TY - THES A1 - Gupta, Shishir Kumar T1 - Re-annotation of Camponotus floridanus Genome and Characterization of Innate Immunity Transcriptome Responses to Bacterial Infections T1 - Re-Annotation des Camponotus floridanus Genoms und Charakterisieren der unspezifischen Immun-Transkriptom-Antwort auf bakterielle Infektionen N2 - The sequencing of several ant genomes within the last six years open new research avenues for understanding not only the genetic basis of social species but also the complex systems such as immune responses in general. Similar to other social insects, ants live in cooperative colonies, often in high densities and with genetically identical or closely related individuals. The contact behaviours and crowd living conditions allow the disease to spread rapidly through colonies. Nevertheless, ants can efficiently combat infections by using diverse and effective immune mechanisms. However, the components of the immune system of carpenter ant Camponotus floridanus and also the factors in bacteria that facilitate infection are not well understood. To form a better view of the immune repository and study the C. floridanus immune responses against the bacteria, experimental data from Illumina sequencing and mass-spectrometry (MS) data of haemolymph in normal and infectious conditions were analysed and integrated with the several bioinformatics approaches. Briefly, the tasks were accomplished in three levels. First, the C. floridanus genome was re-annotated for the improvement of the existing annotation using the computational methods and transcriptomics data. Using the homology based methods, the extensive survey of literature, and mRNA expression profiles, the immune repository of C. floridanus were established. Second, large-scale protein-protein interactions (PPIs) and signalling network of C. floridanus were reconstructed and analysed and further the infection induced functional modules in the networks were detected by mapping of the expression data over the networks. In addition, the interactions of the immune components with the bacteria were identified by reconstructing inter-species PPIs networks and the interactions were validated by literature. Third, the stage-specific MS data of larvae and worker ants were analysed and the differences in the immune response were reported. Concisely, all the three omics levels resulted to multiple findings, for instance, re-annotation and transcriptome profiling resulted in the overall improvement of structural and functional annotation and detection of alternative splicing events, network analysis revealed the differentially expressed topologically important proteins and the active functional modules, MS data analysis revealed the stage specific differences in C. floridanus immune responses against bacterial pathogens. Taken together, starting from re-annotation of C. floridanus genome, this thesis provides a transcriptome and proteome level characterization of ant C. floridanus, particularly focusing on the immune system responses to pathogenic bacteria from a biological and a bioinformatics point of view. This work can serve as a model for the integration of omics data focusing on the immuno-transcriptome of insects. N2 - Das Sequenzieren mehrerer Ameisen Genome innerhalb der letzten 6 Jahre eröffnete neue Forschungswege, um nicht nur die genetische Grundlade sozialer Arten, sondern auch komplexere Systeme wie generelle Immunantworten zu untersuchen. Ähnlich zu anderen sozialen Insekten leben Ameisen in Kolonien, oft mit einer sehr hohen Dichte mit genetisch übereinstimmenden oder nah verwandten Individuen. Das Sozialverhalten und die engen Lebensumstände führen dazu, dass sich Krankheiten in Kolonien schnell ausbreiten können. Dennoch können Ameisen mit der Nutzung ihrer komplexen Immunsystemmechanismen Infektionen effektiv abwehren. Die Zusammensetzung des Immunsystems der Rossameise Camponotus floridanus (C. floridanus) und die Faktoren der Bakterien, welche die Infektionen verursachen sind noch nicht gut untersucht. Um einen besseren Überblick über die verschiedenen Gruppen der Immun- Gene zu bekommen und um die Immunantworten von C. floridanus gegen Bakterien zu untersuchen haben wir experimentelle Daten der Illumina Sequenzierung und der Massenspektrometrie (MS) aus der Hämolymphe unter normalen und unter infizierten Bedingungen analysiert und über verschiedene bioinformatische Ansätzen zusammengefasst. Die Aufgabe wurde in drei Ebenen unterteilt. Zuerst wurde das Genom von C. floridanus neu annotiert, die Verbesserung der existierenden Annotation wurde rechnerisch und mit Transkriptom- Daten erreicht. Mit der Nutzung der auf Homologie- basierenden Methoden, der umfassenden Überprüfung der Literatur und der Nutzung von mRNA Genexpressionsanalysen wurde für C. floridanus dieser Überblick erstellt. Anschließend wurden größere Protein- Protein- Interaktionen (PPI) und Signalnetzwerke von C. floridanus rekonstruiert und analysiert und daraufhin wurden die Infektions-induzierten funktionalen Module im Netzwerk entdeckt und die Expressionsdaten über Netzwerke abgebildet. Zusätzlich wurden die Anteile der Immunantwort bei der Interaktion mit Bakterien mittels der Rekonstruktion von zwischenartlichen PPI Netzwerken identifiziert und diese Interaktionen wurden mit Literaturwerten validiert. In der dritten und letzten Phase wurden Daten der Stadium- spezifischen Massenspektrometrie (MS) von Larven- und Arbeiterameisen analysiert und die Unterschiede in den Immunantworten aufgezeichnet. Zusammengefasst lieferten alle drei Omiks- Ebenen jeweils viele Ergebnisse, zum Beispiel führte die neue Annotation und das Transkription- Profil zu einer generellen Verbesserung der strukturellen und funktionalen Annotation und dem Aufspüren von alternativen Splicing- Ereignissen. Die Netzwerkanalyse deckte die unterschiedlich exprimierten topologisch wichtigen Proteine und die aktiven funktionalen Module auf, die Analyse der MS- Daten erbrachte Ergebnisse über die Stadium- spezifischen Unterschiede in der Immunantwort von C. floridanus gegen bakterielle Pathogene. Rundum, beginnend mit der neuen Annotation des Genoms von C. floridanus stellt diese Arbeit eine Transkriptom- und Protein Charakterisierung der Ameise C. floridanus dar. Besonders lag der Fokus auf die Antworten des Immunsystems auf Pathogene Bakterien aus biologischer- und bioinformatischer Sicht. Diese Arbeit kann als Vorlage für die Integration von Omiks Daten dienen, welche sich auf die Immun- Transkriptome von Insekten fokussieren. KW - Camponotus floridanus KW - Genom KW - Camponotus floridanus KW - Innate immunity KW - Transcriptome KW - Interactome KW - Host-pathogen interactions KW - Host-endosymbiont interactions KW - Re-annotation KW - Gene-prediction KW - Ants KW - Comparative genomics KW - Transkription KW - Immunreaktion KW - Re-Annotation KW - Immun-Transkriptom Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-140168 ER - TY - THES A1 - Bemm, Felix Mathias T1 - Genetic foundation of unrivaled survival strategies - Of water bears and carnivorous plants - T1 - Genetische Grundlagen einzigartiger Überlebensstrategien - Über Bärtierchen und fleischfressende Pflanzen - N2 - All living organisms leverage mechanisms and response systems to optimize reproduction, defense, survival, and competitiveness within their natural habitat. Evolutionary theories such as the universal adaptive strategy theory (UAST) developed by John Philip Grime (1979) attempt to describe how these systems are limited by the trade-off between growth, maintenance and regeneration; known as the universal three-way trade-off. Grime introduced three adaptive strategies that enable organisms to coop with either high or low intensities of stress (e.g., nutrient deficiency) and environmental disturbance (e.g., seasons). The competitor is able to outcompete other organisms by efficiently tapping available resources in environments of low intensity stress and disturbance (e.g., rapid growers). A ruderal specism is able to rapidly complete the life cycle especially during high intensity disturbance and low intensity stress (e.g., annual colonizers). The stress tolerator is able to respond to high intensity stress with physiological variability but is limited to low intensity disturbance environments. Carnivorous plants like D. muscipula and tardigrades like M. tardigradum are two extreme examples for such stress tolerators. D. muscipula traps insects in its native habitat (green swamps in North and South Carolina) with specialized leaves and thereby is able to tolerate nutrient deficient soils. M. tardigradum on the other side, is able to escape desiccation of its terrestrial habitat like mosses and lichens which are usually covered by a water film but regularly fall completely dry. The stress tolerance of the two species is the central study object of this thesis. In both cases, high througput sequencing data and methods were used to test for transcriptomic (D. muscipula) or genomic adaptations (M. tardigradum) which underly the stress tolerance. A new hardware resource including computing cluster and high availability storage system was implemented in the first months of the thesis work to effectively analyze the vast amounts of data generated for both projects. Side-by-side, the data management resource TBro [14] was established together with students to intuitively approach complex biological questions and enhance collaboration between researchers of several different disciplines. Thereafter, the unique trapping abilities of D. muscipula were studied using a whole transcriptome approach. Prey-dependent changes of the transcriptional landscape as well as individual tissue-specific aspects of the whole plant were studied. The analysis revealed that non-stimulated traps of D. muscipula exhibit the expected hallmarks of any typical leaf but operates evolutionary conserved stress-related pathways including defense-associated responses when digesting prey. An integrative approach, combining proteome and transcriptome data further enabled the detailed description of the digestive cocktail and the potential nutrient uptake machinery of the plant. The published work [25] as well as a accompanying video material (https://www.eurekalert.org/pub_releases/ 2016-05/cshl-fgr042816.php; Video credit: Sönke Scherzer) gained global press coverage and successfully underlined the advantages of D. muscipula as experimental system to understand the carnivorous syndrome. The analysis of the peculiar stress tolerance of M. tardigradum during cryptobiosis was carried out using a genomic approach. First, the genome size of M. tardigradum was estimated, the genome sequenced, assembled and annotated. The first draft of M. tardigradum and the workflow used to established its genome draft helped scrutinizing the first ever released tardigrade genome (Hypsibius dujardini) and demonstrated how (bacterial) contamination can influence whole genome analysis efforts [27]. Finally, the M. tardigradum genome was compared to two other tardigrades and all species present in the current release of the Ensembl Metazoa database. The analysis revealed that tardigrade genomes are not that different from those of other Ecdysozoa. The availability of the three genomes allowed the delineation of their phylogenetic position within the Ecdysozoa and placed them as sister taxa to the nematodes. Thereby, the comparative analysis helped to identify evolutionary trends within this metazoan lineage. Surprisingly, the analysis did not reveal general mechanisms (shared by all available tardigrade genomes) behind the arguably most peculiar feature of tardigrades; their enormous stress tolerance. The lack of molecular evidence for individual tardigrade species (e.g., gene expression data for M. tardigradum) and the non-existence of a universal experimental framework which enables hypothesis testing withing the whole phylum Tardigrada, made it nearly impossible to link footprints of genomic adaptations to the unusual physiological capabilities. Nevertheless, the (comparative) genomic framework established during this project will help to understand how evolution tinkered, rewired and modified existing molecular systems to shape the remarkable phenotypic features of tardigrades. N2 - Alle lebenden Organismen verwenden Mechanismen und Rückkopplungssysteme um Reproduktion, Überlebenswahrscheinlichkeit, Abwehreffizienz und Konkurrenzfähigkeit in ihrem natürlichen Habitat zu optimieren. Evolutionäre Theorien, wie die von John Philip Grime (1979) entwickelte „universal adaptive strategy theory“ (UAST), versuchen zu beschreiben wie diese Systeme durch eine Balance zwischen Wachstum, Erhaltung und Regeneration, auch gemeinhin bekannt als universeller Dreiwege-Ausgleich, des jeweiligen Organismus limitiert sind. Grime führte dazu drei adaptive Strategien ein, die es Organismen ermöglicht sich an hohe oder niedrige Stress-Intensitäten (z.B. Nahrungsknappheit) oder umweltbedingte Beeinträchtigung (z.B. Jahreszeiten) anzupassen. Der Wettkämpfer ist in der Lage seine Konkurrenz durch eine effiziente Ressourcengewinnung zu überflügeln und ist vor allem bei niedrigem Stresslevel und minimalen umweltbedingten Beeinträchtigungen effizient (z. B. schnelles Wachstum). Ruderale Organismen hingegen durchlaufen den Leben- szyklus in kurzer Zeit und sind damit perfekt an starke umweltbedingte Beeinträchtigungen, wie zum Beispiel Jahreszeiten, angepasst. Allerdings können auch sie nur bei niedrigen Stresslevel effizient wachsen. Die letzte Gruppe von Organismen, die Stresstoleranten sind in der Lage sich an hohen Stressintensitäten mithilfe extremer physiologischer Variabilität anzupassen, können das allerdings nur in Umgebungen mit niedrigen umweltbedingten Beeinträchtigungen. Fleischfressende Pflanzen wie die Venusfliegenfalle (D. muscipula) oder Bärtierchen (M. tardigradum) sind zwei herausragende Beispiele für stresstolerante Organismen. Die Venusfliegenfalle ist in der Lage Insekten mit spezialisierten Blätter, welche eine einzigartige Falle bilden, zu fangen. Die Pflanze kompensiert so die stark verminderte Mengen an wichtigen Makronährstoffen (z.B. Stickstoff) in den Sümpfen von Nord- und Süd-Carolina. Bärtierchen dagegen sind in der Lage in schnell austrocknenden Habitaten wie Moosen oder Flechten, die normalerweise mit einem Wasserfilm überzogen sind, durch eine gesteuerte Entwässerung ihres Körpers zu überleben. Die Stresstoleranz beider Spezies ist zentraler Forschungsschwerpunkt dieser Dissertation. In beiden Fällen wer- den Hochdurchsatz-Methoden zur Sequenzierung verwendet um genomische (Bärtierchen) sowie transkriptomische (Venusfliegenfalle) Anpassungen zu identifizieren, die der enorem Stresstoleranz zugrunde liegen. Um den erhöhten technischen Anforderungen der Datenanal- ysen beider Projekte Rechnung zu tragen wurde in den ersten Monaten der Dissertation eine neue zentrale Rechenumgebung und ein dazugehöriges Speichersystem etabliert. Parallel wurde die Datenmanagementplattform TBro [14] zusammen mit Studenten aufgesetzt, um komplexe biologische Fragestellung mit einem fachübergreifendem Kollegium zu bearbeiten. Danach wurden die einzigartigen Fangfähigkeiten der Venusfliegenfalle mittels einem tran- skriptomischen Ansatz untersucht. Vor allem wurden transkriptionelle Änderungen infolge eines Beutefangs sowie gewebespezifische Aspekte der ruhenden Pflanzen untersucht. Die Analyse zeigte deutlich, dass die Fallen der fleischfressenden Pflanze immer noch Merkmale von typischen „grünen“ Blättern aufweisen. Während des Beutefangs und -verdauens jedoch wird eine Vielzahl an evolutionär konservierten Systemen aktiviert, die bisher nur mit Stres- santworten und zellulärer Verteidigung in Verbindung gebracht worden sind. Die Integration von proteomischen und transkriptomischen Hochdurchsatzdaten ermöglichte es zudem den Verdauungssaft der Venusfliegenfalle genaustens zu beschreiben und wichtige Komponenten der Aufnahmemaschinerie zu identifizieren. Die wissenschaftliche Arbeit [25] und das beglei- tende Videomaterial (https://www.eurekalert.org/pub_releases/2016-05/cshl-fgr042816.php; Video credit: Sönke Scherzer) erfreute sich einer breiten Berichterstattung in den Medien und unterstreicht die Vorteile der Venusfliegenfalle als experimentelles System um fleis- chfressende Pflanzen besser zu verstehen. Die genomische Analyse des Bärtierchen (M. tardigradum) zielte auf die außerordentliche Stresstoleranz, vor allem auf die Kryptobiose, einen Zustand in dem Stoffwechselvorgänge extrem reduziert sind, ab. Dazu wurden das komplette genetische Erbgut (Genom) entschlüsselt. Die Größe des Genomes wurde bes- timmt und das Erbgut mittels Sequenzierung entschlüsselt. Die gewonnenen Daten wurden zu einer kontinuierlichen Sequenz zusammengesetzt und Gene identifiziert. Der dabei etablierte Arbeitsablauf wurde verwendet um ein weiteres Bärtierchengenom genau zu überprüfen. Im Rahmen dieser Analyse stellte sich heraus, dass eine große Anzahl an Kontaminationen im Genom von H. dujardini vorhanden sind [27]. Das neu etablierte Genom von M. tardigradum wurde im folgenden verwendet um einen speziesübergreifenden Vergleich dreier Bärtierchen und aller Spezies aus der Metazoadatenbank von Ensembl durchzuführen. Die Analyse zeigte, dass Bärtierchengenome sehr viel Ähnlichkeit zu den bereits veröffentlichten Genomen aus dem Überstamm der Urmünder (Protostomia) aufweisen. Die erstmalige Verfügbarkeit aller Bärtierchengenome ermöglichte es zudem, das Phylum der Bärtierchen als Schwester der Nematoden mittels einer phylogenomische Analyse zu platzieren. Die vergleichende Anal- yse identifizierte außerdem zentrale evolutionäre Trends, vor allem einen enormen Verlust an Genen in dieser Linie der Metazoa. Die Analyse ermöglichte es aber nicht, generelle Mechanismen, die zur enormen Stresstoleranz in Bärtierchen führen, artübergreifend zu identifizieren. Vor allem das Fehlen von weiteren molekularen Daten für einzelne Bärtierchen- spezies (z.B. transkriptionelle Daten für M. tardigradum) machten es unmöglich die wenigen genomische Adaptionen mit den physiologischen Besonderheiten der Bärtierchen in Deckung zu bringen. Nichtsdestotrotz konnten die vergleichenden Analysen zeigen, dass Evolution auch innerhalb der Bärtierchen verschiedenste Systeme neu zusammensetzt, neue Funktionen erschafft oder bestehenden Systeme modifiziert und damit die außerordentliche phänotypis- che Variabilität ermöglicht. KW - transcriptome KW - venus KW - flytrap KW - defense KW - secretion KW - jasmonate KW - Bärtierchen KW - Genom KW - Stressresistenz KW - Venusfliegenfalle KW - Proteom KW - Transkriptom Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157109 ER -