Patrick A1 - Peters, Marcell K. T1 - The role of diversity, body size and climate in dung removal: A correlative and experimental approach JF - Journal of Animal Ecology N2 - The mechanisms by which climatic changes influence ecosystem functions, that is, by a direct climatic control of ecosystem processes or by modifying richness and trait compositions of species communities, remain unresolved. This study is a contribution to this discourse by elucidating the linkages between climate, land use, biodiversity, body size and ecosystem functions. We disentangled direct climatic from biodiversity‐mediated effects by using dung removal by dung beetles as a model system and by combining correlative field data and exclosure experiments along an extensive elevational gradient on Mt. Kilimanjaro, Tanzania. Dung removal declined with increasing elevation, being associated with a strong reduction in the richness and body size traits of dung beetle communities. Climate influenced dung removal rates by modifying biodiversity rather than by direct effects. The biodiversity–ecosystem effect was driven by a change in the mean body size of dung beetles. Dung removal rates were strongly reduced when large dung beetles were experimentally excluded. This study underscores that climate influences ecosystem functions mainly by modifying biodiversity and underpins the important role of body size for dung removal. KW - altitudinal gradients KW - biodiversity–ecosystem functioning relationship KW - body size KW - diversity gradients KW - ecosystem services KW - land use KW - Scarabaeidae KW - temperature Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-293907 VL - 91 IS - 11 SP - 2181 EP - 2191 ER - TY - JOUR A1 - Kortmann, Mareike A1 - Roth, Nicolas A1 - Buse, Jörn A1 - Hilszczański, Jacek A1 - Jaworski, Tomasz A1 - Morinière, Jérôme A1 - Seidl, Rupert A1 - Thorn, Simon A1 - Müller, Jörg C. T1 - Arthropod dark taxa provide new insights into diversity responses to bark beetle infestations JF - Ecological Applications N2 - Natural disturbances are increasing around the globe, also impacting protected areas. Although previous studies have indicated that natural disturbances result in mainly positive effects on biodiversity, these analyses mostly focused on a few well established taxonomic groups, and thus uncertainty remains regarding the comprehensive impact of natural disturbances on biodiversity. Using Malaise traps and meta‐barcoding, we studied a broad range of arthropod taxa, including dark and cryptic taxa, along a gradient of bark beetle disturbance severities in five European national parks. We identified order‐level community thresholds of disturbance severity and classified barcode index numbers (BINs; a cluster system for DNA sequences, where each cluster corresponds to a species) as negative or positive disturbance indicators. Negative indicator BINs decreased above thresholds of low to medium disturbance severity (20%–30% of trees killed), whereas positive indicator BINs benefited from high disturbance severity (76%–98%). BINs allocated to a species name contained nearly as many positive as negative disturbance indicators, but dark and cryptic taxa, particularly Diptera and Hymenoptera in our data, contained higher numbers of negative disturbance indicator BINs. Analyses of changes in the richness of BINs showed variable responses of arthropods to disturbance severity at lower taxonomic levels, whereas no significant signal was detected at the order level due to the compensatory responses of the underlying taxa. We conclude that the analyses of dark taxa can offer new insights into biodiversity responses to disturbances. Our results suggest considerable potential for forest management to foster arthropod diversity, for example by maintaining both closed‐canopy forests (>70% cover) and open forests (<30% cover) on the landscape. KW - arthropods KW - biodiversity KW - conservation KW - metabarcoding KW - national park KW - natural disturbance KW - threshold indicator taxa analysis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-276392 VL - 32 IS - 2 ER - TY - JOUR A1 - Uhler, Johannes A1 - Haase, Peter A1 - Hoffmann, Lara A1 - Hothorn, Torsten A1 - Schmidl, Jürgen A1 - Stoll, Stefan A1 - Welti, Ellen A. R. A1 - Buse, Jörn A1 - Müller, Jörg T1 - A comparison of different Malaise trap types JF - Insect Conservation and Diversity N2 - Recent reports on insect decline have highlighted the need for long‐term data on insect communities towards identifying their trends and drivers. With the launch of many new insect monitoring schemes to investigate insect communities over large spatial and temporal scales, Malaise traps have become one of the most important tools due to the broad spectrum of species collected and reduced capture bias through passive sampling of insects day and night. However, Malaise traps can vary in size, shape, and colour, and it is unknown how these differences affect biomass, species richness, and composition of trap catch, making it difficult to compare results between studies. We compared five Malaise trap types (three variations of the Townes and two variations of the Bartak Malaise trap) to determine their effects on biomass and species richness as identified by metabarcoding. Insect biomass varied by 20%–55%, not strictly following trap size but varying with trap type. Total species richness was 20%–38% higher in the three Townes trap models compared to the Bartak traps. Bartak traps captured lower richness of highly mobile taxa but increased richness of ground‐dwelling taxa. The white roofed Townes trap captured a higher richness of pollinators. We find that biomass, total richness, and taxa group specific richness are all sensitive to Malaise trap type. Trap type should be carefully considered and aligned to match monitoring and research questions. Additionally, our estimates of trap type effects can be used to adjust results to facilitate comparisons across studies. KW - Bartak KW - biodiversity KW - insect communities KW - insect monitoring KW - Malaise trap KW - Townes KW - trap selectivity Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-293694 VL - 15 IS - 6 SP - 666 EP - 672 ER - TY - JOUR A1 - Kohl, Patrick L. A1 - Steffan‐Dewenter, Ingolf T1 - Nectar robbing rather than pollinator availability constrains reproduction of a bee‐flowered plant at high elevations JF - Ecosphere N2 - Abiotic factors are generally assumed to determine whether species can exist at the extreme ends of environmental gradients, for example, at high elevations, whereas the role of biotic interactions is less clear. On temperate mountains, insect‐pollinated plant species with bilaterally symmetrical flowers exhibit a parallel elevational decline in species richness and abundance with bees. This suggests that the lack of mutualistic interaction partners sets the elevational range limits of plants via a reduction in reproductive success. We used the bee‐pollinated mountain plant Clinopodium alpinum (Lamiaceae), which blooms along a continuous 1000‐m elevational gradient and has bilaterally symmetrical flowers, as a model to test the predicted parallel elevational decline in flower visitation and seed production. Although the community of flower visitors changed with elevation, the flower visitation rate by the most frequent visitors, bumble bees (33.8% of legitimate visits), and the overall rate of flower visitation by potential pollinators did not vary significantly with elevation. However, we discovered that nectar robbing by bumble bees and nectar theft by ants, two interactions with potentially negative effects on flowers, sharply increased with elevation. Seed set depended on pollinators across elevations and followed a weak hump‐shaped pattern, peaking at mid‐elevations and decreasing by about 20% toward both elevational range edges. Considering the mid‐ and high elevations, elevational variation in seed production could not be explained by legitimate bee visitation rates but was inversely correlated with the frequency of nectar robbing. Our observations challenge the hypothesis that a decrease in the availability of pollinators limits seed production of bee‐flowered plants at high elevations but suggest that an increase in negative interactions (nectar robbing and larceny) constrains reproductive success. KW - altitudinal gradients KW - bee pollination KW - chalcidoid wasps KW - climatic gradients KW - elevational diversity patterns KW - floral larceny KW - fly pollination KW - mountain ecosystems KW - plant–pollinator interactions KW - range limits KW - zygomorphy Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-287141 VL - 13 IS - 6 ER - TY - JOUR A1 - Jones, Jeffrey J. A1 - Huang, Shouguang A1 - Hedrich, Rainer A1 - Geilfus, Christoph‐Martin A1 - Roelfsema, M. Rob G. T1 - The green light gap: a window of opportunity for optogenetic control of stomatal movement JF - New Phytologist N2 - Green plants are equipped with photoreceptors that are capable of sensing radiation in the ultraviolet‐to‐blue and the red‐to‐far‐red parts of the light spectrum. However, plant cells are not particularly sensitive to green light (GL), and light which lies within this part of the spectrum does not efficiently trigger the opening of stomatal pores. Here, we discuss the current knowledge of stomatal responses to light, which are either provoked via photosynthetically active radiation or by specific blue light (BL) signaling pathways. The limited impact of GL on stomatal movements provides a unique option to use this light quality to control optogenetic tools. Recently, several of these tools have been optimized for use in plant biological research, either to control gene expression, or to provoke ion fluxes. Initial studies with the BL‐activated potassium channel BLINK1 showed that this tool can speed up stomatal movements. Moreover, the GL‐sensitive anion channel GtACR1 can induce stomatal closure, even at conditions that provoke stomatal opening in wild‐type plants. Given that crop plants in controlled‐environment agriculture and horticulture are often cultivated with artificial light sources (i.e. a combination of blue and red light from light‐emitting diodes), GL signals can be used as a remote‐control signal that controls stomatal transpiration and water consumption. KW - anion channel KW - channelrhodopsin KW - Chl KW - guard cell KW - ion channel KW - light‐gated KW - membrane potential KW - phototropin Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-293724 VL - 236 IS - 4 SP - 1237 EP - 1244 ER -